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This paper presents a detailed workload characterization study
of the 1998 World Cup Web site. Measurements from this site
were collected over a three month period. During this time the
site received 1.35 billion requests, making this the largest Web
workload analyzed to date. By examining this extremely busy
site and through comparison with existing characterization
studies we are able to determine how Web server workloads are
evolving. We find that improvements in the caching
architecture of the World-Wide Web are changing the
workloads of Web servers, but that major improvements to that
architecture are still necessary. In particular, we uncover
evidence that a better consistency mechanism is required for
World-Wide Web caches.
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Introduction
1 INTRODUCTION

The 16th Federation Internationale de Football Association (FIFA) World Cup was held in

France from June 10th through July 12th, 1998. France ’98, as the 16th FIFA World Cup was

commonly called, was the most widely covered media event in history [36]. An estimated

cumulative television audience of 40 billion watched the 64 matches of France ’98, more

than twice the cumulative television audience of the 1996 Summer Olympic Games in

Atlanta. The Web site for France ’98, www.france98.com , also proved to be very popular,

receiving more than 1 billion client requests during the tournament.

This paper presents a detailed workload characterization of the France ’98 Web site. This

study provides insights on the current state of the World-Wide Web. By comparing the

results of this study to earlier Web characterization studies we are able to determine how

Web workloads are evolving as the Web increases in popularity and utilizes new technolo-

gies.

Some of the more significant characteristics that we observed in the World Cup workload,

and the performance implications of these characteristics include:

● HTTP/1.1 clients are becoming more prevalent, accounting for 21% of all requests.

Widespread deployment of HTTP/1.1 compliant clients and servers is necessary for the

functionality of HTTP/1.1 to be fully utilized.

● 88% of all requests were for Image files; an additional 10% were for HTML files, indicat-

ing that most user interest was in static (i.e., cacheable) files.
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● almost 19% of all responses were ‘Not Modified’, indicating that cache consistency traffic

had a greater impact in the World Cup workload than in previous Web server workloads

[3]

● the workload was quite bursty although over longer time scale (e.g., hours or more) the

arrival of these bursts was quite predictable

● for timeouts of 100 seconds or less, many users sessions contained only a single

request and a single response. We believe that this characteristic is due to the improved

Web caching architecture that now exists. This characteristic has (possible) implications

on both server and protocol design

● during periods of peak user interest in the World Cup site the volume of cache consis-

tency traffic increased dramatically. This indicates that the lack of an efficient consis-

tency mechanism (either the specification or utilization of one) is preventing Web caches

from eliminating flash crowds in the network and at the servers, which is supposed to be

one of the main benefits of Web caching.

Workload characterization plays an important role in systems design. It allows us to under-

stand the current state of the system. By characterizing the system over time we can learn

what effects changes to the system have had. Workload characterization is also crucial to

the design of new system components. In this paper we focus on the characterization of a

Web server workload. We compare our results to those from previous studies (e.g., [3][28])

to determine how Web server workloads have changed over time. Furthermore, the
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extremely heavy workload of the World Cup site allows us to predict what the workloads of

future Web servers may look like, so that we may plan accordingly.

Web server workload characterization is only one of the necessary steps for understanding

the changes occurring in Web traffic. Research efforts on Web client workloads (e.g., [5]),

Web proxy workloads (e.g., [2][7][8][15][17][18][22][27][33]), network traffic characterizations

( e.g., [34]) as well as HTTP analyses (e.g., [4][21][23][30]) are all required in order better

understand the Web.

The remainder of the paper is organized as follows. Section 2 provides background informa-

tion on the 1998 World Cup, focusing on the structure of the tournament. Section 3 intro-

duces the World Cup Web site and describes the technology that it utilized. Section 4

discusses the collection and reduction of the data set used in the workload characterization

study. Section 5 presents the results of our workload characterization study. Section 6 ana-

lyzes a particularly busy segment of the World Cup workload and compares the results to

the overall study in Section 5. Section 7 describes in more detail the performance implica-

tions of the results from Section 5 and Section 6. Section 8 summarizes the contributions of

our paper and lists areas of future work.

2 THE 1998 WORLD CUP

In order to better understand the nature of the workload from the France ’98 Web site knowl-

edge of the tournament itself is required. In this section we provide a brief overview of the
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World Cup, focusing on the France ’98 tournament in particular. Additional information on

the World Cup and the France ’98 tournament is available on the FIFA Web site [20].

The FIFA World Cup is a tournament that is held once every four years to determine the best

football (soccer) team in the world. This competition is open to all teams that represent the

FIFA affiliated national football association of their respective countries. Due to the large

number of teams interested in participating, a qualifying round is now used to select the

teams that will play in the World Cup tournament. The qualifying round for France ’98 was

held from March 1996 until November 1997. Of the 172 countries that entered the qualifying

round 30 were selected to compete in France ’98, along with the host country, France, and

the reigning champions, Brazil.

France ’98 began on June 10th, 1998 and ended on July 12th, 1998. The tournament con-

sisted of several rounds of play. The opening round lasted from June 10th until June 26th.

During this round the 32 participating teams were divided into eight groups. Each team then

played one match against each of the other teams in its group. The top two finishers from

each group qualified for the second round, known as the ‘Round of 16’. This round lasted

from June 27th through July 1st. Beginning with this round the winner of each match

advanced to the next round while the loser was eliminated. The remaining rounds of the

tournament were: the Quarter Finals, held on July 3rd and 4th; the Semi Finals, held on July

7th and 8th; and the Final, held on July 12th. A match to determine the third place finisher

was held on July 11th for the losing teams of the Semi Final round.
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During the opening round each match was 90 minutes in length and was played in two 45

minute halves. During all subsequent rounds each match required a winner, so several tie

breaking measures were used. If the match was tied after 90 minutes of regulation play, a

30 minute overtime period was played, with the first team to score declared the winner. If a

winner had still not been determined, penalty kicks were used to decide which team would

advance to the next round.

3 THE 1998 WORLD CUP WEB SITE

The Web site of the 1998 World Cup, www.france98.com , provided Internet-savvy football

fans around the world with a wide range of information. Besides being able to access the

current scores of the football matches in real time, fans could also access previous match

results, player statistics, player biographies, team histories, information on the stadiums,

facts about local attractions and festivities, as well as a wide range of photos and sound clips

from the matches and interviews with players and coaches. Fans could also download free

software, such as World Cup screensavers and wallpapers from the France ’98 Web site. All

of the information on the site was available in English and French.

The France ’98 Web site went on-line May 6th, 1997. The site was established through the

cooperative efforts of the Official Technology Suppliers to the World Cup: EDS, France Tele-

com, Hewlett-Packard, and Sybase. In anticipation of significant interest from the Internet

community in this Web site, emphasis was put on deploying an available, reliable and low

latency platform to power the Web site. During the tournament 30 servers were used, dis-
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tributed across four locations: 4 servers in Paris, France; 10 servers in Herndon, Virginia; 10

servers in Plano, Texas; and 6 servers in Santa Clara, California. All of the Web pages were

created and/or modified in France. New or updated pages were sent from France to the

Plano site, which then distributed them to the other U.S. based locations. A Cisco Distrib-

uted Director was used to distributed client requests across the four locations. At each loca-

tion various load balancers were used to distribute the incoming requests among the

available servers.

4 COLLECTION AND REDUCTION OF DATA

The data set used in this workload characterization study is composed of the access logs

collected from each of the servers used in the World Cup Web site. The access logs from

each server were archived on a daily basis. For this study all of the access logs from May

1st, 1998 until July 23rd, 1998 were analyzed.

Each access log is in the Common Log Format [35]. For every request received by the Web

server, the following information is stored:

remotehost rfc931 authuser [date] "request" status bytes

These fields are defined as follows:

❏ remotehost :   the IP address of the client issuing the request

❏ rfc931 : the remote loginame of the user

❏ authuser : the username as which the user has authenticated himself

❏ [date]  :  the date and time of the request
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❏ request :  the request line exactly as it came from the client

❏ status :  the HTTP response status code returned to the client

❏ bytes :  the content length of the document transferred

The request line from the client includes the method (e.g., GET, HEAD) to be applied to the

requested resource, the name of the resource (e.g., /index.html), and the protocol version in

use (e.g., HTTP/1.0).

An example of a (fabricated) access log entry is:

192.168.0.1 - - [10/Jun/1998:00:00:01 +0200] “GET /index.html HTTP/1.0” 200 1000

This entry tells us that on June 10th, 1998, at one second past midnight, local time in France,

the client 192.168.0.1 asked this server for the file /index.html . The server was informed

that the client supported HTTP/1.0. The server successfully responded to this request (this

is indicated by the status code of 200) and transferred 1,000 bytes of content data to the cli-

ent.

Table 1 summarizes the access logs that we acquired from the World Cup site. In total more

than 1.35 billion requests were received by the Web site during the collection period, and

Table 1 Summary of Access Log Characteristics (Raw Data)

Duration May 1st - July 23, 1998

Total Requests 1,352,804,107

Avg Requests/Minute 10,796

Total Bytes Transferred (GB) 4,991

Avg Bytes Transferred/Minute (MB) 40.8
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almost 5 TB of data sent to clients. The site averaged nearly 11,000 requests per minute

and 41 MB of data were transferred to clients per minute on average.

Our first concern was with the size of the raw access logs - 125 GB in total, 14 GB when

compressed. In order to make our workload analyses more efficient we chose to convert the

logs to a more compact binary format. We reduced the storage requirements in two ways.

One approach removed unnecessary data. For example, we deleted the rfc931 and

authuser fields as they were not used by the servers and thus provided no information that

was of interest to us. The second tactic that we used to reduce the size of the data set was

to represent the remaining fields in more efficient ways when possible. For example, we

mapped all of the URLs to unique integers. We also mapped each distinct IP address to a

unique integer identifier. Finally, we collated the access logs of all the servers by request

time. The resulting binary log file was 25 GB in size, 9 GB when compressed. Furthermore,

each request is now in a fixed size structure, which also helps to improve the efficiency of

our analyses. Since all of the mappings we performed are reversible, we did not lose any

(significant) information in the reduction process. There was some incorrect information in

the raw access logs. For example, some of the status 304 replies included a non-zero

response size. We left this incorrect information in the reduced log in case it is of interest for

other researchers; we ignored it in our analyses.

Despite the vast amount of data that was collected by each of the servers, a lot of interesting

information is still not available. For example, the access logs do not appear to contain infor-

mation on the number of aborted connections that occurred. As a result, the number of
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bytes transferred reported in Table 1 overestimates the actual data traffic. The access logs

have no information on either request or response header sizes which makes it impossible

to know the total HTTP traffic for the site. Unfortunately the access logs have no precise

information on when file modifications occurred. While the logs do have a timestamp that

records when the request was received by the server, it has a one second resolution which

is too coarse-grained to be of use for numerous analyses (e.g., inter-request times). These

are just a few examples of useful information that could be added to a revised log file format.

