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Abstract

The widespread use of the World Wide Web and related
applications places interesting performance demands on
network servers. The ability to measure the effect of these
demands is important for tuning and optimizing the vari-
ous software components that make up a Web server. To
measure these effects, it is necessary to generate realistic
HTTP client requests. Unfortunately, accurate generation
of such traffic in a testbed of limited scope is not trivial.
In particular, the commonly used approach is unable to
generate client request-rates that exceed the capacity of
the server being tested even for short periods of time.
This paper examines pitfalls that one encounters when
measuring Web server capacity using a synthetic work-
load. We propose and evaluate a new method for Web
traffic generation that can generate bursty traffic, with
peak loads that exceed the capacity of the server. Finally,
we use the proposed method to measure the performance
of a Web server.

1 Introduction

The explosive growth in the use of the World Wide Web
has resulted in increased load on its constituent net-
works and servers, and stresses the protocols that the
Web is based on. Improving the performance of the Web
has been the subject of much recent research, address-
ing various aspects of the problem such as better Web
caching [5, 6, 7, 23, 31], HTTP protocol enhancements
[4, 20, 25, 18], better HTTP servers and proxies [2, 33, 7]
and server OS implementations [16, 17, 10, 24].

To date most work on measuring Web software perfor-
mance has concentrated on accurately characterizing Web
server workloads in terms of request file types, transfer
sizes, locality of reference in URLs requested and other
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related statistics [3, 5, 6, 8, 9, 12]. Some researchers
have tried to evaluate the performance of Web servers and
proxies using real workloads directly [13, 15]. However,
this approach suffers from the experimental difficulties
involved in non-intrusive measurement of a live system
and the inherent irreproducibility of live workloads.

Recently, there has been some effort towards Web
server evaluation through generation of synthetic HTTP
client traffic, based on invariants observed in real Web
traffic [26, 28, 29, 30, 1]. Unfortunately, there are pitfalls
that arise in generating heavy and realistic Web traffic us-
ing a limited number of client machines. These problems
can lead to significant deviation of benchmarking condi-
tions from reality and fail to predict the performance of a
given Web server.

In a Web server evaluation testbed consisting of a small
number of client machines, it is difficult to simulate many
independent clients. Typically, a load generating scheme
is used that equates client load with the number of client
processes in the test system. Adding client processes is
thought to increase the total client request rate. Unfortu-
nately, some peculiarities of the TCP protocol limit the
traffic generating ability of such a naive scheme. Because
of this, generating request rates that exceed the server’s
capacity is nontrivial, leaving the effect of request bursts
on server performance unevaluated. In addition, a naive
scheme generates client traffic that has little resemblance
in its temporal characteristics to real-world Web traffic.
Moreover, there are fundamental differences between the
delay and loss characteristics of WANs and the LANs
used in testbeds. Both of these factors may cause certain
important aspects of Web server performance to remain
unevaluated. Finally, care must be taken to ensure that
limited resources in the simulated client systems do not
distort the server performance results.

In this paper, we examine these issues and their effect
on the process of Web server evaluation. We propose
a new methodology for HTTP request generation that
complements the work on Web workload modeling. Our
work focuses on those aspects of the request generation



method that are important for providing a scalable means
of generating realistic HTTP requests, including peak
loads that exceed the capacity of the server. We expect
that this request generation methodology, in conjunction
with a representative HTTP request data set like the one
used in the SPECWeb benchmark [26] and a representa-
tive temporal characterization of HTTP traffic, will result
in a benchmark that can more accurately predict actual
Web server performance.

The rest of this paper is organized as follows. Section 2
gives a brief overview of the dynamics of a typical HTTP
server running on a Unix based TCP/IP network sub-
system. Section 3 identifies problems that arise when
trying to measure the performance of such a system.
In Section 4 we describe our methodology. Section 5
gives a quantitative evaluation of our methodology, and
presents measurements of a Web server using the pro-
posed method. Finally, Section 6 covers related work
and Section 7 offers some conclusions.

