
MIMO Control of an Apache Web Server:
Modeling and Controller Design1

N. Gandhi and D. M. Tilbury
The University of Michigan

Mechanical Engineering Department
Ann Arbor, MI 48109-2125

{gandhin, tilbury}@umich.edu

Y. Diao, J. Hellerstein, and S. Parekh
IBM T. J. Watson Research Center

30 Sawmill Parkway
Hawthorne, NY

{diao,hellers,sujay}@us.ibm.com

Abstract

This paper considers the efficacy of feedback control
in improving the performance of computing systems.
Computing systems typically have many competing
performance goals which are affected by several ex-
ternal variables. A feedback control strategy is desir-
able because well established techniques exist to handle
these performance trade-offs and external disturbances.
In order to employ such a strategy, decisions need to
be made about inputs, outputs, sample time, model
type, and performance measures. This paper describes
this process, which is often nebulous for computing sys-
tems, in the context of an Apache web server. A linear
multi input multi output model of the system is identi-
fied experimentally and used to design several feedback
controllers. Experimental results are presented show-
ing the problems associated with a pure pole placement
design and the effectiveness of LQR based techniques.
The paper concludes with a discussion of future work.

1 Introduction

As computing systems become more widely deployed
and used, there is increasing demand for performance
improvement. Instead of attempting to optimize soft-
ware systems for one particular situation, developers
often expose many tuning parameters which can be set
by the system administrator. Using these parameters,
the administrator has the ability to optimize the sys-
tem’s performance in accordance with application spe-
cific high-level goals designed to satisfy various business
needs.

Choosing the correct settings for tuning parameters is
not a straightforward job. The best settings will de-
pend on hardware, workloads, and any concurrent jobs
running on the system. Since the workloads and con-
current jobs can change over time, a dynamic feedback
control strategy is desirable. In order to employ this
strategy, control input(s) and system output(s) must
be selected. The control input can be chosen to be one
or more of the tuning parameters discussed above. An
output must be chosen that has meaning for the sys-
tem and can be reasonably measured. First-principles
models are difficult to construct for most computing
systems; a “black-box” approach is typically more ap-
propriate.

1This research was supported in part by IBM.

The application of traditional control strategies to
computing systems encounters a number of obstacles.
Control performance must be defined in a meaning-
ful way, a system model must be constructed, a sam-
ple time must be chosen, and the control options must
be evaluated. Although many of these steps are well-
understood in electromechanical systems, the appro-
priate analogs for computing systems are still being
defined. The definition of “good performance” is es-
pecially unclear in computing systems. Certainly, the
system should not crash, but there usually does not ex-
ist a prespecified trajectory or reference that the system
should follow. In addition, workloads in computing sys-
tems are highly stochastic, and even with well-defined
workloads, the systems themselves exhibit significant
stochastic behavior.

In this paper, we will outline the above challenges, and
show how these obstacles have been overcome using an
Apache web server as an example. Section 2 provides
background on Apache and describes how the system
outputs and control inputs were chosen. Section 3 de-
tails our approach to modeling. Section 4 presents and
evaluates two controller designs: pole placement and
linear quadratic regulator. Our conclusions are con-
tained in Section 5.

2 System Output/Control Input Selection

The first step when implementing a feedback control
strategy is the selection of control input(s) and system
output(s). As mentioned in the introduction, the tun-
ing parameters available on the system can be viewed
as the control inputs. System outputs, on the other
hand, must be chosen to reflect the high-level goal of
the control strategy and thus should be representative
of system performance.

2.1 Selection of System Outputs
A number of metrics are used to quantify performance
of the Apache web server and thus are ideal candidates
for system outputs. These metrics include: end-user
response times, response times on the server, through-
put, utilizations of various resources on the server, etc.
Selection of the appropriate performance metrics will
not only depend on the high-level goal of the control
strategy, but also how easily the metrics are measured.
The latter is especially important for feedback control.

One high-level goal of control may be to ensure some
bound on end-user response times. This is a client-side
metric; it cannot be measured by the server. Instru-
mentation may be added to measure end-user response
times; however, this approach results in additional load
on the server and is not always accurate. Using client-
side metrics also introduces delays since information
needs to be transferred between two systems. Because
of these issues, a control strategy that seeks to limit
end-user response times is not considered in this pa-
per. However, it is an area of future work.