5 WORKLOAD CHARACTERIZATION

This section presents the results of our workload characterization. Section 5.1 discusses

various statistical characteristics of the data set, including the protocol version, method,

response status code and file type distributions. Section 5.2 analyzes the usage of the

World Cup site. Section 5.3 describes the file and transfer size distributions while Section

5.4 looks at the file referencing patterns. Section 5.5 investigates the usage of embedded

files on the Web pages of the World Cup site. Section 5.6 presents an analysis of user ses-

sions.
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5.1 Statistical Characteristics

Our first analysis in this section looks at the version of the HyperText Transfer Protocol

(HTTP) supported by the client issuing the request. Table 2 shows the results of this analy-

sis. As expected, HTTP/1.0 is still the protocol used by most of the clients. However, the

results indicate that a significant portion of the traffic, over 20%, came from clients that sup-

port HTTP/1.1. This indicates that browsers that support HTTP/1.1 are slowly replacing

browsers that do not. These results do not indicate what percentage of the requests to the

World Cup site, if any, actually used HTTP/1.1 functionality. We did not find any requests

from clients that supported only HTTP/0.9. We did discover 270,561 requests (0.02%) that

did not have a valid HTTP version entered in the access log. We chose to ignore this error

as it will have no significant effect on our results.

Our next analysis looked at the resource method included in the each client request. Table 3

shows the distribution of requests by the method. 99.88% of all requests contained the GET

method, which indicates that the stated URL is simply to be retrieved [19]. Included in this

category are ‘conditional GETs’ (e.g., requests that include the If-Modified-Since header

Table 2 Breakdown of HTTP Version Supported by Client

HTTP Version % of Requests % of Content Data Transferred

0.9 0.00 0.00

1.0 78.66 79.83

1.1 21.32 20.09

x.x 0.02 0.08

Total 100.00 100.00
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field) and ‘partial GETs’ (e.g., requests that include the Range header field) [19]. Unfortu-

nately there is insufficient information in the log files to determine the exact number of condi-

tional GETs that were issued by clients. This value is of interest as it would give us a better

indication of how much impact client, proxy and network caching is having on the server

workload. The next two most common methods seen were HEAD and POST. HEAD

requests are issued when only the header of a file is desired and not the content. POST

requests allow the client to send information to a specified URL on the server. A small num-

ber of other methods also appeared in the access logs, but not in sufficient numbers to affect

the distributions given in Table 3. Table 3 indicates that some of the responses to HEAD

requests appeared to have included content data which is a violation of the HTTP specifica-

tion [19].  However, we ignore this as it has no noticeable impact on our study,

For the remainder of this paper we focus on analyzing the GET requests, as these account

for almost all of the requests to the World Cup site. Since the primary purpose of this site

was to provide information to people it is not surprising to see such a high percentage of

requests include the GET method (i.e., the percentage of GET and POST requests is basi-

cally defined by the content on the Web site). We would like to point out that this will not be

the case for all Web sites. In studies where methods other than GET are common, we

would recommend analyzing all of the frequently used methods.
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Table 4 shows the breakdown of server response codes. For a more complete description of

possible response codes please refer to the HTTP/1.1 specification [19]. In this section we

focus on the most commonly seen status codes in the access logs. Table 4 reveals that the

majority of requests resulted in the Successful transfer of an object (response status 200).

The Successful transfers account for almost all of the content data (97.86%) that was trans-

ferred from the Web site back to clients. The majority of the remaining content data traffic

Table 3 Breakdown of Resource Methods

Method % of Requests % of Content Data Transferred

GET 99.88 99.62

HEAD 0.10 0.30

POST 0.02 0.08

Total 100.00 100.00

Table 4 Breakdown of Server Response Codes

Response Code % of Requests % of Content Data Transferred

200 (Successful) 80.52 97.86

206 (Partial Content)  0.09 2.08

304 (Not Modified) 18.75 0.00

4xx (Client Error) 0.64 0.06

5xx (Server Error) 0.00 0.00

Other Codes 0.00 0.00

Total 100.00 100.00
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was sent in status 206 (Partial Content) responses. The second most common status code

was the Not Modified (304) response which accounted for almost 19% of all responses to cli-

ent requests. This represents a substantial increase over the percentage of Not Modified

responses seen in earlier server workloads [3]. The reason for this increase can be attrib-

uted to the improved caching architecture in the Web, including persistent caches in brows-

ers, and more recently in proxies and networks (e.g., transparent caches). This type of

response indicates that the client issued a conditional GET request to verify that its cached

copy of the file is consistent with the version being served at the Web site. Since the Not

Modified response is not the only possible response to a conditional GET request we still

cannot determine the exact volume of conditional GET requests, although we can establish

a lower bound. Relatively few requests resulted in error responses. Most of the errors that

did occur were the result of incorrect URLs which resulted in a status 404 (File Not Found)

response.
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Table 5 shows the breakdown of response by the type of file requested by the client. The file

type was determined in several ways. For the majority of the responses the file extension

was used to categorize the file by type. For example, files ending with ‘.jpg ’ or ‘.gif ’ were

placed in the Images category, while files ending in ‘.zip ’ were placed in the Compressed

category. We considered any URL that included ‘cgi-bin ’ in the string to be a dynamic

response, as well as any file that had a ‘.cgi ’ or ‘.pl ’ extension. Furthermore, any URL that

contained a parameter list (e.g., /example.html?parameter_list ) was considered to

be a dynamic file. For all of the remaining (unique) requests we issued HEAD requests to

the Web site and used the Content-type : response header to classify the file.

Table 5 reveals that almost all client requests (98.01%) were for either HTML (9.85%) or

Image (88.16%) files. A similar characteristic was observed in earlier Web server workloads

[3]. Many of the remaining requests were for Java files. Few requests were made for multi-

Table 5 Breakdown by File Type

File Type % of Requests % of Content Data Transferred

HTML 9.85 38.60

Images 88.16 35.02

Audio 0.02 0.10

Video 0.00 0.82

Compressed 0.08 20.33

Java 0.82 0.83

Dynamic 0.02 0.38

Other Types 1.05 3.92

Total 100.00 100.00
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media types such as audio and video. HTML files had more impact than image files on the

volume of content data transferred from the Web site (38.60% for HTML compared with

35.02% for Images). Most Image requests were for small inline graphics while the HTML

requests were for substantially larger files. Furthermore many requests for Image files were

conditional GETs that resulted in Not Modified responses. Thus many of the Image

responses contained no data. The Compressed files, which accounted for only 0.08% of all

requests were responsible for over 20% of the content data traffic. Most of the Compressed

requests were for downloadable software, in particular World Cup screensavers for PCs.

The huge discrepancy between the percentage of requests for Compressed files and the

percentage of content data transferred for the corresponding transfers is an indication of the

effects that large files can have on the workload of a Web server and of the network. The

percentage of the content data transferred for Audio files does not indicate the actual impact

on the network. Many of the Audio requests received at the Web site were for Real Audio

files (i.e., streamed data). These requests were redirected to other servers. No information

on these servers is available.
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Table 6 shows the percentage of requests handled by as well as the content data transferred

by each of the locations that participated in hosting the World Cup Web site. Client requests

to the World Cup site were redirected to one of the four hosting locations by a Cisco Distrib-

uted Director. The goal of the Distributed Director is to transparently redirect client requests

to the ‘‘closest’’ server. Closeness may be determined by client-to-server topological prox-

imity or client-to-server latency [14]. However, both of these metrics are difficult to estimate.

Table 6 indicates that most of the requests were handled by servers in North America, with

the Plano location receiving the bulk of the work (44.50% of requests, 45.03% of content

data).

The final analysis in this section examines the unique clients that accessed the World Cup

Web site during the period of study. Determining an exact figure for the number of clients is

virtually impossible. The presence of proxy caches and shared workstations hides some of

the unique clients from our analysis. The use of DHCP to assign IP addresses to client

machines inflates the number of unique clients seen in the log. Thus we can neither estab-

lish a lower nor an upper bound on the number of unique clients that issued requests.

Table 6 Breakdown by Location

Location % of  Requests % of Content Data Transferred

Santa Clara, CA 16.60 16.89

Plano, TX 44.50 45.03

Herndon, VA 25.91 23.72

Paris, FR 12.99 14.36

Total 100.00 100.00
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The access logs contain 2,770,108 unique IP addresses. We analyzed each unique IP

address to determine the number of requests they made to the World Cup Web site, the

number of content bytes they received from the site, and the number of hosting locations

that they communicated with during the trace. Table 7 presents the results of this analysis.
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Table 7 is divided into four parts, with each part providing information on the percentage of

clients that communicated with servers at a particular location or number of locations. For

example, the first section of Table 7 indicates the percentage of clients that communicated

with servers at only a single location. 61% of all the unique clients communicated with serv-

Table 7 Breakdown of Clients

Location a % of Unique Clients % of Requests % of Bytes Transferred

Single Location SC only 10.49 2.75 2.67

PL only 27.95 8.20 8.23

HN only 14.23 3.98 3.60

PA only 8.33 2.10 2.29

Subtotal 61.00 17.03 16.79

Two Locations SC & PL 8.01 8.11 8.30

SC & HN 0.79 0.47 0.43

SC & PA 0.47 0.24 0.27

PL & HN 9.35 9.97 9.36

PL & PA 5.54 4.06 4.62

HN & PA 2.42 1.43 1.44

Subtotal 26.58 24.28 24.42

Three Locations SC, PL & HN 2.70 7.05 6.60

SC, PL & PA 1.51 2.77 2.99

SC, HN & PA 0.17 0.16 0.16

PL, HN & PA 5.28 11.61 11.57

Subtotal 9.66 21.59 21.32

Four Locations SC, PL, HN & PA 2.76 37.10 37.47

Total 100.00 100.00 100.00

a. Abbreviation definitions are given in Table 21, section 10 on page 87
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ers at only one of the four hosting locations. These clients issued 17.03% of all requests to

the World Cup Web site and received 16.79% of all content data transferred from the site.

From Table 7 we can see that most of the unique clients (87.58%) accessed servers at only

one or two of the hosting locations. Assuming that the DistributedDirector is able to redirect

clients to the closest hosting location this is not an unexpected behaviour. However, these

clients are responsible for only 41.21% of all requests. 2.76% of all clients issued requests

to all four hosting locations. Since these clients made over 37% of all requests it is likely that

many of these clients are proxies. Although it seems counterintuitive that a client should

communicate with servers from each location, particularly with the locations spread across

two continents, we do not have sufficient information to properly evaluate the performance of

the DistributedDirector.
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5.2 Usage Analysis

Figure 1 shows the daily traffic volume handled by the World Cup Web site. From the begin-

ning of May until the start of the World Cup on June 10th the traffic volume is quite light

although clearly building in anticipation of the start of the event. Beginning on June 10th the

volume of traffic grows enormously. This marks the beginning of a prolonged “flash crowd”.