2 Dynamics of an HTTP server

In this section, we give a brief overview of the working
of a typical HTTP server on a machine with a Unix-
based TCP/IP implementation. The description provides
background for the discussion in the following sections.
For simplicity, we focus our discussion on a BSD [14, 32]
based network subsystem. The working of many other
implementations of TCP/IP, such as those found in Unix
System V and Windows NT, is similar.

In the HTTP protocol, for each URL fetched, a browser
establishes a new TCP connection to the appropriate
server, sends a request on this connection and then reads
the server’s response1. To display a typical Web page, a
browser may need to initiate several HTTP transactions
to fetch the various components (HTML text, images) of
the page.

Figure 1 shows the sequence of events in the connec-
tion establishment phase of an HTTP transaction. When
starting, a Web server process listens for connection re-
quests on a socket bound to a well known port—typically
port 80. When a connection establishment request (TCP
SYN packet) from a client is received on this socket
(Figure 1, position 1), the server TCP responds with a
SYN-ACK TCP packet, creates a socket for the new, in-
complete connection, and places it in the listen socket’s
SYN-RCVD queue. Later, when the client responds with
an ACK packet to the server’s SYN-ACK packet (posi-
tion 2), the server TCP removes the socket created above
from the SYN-RCVD queue and places it in the listen
socket’s queue of connections awaiting acceptance (ac-

1HTTP 1.1 supports persistent connections, but most browsers and
servers today do not use HTTP 1.1.
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Figure 1: HTTP Connection Establishment Timeline

cept queue). Each time the WWW server process ex-
ecutes the accept() system call (position 3), the first
socket in the accept queue of the listen socket is removed
and returned. After accepting a connection, the WWW
server—either directly or indirectly by passing this con-
nection to a helper process—reads the HTTP request from
the client, sends back an appropriate response, and closes
the connection.

In most Unix-based TCP/IP implementations, the ker-
nel variable somaxconn limits the maximum backlog
on a listen socket. This backlog is an upper bound on
the sum of the lengths of the SYN-RCVD and accept
queues. In the context of the discussion above, the server
TCP drops incoming SYN packets (Figure 1, position
1) whenever this sum exceeds a value of 1.5 times the
backlog2. When the client TCP misses the SYN-ACK
packet, it goes into an exponential backoff-paced SYN
retransmission mode until it either receives a SYN-ACK,
or its connection establishment timer expires3.

The average length of the SYN-RCVD queue depends
on the average round-tripdelay between the server and its
clients, and the connection request rate. This is because a
socket stays on this queue for a period of time equal to the
round trip delay. Long round-tripdelays and high request
rates increase the length of this queue. The accept queue’s

2In the System V Release 4 flavors of Unix (e.g. Solaris) this sum
is limited by 1 ���������	��
� rather than 1 � 5 ���������	��
� .

34.4BSD’s TCP retransmits at 6 seconds and 30 seconds after the
first SYN is sent before finally giving up at 75 seconds. Other TCP
implementations behave similarly.



average length depends on how fast the HTTP server
process calls accept(), (i.e., the rate at which it serves
requests,) and the request rate. If a server is operating at
its maximum capacity, it cannot call accept() fast enough
to keep up with the connection request rate and the queue
grows.

Each socket’s protocol state is maintained in a data
structure called a Protocol Control Block (PCB). TCP
maintains a table of the active PCBs in the system. A
PCB is created when a socket is created, either as a result
of a system call, or as a result of a new connection being
established. A TCP connection is closed either actively
by one of the peers executing a close() system call, or
passively as a result of an incoming FIN control packet.
In the latter case, the PCB is deallocated when the appli-
cation subsequently performs a close() on the associated
socket. In the former case, a FIN packet is sent to the peer
and after the peer’s FIN/ACK arrives and is ACKed, the
PCB is kept around for an interval equal to the so-called
TIME-WAIT period of the implementation4. The pur-
pose of this TIME-WAIT state is to be able to retransmit
the closing process’s ACK to the peer’s FIN if the origi-
nal ACK gets lost, and to allow the detection of delayed,
duplicate TCP segments from this connection.