Another high-level goal may be to limit the CPU and
memory utilizations (hereafter denoted by CPU and
MEM) associated with the Apache application. Several
business needs make these limits necessary, including:
(a) providing sufficient capacity to co-located applica-
tions (e.g., file server, database server); (b) avoiding
thrashing and failures as a result of overutilization; and
(c) ensuring that there is sufficient capacity remaining
to handle workload surges and/or server failures. CPU
and MEM are server-side metrics and thus can be easily
measured. For these reasons, CPU and MEM are used as
the system outputs for this paper.

2.2 Selection of Control Inputs
There are two considerations when selecting the ap-
propriate tuning parameters to use as control inputs in
a feedback strategy: (1) the parameters must be dy-
namically changeable; (2) the tuning parameters must
affect the selected performance metrics in a meaningful
way. If the selected tuning parameters have little im-
pact on the selected performance metrics, then creating
a system model will become cumbersome and limit the
efficacy of the control strategy. In the case of Apache,
none of the available tuning parameters are dynami-
cally changeable in the release version (it is necessary
to reboot after any change is made). Hence, parame-
ters that require minimal changes to the Apache source
code are desired.

Apache v1.3 on Unix [1] is structured as a pool of
worker processes monitored by a master process. Each
worker process is responsible for handling communica-
tion with the web clients and can handle at most one
connection at a time. In HTTP 1.1 [3], a new fea-
ture known as persistent connections was added where
the TCP connection can be left open. This avoids the
connection setup overhead for each request and thus re-
duces the response time perceived by end users. With
this feature, either side may close the connection.

Two available tuning parameters that significantly af-
fect utilization of the Apache server are “MaxClients”
and “KeepAliveTimeout”. The “MaxClients” param-
eter (abbreviated by MC) limits the size of the worker
pool, thereby imposing a limitation on the processing
capacity of the server. A higher MC value allows Apache
to process more client requests increasing both CPU and
MEM. But if MC is too large, there are excessive resource
utilizations that degrade performance for all clients.

The “KeepAliveTimeout” parameter (abbreviated by
KA) limits the user think time, the time between an

HTTP reply and the receipt of the next client request.
If this value is exceeded by the client, the connection
is closed by the server. If KA is too large, CPU and MEM
are underutilized since clients with requests to process
cannot connect to the server. Reducing KA means that
workers spend more time processing HTTP requests
and so CPU increases. Although KA indirectly affects
memory by allowing more clients to eventually connect
to the server, increasing KA does not have the same
effect on MEM that it does on CPU. A too small KA ter-
minates the TCP connection prematurely and reduces
the benefits of persistent connections.

As mentioned above, in the default version of Apache,
KA and MC cannot be changed dynamically. As a re-
sult, the Apache source had to be modified to enable
real-time control. A detailed description of these mod-
ifications can be found in [2]. For the remainder of the
paper, the tuning parameters KA and MC are referred to
as the control inputs.

3 Modeling Apache

This section describes our “black box” approach to
modeling Apache. In mechanical or electrical systems,
modeling is relatively straightforward because there are
physical laws that govern the interaction between con-
trol inputs and system outputs (e.g., Newton’s law).
In computing systems, the relationship between control
inputs and system outputs is not as clearly defined.

One approach is to start from first-principles and create
a queueing model of the Apache server. However, this
approach is not only complicated but would require de-
tailed knowledge about the inner workings of the server.
So instead of proceeding from first-principles, an em-
pirical approach is used to quantify the relationship
between the control inputs and the system outputs.
This approach involves four main steps: (1) designing
a sufficiently rich input signal; (2) collecting the data
from the server; (3) using system identification tech-
niques to construct statistical models from the data;
(4) validating the models.

3.1 Experimental Environment
Our testbed consists of one server running Apache con-
nected through a LAN to a client machine running a
synthetic workload generator that simulates the activ-
ity of many clients. The workload model used to gen-
erate synthetic transactions is based on the WAGON
model of Liu et al. [5] that has been validated in exten-
sive studies of production web servers. The file access
distributions we use are from the Webstone 2.5 refer-
ence benchmark [7].

Both control inputs have saturation regions imple-
mented by the control code. MC is always an integer
value in the range [1; 1024]. KA is in integral seconds,
with a minimum of 1. No maximum value is enforced,
however KA values larger than 50 have only a small
effect on the system outputs given the nature of the
workload. While it is feasible to have fractional values
for KA, we have not changed default implementation of
Apache, which uses integral values.