That is, the site suddenly became very popular, remained popular for a lengthy period of

time, and then just as quickly became relatively unpopular again. Although the daily traffic

volume is quite bursty during the World Cup, the traffic volume remains higher than it was at

any time prior to the start of the event. The busiest day for the site was June 30th when over

73 million requests were handled by the France ’98 site. After June 30th the daily traffic vol-

umes begin to slowly diminish until the end of the World Cup, at which time the volume of

traffic quickly subsides.
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Figure 1 Daily Traffic Volume to the World Cup Web Site
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In order to better understand the causes of this burstiness we analyzed the traffic in more

detail.  Figure 2 shows the hourly traffic volume of the World Cup Web site.
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Figure 2 consists of six bar graphs, one for each week of the World Cup tournament. The

solid black curve in each graph represents the hourly volume of requests (y-axis) for the

given time (x-axis, normalized to local time in France). The scale of both the x and y-axes

are kept constant across all bar graphs to facilitate comparisons in traffic volume over time

and by day-of-week. The dashed vertical lines indicate the starting time of a World Cup foot-

ball match. The teams involved in each match are also listed (the abbreviations are defined

in Table 22 in Section 10). For example, at 5:30pm (in France) on Wednesday June 10th the

first match of the 1998 World Cup was played between Brazil (BRA) and Scotland (SCO).

Approximately six million requests per hour were received by the World Cup Web site at this

time. The bar graphs also indicate the days on which each round of the tournament began

(e.g., the Round of 16 began on Saturday June 27th), as well as those matches that required

penalty kicks to decide a victor (e.g., on Tuesday July 7th the match between Brazil and the

Netherlands was decided with penalty kicks; this is indicated by the (P) following the names

of the teams).

Figure 2 reveals that there were many variables that affected the hourly traffic volume at the

World Cup Web site. For example, the volume of traffic increased when matches were in

progress and decreased once they had finished. These bursts represent flash-crowds on a

smaller scale. The traffic volume was also affected by the teams involved in the matches

(e.g., traditional football powers like Brazil and Germany are of interest to football fans every-

where and not just Brazilians and Germans), the number of matches in progress (e.g., from
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June 23rd through June 26th matches were played in parallel), and the playoff implications

of the match.

One interesting observation to be made from Figure 2 is that the volume of traffic to the

World Cup Web site was quite low on weekends, even though a higher percentage of

matches were played on Saturday and Sunday than on weekdays. The obvious reason for

this reduction in traffic volume is that people preferred to watch the matches on television.

When these fans were unable to watch the matches on television, such as when they were

at work or school, or when certain matches were not televised in their area, they relied on

the Web to provide them with progress reports on the matches that they were interested in.

Timezone differences also contributed to the usage of the World Cup site. Since most of the

matches were held in the late afternoon or evening local time this enabled European fans to

watch most of the matches on television. Because of this we would expect to see different

usage patterns for European-based clients accessing the World Cup site (e.g., fewer

requests while matches are in progress). For fans in the Americas and (eastern) Asia this

meant early morning or afternoon matches, which would often conflict with their daily rou-

tines.

As we mentioned earlier the busiest day for the World Cup Web site was June 30th. Figure 2

provides us with an explanation of why this day was so popular. First of all, June 30th was

the last day of the Round of 16. Thus, the two victors on this day would advance to the

Quarter Finals. Second, the match between Argentina and England went into overtime, and
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eventually required penalty kicks to determine the winner. During this match the request

rate peaked at almost 12 million per hour.

5.3 Size Distributions

In this section we analyze the distribution of sizes for all unique files requested from the

World Cup Web site.  We also examine the distribution of all transfer sizes from the site.

5.3.1 Size Distribution of Unique Files

Our first analysis looks at the sizes for each of the unique files that were requested and suc-

cessfully transferred at least once in the access log. For the purpose of this study we utilize

the initial non-zero size recorded for each unique file. Since some of the unique files change

over time so too will the results of our analysis. However, we believe that the choice of which

size to use for a file will only affect the parameters of the distribution and not the distribution

itself. We have no information on the files that were available on the Web site but were not

requested during the collection period.

Table 8 Unique File Size Information by File Type

All Files HTML Image Audio Video Java Compressed Dynamic

Number 20,728 11,411 7,025 344 12 14 67 1,783

Mean (bytes) 15,524 7,311 8,961 24,117 1,418,329 4,571 1,537,833 20,896

Median (bytes) 4,674 4,670 4,490 133 1,367,199 4,808 39,046 18,960

Maximum (MB) 61.2 0.14 1.32 1.33 1.86 0.006 61.2 2.9

Total Size (MB) 307 80 60 8 16 0.01 98 36
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Table 8 presents some overall statistics on the unique files that were requested from the

World Cup Web site. These statistics were calculated for the complete set of unique files

(column entitled “All Files”) as well as for several different file types. Table 8 indicates that

there were 20,728 unique files requested (and successfully transferred) from the World Cup

site during the measurement period. The total combined size of these files was 307 MB.

The mean size of these files was 15,524 bytes, the median size 4,674 bytes, and the maxi-

mum size 61.2 MB. Most of the unique files (18,436 of 20,728 or 89%) were in either HTML

or Image format. An additional 9% of the unique files were considered to be dynamic (e.g.,

cgi-bin files). The unique HTML and Image files accounted for only 46% (140 of 307 MB) of

the total size of the set of unique files. Much of the total size was due to a few large files,

such as Video or Compressed. The Audio files were in general quite small. This occurred

because many of the files in this category simply contained a URL that redirected the client

to a Real Audio server. The few large Audio files were compressed sound clips (e.g., .wav

files).

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26

P
er

ce
nt

ag
e

File Size in log2(Bytes)

Empirical Synthetic

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26

P
er

ce
nt

ag
e

File Size in log2(Bytes)

Empirical Synthetic

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

lo
g 

10
(P

[X
>

x]
)

File Size in log 10(Bytes)

Figure 3 Size Distribution of Unique Files:   (a) Frequency; (b) Cumulative Frequency; (c) Tail

(a) (b) (c)
Arlitt and Jin Page 27 of 90



Workload Characterization Size Distributions
Figure 3 shows the analysis of the size distribution for all unique files in the World Cup data

set. Figure 3(a) presents the frequency histogram while Figure 3(b) provides the cumulative

frequency histogram of the unique file sizes. We have applied a logarithmic transformation

to the file sizes to enable us to identify patterns across the wide range of values [32]. For a

log2 transformation, bin i includes values in the range 2i ≤ x < 2i+1-1. Similarly, for a log10

transformation, bin i includes values in the range 10i ≤ x < 10i+1-1. Figure 3(a) indicates that

most unique files have sizes in the 256 byte to 64 KB range (28 - 216 bytes). In other Web

workload characterizations the file size distribution has been found to be lognormal [2][5].

That is, after applying a logarithmic transformation to the data, the data appears to be nor-

mally distributed. We compare the unique file size distribution (the empirical data) to a syn-

thetic lognormal distribution with parameters µ=12.14 and σ=1.73. From Figure 3(a) we can

see that the empirical data deviates quite substantially from the synthetic model. These dif-

ferences are due to the distinct nature of the World Cup site. For example, in Figure 3(a)

about 10% of all unique files were around 4 KB (212 bytes) in size. 65% of these files are

HTML objects that provided profiles on the individual players who participated in the World

Cup tournament. All of the other large spikes in Figure 3(a) are also the result of groups of

related objects having approximately the same size. On ‘typical’ Web sites we would not

expect to see such large clusters of related objects that make up a substantial percentage of

all files on the Web site.

Despite the number of spikes seen in Figure 3(a) the cumulative frequency histogram

(shown in Figure 3(b)) indicates that the lognormal distribution still provides a reasonable
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estimate for the body of the unique file size distribution. While it is clearly not exact, the log-

normal distribution may be sufficiently accurate for most modeling purposes.

While most of the unique files are less than 64KB in size a few are substantially larger. Our

next analysis examined the tail of the unique file size distribution to determine if it is heavy-

tailed. A distribution is considered heavy-tailed if .

This means that if the asymptotic shape of the distribution is hyperbolic it is heavy-tailed ,

regardless of the behaviour of the distributions for small values [12]. To determine if the

unique file size distribution from the World Cup Web site is heavy-tailed we plotted the com-

plementary distribution (CD) function on log-log axes and examined the results for linear

behaviour on the upper tail. This method of analysis is described in [11]. The results of this

analysis for the World Cup data are shown in Figure 3(c). The tail of the distribution does

exhibit some linear behaviour which suggests that the distribution is indeed heavy-tailed.

However, this linearity does not exist throughout the entire tail. Specifically, a spike exists in

the 1-4 MB range. This spike is caused by the existence of 44 files whose sizes are in the 1-

4 MB range. These files include 13 uncompressed, high resolution images, 4 audio clips, 15

screen savers (i.e., downloadable software) and 12 video clips.

To verify that the unique file size distribution is indeed heavy-tailed we utilized the scaling

estimator tool aest created by Crovella and Taqqu [11]. This tool aggregates the data

points in the distribution and then plots the complementary distribution of the aggregated

data set. If the distribution is heavy-tailed then the tails of each successive aggregated data

set will be approximately parallel with slope approximately -α [11].

P X x] x
α–

x ∞ 0 α 2< <,→,∼>[
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Figure 4 presents the results of this test on the unique file size distribution for the World Cup

Web site. The leftmost curve on the graph is the complementary distribution for the original,

unaggregated data set. Each subsequent curve is the CD function for the data set that has

been aggregated a factor of two more than the previous curve. The aggregation factors

shown in Figure 4 are 1 (raw data), 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024.

The results in Figure 4 indicate that the unique file size distribution is heavy-tailed, as the

tails of the successive CD plots are roughly parallel to one another. As the aggregation fac-

tor increases, the tails become linear throughout the tail of the distribution as the impact of

the set of files in the 1-4 MB range diminishes. The estimate for the α parameter for the tail

of this distribution is 1.37.

In summary, we believe that the unique file size distribution could be reasonably approxi-

mated using a hybrid model that combines a lognormal distribution for the body and a power
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law distribution for the tail. This is the approach taken with SURGE, a Web workload gener-

ator developed by Barford and Crovella [6]. A more precise model would need to account for

the clusters of related files found in the workload which affects both the body and tail of the

distribution.

5.3.2 Size Distribution of Successful Transfers

Our next analysis focuses on the sizes of all successful transfers (i.e., status 200 responses)

from the World Cup Web site.

Table 9 presents the overall statistics on the successful transfers, for all transfers and by file

type. By comparing Table 8 and Table 9 we can see numerous differences between the

unique file and successful transfer size distributions. For example, the median successful

transfer size is 965 bytes, which is significantly smaller than median of 4,674 bytes for the

unique file size distribution. This difference indicates that the smaller files available at the

site were requested significantly more often than the larger files. For HTML files the median

transfer size is larger than the median unique size. This occurred in part because the more

popular HTML pages were quite large, and because some of the HTML pages increased in

Table 9 Successful Transfer Size Information by File Type

All Transfers HTML Image Audio Video Java Compressed Dynamic

Number 1,087,916,098 107,312,796 946,428,396 281,149 28,600 10,139,230 969,058 282,615

Mean (bytes) 4,802 18,693 1,965 19,370 1,464,641 4,367 1,018,305 72,323

Median (bytes) 965 12,624 914 131 1,367,199 4,406 1,272,120 6,122

Maximum (MB) 61.2 0.23 1.32 1.33 1.86 0.01 61.2 4.32

 Bytes Transferred (GB) 4,856 1,868 1,732 5 39 41 918 19
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size during the data collection period. Evidence of these increases can be seen by compar-

ing the maximum (initial) size for all HTML files and the maximum transfer size seen for

HTML files.