A well-known problem exists with many traditional
implementations of TCP/IP that limits the throughputof a
Web server. Many BSD based systems have small default
and maximum values for somaxconn. Since this thresh-
old can be reached when the accept queue and/or the
SYN-RCVD queue fills, a low value can limit throughput
by refusing connection requests needlessly. As discussed
above, the SYN-RCVD queue can grow because of long
round-trip delays between server and clients, and high
request rates. If the limit is too low, an incoming con-
nection may be dropped even though the Web server may
have sufficient resources to process the request. Even in
the case of a long accept queue, it is usually preferable
to accept a connection, unless the queue already con-
tains enough work to keep the server busy for at least the
client TCP’s initial retransmission interval (6 seconds for
4.4BSD). To address this problem, some vendors have
increased the maximum value of somaxconn and ship
their systems with large maximum values (e.g. Digital
Unix 32767, Solaris 1000). In Section 3, we will see how
this fact interacts with WWW request generation.

4This TIME-WAIT period should be set equal to twice the Maximum
Segment Lifetime (MSL) of a packet on the Internet (RFC 793[21]
specifies the MSL as 2 minutes, but many implementations use a much
shorter value.)

3 Problems in Generating Synthetic
HTTP requests

This section identifies problems that arise when trying to
measure the performance of a Web server, using a testbed
consisting of a limited number of client machines. For
reasons of cost and ease of control, one would like to use a
small number of client machines to simulate a large Web
client population. We first describe a straightforward,
commonly used scheme for generating Web traffic, and
identify problems that arise.

In the simple method, a set of
�

Web client processes5

execute on � client machines. Usually, the client ma-
chines and the server share a LAN. Each client process
repeatedly establishes a HTTP connection, sends a HTTP
request, receives the response, waits for a certain time
(think time), and then repeats the cycle. The sequence of
URLs requested comes from a database designed to re-
flect realistic URL request distributions observed on the
Web. Think times are chosen such that the average URL
request rate equals a specified number of requests per
second.

�
is typically chosen to be as large as possible

given � , so as to allow a high maximum request rate. To
reduce cost and for ease of control of the experiment, �
must be kept low. All the popular Web benchmarking
efforts that we know of use a load generation scheme
similar to this [26, 28, 29, 30].

Several problems arise when trying to use the sim-
ple scheme described above to generate realistic HTTP
requests. We describe these problems in detail in the
following subsections.

3.1 Inability to Generate Excess Load

In the World Wide Web, HTTP requests are generated by a
huge number of clients, where each client has a think time
distribution with large mean and variance. Furthermore,
the think time of clients is not independent; factors such as
human user’s sleep/wake patterns, and the publication of
Web content at scheduled times causes high correlation of
client HTTP requests. As a result, HTTP request traffic
arriving at a server is bursty with the burstiness being
observable at several scales of observation [8], and with
peak rates exceeding the average rate by factors of 8 to
10 [15, 27]. Furthermore, peak request rates can easily
exceed the capacity of the server.

By contrast, in the simple request generation method,
a small number of clients have independent think time
distributions with small mean and variance. As a result,
the generated traffic has little burstiness. The simple
method generates a new request only after a previous

5In this discussion we use the terms client processes to denote either
client processesor client threads, as this distinction makes no difference
to our method.



request is completed. This, combined with the fact that
only a limited number of clients can be supported in a
small testbed, implies that the clients stay essentially in
lockstep with the server. That is, the rate of generated
requests never exceeds the capacity of the server.