0

0.5

1

C
P

U

0

0.5

1

M
E

M

0

10

20

K
A

0 500 1000 1500 2000 2500
0

500

1000

Time (s)

M
C

Figure 1: Experimental data with discrete sine wave in-
puts.

3.2 Design of Input Signals
The control inputs must be varied in a manner so
that two properties are satisfied. First, the input sig-
nal should be persistently exciting; it should contain
enough frequency content to excite all of the dynam-
ics of the system [6]. In addition, there should be
dense and uniform coverage of the operating region in
which the model will be used. However, care is re-
quired to avoid highly nonlinear regions since a poor
model fit will result, although separate models can be
constructed for these regions.

In the case of the Apache server, the operating region is
constructed by considering the saturation limits of the
control inputs. Discrete sine waves are used for both
KA and MC. This is done so that there are both high
frequency components and low frequency components.
The frequencies of the two sine waves were designed
to be relatively prime within the length of time of the
server run so that the individual effect of each control
input can be properly determined. Figure 1 plots the
data from the server run using the discrete sine waves
as the control inputs.

3.3 System Identification
There are a number of methods available to aid in the
construction of a model that captures the relationship
between the control inputs and system outputs. We
chose to fit a linear time invariant (ARX) model to the
data. If a linear model adequately captures the rela-
tionship between control inputs and system outputs,
then linear control theory can be used to design a rela-
tively simple feedback controller with guaranteed prop-
erties within a certain operating region. Even when a
full nonlinear model of a system is available, the first
step is often to design a controller based on its lin-
earization. In addition, the model is used specifically
for controller design and hence extremely accurate pre-
dictions are not required.

The form of the linear model is shown in (1), with
parameters A and B estimated using least squares re-
gression. Note that this is a MIMO model; A and B
are both 2 × 2 matrices. A first-order model was cho-
sen for simplicity and because increasing the order of
the model did not significantly increase the quality of
the model (the R2 increased by less than 2%). We use

time-averaged values of the system outputs to reduce
measurement overhead and also because the inherent
variability of the metrics (CPU in particular) makes in-
stantaneous control impractical. Hence, CPUk, MEMk in
(1) denotes the average value of CPU, MEM over the time
interval k.

[
CPUk+1

MEMk+1

]
= A ·

[
CPUk

MEMk

]
+ B ·

[
KAk

MCk

]
(1)

3.3.1 Selection of Sample Time: The choice
of sample time is a key factor that affects the perfor-
mance of the controller. In this system, the sample time
not only determines the length of time between succes-
sive updates of the control inputs, but also the length
of time system outputs are averaged over. In this sense,
the sample time is also an averaging interval. A short
sample time enables the controller to react to changes
in the system quickly but increases measurement over-
head. A long sample time keeps the controller from
overreacting to random fluctuations by averaging out
the stochastics of the metrics, but will also yield a slow
response.

In order to negotiate these competing goals, a sample
time study is performed. First-order linear models of
the form in (1) were created at many different sample
times using the data set plotted in Figure 1. Figure 2(a)
and (b) plot the eigenvalues of the identified A matri-
ces as well as their continuous-time equivalents (con-
verted using zero-order hold). The eigenvalues of the
continuous-time equivalent should be fairly constant, if
a continuous-time model of the system exists. Inspect-
ing Figure 2(b), it is clear that at low sample times
different dynamics are being captured by the model
than at high sample times. This is probably because
at low sample times, the variability in the CPU metric
is skewing the model parameters. However as sample
times increase above 5 seconds, the eigenvalues seem to
converge.

For the rest of this paper, a sample time of 5 seconds
is used. From Figure 2, we know that the identified
model is similar at sample times larger than 5 seconds.
In addition, a sample time of 5 seconds is large enough
to filter out the stochastics of the metrics while at the
same time allowing for a decent speed of response. The
parameters of the model are given in (2).

0 10 20 30
0.2

0.4

0.6

0.8

1

Sample Time (s)

E
ig

en
va

lu
es

0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

Sample Time (s)

E
ig

en
va

lu
es

(a) Discrete-time (b) Continuous-time

Figure 2: Eigenvalues of discrete-time model (a) and its
continuous-time equivalent (b) plotted verses
sample time.