Figure 5(a) shows the frequency histogram for the successful transfer size distribution. As

was the case for the unique file size distribution, the frequency histogram contains a number

of large spikes. This characteristic is due to several of the more popular objects having very

similar sizes. The cumulative frequency histogram, shown in Figure 5(b), reveals that the

synthetically-generated lognormal distribution with parameters µ=10.13 and σ=2.19 is a

much better model for the successful transfer size distribution than it is for the unique file

size distribution.

Figure 5(c) presents the analysis of the tail of the successful transfer size distribution. In

Figure 5(c) we can see that the tail is affected by transfers in the 1-4 MB range just as the tail

of the unique file size distribution was affected by files in this range (Figure 3(c)). For the

Successful Transfer case the tail of the distribution is not affected by the number of files in
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this size range but rather by the popularity of several of these large files [10]. For example,

the five most popular files in this set of large files were World Cup screen savers that people

could download and use on their PCs. These five files were transferred over 600,000 times

during the period of data collection.

5.3.3 Size Distribution of All Transfers

In this section we examine the size distribution of all transfers from the World Cup Web site.

Figure 6 presents the analysis of the body and tail of the size distribution for all transfers.

Figure 6(a) and Figure 6(b) show the frequency and cumulative histograms respectively for

the overall transfer size distribution. The spike at 0 in this graph corresponds to the high vol-

ume of Not Modified responses seen in the workload (we placed all zero-sized transfers in

the 20 bin since log2 0 is undefined). The presence of this large quantify of zero-sized trans-

fers reduces the median transfer size to 828 bytes from 965 bytes for the Successful trans-
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fers. This spike is the main difference between the Overall Transfer size distribution and the

Successful transfer size distribution.

5.3.4 Impact of Size Distributions

Figure 7 indicates the effect of the size distributions on the storage requirements at the

World Cup Web site as well as on network traffic. For example, files up to, but not including

1 KB in size (up to and including 29 bytes) account for 10.4% of all files stored at the World

Cup site but utilize only 0.4% of the storage space at the site. 55.7% of all client requests

were for files less than 1 KB in size. Responses to these requests generated only 5.8% of

the total content data transferred from the Web site. Meanwhile, files 64 KB and larger (216

bytes) made up only 0.4% of the unique files but consumed 50.7% of the required storage

space. Although these files received only 0.1% of all client requests they accounted for 21%

of the content data transferred. These numbers suggest that the impact that these few large
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files can have on the system is substantial. Thus it is important to accurately model the

upper tails of both the unique file and transfer size distributions in order to make better

assessments of the impact of a workload on a Web server [6].

5.4 File Referencing Behaviour

In this section we analyze the World Cup workload for the presence of two important file ref-

erencing characteristics: temporal locality and concentration of references.

5.4.1 Temporal Locality

Temporal locality means that a file that was recently referenced will likely be referenced

again in the near future [1][3]. To measure the temporal locality we utilize the standard LRU

(Least Recently Used) stack-depth analysis. This analysis works in the following manner.

When a file is initially referenced it is added to the top of the LRU stack (position 1). All files

that are currently in the stack are pushed down by one position. When a file is referenced

again its current depth (i.e., position) in the stack is recorded and then the file is moved back

to the top of the stack. The other files in the stack are pushed down as necessary. Once the

entire log has been analyzed the record of the depths at which re-references occurred is

examined. Logs which exhibit a high degree of temporal locality will have a small average

(or median) stack depth. Conversely, logs with a low degree of temporal locality will have a

large mean (or median) stack depth.
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Table 10 shows the results of the stack depth analysis for the World Cup workload. We per-

formed the analysis for the site as a whole (i.e., considering all requests) and for each loca-

tion independently. Similar mean stack depths in Table 10 indicate that the degree of

temporal locality is quite consistent across the three North American locations. The degree

of temporal locality is noticeably weaker at the Paris site. This difference is due to the Paris

site having to serve both French and English pages on a regular basis. The US based loca-

tions typically received requests only (although not exclusively) for pages in English.

In Table 10 we also provide the median stack depth. Across all sites the median stack depth

is significantly smaller than the mean, indicating that the degree of temporal locality in the

workload is even stronger than is suggested by the mean depth. This observation suggests

that the stack depth distribution has an extremely long tail. Further evidence of this is pro-

vided by examining the 90th percentile. Across all of the server locations 90% of the refer-

Table 10 Temporal Locality Analysis

All Locations Santa Clara Plano Herndon Paris

mean stack depth 290 272 261 261 414

standard deviation 721 637 621 639 1073

median stack depth 106 107 101 97 137

90th percentile 615 589 564 559 816

normalized mean stack depth 0.015 0.014 0.014 0.014 0.022

normalized median stack depth 0.0051 0.0052 0.0048 0.0047 0.0066
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ences were at a depth of 816 or less, which is only 4% of the maximum depth of 20,728 (the

number of unique files in the trace).

Table 10 also includes the normalized mean and median stack depths. We calculated these

values by dividing the mean or median stack depth by the number of unique files in the trace.

By normalizing the stack depth we can compare the degree of temporal locality across dif-

ferent access logs [5]. For example, Barford et. al. reported a normalized mean stack depth

of 0.2340 and a normalized median stack depth of 0.0399 for a recent proxy trace [5]. The

normalized mean and normalized median stack depths reported in Table 10 are significantly

smaller than the values reported by Barford indicating (as expected) that the temporal local-

ity is much stronger in the Web site accesses.

Figure 8(a) and Figure 8(b) provide the frequency and cumulative frequency histograms for

the stack depth distributions. The results for the overall workload as well as for each location

are presented. These two figures clearly show that most of the references occurred near

the top of the stack, indicating a strong degree of temporal locality. In fact, 94% of all refer-

ences occurred at a stack depth of less than 1000. These figures also show, as we indi-
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cated earlier, that the stack depth distributions are quite consistent across the three North

American locations but noticeably different for the Paris location. In order to view the entire

stack depth distribution we applied a logarithmic transformation to the data. The results are

shown in Figure 8(c). The remaining 6% of references occurred in the bottom 95% of the

stack (positions 210 and greater).

5.4.2 Concentration of References

The second file referencing characteristic that we focus on is concentration of references.

Many studies, including [3] and [13], have found that a non-uniform referencing pattern

exists for files on the World-Wide Web. This means that a small number of files on a Web

site are extremely popular and are responsible for most of the requests arriving at the site.

Most of the unique files on a Web site are unpopular and are seldomly requested.
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Figure 9 shows the distribution of all client requests across the set of unique files available at

the World Cup Web site. In this figure all of the unique files (x axis) have been sorted in

decreasing order by the number of references that each received. The volume of content

data that each of these files generated in network traffic along with each file’s storage

requirements at the site were also computed. Figure 9 clearly shows that there is a concen-

tration of references among a small subset of the unique files. For example, the top 10%

(i.e., the most popular) unique files received 97% of all requests, generated 89% of the net-

work traffic (i.e., content data) while occupying less than 7% of the storage space on the

Web site. The top 1% of files received 75% of all requests, generated 46% of the network

traffic and consumed a mere 0.12% of the required storage space.

While a number of the files on the World Cup site were extremely popular, many were rela-

tively unpopular. In fact, 9.2% of the unique files were requested only a single time. We

refer to these files as “one-timers” [3]. The combined size of these one-timers was 98 MB,

or 31.8% of the combined size of all unique files. This characteristic is of interest because of

its obvious effect on caching; even over a long period of time and with an exceptionally

heavy workload, some files on a Web site will not be referenced more than once. Thus,

there is no benefit in caching these files.

Several studies, including [3], [5], [7] and [13], have found that a Zipf(-like) distribution can be

used to characterize the popularity of files on the Web. A distribution is considered to be

Zipf-like if the relative probability of a request for the ith most popular object is inversely pro-

portional to 1/iβ [7]. In Web proxy workloads, estimates of β typically range from 0.5 to 1
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[5][7][27][33]. The more concentrated the references are to a set of popular objects, the

higher the estimate of β. Since the concentration of references in Web server workloads is

generally much stronger than what is found in Web proxy workloads, the estimates of β are

also higher.

To test if a distribution is Zipf-like a log-transformed plot of the number of requests for each

file as a function of the file’s rank is created. The most frequently requested file is assigned

a rank of 1 while the least frequently requested file is assigned rank N (in this case 20,728).

If the distribution is Zipf-like the graph should appear linear with slope near -β [5].

Figure 10(a) shows the relative popularity of the unique files in the World Cup workload.

This graph exhibits three distinct linear regions; thus it does not appear to be Zipf-like when

considering all unique files. The three distinct regions are (I) files 1-100, (II) files 100-

13,000, and (III) files 13,000 to 20,728. Figure 10(a) also includes information that indicates
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which files are HTML and which are images. The two horizontal lines at the bottom of

Figure 10(a) indicate if the file was an HTML or an Image file. For example, these lines can

be used to determine that the most popular file (rank 1) was an image while the second most

popular file (rank 2) was an HTML file. These lines also reveal that most of the top 500 files

were images and only a few were HTML. Unfortunately these lines are too dense to distin-

guish the types of the less popular files.

We will now examine each of the regions mentioned above in more detail. In region I the

slope of the graph is nearly horizontal (slope is approximately -0.25), indicating that all of the

files have nearly equivalent reference counts. These 100 files received 61% of all requests

to the World Cup site and caused 37% of all content data traffic. Of these 100 files six were

HTML and 93 were images. We speculate that the reason there are so many files with

nearly equivalent reference counts is due to the number of embedded files in the popular

HTML files (58 of the 93 Image files were embedded in the 6 HTML files in region I), and the

use of the same images across many different pages on the World Cup site (the remaining

Image files in region I were embedded in multiple pages; 13 of these Image files were uti-

lized on 400 or more pages). Caching within the network (e.g., at clients and proxies) may

have reduced the reference counts of some of the more popular files. The graph in region II

of Figure 10(a) is linear with a slope estimated at -1.92. In region III the graph drops off

almost vertically (slope estimated at -14.7). We are unsure of the cause of this. One

hypothesis is that the extreme popularity of the World Cup site and the relatively small set of

unique files changes the behaviour of the distribution.
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Since the popularity distribution for all unique files did not appear to be Zipf-like we decided

to perform the same analyses just on the HTML files. We chose to examine the HTML files

as this would provide us with an estimate of the popularity of the pages on the World Cup

Web site (due to the use of Frames on this site, a number of pages actually consist of multi-

ple HTML files). The results of this analysis can be seen in Figure 10(b). Two distinctive

regions can be seen in this graph. In region I (files 1 - 6,000) the popularity of HTML files

appear to follow a Zipf-like distribution reasonably well. We estimate the slope of this portion

of the graph at approximately -1.16. In region II (files 6,000 - 11,411) the graph drops off

almost vertically, with a slope estimated at -20.6. We are unsure of the cause of this change

in the graph. One possibility is that many of the HTML files in region II were available (i.e.,

linked to other pages) for only short periods of time, or perhaps not at all. Once a file is no

longer linked to other files it can only be accessed by directly requesting it (i.e., typing in the

URL of the file).  This would significantly reduce the number of accesses to the file.