Requests/sec
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   2 req/sec
 per descriptor

 0.04 req/sec
per descriptor

3
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Clients

Figure 2: Request Rate versus no. of Clients

Consider a Web server that is subjected to HTTP re-
quests from an increasing number of clients in a testbed
using the simple method. For simplicity, assume that the
clients use a constant think time of zero seconds, i.e.,
they issue a new request immediately after the previous
request is completed. For small document retrievals, a
small number of clients (3–5 for our test system) are suf-
ficient to drive the server at full capacity. If additional
clients are added to the system, the only effect is that
the accept queue at the server will grow in size, thereby
adding queuing delay between the instant when a client
sees a connection as established, and the time at which
the server accepts the connection and handles the request.
This queuing delay reduces the rate at which an individ-
ual client issues requests. Since each client waits for a
pending transaction to finish before initiating a new re-
quest, the net connection request rate of all the clients
remains equal to the throughput of the server.

As we add still more clients, the server’s accept queue
eventually fills. At that point, the server TCP starts to
drop connection establishment requests that arrive while
the sum of the SYN-RCVD and accept queues is at its
limit. When this happens, the clients whose connection
requests are dropped go into TCP’s exponential backoff
and generate further requests at a very low rate. (For
4.4BSD based systems this is 3 requests in 75 seconds.)
The behavior is depicted in Figure 2. The server saturates
at point A, and then the request rate remains equal to the
throughput of the server until the accept queue fills up

(point B). Thereafter the rate increases as in the solid line
at 0.04 requests/second per added client.

To generate a significant rate of requests beyond the
capacity of the server, one would have to employ a huge
number of client processes. Suppose that for a certain
size of requested file, the capacity of a server is 100
connections/sec, and we want to generate requests at 1100
requests/sec. One would need on the order of 15000
client processes (

�
1100 � 100 ��� � 3 � 75 � ) beyond a number

equal to the maximum size of the listen socket’s accept
queue to achieve this request rate. Recall from Section 2
that many vendors now configure their systems with a
large value of somaxconn to avoid dropping incoming
TCP connections needlessly. Thus, with somaxconn =
32767, we need 64151 processes (1 � 5 � 32767 � 15000)to
generate 1100 requests/sec. Efficiently supporting such
large numbers of client processes on a small number of
client machines is not feasible.

A real Web server, on the other hand, can easily be
overloaded by the huge (practically infinite) client pop-
ulation existing on the Internet. As mentioned above, it
is not at all unusual for a server to receive bursts of re-
quests at rates that exceed the average rate by factors of
8 to 10. The effect of such bursts is to temporarily over-
load the server. It is important to evaluate Web server
performance under overload. For instance, it is a well
known fact that many Unix and non-Unix based network
subsystems suffer from poor overload behavior [11, 19].
Under heavy network load these interrupt-driven systems
can enter a state called receiver-livelock[22]. In this state,
the system spends all its resources processing incoming
network packets (in this case TCP SYN packets), only to
discard them later because there is no CPU time left to
service the receiving application programs (in this case
the Web server).

Synthetic requests generated using the simple method
cannot reproduce the bursty aspect of real traffic, and
therefore fail to evaluate the behavior of Web servers
under overload.

3.2 Additional Problems

The WAN-based Web has network characteristics that
differ from the LANs on which Web servers are usu-
ally evaluated. Performance aspects of a server that are
dependent on such network characteristics are not eval-
uated. In particular, the simple method does not model
high and variable WAN delays which are known to cause
long SYN-RCVD queues in the server’s listening socket.
Also, packet losses due to congestion are absent in LAN-
based testbeds. Maltzahn et al. [13] discovered a large
difference in Squid proxy performance from the idealized
numbers reported in [7]. A lot of this degradation is at-
tributed to such WAN effects, which tend to keep server



resources such as memory tied up for extended periods
of time.

When generating synthetic HTTP requests from a
small number of client machines, care must be taken
that resource constraints on the client machine do not ac-
cidentally distort the measured server performance. With
an increasing number of simulated clients per client ma-
chine, client side CPU and memory contention are likely
to arise. Eventually, a point is reached where the bottle-
neck in a Web transaction is no longer the server but the
client. Designers of commercial Web server benchmarks
have also noticed this pitfall. The WebStone benchmark
[30] explicitly warns about this potential problem, but
gives no systematic method to avoid it.