0

0.5

1

C
P

U

0

0.5

1
M

E
M

0

10

20

K
A

0 500 1000 1500
0

500

1000

Time (s)

M
C

Figure 3: Results of multi-step prediction. In each plot,
the solid line is the experimental data and the
dashed line is the model prediction.

yk+1=

"
0.537 −0.109

−0.0256 0.630

#
·yk+

"
−84.5 4.39

−2.48 2.81

#
×10−4·uk (2)

3.4 Model Evaluation
Two model evaluations are performed: one-step pre-
diction using the same data set used to identify the
model given in (2) and multi-step prediction on a inde-
pendent data set. R2 is an indicator of the amount of
variability in the data that is captured by the model.
This measure was used to quantify the quality of fit of
the one-step predicted values. For a perfect model, the
predicted values equal the measured values resulting in
an R2 value of 100%. The R2 value for CPU is greater
than 90%. The R2 value for MEM is greater than 98%.

Figure 3 plots the response of both the real system and
the multi-step prediction of the model given in (2) to a
series of step changes in KA and MC. Overall, the model
does a good job of predicting system response (espe-
cially for MEM where there is little variability). How-
ever, there are regions in which there is a degradation
of accuracy due to limitations of the linear model. It is
most accurate near the center of the operating region
(KA = 11 and MC = 600) and less accurate near the
edges or outside of this region.

4 Controller Design

The block diagram of the closed loop system is shown
in Figure 4. The reference is comprised of the desired
utilizations for CPU and MEM, denoted by CPU* and MEM*.
In this approach, the job of the administrator is shifted
from directly setting the tuning parameters to supply-
ing the desired utilization values. However, determin-
ing feasible regions for the desired utilizations (i.e. the
reference) is not a straightforward process, especially
since the two utilizations are interrelated. Section 4.1
will explore how the DC gain of the MIMO model in
(2) can be used to determine feasible regions for the
reference.

The goal of the feedback control strategy is to track
the desired utilizations, which implies responding to
changes in these values in a reasonable amount of time.
However unlike traditional control systems, a reason-
able amount of time may be on the order of minutes.

&38
0 (0

$ S D F K H
6 H U Y H U

$ G P L Q

(&38(0 (0
&R Q W U R O O H U��

&38
0 (0

. $
0 &

Figure 4: Block diagram of feedback system for control
of CPU and memory utilizations.

An aggressive controller is not necessary to realize this
type of response and is, in many ways, undesirable in
computing systems. Aggressive controllers often utilize
high gains which cause excessive reactions to stochas-
tics, which act like noise in system outputs and can-
not be controlled. Aggressive controllers also man-
date drastic changes in control inputs. These drastic
changes might lead to saturation, which can cause in-
stability in the form of limit cycles as seen in [4]. For
these reasons, our methodology focuses on the design
of a low gain controller. Design of this controller will
involve negotiating the trade-offs between speed of re-
sponse and overreaction to noise in system outputs.

Although it is not necessary that the controller yield
“fast” response, it is desired that the controller be ro-
bust. That is, it should able to handle changes in work-
load. This is necessary because workloads are often un-
known; even when they are known, they change over
time. Because the controller is designed using a model
of the system identified at a specific workload, it is de-
sired that the controller be robust to changes in that
model (at a different workload, different model param-
eters may be identified).

Because of its robustness and in an attempt to narrow
down the space, a proportional integral (PI) controller
is selected. The PI control control law is shown in
(3). In this law, uk = [KAk MCk]T and ek = rk − yk

is the 2 × 1 vector of errors between the reference
values, rk = [CPU∗k MEM∗k]T , and the system outputs
yk = [CPUk MEMk]T . Note that this is a MIMO con-
troller; KP and KI are both 2× 2 matrices.

uk = KP · ek + KI ·
k−1∑

j=1

ej , (3)

Initially, pole-placement was used to determine appro-
priate values for the matrix gains, KP and KI . How-
ever, the standard algorithm to solve for the gains using
the desired closed loop pole locations and the open loop
system model decouples the closed loop system. This
implementation results in unnecessarily large control
gains which results in a degradation of control perfor-
mance. In order to overcome this shortcoming, LQR
was used to design the gains. The LQR approach gives
us greater authority to negotiate the trade-off between
speed of response and overreaction to noise in system
outputs.