5.5 Embedded Files

In an updated version of the SURGE workload generator [6], Barford and Crovella define

three classes of files [4]:

❍ base files :  HTML files which contain embedded files
❍ embedded files :  files which are referenced by base files (e.g., images, java)
❍ single files : files which are neither base nor embedded (e.g., compressed)

For simplicity we assume all HTML files are base files, all images and java files are embed-

ded files, and all other types are single files.
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In this section we focus on the embedded files. In particular we want to determine the distri-

bution of total embedded files per base file, as well as the distribution of unique embedded

files per base file. We also examine the use of individual embedded files across multiple

base files.

The total number of embedded files in a base page represents the upper limit on the number

of additional HTTP requests that will be generated whenever the base file is requested. Due

to caching by the browser additional HTTP requests should only be needed for the unique

embedded files referred to by the base file. Because some files may be embedded in more

than one base file the actual number of additional HTTP requests that are automatically

generated when a particular base file is requested should be less than the number of unique

embedded files contained in that base file. However, this distribution is affected by the

cache size and consistency policy at the client and is therefore more difficult to quantify.

We did not utilize information from the log files to determine the number of embedded files

per base file. Instead we analyzed a copy of the World Cup site. We set up a local Web

server to host the files from the site. We then utilized the remote control feature of the

Netscape Navigator browser [31] to request each base file. We used the browser to inter-

pret the Javascript in the base files and to request the appropriate embedded files (we took

several steps to ensure that the browser would issue requests for all of the embedded files

rather than files from its cache). This step was required as the number of embedded objects

per base file depended on the capabilities of the client’s browser. Simply counting the num-

ber of embedded files in each HTML file would overestimate the number of embedded files
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utilized for a particular browser (e.g., simply scanning the HTML files resulted in a maximum

of 76 embedded files compared to a maximum of 61 using Netscape to generate the

requests). The results we report are for Mozilla 4.0 (i.e., Netscape 4.0) compliant browsers.

We believe that fewer embedded files were utilized for older browsers although we have not

analyzed this thoroughly. Finally we analyzed the access log of our Web server to deter-

mine the embedded files for each base file.

Figure 11(a) shows the distributions for the total embedded files per base file as well as for

the unique embedded files per base file for the World Cup Web site. 90% of the base files

had a total of 19 or fewer embedded files. The median value was 13 total embedded files

per base file. The maximum number of embedded files on a single base file was 61. Since

some embedded files are used more than once in a single base file we also analyzed the

distinct embedded files per base file. When only the unique embedded files are considered
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the numbers are slightly smaller; 90% of the base files included 17 or fewer embedded files,

while the median value was 11.  The maximum number of unique embedded files was 58.

Figure 11(b) shows the number of base files that an individual embedded file is likely to be

included in. Most of the embedded files are included in only a few base files. For example,

90% of all embedded files are used in 15 or fewer base files. Included in this group of

embedded files are the pictures of individual players. Many of these images appear in only

a single base file, namely the biography page for the particular player. While most embed-

ded files appear in only a few base files, a small number of embedded files are widely used.

The most popular embedded file, a small icon, appears on 7,969 of the 11,411 HTML files.

5.6 User Session Analyses

In this section we investigate various characteristics of user sessions. For the purpose of

these analyses we define a user session as all requests from a single client to the World

Cup Web site, with the time between requests from that IP address less than some thresh-

old value. That is, if request ri+1 from client C arrives at the Web site x seconds after

request ri from client C, and x ≤ t (t is the timeout value in seconds) then requests ri and ri+1

are both considered to be part of session sn for client C. If x > t then request ri is deemed to

be the final request of session sn for client C, while request ri+1 is the initial request of ses-

sion sn+1 for client C.

We consider each unique IP address in the access log to be a distinct client or user. Clearly

this is not true in all cases. For example, some of the IP addresses in the access log belong
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to proxies which issue requests on behalf of multiple users. The presence of proxies in the

data set can reduce the estimates of the number of unique users of the site and alter the

characteristics of user sessions. It is also possible that some unique users utilize multiple IP

addresses (e.g., using different computers to access the Web, or receiving a different IP

address via DHCP when connecting to the Internet). The main effect of this is an inflation in

the estimated number of unique users. Non-human users such as Web crawlers may also

be present in the access logs. The behaviour of these type of clients is quite different from

human users and will result in different session characteristics. However, based on the

results from Section 5.2 we believe that most of the traffic to this site was generated by

human users. Thus we make no attempt to identify or remove requests that may have been

generated by agents such as Web crawlers. Also, we have no information on whether per-

sistent connections were enabled on the World Cup servers.

Although estimates of the number of unique users and the cumulative number of users that

visited the World Cup Web site are of interest, our focus in this section is on user session

characteristics and the possible implications on HTTP behaviour. In particular we concen-

trate on evaluating (at a high level) the effectiveness of persistent connections in reducing

the number of TCP connections required for client-server communication on the Web. By

reducing the number of TCP connections persistent connections reduce user latency by

eliminating unnecessary round trips for the establishment of TCP connections. Persistent

connections are also able to avoid latency associated with TCP slow start under certain con-

ditions [4][30]. One disadvantage of persistent connections is the need for the server to
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maintain a much larger number of open TCP connections. We estimate this effect by moni-

toring the number of active sessions at the World Cup Web site. We consider a session to

be active if the client has issued at least one request within the last t seconds (i.e., the ses-

sion has not timed-out at the server). Since we are evaluating persistent connections at a

high level we do not investigate the effects of pipelining requests within a persistent connec-

tion. Our goal is to get an initial indication of the effectiveness reusing TCP connections for

this workload. We realize that we will be underestimating the number of connections that a

server would have to keep state on, since a server must maintain state for a period of time

after the connection has been closed.  This more precise analysis is left for future work.

In the remainder of this section we examine the effects of various timeout values on the total

number of user sessions in the World Cup workload, the maximum number of active ses-

sions, the length of sessions, the number of requests per session, and the time between

sessions.

5.6.1 Total Sessions

Our first analysis looks at the total number of sessions and the maximum number of active

sessions that occur for a wide range of timeout values. There are two extreme cases to be

aware of. If no reuse of TCP connections happens (as is the case with HTTP/1.0, ignoring

KeepAlive connections), 1,351,193,319 sessions would occur, one for each GET request. In

this case relatively few sessions would be active simultaneously (during the busiest period of

the workload requests arrived at a rate of 3,600 per second). The other extreme happens

when each client receives a persistent connection that is held open indefinitely. In this situa-
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tion 2,770,108 sessions would occur, one for each unique client in the access log. This rep-

resents only 0.2% of the sessions that occur in the other extreme, although the site is now

required to maintain state on three orders of magnitude more active sessions.

Figure 12 shows the effects that different timeout values have on the total number of ses-

sions and on the maximum number of active sessions seen in the World Cup workload. The

results are quite similar to those reported by Mogul [30]. Figure 12(a) shows the actual

number of sessions that occur for a given timeout value.  As the timeout values increase the

total number of sessions drops rapidly. For example, with a timeout value of 100 seconds,

the number of observed sessions is 29,249,442 compared to 1.35 billion sessions when no

reuse occurs. Once timeout values larger than 100 seconds are used there is little further

reduction in the total number of sessions, even with substantial increases in the timeout

value. However, the maximum number of active sessions grows quite rapidly with increases
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in the timeout threshold. Figure 12(b) shows the results of this analysis as a fraction of the

extreme case (i.e., one session per request). For example, with a 100 second timeout only

29 million sessions, or 2.2% of the maximum 1.35 billion sessions occur. The maximum

active sessions for this timeout value is 12,890, or 0.47% of the maximum of 2.8 million.

5.6.2 Active Sessions

In the previous subsection we discussed the maximum number of active sessions that

occurred for various timeout values. In this section we analyze the number of active ses-

sions over time. Figure 13(a) shows the number of active sessions reported at the begin-

ning of each one hour interval over the entire World Cup workload. In this graph a one

second session timeout is used. As expected the number of active sessions is very bursty,

The spikes in Figure 13(a) increase in size as the World Cup tournament progressed. The

largest spikes correspond to the two semi final matches. The results change somewhat as

0

200

400

600

800

1000

1200

1400

1600

1800

May June July

A
ct

iv
e 

S
es

si
on

s

0

50000

100000

150000

200000

250000

300000

350000

May June July

A
ct

iv
e 

S
es

si
on

s

Figure 13 Active Sessions over Time: (a) 1 second Timeout; (b) 100,000 second Timeout

 (b)(a)
Arlitt and Jin Page 49 of 90



Workload Characterization User Session Analyses
larger timeout values are used. Figure 13(b) shows the number of active sessions each

hour when a 100,000 second timeout is used (slightly more than one day). This graph is still

bursty although much less so than with smaller timeout values as many of the short ses-

sions from clients who visited the site multiple times have been merged into a few longer

sessions. Perhaps the biggest difference though between Figure 13(a) and Figure 13(b) is

the trend in the size of the spikes, which are now decreasing in size over time. This sug-

gests that the number of people visiting the site decreased over time although those who

remained visited more frequently and for shorter durations.

5.6.3 Session Length

Our next analysis looks at the effect of the timeout value on the length of sessions. We cal-

culate the session length as the time between the arrival of the first request and the arrival of

the last request in the session. The session length does not include the timeout value.

Excluding the timeout value allows us to see how long the clients are using the sessions. To

determine how long the server would need to maintain the session simply shift each curve

by the timeout value. Since the access logs do not include any information on the time

needed for the server to complete the response our results will underestimate the session

lengths, particularly for the shorter timeout values.
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The results of this analysis are presented in Figure 14. As expected the session lengths

increase with longer timeout thresholds. For example, with a one second timeout 85% of the

sessions lasted only a single second. When the timeout value is increased to 100 seconds

81% of the sessions lasted longer than one second, with 52% lasting longer than 64 sec-

onds. As the timeout values increase beyond 1,000 seconds the bodies of the session

length distributions change very little. However, the tails of these distributions get longer and

longer. We assume that this is caused by the presence of proxies in the access log. The

20% tail of the 100,000 second timeout curve is quite different from all of the other curves.

The cause of this is the group of clients, presumably diehard football fans, that retrieved

information from the site on a daily basis. Once the timeout value exceeded the time

between the daily sessions of these clients a few extremely long sessions were created.

