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Abstract 
 

The ETA project at Intel Research and Development 
has developed a software prototype that uses one of the 
Intel® XeonTM processors in a multi-processor server as a 
packet processing engine. The prototype is used as a 
vehicle for empirical measurement and analysis of a 
highly programmable packet processing engine that is 
closely tied to the server’s core CPU and memory 
complex. The usage model for the prototype is the 
acceleration of server TCP/IP networking. 

The ETA prototype runs in an asymmetric 
multiprocessing mode, in that the packet processing 
engine does not run as a general computing resource for 
the host operating system. We show an effective method of 
interfacing the packet processing engine to the host 
processors using efficient asynchronous queuing 
mechanisms. 

This paper describes the ETA software architecture, 
the ETA prototype, and details the measurement and 
analysis that has been performed to date. Test results 
include running the packet processing engine in single-
threaded mode, as well as in multi-threaded mode using 
Intel’s Hyper-Threading Technology (HT). Performance 
data gathered for network throughput and host CPU 
utilization show a significant improvement when 
compared to the standard TCP/IP networking stack. 
 
1. Introduction 
 

The performance limitations of server-based 
networking are well documented [1, 2]. A major goal of 
the Embedded Transport Acceleration (ETA) project is to 
enable high performance server communication and I/O 
over standard Ethernet and TCP/IP networks. By doing 
so, we hope to take advantage of the large knowledge base 
and ubiquity of these standard technologies. With the 
advent of 10 gigabit Ethernet, these standards promise to 
provide the bandwidth required of the most demanding 
server applications. In addition, by substantially 
increasing the performance of server networks, we can 
also enable standard high-volume servers to perform a 

greater number of storage and communication-centric 
applications that are commonly served by specialized 
appliances. 

We use the term Packet Processing Engine or PPE as a 
generic term for computing and memory resources that are 
used for communication-centric processing. There are 
some desirable attributes for a packet processing engine 
that we have tried to achieve. These include scalability, 
extensibility and programmability.  

A PPE must scale in terms of communication 
throughput as well as in its ability to support large 
numbers of sessions simultaneously.  Extensibility is 
desirable in order to add value to the solution over time in 
terms of new features, protocols and applications. 
Programmability is desirable in order for the solution to 
be adaptable in the face of changing standards and in 
order to modify its behavior in subtle but important ways. 
These desired attributes tend to lead us to a solution where 
the amount of processing and memory resources is not 
artificially constrained. 

Section 2 of this paper describes the base ETA 
architecture, in particular the architecture of the software 
that is instantiated on the prototype. Section 3 gives some 
details about the prototype hardware and the testing 
environment. Performance and analysis results are 
presented in section 4 and 5. Section 6 outlines some 
related work and section 7 summarizes and conclusions 
are drawn. 
 
2. The ETA Software Architecture 
 

At a high level, the ETA architecture partitions the 
server software between host and PPE processing 
resources.  The ‘host’ is where the general purpose 
operating system and applications reside.  The PPE is 
where the communication-centric tasks, including network 
protocol processing, are performed.  The interface 
between the host and the PPE is implemented as a set of 
asynchronous queues in cache-coherent, shared host 
memory. These queuing structures are used for control, 
synchronization, and for receiving and transmitting data.  
 
2.1. ETA Host Software 



 
The ETA host software stack allows for multiple paths 

between host applications and the PPE. Accelerated 
networking paths are enabled for applications at both the 
kernel and user levels as well as the non-accelerated path 
through the operating system’s native TCP/IP and driver 
stack. At both the kernel and user levels, there is a thin 
layer of software, an adaptation layer that provides an 
asynchronous programmatic interface to queuing 
structures that form the interface between the host and the 
PPE. In addition, legacy sockets applications are enabled 
as well as new applications that are written directly to the 
ETA specific interfaces. The high-level view of the ETA 
host software stack is shown in Figure 1. 
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Figure 1 – ETA Host Software Stack 

 
2.2. ETA Host-Engine Interface 
 

The interface between the host processors and the PPE 
is accomplished through a set of queuing structures called 
Direct Transport Interfaces or DTIs.  DTIs are based on 
the principles of the Virtual Interface Architecture [3] and 
the InfinibandTM Architecture [7], but differ in that they 
are optimized for IP networking semantics.  In particular, 
the DTI structures also support the TCP connection 
commands in addition to data transmission and reception.  
Anonymous buffer pools are provided in order to support 
the buffering semantics of TCP streams.  Figure 2 shows 
the structure of the DTI queuing structures. 
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Figure 2 – DTI Queuing Structures 

 

Each DTI may include a send queue, a receive queue, 
an event queue, doorbells, and data buffers in an 
associated buffer pool. Individual DTIs include all of 
these elements. However, groups of DTIs for any given 
server application can be created such that they share a 
common event queue and set of doorbells and each child 
DTI may include only send and receive queues and 
associated data buffer pools. Parent DTIs are used to 
listen on new TCP connections.  When a new connection 
is established and accepted, it associates a child DTI with 
the new connection, thus a child DTI is associated with a 
TCP session. The following describes the DTI elements:   

•  The send and receive queues are used to post send 
and receive descriptors to the ETA packet 
processing engine. The data can be transferred 
directly to or from application buffers or the DTI 
anonymous buffer pool. 