4.1 Feasible Reference Values
A common problem in practice is determining the feasi-
bility of references for interrelated metrics. In the case
of the Apache server, there may exist combinations of
CPU and MEM that cannot be achieved at a given work-
load, at least not using the control inputs KA and MC.

0 5 10 15 20
0

200

400

600

800

1000

1200

KeepAlive

M
ax

C
lie

nt
s

(a) Range of inputs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CPU

M
em

or
y

(b) Predicted range of feasible outputs

Figure 5: The parallelogram in (b) displays the regions
into which the input range of KA and MC pic-
tured in (a) are mapped by the model.

Using (2), we can predict feasible reference values of
the system outputs based on the ranges of the control
inputs. This is illustrated in Figure 5. The range of
KA and MC considered (from the data set plotted in Fig-
ure 1) is pictured in (a). In (b), the solid parallelogram
is the feasible region predicted by the model in (2) us-
ing the range in (a).

In (b), the bold x’s represent candidate (CPU, MEM) ref-
erences for the Apache system. Inverting the DC gain
of the model, we can determine the inputs needed to re-
alize these reference values. For (CPU = 0.3, MEM = 0.7),
we determine that the inputs should be (KA = 30,
MC = 800). That is, the model predicts that this point
cannot be achieved within the range of inputs consid-
ered in (a). Our experimental results confirm this, al-
though they also show that (CPU = 0.3, MEM = 0.7)
can be realized if larger values of KA are used. For
(CPU = 0.8, MEM = 0.4), the model determines that
(KA = −10, MC = 450). This cannot be attained since
KA cannot be negative. Our experimental results con-
firm that (CPU= 0.8, MEM= 0.4) is not a feasible combi-
nation of reference values. The three circled x’s are all
feasible and are used as references in our experiments.

4.2 Controller Design using Pole Placement
The starting point when designing a controller via pole
placement is usually desired transient specifications
such as maximum overshoot and settling time. As men-
tioned earlier, precise specifications for the transient re-
sponse of the closed loop system do not exist. Instead,
a controller with low gain is desired.

In an attempt to design a low gain controller, we spec-
ify the transient specifications of our closed loop sys-
tem based upon the transient response (settling time)

of our open loop system. By doing this, we hope to
use minimal control effort because the controller is not
attempting to move the poles of the open loop system.
However because we are using a PI control law, two ad-
ditional poles are introduced by the controller. Hence
an overshoot specification was added to fully constrain
the four desired closed-loop poles given in Table 1. The
standard algorithm as implemented in MATLAB was
used to calculate a set of gains that would yield the
desired closed loop response. These gains result in a
decoupled closed loop system.

0

0.5

1

C
P

U

0

0.5

1

M
E

M

0

50

K
A

0 200 400 600 800 1000 1200
0

500

1000

Time (s)

M
C

(a) Pole Placement

0

0.5

1

C
P

U

0

0.5

1
M

E
M

0

50

K
A

0 200 400 600 800 1000 1200
0

500

1000

Time (s)

M
C

(b) LQR, heavy workload

0

0.5

1

C
P

U

0

0.5

1

M
E

M

0

50

K
A

0 200 400 600 800 1000 1200
0

500

1000

Time (s)

M
C

(c) LQR, light workload

Figure 6: Performance of the two controllers. The solid
lines are experimental data, the dash-dotted
lines show the prediction of the model, and the
dashed lines indicate the reference values for
CPU and MEM utilizations.

The control performance is shown in Figure 6(a). The
large control gains result in excessive control reaction
to the stochastics of the system and thus large changes
in the control inputs KA and MC. Moreover, since the

closed loop poles have imaginary parts, the closed loop
response is oscillatory.

4.3 Controller Design using LQR
Because the transient response of the closed loop sys-
tem is not the key design consideration, the pole-
placement approach is not really the best method to
use for this system. LQR allows us to better negoti-
ate the trade-offs between speed of response and over-
reaction to noise in system outputs. LQR finds gains
that minimize the quadratic cost function shown in (4),
where ek is defined as in (3) and vk is the state added
by the integrator. By selecting appropriate weighting
for Q and R, we can ensure that the control inputs
(tuning parameters) do not get too large, and thus, in
effect, design a low gain controller.