The longest session length calculated was 49 days.
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5.6.4 Sessions Per Client

Figure 15 shows the distribution of the number of sessions that each client had for the range

of timeout values examined. From Figure 15 we can see that as the timeout value

increases, the number of sessions per client drops substantially. For example, with a one

second timeout 65% of clients had more than 16 sessions (24) during the course of the

World Cup. As the session timeout increases to 100 seconds, only 40% of clients had more

than 16 sessions. Increasing the session timeout value beyond 1,000 seconds decreases

the number of sessions only slightly.
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5.6.5 Requests and Bytes Transferred per Session

In this subsection we analyze the number of requests issued by each client as well as the

number of (content data) bytes transferred to each client during a session. Obviously these

numbers will tend to increase as the timeout value (and session length) grows. The results

of this analysis are shown in Figure 16. The right most curve in each graph indicates the

distribution of requests or bytes transferred when exactly one session is used for each

unique client. Thus this curve reveals the highest utilization of persistent connections that

could have occurred for this workload (i.e., this is the best case scenario; once a session is

established it never times out) The other curves on the graphs indicate the distributions for

the various timeout values that we examined. For timeout values of 1,000 seconds or more

the distributions are becoming very close to the best utilization that we could expect to see.
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Figure 16(a) indicates the number of requests per session for the different timeout values.

One intriguing observation from this graph is the percentage of sessions during which the

client issues only a single request. Even though the percentage of sessions that exhibit this

behaviour decreases rapidly as the timeout value increases, 17% of sessions (when using a

100 second timeout) sent only a single request to the World Cup site. To determine the

cause of this phenomenon we analyzed these single request sessions more rigorously. We

found that for the 100 second timeout case, 50% of these single requests were for base files

(e.g., HTML), 38% for embedded files (e.g., Image and Java), 6% for single files (e.g., Com-

pressed) and 6% for non-cacheable responses (e.g., Dynamic requests, error messages).

This is vastly different from the overall file type distribution reported in Table 5. We believe

that caching, either at the client or within the network, is responsible for many of these short

sessions. That is, many user requests are being served from caches so substantially fewer

requests are reaching the Web site. Embedded files in particular are likely to be cached,

which is why we see such a change in the file type distribution. The popularity of the World

Cup site may have added to this phenomenon by increasing the probability that its files

would be stored in shared caches throughout the Internet. However, we speculate that if the

network caching architecture continues to grow more and more sessions may consist of only

a single request (or a few requests). Wide spread adoption of Web cache consistency

mechanisms, including those in HTTP/1.1 [19], could also reduce the number of requests

per session.
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Figure 16(b) shows the distribution of total response content bytes sent from the World Cup

site to the client during a session. Not only does the rightmost curve (Bytes per Client) indi-

cate the best possible use of a session for this workload, it also reveals the amount of con-

tent data that each client received for the entire monitoring period. For example, 15% of all

clients received more than 1 MB (220 bytes) of data. Looking at Figure 16(b) we can see

that for small timeout values (e.g., 1 or 10 seconds) about 10% of all sessions transferred no

content data. These sessions consisted primarily of Not Modified responses, another indi-

cation of caching at work. With a 100 second timeout 50% of all sessions transferred

between 64 KB and 1 MB of content (216 - 220 bytes).

5.6.6 Inter-Session Times

Our next analysis of sessions studies the ‘off-times’ between successive sessions from the

same client. We calculate the off-time from the moment a session times out until the arrival

of the first request in the client’s next session. By eliminating the timeout value from the

inter-session time we can determine how long a server would have been required to main-

tain the session before receiving the next request from the client. The distribution for the

time between the last request of session si and the first request of session si+1 can be deter-

mined by shifting the curve to the right by the timeout value.
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The results of this analysis are shown in Figure 17. For small timeout values the graph

reveals that the sessions would have been reused had the server maintained them for a few

additional seconds. For example, with a one second timeout more than half of the sessions

could have been reused if the server had waited an additional two seconds before closing

them. As the timeout values increase the server would need to maintain the sessions for a

significantly longer period of time in order to see any further use. Assuming a 100,000 sec-

ond timeout only 22% of the sessions could have been reused if the server had maintained

them for an additional day (216 seconds).
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5.6.7 Intra-Session Times

Our final set of analyses in this section examine intra-session times. This information may

be useful in developing more adaptive policies for managing TCP connections on a Web

server.

We conducted two separate analyses. One of these analyses measured the time between

requests in each distinct session. Figure 18 shows the cumulative frequency distribution for

all of these inter-request times. Due to the coarse timestamp granularity, most of the inter-

request times are either 0 or 1 second (over 60% for all session timeout values). This indi-

cates that most of the requests in a user session are automatically generated by the client -

i.e., the browser automatically retrieving all of the embedded objects in the Web page that

the user requested. Most of the remaining inter-request times are less than 64 seconds

(26). These correspond to the time between the last automatically generated request and

the request for the next page that the user is interested in. In a few cases the inter-request

time exceeds 64 seconds.
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In order to get a better estimate of “user think times” (i.e., the time between a user request-

ing Web page i and Web page i+1), we decided to monitor the time between requests for

HTML objects in each distinct session. As expected, the inter-request times for HTML

objects (shown in Figure 19(b)) are much longer than for all object types (Figure 18). There

are fewer inter-request times of 0 or 1 second when only the HTML files are considered, due

to fewer automatically generated requests. Since many of the World Cup Web pages uti-

lized frames (i.e., were composed of several HTML objects) there are still a significant num-

ber of automatically generated requests. For the larger session timeouts (e.g., 1,000 to

100,000 seconds) approximately 45% of the inter-HTML request times are between 8 and

255 seconds (23 up to, but not including, 28) in duration. For these session timeout values

Figure 19(a) indicates that the most common “use think times” are in the 32-63 second

range (25 seconds). As the session timeout value increases we see a larger number of long

inter-request times for HTML objects. While some of these are “user-think times”, others

result from the merging of multiple sessions into one logical session.

In our analyses a session ends when it has been “idle” for more than a threshold value (t

seconds). In other words the session will timeout when no request has been made by the

client in more than t seconds. Using this definition no inter-request times greater than t will

be seen. Thus, in Figure 18 all of the curves are bounded by the session timeout value.

However, it is possible for the time between subsequent requests for HTML objects to

exceed t. For example, when HTML object i is requested, it is usually followed by a number

of automatically generated requests for the embedded objects (e.g., the inline images). This
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process may take several (e.g., x) seconds to complete, depending on the network connec-

tivity, the server load, the number of embedded objects, etc. Following this there is typically

an idle time (e.g., y seconds) as the user reads the Web page. The idle time ends when the

user selects a hyperlink which results in the request of HTML object i+1. If the idle time

exceeds the timeout threshold (i.e., y ≥ t) then the existing session ends and the request for

the HTML object i+1 starts a new session. If the idle time does not exceed the timeout

threshold (i.e., y < t ) then the existing session remains active and we calculate the inter

HTML request time (ihrt ) for objects i and i+1 as ihrt=x+y . For example, if x=8, y=7 and

t=10, then ihrt= 15; this satisfies both the properties of y < t and ihrt > t . Thus, it is possible

for inter HTML request times to exceed the session timeout value. Therefore, the curves in

Figure 19 are not bounded by the session timeout value.
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6 ANALYSIS OF A PEAK WORKLOAD

In Section 5 we characterized the World Cup workload across the entire data collection

period. In Section 5.2 we noted that much of the traffic came in large bursts that occurred

while football matches were in progress. In this section we analyze the workload from one of

these large bursts and compare the results to those in Section 5. The purpose of this study

is to determine what changes, if any, occur to the workload characteristics when the traffic is

exceptionally heavy.

6.1 Analysis Period

For this analysis we chose the busiest 15 minute period from the overall World Cup work-

load. This period occurred from 11:30pm until 11:45pm, June 30th, 1998. During this time

penalty kicks were being used to determine the victor in a playoff match between Argentina

and England. For the remainder of this paper we shall refer to this subset of the overall

World Cup workload as the A-E workload.

Table 11 Summary of Access Log Characteristics (A-E Workload)

Duration 11:30pm-11:45pm, June 30th, 1998

Total Requests 3,135,993

Avg Requests/Minute 209,066

Total Bytes Transferred (GB) 8.5

Avg Bytes Transferred/Minute (MB) 580
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Table 11 reports some overall statistics on the A-E workload. Over three million requests

were received by the World Cup site during the 15 minute period. The average number of

requests received per minute was over 19 times the average rate for the overall workload

(see Table 1 on page 8). The average rate of data transfer per minute for the A-E workload

was 13 times that of the overall workload.

6.2 Statistical Characteristics

Table 12 reports the breakdown of HTTP versions supported by clients in the A-E workload.

The results are quite similar to those for the overall workload shown in Table 2 on page 11.

Table 12 Breakdown of HTTP Version (A-E Workload)

HTTP Version % of Requests % of Content Data Transferred

0.9 0.00 0.00

1.0 78.30 82.36

1.1 21.67 17.54

x.x 0.03 0.10

Total 100.00 100.00

Table 13 Breakdown of Resource Methods (A-E Workload)

Method % of Requests % of Content Data Transferred

GET 99.99 99.97

HEAD 0.01 0.03

POST 0.00 0.00

Total 100.00 100.00
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Table 13 lists the breakdown of resource methods for all of the requests in the A-E workload.

This breakdown is also quite similar to the overall results (Table 3 on page 13). For all

remaining analyses we focus exclusively on the requests which utilized the GET resource

method.

Table 14 shows the breakdown of server response codes from the A-E workload. This

breakdown is quite different from the overall distribution provided by Table 4 on page 13.

The most significant change between the workloads is the percentage of Not Modified

responses. In the A-E Workload over 37% of all server responses were Not Modified. This

is twice the percentage seen in the overall workload. This characteristic indicates that many

of the clients are simply performing consistency checks to ensure that the World Cup files

that they have stored in their caches are still up-to-date. This is likely the result of users hit-

ting the ‘reload’ button on their browsers to check whether there has been a change in the

status of the match.

Table 14 Breakdown of Server Response Codes (A-E Workload)

Response Code % of Requests % of Content Data Transferred

200 (Successful) 62.63 99.94

206 (Partial Content) 0.01 0.04

304 (Not Modified) 37.18 0.00

4xx (Client Error) 0.18 0.02

5xx (Server Error) 0.00 0.00

Other Codes 0.00 0.00

Total 100.00 100.00
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Table 15 presents the breakdown of the requests in the A-E workload by file type. There are

several differences between the file type distribution for this workload and the overall work-

load reported in Table 5 on page 15. For example, in the A-E workload HTML files are now

the dominant source of the content data transferred. This occurs because the HTML files

are being modified to reflect changes in the status of the match and thus must be served in

their entirety. Images, which account for most of the requests, account for a much smaller

percentage of the content data transferred as many responses are simply acknowledgments

that the file has not been modified and thus contain no content data. Since most users

appear to be interested primarily in the status of the match, the compressed files are even

less popular than normal and therefore have less impact on the total content data trans-

ferred in the A-E workload than they did in the overall workload.