The primary factor in preventing client bottlenecks
from affecting server performance results is to limit the
number of simulated clients per client machine. In ad-
dition, it is important to use an efficient implementation
of TCP/IP (in particular, an efficient PCB table[15] im-
plementation) on the client machines, and to avoid I/O
operations in the simulated clients that could affect the
rate of HTTP transactions in uncontrolled ways. For ex-
ample, writing logging information to disk can affect the
client behavior in complex and undesirable ways. We
will return to the issue of client bottlenecks in Section 4,
and show how to account for client resource constraints
in setting up a testbed.

4 A Scalable Method for Generating
HTTP Requests

Router

Web Clients

Web Server 

Figure 3: Testbed Architecture

In this section, we describe the design of a new method
to generate Web traffic. This method addresses the prob-
lems raised in the previous section. It should be noted
that our work does not by itself address the problem of
accurate simulation of Web workloads in terms of the
request file types, transfer sizes and locality of reference
in URLs requested; instead, we concentrate on mecha-
nisms for generating heavy concurrent traffic that has a
temporal behavior similar to that of real Web traffic. Our
work is intended to complement the existing work done
on Web workload characterization [5, 6, 7, 23, 31], and
can easily be used in conjunction with it.

4.1 Basic Architecture

The basic architecture of our testbed is shown in Figure 3.
A set of � client machines are connected to the server
machine being tested. Each client machine runs a number
of S-Client (short for Scalable Client) processes. The
structure of a S-Client, and the number of S-Clients that
run on a single machine are critical to our method and
are described in detail below. If WAN effects are to be
evaluated, the client machines should be connected to
the server through a router that has sufficient capacity to
carry the maximum traffic anticipated. The purpose of
the router is to simulate WAN delays by introducing an
artificial delay in the router’s forwarding mechanism.

4.2 S-Clients

A S-Client consists of a pair of processes connected by a
Unix domain socketpair. One process in the S-Client, the
connection establishment process, is responsible for gen-
erating HTTP requests at a certain rate and with a certain
request distribution. After a connection is established,
the connection establishment process sends a HTTP re-
quest to the server, then it passes on the connection to the
connection handling process, which handles the HTTP
response.

The connection establishment process of a S-Client
works as follows: The process opens

�
connections to

the server using
�

sockets in non-blocking mode . These�
connection requests are spaced out over � millisec-

onds. � is required to be larger than the maximal round-
trip delay between client and server (remember that an
artificial delay may be added at the router).

After the process executes a non-blocking connect()
to initiate a connection, it records the current time in a
variable associated with the used socket. In a tight loop,
the process checks if for any of its

�
active sockets, the

connection is complete, or if � milliseconds have elapsed
since a connect() was performed on this socket. In the
former case, the process sends a HTTP request on the
newly established connection, hands off this connection
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to the other process of the S-Client through the Unix
domain socketpair, closes the socket, and then initiates
another connection to the server. In the latter case, the
process simply closes the socket and initiates another
connection to the server. Notice that closing the socket in
both cases does not generate any TCP packets on the net-
work. In effect, it prematurely aborts TCP’s connection
establishment timeout period. The close merely releases
socket resources in the OS.

The connection handling process of a S-Client waits
for 1) data to arrive on any of the active connections, or 2)
for a new connection to arrive on the Unix domain socket
connecting it to the other process. In case of new data on
an active socket, it reads this data; if this completes the
server’s response, it closes the socket. A new connection
arriving at the Unix domain socket is simply added to the
set of active connections.

The rationale behind the structure of a S-Client is as
follows. The two key ideas are to (1) shorten TCP’s con-
nection establishment timeout, and (2) to maintain a con-
stant number of unconnected sockets (simulated clients)
that are trying to establish new connections. Condition
(1) is accomplished by using non-blocking connects and
closing the socket if no connection was established after

� seconds. The fact that the connection establishment

process tries to establish another connection immediately
after a connection was established ensures condition (2).