J =
∞∑

k=1

[ek vk]T ·Q ·
[

ek

vk

]
+ uk

T ·R · uk (4)

The control design problem has now shifted to choosing
the weighting matrices Q and R. The ranges for CPU
and MEM are both [0,1], for KA [1,50], and for MC [1,1024].
Thus, we choose R = diag(1/502, 1/10002) to scale the
inputs to be on the same order of magnitude as the
control errors. Then, we choose Q = diag(1, 1, 0.1, 0.2)
to weight the control errors more heavily than the accu-
mulated control errors. The resulting closed loop poles
are given in Table 1.

Using this method, we have designed a less aggres-
sive controller with smaller gains. Moreover, since this
closed loop pole has no imaginary part, the closed loop
system should be less oscillatory. The control perfor-
mance is shown in Figure 6(b). It is clear that both
control inputs have been reduced, and CPU and MEM
are less oscillatory than before. At the same time, the
controller is still fast enough to track the desired uti-
lizations.

Table 1: Closed Loop Pole Locations
Controller Poles

Pole Placement 0.66 ± 0.25 i, 0.51± 0.16 i
LQR 0.81, 0.72, 0.68, 0.36

4.4 Controller Robustness
The experimental results presented thus far used only
a single workload. In practice, however, the workload
is unknown a priori and changes over time. To deter-
mine how well our feedback control design performs in
the presence of these unknowns, we ran an experiment
with a different workload. In the original workload,
the session arrival rate was 0.05; we change this to 0.5,
creating a lighter workload. We did not rebuild the
system model or redesign the controller; the LQR con-
troller of Section 4.3 is used. The experimental results,
shown in Figure 6(c), indicate that even though the
model prediction is not very accurate, the controller
still performs well.

5 Conclusions

The widespread use of information technology has mo-
tivated the need for performance management of com-

puting systems. To this end, system administrators
attempt to translate desired performance into appro-
priate settings of available tuning parameters. We pro-
pose the use of a feedback control strategy to achieve
this goal. This strategy requires selection of control in-
puts and system outputs, creation of a system model,
and evaluation of various control options. The issues
mentioned above are addressed in the context of the
Apache web server in the hopes of providing a gen-
eral framework for the control of computing systems.
Creation of a MIMO model captures the interactions
between CPU and MEM and thereby provides an accurate
model of the real system. Having this model is of par-
ticular benefit in determining feasible reference values.
It is shown that controllers designed using the model
work well when designed properly and are robust to
changes in workload.

Most computing systems have many tuning parame-
ters (dozens or more) that all interact to affect the
metrics of the system. This work is the first step to-
wards showing how MIMO techniques can be used. It
would be particularly interesting to see how well MIMO
techniques work on systems that have more tuning pa-
rameters than metrics, which is typical in computing
systems. In addition, we would like to understand the
limits of the models we employ when dealing with no-
toriously nonlinear metrics such as response times. We
believe that linear models will be effective if the models
are applied within appropriate operating regions (e.g.,
workloads), and the models are adapted appropriately
as the operating region changes. Finally, the selection
of sample time remains an ongoing research issue.

References
[1] Apache Software Fndn. http://www.apache.org.
[2] Y. Diao, N. Gandhi, S. Parekh, J. Hellerstein,
and D. Tilbury. Using MIMO feedback control to en-
force policies for interrelated metrics with application
to the Apache web server. In Proc. of the Network Op-
erations and Management Symposium, 2002. To Ap-
pear.
[3] R. Fielding and et. al. RFC 2616: Hypertext
Transfer Protocol – HTTP/1.1. IETF, June 1999.
http://www.ietf.org/rfc/rfc2616.txt.
[4] N. Gandhi, S. Parekh, D. Tilbury, and J. Heller-
stein. Feedback control of a Lotus Notes server: Model-
ing and control design. In Proc. of the American Con-
trol Conference, 2001.
[5] Z. Liu, N. Niclausse, C. Jalpa-Villanueva, and
S. Barbier. Traffic model and performance evaluation of
web servers. Technical Report 3840, INRIA, December
1999.
[6] L. Ljung. System Identification: Theory for the
User. Prentice Hall, Upper Saddle River, NJ, 2nd edi-
tion, 1999.
[7] Mindcraft, Inc. Webstone 2.5 web server bench-
mark, 1998. http://www.mindcraft.com/webstone/.