Table 15 Breakdown by File Type (A-E Workload)

File Type % of Requests % of Content Data Transferred

HTML 7.36 67.84

Images 90.96 26.08

Audio 0.00 0.09

Video 0.00 0.14

Compressed 0.00 1.13

Java 0.34 0.45

Dynamic 0.00 0.00

Other Types 1.34 4.27

Total 100.00 100.00
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Table 16 shows how the requests in the A-E workload were distributed across the four

server locations. These results indicate that the Paris location received a substantially

smaller percentage of the requests in the A-E workload compared to the overall workload

(see Table 6 on page 17). Meanwhile the Herndon site received a larger percentage of the

requests. Assuming that the clients were sent to a ‘geographically close’ location (which is

not always the case) we would expect to see this behaviour, as most European users would

likely be watching the match on television (recall that the match is in the late evening for

European fans).

Table 16 Breakdown by Location (A-E Workload)

Location % of  Requests % of Content Data Transferred

Santa Clara, CA 13.36 13.68

Plano, TX 46.99 45.53

Herndon, VA 34.61 36.11

Paris, FR 5.04 4.68

Total 100.00 100.00
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Table 17 reports the breakdown of clients by the number of server locations that they con-

tacted. A total of 20,531 unique clients were seen during the 15 minute A-E workload.

Many of these clients (82.72%) contacted only a single location during this time. These cli-

ents accounted for 67.81% of all requests in the A-E workload and 66.44% of the bytes

Table 17 Breakdown of Clients (A-E Workload)

Location a % of Unique Clients % of Requests % of Bytes Transferred

Single Location SC only 10.69 7.65 7.67

PL only 35.61 32.62 30.96

HN only 29.38 24.02 24.56

PA only 7.04 3.52 3.25

Subtotal 82.72 67.81 66.44

Two Locations SC & PL 4.55 7.16 7.44

SC & HN 1.69 2.10 2.23

SC & PA 0.20 0.20 0.20

PL & HN 6.16 10.50 11.24

PL & PA 1.02 1.26 1.31

HN & PA 1.11 1.21 1.33

Subtotal 14.73 22.43 23.75

Three Locations SC, PL & HN 1.35 5.46 5.50

SC, PL & PA 0.22 0.77 0.76

SC, HN & PA 0.13 0.21 0.25

PL, HN & PA 0.55 1.55 1.57

Subtotal 2.25 7.99 8.08

Four Locations SC, PL, HN & PA 0.30 1.77 1.73

Total 100.00 100.00 100.00

a. Abbreviation definitions are given in Table 21 on page 87.
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transferred. This should not be unexpected as the network dynamics should be relatively

stable during this short period of time, although the ‘flash crowd’ could affect this. There

were still a significant number of clients that contacted multiple locations although the per-

centages were much smaller than for the overall workload (Table 7 on page 19). There were

even a few clients (0.30%) that sent requests to each of the four server locations during this

15 minute time frame.  A lack of information prevents us from examining this in more depth.

6.3 Usage

Figure 20 shows the request rate for the A-E workload. Figure 20(a) reveals that throughout

this 15 minute period the request rate is relatively stable, with an average rate of 3,484

requests per second and a peak rate of 3,816 requests per second. Figure 20(b) indicates

that on a per minute basis the request rate is even more stable, peaking at 215,241 requests

per minute and averaging 209,066 requests per minute.
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6.4 Size Distributions

6.4.1 Size Distribution of Unique Files

Table 18 provides a breakdown of the size distributions by type for the unique files requested

in the A-E workload. There are a number of differences compared to the unique size distri-

bution of the overall workload (refer to Table 8 on page 26). For example, fewer unique files

were accessed in the A-E workload. This indicates the focus of the users on a particular

subject. Also, the number of unique HTML files accessed was substantially less, again indi-

cating that the users were interested in a smaller set of the pages available at the World Cup

site.  Finally, fewer large files were accessed in the A-E workload.

Figure 21 presents the unique file size distribution for the A-E workload. The results show

that the distributions are quite similar to those from the overall workload (see Figure 3 on

page 27) except that no extremely large files (e.g., greater than 10 MB) were seen in the A-

E workload.

Table 18 Unique File Size Information by File Type (A-E Workload)

All Files HTML Image Audio Video Java Compressed Dynamic

Number 5,201 1,948 3,184 22 9 4 14 9

Mean (bytes) 15,238 11,418 6,054 375,163 1,458,673 4,043 1,139,356 33,510

Median (bytes) 4,850 6,066 3,876 139 1,367,199 4,406 1,419,393 25,596

Maximum (MB) 2.8 0.12 0.10 1.3 1.9 0.004 2.8 0.06

Total Size (MB) 75.6 21.2 18.4 7.9 12.5 0.02 15.2 0.29
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6.4.2 Size Distribution of Successful Transfers

Table 19 breaks down the successful transfer size distribution by file type. The mean and

median successful transfer sizes are quite similar to those reported in Table 9 on page 31 for

the overall workload. For example the median successful transfer size in the A-E workload

is 933 bytes compared to 965 bytes for the overall workload. Perhaps the most significant

difference is the changes in the mean and median transfer sizes for HTML files. For exam-

ple the median HTML transfer size nearly quadrupled to 46,941 bytes in the A-E workload

from 12,624 bytes in the overall workload.

Table 19 Successful Transfer Size Information by File Type (A-E Workload)

All Transfers HTML Image Audio Video Java Compressed Dynamic

Number 1,963,850 183,207 1,735,079 139 9 9,755 136 20

Mean (bytes) 4,619 33,609 1,363 59,486 1,458,673 4,186 738,062 17,884

Median (bytes) 933 46,941 872 124 1,367,199 4,406 263,198 6,218

Maximum (MB) 2.8 0.12 0.10 1.3 1.9 0.004 2.8 0.06

 Bytes Transferred (GB) 8.5 5.7 2.2 0.01 0.01 0.038 0.09 0.0003
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Figure 22 shows the graphs of the body and tail of the successful transfer sizes in the A-E

workload. These distributions are similar to those for the overall workload shown in Figure 5

on page 32. The main difference is in the tail of the distributions, due to fewer large files

being requested in the A-E workload.

6.4.3 Size Distribution of All Transfers

Figure 23 shows the size distribution for all transfers in the A-E workload. The increase in

Not Modified responses in this workload adds significantly more 0-sized transfers to

Figure 23(a). The presence of these 0-sized responses lowers the median transfer size to

305 bytes compared to 828 bytes for the overall workload (described in Section 5.3.3). The

tail of the transfer size distribution for the A-E workload, shown in Figure 23(b) is not as

heavy as the overall workload (see Figure 6(b)), indicating a lower probability that large files

will be requested.
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6.4.4 Impact of Size Distributions

Figure 24 relates the size of the unique files requested in the A-E workload to the number of

requests and bytes transferred. As was the case in the overall workload (Figure 7 on page

34) most of the unique files are quite small while most of the storage space is consumed by

a few large files. Also, most of the requests to the site are for the extremely small files. The

one significant difference between the workloads is that in the A-E workload files in the 16-

64 KB range account for most of the bytes transferred; larger files have little impact on the

network bandwidth. In the overall workload responses containing files larger than 64 KB

accounted for 21% of all bytes transferred.
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6.5 File Referencing Behaviour

6.5.1 Temporal Locality

Table 20 lists the results of the stack depth analysis for the A-E workload. Compared to the

results in Table 10 on page 36 for the overall workload, both the mean and median stack

Table 20 Temporal Locality Analysis (A-E Workload)

All Locations Santa Clara Plano Herndon Paris

mean stack depth 75 62 71 73 85

standard deviation 147 72 123 111 123

median stack depth 52 49 51 53 59

90th percentile 121 111 116 125 154

normalized mean stack depth 0.014 0.012 0.014 0.014 0.016

normalize median stack depth 0.010 0.009 0.010 0.010 0.011
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depths are substantially shorter. This difference illustrates the interest in a smaller set of

files at the World Cup site during the A-E workload.

Figure 25 provides the frequency, cumulative frequency and log-transformed cumulative fre-

quency histograms for the stack depth distribution for the A-E workload. These graphs indi-

cate that the temporal locality is much stronger in the A-E workload than it was in the overall

workload. That is, the top of the stack received a much higher percentage of references in

Figure 25 than in Figure 8 on page 37 (the overall workload).

6.5.2 Concentration of References

Figure 26 shows the distribution of all client requests across the unique files in the A-E work-

load. The results in Figure 26 show that the references in the A-E workload were even more

concentrated than they were in the overall workload (Figure 9 on page 38). For example, the

most popular 10% of the unique files in the A-E workload received 99% of the requests and

accounted for 96% of the content data transferred while occupying only 2% of the total stor-
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age space. In the overall workload the most popular 10% of files accounted for only 97% of

references and 89% of the bytes transferred.

One-timers are much more prevalent in the A-E workload than they were in the overall work-

load. 2,069 (39.8%) of the 5,201 unique files in the A-E workload were accessed only a sin-

gle time. These files accounted for 59.0% of the total size of the unique files accessed

during this collection period. These observations indicate that very few people were “brows-

ing” through the site during this period; the attention of most users was on a few extremely

popular pages.

Figure 27(a) shows the relative popularity of the unique files referenced in the A-E workload.

As was the case with the overall workload (Figure 10 on page 40) the popularity ranking

does not appear to follow a Zipf-like distribution. In Figure 27(a) two linear regions are evi-
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dent; the first for files 1-100 and the second for files 100-5,201. Figure 27(a) does not have

the third linear region that is present in Figure 10(a) for the overall workload.

Figure 27(b) presents the relative popularity of the HTML files referenced in the A-E work-

load. Two distinct regions can be seen in this graph. In region I (files 1-20) the files are sub-

stantially more popular than the files in region II (files 20-1,948). In region II the graph is

roughly linear with slope estimated at -1.5. Thus a Zipf-like distribution would not accurately

capture the concentration of references to the most popular files. A Zipf-like distribution may

still provide a reasonable approximation for some testing purposes.

6.6 User Session Analyses

In this section we analyze the user sessions from the A-E workload using the approach

described in Section 5.6. We then compare the results for this workload with those for the

overall workload.
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6.6.1 Total Sessions

Figure 28 shows the analysis results for the number of user sessions calculated for various

timeout values. Since the A-E workload is only 900 seconds in duration we only tested three

timeout values: 1, 10, and 100 seconds. With this workload the two extreme cases are

3,135,993 sessions when each HTTP request utilizes its own TCP connection, and 20,531

sessions when each unique client in the workload receives a persistent connection to use for

the duration of the analysis period.

Figure 28(a) shows the total number of sessions seen for each of the timeout values exam-

ined along with the corresponding maximum number of active sessions. For example, with a

10 second timeout, a total of 174,123 sessions occurred with at most 5,282 active at once.

As expected, the total number of sessions decreases and the maximum number of active

sessions increases as the timeout value increases.
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Figure 28(b) compares the total number of sessions and the maximum number of active

sessions to the extreme cases. For example, when a 10 second timeout is used only 5.6%

of the total sessions occur compared to when each HTTP request uses its own TCP connec-

tion. At the same time 25.7% of the unique clients have active sessions. The main differ-

ence between Figure 28(b) and Figure 12(b) in section 5.6.1 on page 47 is the fraction of

clients that have an active session. There is also a slightly better reuse of sessions in the A-

E workload as indicated by the lower percentage of total sessions to GET requests for equiv-

alent timeout values.