The purpose of (1) is to allow the generation of request
rates beyond the capacity of the server with a reasonable
number of client sockets. Its effect is that each client
socket generates SYN packets at a rate of at least 1 � � .
Shortening the connection establishment to 500 ��� by
itself would cause the system’s request rate to follow the
dashed line in Figure 2.

The idea behind (2) is to ensure that the generated
request rate is independent of the rate at which the server
handles requests. In particular, once the request rate
matches the capacity of the server, the additional queuing
delays in the server’s accept queue no longer reduce the
request rate of the simulated clients. Once the server’s
capacity is reached, adding more sockets (descriptors)
increases the request rate at 1 � � requests per descriptor,
eliminating the flat portion of the graph in Figure 2.

To increase the maximal request generation rate, we
can either decrease � or increase

�
. As mentioned be-

fore, � must be larger than the maximal round-trip time
between client and server. This is to avoid the case where
the client aborts an incomplete connection in the SYN-
RCVD state at the server, but whose SYN-ACK from the
server (see Figure 1) has not yet reached the client. Given



a value of � , the maximum value of
�

is usually limited
by OS-imposed restrictions on the maximum number of
open descriptors in a single process. However, depend-
ing on the capacity of the client machine, it is possible
that one S-Client with a large

�
may saturate the client

machine.

Therefore, as long as the client machine is not satu-
rated,

�
can be as large as the OS allows. When multiple

S-Clients are needed to generate a given rate, the largest
allowable value of

�
should be used, as this keeps the

total number of processes low, thus reducing overhead
due to context switches and memory contention between
the various S-Client processes. How to determine the
maximum rate that a single client machine can safely
generate without risking distortion of results due to client
side bottlenecks is the subject of the next section.

4.3 Request Generating Capacity of a
Client Machine

As noted in the previous section, while evaluating a Web
server, it is very important to operate client machines in
load regions where they are not limiting the observed per-
formance. Our method for finding the maximum number
of S-Clients that can be safely run on a single machine—
and thus determine the value of � needed to generate a
certain request rate—is as follows. The work that a client
machine has to do is largely determined by the sum of
the number of sockets

�
of all the S-Clients running on

that machine. Since we do not want to operate a client
near its capacity, we choose this value as the largest num-
ber

�
for which the throughput vs. request rate curve

when using a single client machine is unchanged from
the same curve when using 2 client machines. The cor-
responding number of S-Clients we need to use is found
by distributing these

�
descriptors into as few processes

as the OS permits. We call the request rate generated by
these

�
descriptors the maximum raw request rate of a

client machine.

It is possible that a single process’s descriptor limit
(imposed by the OS) is smaller than the average num-
ber of simultaneous active connections in the connection
handling process of a S-Client. In this case we have
no option but to use a larger number of S-Clients with
smaller

�
values to generate the same rate. Due to in-

creased memory contention and context switching, this
may actually cause a lower maximum raw request rate
for a client machine than if the OS limit on the number of
descriptors per process was higher. Because of this, the
number of machines needed to generate a certain request
rate may be higher in this case.

4.4 Think Time Distributions

The presented scheme generates HTTP requests with a
trivial think time distribution, i.e., it uses a constant think
time chosen to achieve a certain constant request rate. It
is possible to generate more complex request processes
by adding appropriate think periods between the point
where a S-Client detects a connection was established
and when it next attempts to initiate another connection.
In this way, any request arrival process can be generated
whose peak request rate is lower than or equal to the
maximum raw request rate of the system. In particular,
the system can be parameterized to generate self-similar
traffic [8].

5 Quantitative Evaluation

In this section we present experimental data to quantify
the problems identified in Section 3, and to evaluate the
performance of our proposed method. We measure the
request generation limitations of the naive approach and
evaluate the S-Client based request generation method
proposed in Section 4. We also measure the performance
of a Web server using our method.