6.6.2 Active Sessions

Figure 29 shows the number of active sessions measured at the start of each one second

interval. Figure 29(a) reports the results for a one second session timeout value. With this

timeout value the number of active sessions is quite variable. This variability is related to

sessions timing out at the server before the client returns to the site to recheck the status of
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a match. When the client does return a new session must be created. Figure 29(b) pro-

vides the results for a 100 second session timeout value. In this graph the number of active

sessions is quite stable. During the first two minutes we can see the growth in active ses-

sions as more and more clients visit this site. This growth is mainly an artifact of our analy-

sis having no knowledge of the active sessions prior to the start of the A-E workload. Once

most of the unique clients (around 12,000) have established sessions with the site they

appear to reuse their sessions within 100 seconds. This behaviour maintains their session

for the duration of the workload.

6.6.3 Session Length

Figure 30 shows the length of sessions for the tested timeout values. In the A-E workload

sessions tended to last slightly longer when short timeout values were used (e.g., 1 second)

but not as long when greater timeout values were used (e.g., 100 seconds) compared to the

overall workload (Figure 14 on page 51). Also, the session lengths in the A-E workload are

constrained by the duration of the workload (15 minutes or 29 seconds).
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6.6.4 Sessions Per Client

Figure 31 shows the number of sessions per client for the A-E workload. Due to the short

duration of this workload the reduced number of sessions per client is to be expected when

compared to the overall workload results (Figure 15 on page 52). however, Figure 31 indi-

cates that many clients repeatedly visited the site during the 15 minute period that we ana-

lyzed. This behaviour is consistent with the reloading of a page to check on the status of the

match.

6.6.5 Requests and Bytes Transferred Per Session

Figure 32 shows the number of requests made and the number of content bytes transferred

per session for the A-E workload. Comparing these results to Figure 16 on page 53 for the

overall workload results reveals that the distributions are quite similar. Figure 32 shows that

fewer sessions are sending only a single request; that is, the sessions in the A-E workload
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were reused more often, particularly with the 100 second timeout. In Figure 32(b) more of

the sessions (short timeouts only) transferred no content. This is due to the increased vol-

ume of cache consistency traffic.

6.6.6 Inter-Session Times

Figure 33 shows the inter-session time distributions for the A-E workload. There are two

main differences between these results and those from the overall workload reported in Fig-

ure 17 on page 56. The first difference is that the tails in Figure 33 are much shorter. This

characteristic is expected since the A-E workload is only 15 minutes (29 seconds) in dura-

tion. The other difference is the inter-session time distribution for the 100 second timeout.

In the A-E workload the inter-session times for this timeout value are much shorter than in

the overall workload. For example, about 55% of the sessions (assuming a 100 second tim-

eout) in the A-E workload were reestablished 32 seconds or less after the previous session
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timed-out. In the overall workload only 17% of sessions were reestablished in this amount of

time. This characteristic of the A-E workload indicates that many users were accessing the

World Cup site about every two minutes (32 seconds + 100 seconds for the previous ses-

sion to timeout) to check on the progress of the football match.

6.6.7 Intra-Session Times

Our final analysis examines the intra-session times for the A-E workload. Figure 34 pro-

vides the cumulative frequency histogram of the inter-request times collected from each dis-

tinct session. This figure indicates that a higher percentage of requests appear to be

machine-generated in the A-E workload than was the case in the overall workload (refer to

Figure 18 on page 57). This observation is consistent with our hypothesis that most users in

the A-E workload were simply reloading the same page again and again.
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Figure 33 Analysis of Inter-Session Times, A-E Workload
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Figure 35 shows the inter-request time distribution for HTML objects. These results indicate

that there were substantially fewer automatically generated HTML requests (as indicated by

the 0-1 second spacing), while more of the inter-request spacings were in the 4-127 second

(22 upto, but not including 27). These results seem consistent with users reloading a page

multiple times over the duration of the workload.
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Figure 34 Analysis of Inter-Request Times in Individual User Sessions, A-E Workload
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7 PERFORMANCE IMPLICATIONS

During our workload characterization study (Section 5 and Section 6) we examined numer-

ous characteristics of the World Cup workload. In this section we discuss the implications of

several of these characteristics on Web server performance.

In Section 5.6.5 we discovered that a significant number of user sessions (17% when a 100

second timeout was used) contained only a single request during the lifetime of the session.

There is no benefit in maintaining a persistent connection for this type of session, particu-

larly for the server that must reserve resources for the connection. This characteristic of

user sessions suggests that a trivial fixed length timeout policy for closing idle connections

on the server may be inadequate. A more appropriate, but still relatively simple approach

would be to utilize an adaptive timeout scheme like the one suggested by Mogul for dealing

with proxies that do not support persistent connections [30]. With this approach the initial

timeout value is quite small, so that if the connection is not reused it will quickly be consid-

ered idle and be closed by the server. If the connection is reused the timeout value would be

increased to a more appropriate value. More adaptive TCP connection management poli-

cies for Web servers may also be useful. For example, a Web server could automatically

adjust the idle timeout value in order to keep the number of active sessions within a specified

range. A number of TCP connection management policies for persistent HTTP have been

examined by Cohen et. al. [9].

Our previous work on Web server workload characterization [3] analyzed access logs that

predated the widespread use of browsers with persistent (i.e., disk) caches, proxy caches,
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and (transparent) network caches. Today, Web server workloads have changed due to the

growth of a Web caching architecture. In particular, many Web server responses are ‘Not

Modified’ and contain no content data. The results of this workload characterization study

have identified several other ways in which caching is altering Web server workloads. In our

analysis of user sessions in Section 5.6.5 we determined that caching, in some cases, is

reducing the number of requests that might utilize a persistent connection. The implications

of this characteristic on server design are discussed at the beginning of this section. Further

research is required to determine if fewer requests per session is a growing trend, and if so,

what are the implications on Web servers and on HTTP.

A second observation regarding the effects of caching on Web server workloads was made

in Section 6. From the perspective of Web server performance the main benefit of client,

proxy and network caching is the reduction in workload at the server, particularly during peri-

ods of extreme user interest. Our results in Section 6 indicate that the lack of an efficient

consistency mechanism is preventing Web servers from fully benefiting from caching. In

other words when portions of the Web site’s content is extremely popular the site’s servers

are not seeing a substantial reduction in workload. Instead of responding to a large number

of GET requests, the servers must respond to a large number of cache consistency requests

(i.e., GET If Modified Since requests).

Many of the requests for consistency information in the World Cup workload were caused by

the caching of static image files. Much of this traffic could have been eliminated if the con-

sistency functionality of HTTP/1.1 [19] had been utilized by the site and supported by the
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caches. However, the consistency mechanisms in HTTP/1.1 are not adequate in all situa-

tions (e.g., the modification patterns of some files are unpredictable, like the score of a foot-

ball match that is in progress).  Furthermore, it remains to be seen whether this functionality

of HTTP/1.1 will meet the needs of content providers or whether a new, more automated

system will be required. Several research efforts have looked at alternative cache consis-

tency mechanisms [16][25][26]. If a new system is indeed required it should include a

method of propagating only the changes to the cache storing the old version of a file, as sug-

gested by Mogul et. al.  [29].

During the World Cup tournament an estimated 13 million cumulative users visited the

France ’98 Web site. During this same period an estimated cumulative audience of 40 billion

watched the matches on television. While the gap between Internet users and television

audiences is partially due to restricted Internet access in some countries the main reason is

clear - the audiences preferred live (high quality) video to still images and text descriptions.

This suggests the integration of video and the Web may be necessary to reach a much

greater portion of the world’s population. Adding high quality video to a Web site would have

significant performance implications.

8 SUMMARY, CONTRIBUTIONS AND FUTURE WORK

This paper has presented a detailed workload characterization study of the 1998 World Cup

Web site. The data set analyzed in this study contained 1.35 billion requests collected over

a three month period, making this the largest Web server characterization study to date.
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Throughout the paper emphasis was placed on comparing the characteristics of the World

Cup workload to those observed in other Web server workloads.

The results of our study revealed that caching at Web clients, proxies and within the network

is changing the workloads seen by Web servers. The lack of an efficient, supported and

widely adopted cache consistency mechanism is the main cause of these changes and the

primary reason why Web caches are failing to significantly reduce Web server workloads

during times of extreme user interest in the content on those servers.

This paper presented preliminary results on many different facets on the workload of the

World Cup Web site. Further, more in-depth analyses are needed on many of the topics dis-

cussed in this paper. For example, more precise modeling of sessions is required to evalu-

ate the effects of longer sessions on server resource utilization. Other future work in this

area includes developing new or reconfiguring existing Web server benchmarks to reflect

current workloads. Such benchmarks are needed to more accurately estimate the perfor-

mance of a particular server configuration. Additional workload characterization is needed,

particularly of sites on an ongoing basis, to determine if the characteristics observed in this

data set are present in others and to understand how these characteristics change over

time. In order to perform more accurate analyses in the future, more precise measurements

of (server) workloads are needed. This may involve changing the data collected in access

logs (e.g., store finer-grained timestamps) or utilizing alternative methods of data collection

(e.g., system instrumentation). Finally, as we alluded to earlier in this paper, a more efficient
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cache consistency mechanism, preferably one that requires little human intervention, is

needed to further the scalability of the Web.

9 ACKNOWLEDGMENTS

The authors would like to thank all of the people who made this work possible. The authors

are particularly grateful to the people at EDS who provided the World Cup access logs; to

Christian Hostelet, HP Technical Director of the World Cup as well as Joel Dubedat and

Jean Le Saint for providing information on the World Cup Web site architecture; to Katey

Kennedy and Robert Slinn for providing statistics on the television audiences for the World

Cup; to Mark Crovella of Boston University, for his assistance with the statistical analyses;

and to Paul Barford of Boston University, Jim Pitkow of Xerox PARC, and Sharad Singal and

Gary Herman of HP Labs for their constructive comments on the paper.
Arlitt and Jin Page 86 of 90



Appendix A User Session Analyses
10 APPENDIX A

Table 21 Abbreviations for Hosting Locations

Abbreviation Location

SC Santa Clara, CA

PL Plano, TX

HN Herndon, VA

PA Paris, France

Table 22 Abbreviations for Team Names

Abbreviation Team Abbreviation Team

ARG Argentina ITA Italy

AUT Austria JAM Jamaica

BEL Belgium JPN Japan

BGR Bulgaria KOR South Korea

BRA Brazil KSA Saudi Arabia

CHI Chile MEX Mexico

CMR Cameroon MOR Morocco

COL Columbia NGA Nigeria

DEN Denmark NOR Norway

ENG England PAR Paraguay

ESP Spain ROM Romania

FRA France RSA South Africa

GER Germany SCO Scotland

HOL The Netherlands TUN Tunisia

HRV Croatia USA United States

IRN Iran YUG Yugoslavia
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