5.1 Experimental Setup

All experiments were performed in a testbed consistingof
4 Sun Microsystems SPARCstation 20 model 61 work-
stations (60MHz SuperSPARC+, 36KB L1, 1MB L2,
SPECint92 98.2) as the client machines. The worksta-
tions are equipped with 32MB of memory and run SunOS
4.1.3 U1. Our server is a dual processor SPARCStation
20 constructed from 2 erstwhile SPARCStation 20 model
61 machines. This machine has 64MB of memory and
runs Solaris 2.5.1. A 155 Mbit/s ATM local area network
connects the machines, using FORE Systems SBA-200
network adaptors. For our HTTP server, we used the
NCSA httpd server software, revision 1.5.1. In our ex-
periments we used no artificial delay in the router con-
necting the clients and the server. We have not yet quan-
titatively evaluated the effect of WAN delays on server
performance.

The server’s OS kernel was tuned using Web server
performance enhancing tips advised by Sun. That is, we
increased the total pending connections (accept+SYN-
RCVD queues) limit to 1024 and decreased the TIME-
WAIT period to 3 seconds.

5.2 Request generation rate

The purpose of our first experiment is to quantitatively
characterize the limitations of the simple request genera-
tion scheme described in Section 3. We ran an increasing
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Figure 6: Request rate versus number of de-
scriptors

number of client processes distributed across 4 client ma-
chines. Each client tries to establish a HTTP connection
to the server, sends a request, receives the response and
then repeats the cycle. Each HTTP request is for a single
file of size 1294 bytes. We measured the request rate
(incoming SYNs/second) at the server.

In a similar test we ran 12 S-Clients distributed across
the 4 client machines with an increasing number of de-
scriptors per S-Client and measured the request rate seen
at the server. Each S-Client had the connection establish-
ment timeout period � set to 500 � � . The same file was
requested as in the case of the simple clients.

Figure 5 plots the total connection request rate seen by
the server versus the total number of client processes for
the simple client test. Figure 6 plots the same metric for
the S-Client test, but with the total number of descriptors
in the S-Clients on the x-axis.

For the reasons discussed earlier, the simple scheme
generates no more than about 130 requests per second
(which is the capacity of our server for this request size).
At this point, the server can accept connections at exactly
the rate at which they are generated. As we add more
clients, the queue length at the accept queue of the server’s
listen socket increases and the request rate remains nearly
constant at the capacity of the server.

With S-Clients, the request rate increases linearly with
the total number of descriptors being used for establish-
ing connections by the client processes. To highlight the
difference in behavior of the two schemes in this figure,
we do not show the full curve for S-Clients. The com-
plete curve shows a linear increase in request rate all the

way up to 2065 requests per second with our setup of
four client machines. Beyond this point, client capacity
resource limitations set in and the request rate ceases to
increase. More client machines are needed to achieve
higher rates. Thus we see that S-Clients enable the gen-
eration of request loads that greatly exceed the capacity
of the server. The generated load also scales very well
with the number of descriptors being used.

5.3 Overload Behavior of a Web Server

Being able to reliably generate high request rates, we
used the new method to evaluate how a typical commer-
cial Web server behaves under high load. We measured
the HTTP throughput achieved by the server in terms
of transactions per second. The same 1294 byte file as
before was used in this test.

Figure 7 plots the server throughput versus the total
connection request rate. As before, the server saturates
at about 130 transactions per second. As we increase the
request rate beyond the capacity of the server, the server
throughput declines, initially somewhat slowly, and then
more rapidly reaching about 75 transactions/second at
2065 requests/second. This fall in throughput with in-
creasing request rate is due to the CPU resources spent
on protocol processing for incoming requests (SYN pack-
ets) that are eventually dropped due to the backlog on the
listen socket (the full accept queue).

The slope of the throughput drop corresponds to about
325 usec worth of processing time per SYN packet.
While this may seem large, it is consistent with our ob-
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Figure 7: Web server throughput versus request rate

servation of the performance of a server system based
on a 4.4BSD network subsystem retrofitted into SunOS
4.1.3 U1 on the same hardware.

This large drop in throughput of an overloaded server
highlights the importance of evaluating the overload be-
havior of a Web server. Note that it is impossible to
evaluate this aspect of Web server performance with cur-
rent bench marks that are based on the simple scheme for
request generation.

5.4 Throughput under Bursty Conditions

In Section 3, we point out that one of the drawbacks of the
naive traffic generation scheme is the lack of burstiness in
the request traffic. A burst in request rate may temporarily
overload the server beyond its capacity. Since Figure 7
indicates degraded performance under overload, we were
motivated to investigate the performance of a Web server
under bursty conditions.

We configured a S-Client with think times values such
that it generates bursty request traffic. We characterize
the bursty traffic by 2 parameters, a) the ratio between
the maximum request rate and the average request rate,
and b) the fraction of time for which the request rate
exceeded the average rate. Whenever the request rate
is above the mean, it is equal to the maximum. The
period is 100 seconds. For four different combination of
these parameters we varied the average request rate and
measured the throughput of the server. Figure 8 plots the
throughput of the Web server versus the average request
rate. The first parameter in the label of each curve is
the factor a) above, and the second is factor b) above,

expressed as a percentage. For example, (6, 5) refers to
the case where for 5% of the time the request rate is 6
times the average request rate.

As expected, even a small amount of burstiness can
degrade the throughput of a Web server. For the case
with 5% burst ratio and peak rate 6 times the average,
the throughput for average request rates well below the
server’s capacity is degraded by 12-20%. In general,
high burstiness both in parameter a) and in b) degrades
the throughput substantially. This is to be expected given
the reduced performance of a server beyond the saturation
point in Figure 7.

Note that our workload only approximates what one
wouldsee on the real WWW. The point of this experiment
is to show that the use of S-Clients enables the generation
of request distributions of complex nature and with high
peak rates. This is not possible using a simple scheme
for request generation. Moreover, we have shown that
the effect of such burstiness on server performance is
significant.

6 Related Work

There is much existing work towards characterizing the
invariants in WWW traffic. Most recently, Arlitt and
Williamson [3] characterized several aspects of Web
server workloads such as request file type distribution,
transfer sizes, locality of reference in the requested URLs
and related statistics. Crovella and Bestavros [8] looked
at Self-Similarity in WWW traffic. The invariants re-
ported by these efforts have been used in evaluating the
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Figure 8: Web server throughput under bursty conditions versus request rate

performance of Web servers, and the many methods pro-
posed by researchers to improve WWW performance.

Web server benchmarking efforts have much more re-
cent origins. SGI’s WebStone [30] was one of the earli-
est Web server benchmarks and is the de facto industry
standard, although there have been several other efforts
[28, 29]. WebStone is very similar to the simple scheme
that we described in Section 3 and suffers from its limi-
tations. Recently SPEC has released SPECWeb96 [26],
which is a standardized Web server benchmark with a
workload derived from the study of some typical servers
on the Internet. The request generation method of this
benchmark is also similar to that of the simple scheme
and so it too suffers from the same limitations.

In summary, all Web benchmarks that we know of
evaluate Web Servers only by modeling aspects of server
workloads that pertain to request file types, transfer sizes
and locality of reference in URLs requested. No bench-
mark we know of attempts to accurately model the effects
of request overloads on server performance. Our method
based on S-Clients enables the generation of HTTP re-
quests with burstiness and high rates. It is intended to
complement the workload characterization efforts to eval-
uate Web servers.

7 Conclusion

This paper examines pitfalls that arise in the process of
generating synthetic Web server workloads in a testbed
consisting of a small number of client machines. It ex-
poses the limitations of the simple request generation
scheme that underlies state-of-the-art Web server bench-

marks. We propose and evaluate a new strategy that
addresses these problems using a set of specially con-
structed client processes. Initial experience in using this
method to evaluate a typical Web server indicates that
measuring Web server performance under overload and
bursty traffic conditions gives new and important insights
in Web server performance. Our new methodology en-
ables the generation of realistic, bursty HTTP traffic and
thus the evaluation of an important performance aspect
of Web servers.

Source code and additional technical information about
S-Clients can be found at http://www.cs.rice.edu/CS/
Systems/Web-measurement/.
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