•  The event queue enables the ETA packet 
processing engine to post event notices to the host 
application. Each DTI can be created with a private 
event queue or have its event notices directed to an 
event queue shared by multiple DTIs. 

•  The DTI data buffers enable the ETA packet 
processing engine to buffer data for the DTI, 1) 
when the source or target application buffers are 
not pre-conditioned, 2) when TCP segments are 
received and there are no receive descriptors posted 
on the receive queue, or 3) when TCP segments are 
received out of order. 

•  The send and receive doorbell addresses are used to 
write notices or signals directly to the ETA packet 
processing engine and indicate a context with which 
each is associated. 



2.3. ETA Packet Processing Engine Software 
 

The ETA architecture is largely independent of the 
implementation of the packet processing engine. The PPE 
implementation could be a fixed device, a specialized 
programmable engine, or as in the case of the prototype, a 
general purpose CPU. An ETA aware PPE needs to 
support several specific functions. 

First, the PPE must support the DTI queuing structures. 
It must have the ability to be notified of new work posted 
on the send and receive queues via the doorbell addresses. 
In addition, the PPE must support the event queue and be 
able to interrupt the host processors in the event that an 
application is blocked waiting for a transaction to 
complete. 

The PPE also must be able to execute the actual packet 
processing functions on behalf of the host, and must of 
course support an interface to the network itself. In the 
case of our prototype, the packet processing functions are 
mainly the termination of TCP/IP connections on behalf 
of server applications. 
 
3. The ETA Prototype 
 

The ETA prototype uses one of the Intel® XeonTM 
Processors in a dual-processor server as the host processor 
and one as the PPE. The main function of the PPE is the 
establishment and termination of TCP/IP sessions on 
behalf of applications running on the host CPU. 

This configuration has several advantages. First and 
foremost, there was no special hardware to develop. 
Secondly, we could use standard software development 
tools to develop the software for both the host side and the 
PPE.  We use standard gigabit Ethernet network cards 
with a modified version of the Ethernet driver. Finally, we 
can use shared, coherent memory in order to implement 
the interfaces between the host CPU and the PPE. 

 
3.1. Prototype Software Environment 
 

We developed the prototype using a standard Linux 
kernel version 2.4. The PPE software is a loadable Linux 
module with a stripped down kernel TCP/IP stack, with 
code added to support the DTI interfaces, and a modified 
gigabit Ethernet driver.  The PPE software module is 
given affinity to one processor (CPU1) on the dual-
processor platform, and never yields the processor.  This 
enables CPU1 usage as a dedicated packet processing 
engine. 

Synchronization is a unique aspect of the PPE software 
on the prototype. The interface to the network interface 
controller has been modified so as not to use interrupts for 
data transfer operations.  Instead, the PPE can poll on NIC 
descriptors in shared host memory in order to detect 

completed packet transactions. Communication between 
the host CPU and the PPE via the DTI structures are 
accomplished through the DTI doorbells in shared host 
memory as well.  Thus, the PPE can poll the doorbell 
addresses and NIC descriptors for synchronization without 
causing memory bus traffic until the cache-lines of the 
associated shared memory is modified. This allows the 
PPE to run without interrupts and avoid the associated 
overheads. 

 
3.2. Prototype Hardware Platform 
 

The prototype can run on virtually any multi-processor 
platform that runs the Linux kernel. The platform used in 
our testing is a dual-processor Intel® XeonTM Processor 
platform.  The processors run at 2.4 gigahertz on a 400 
megahertz front-side bus.  The Network Interface 
Controllers are standard Intel Pro1000 gigabit Ethernet 
controllers. 

 
3.3. Prototype Test Environment 
 

Our test environment consists of the server under test 
(the ETA prototype server) and five client computers 
connected directly by gigabit Ethernet links.  The client 
computers are standard off-the-shelf servers running the 
Linux OS and the ttcp throughput micro-benchmark. 

The tests running on the ETA prototype are kernel-
level applications that interface directly to the ETA kernel 
abstraction layer. Figure 3 shows the basic test 
environment. 
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Figure 3 – ETA Prototype Test Environment 

 
 
 
 



4. Measurement Results 
 
Basic throughput tests were performed on the ETA 

prototype for transmit and receive for several transfer 
sizes. The ETA test results are compared with a standard 
Linux dual processor server running the ttcp throughput 
micro-benchmark. 

Figure 4 shows transmit performance along with the 
amount of CPU that is idle and thus available for 
application use. For transfers of 1024 bytes and less, both 
CPUs of the standard Linux server were 100% utilized 
executing the networking stack, thus leaving zero CPUs 
left idle. For larger sized messages, 20% or less of one of 
the CPUs was left idle.  

For the ETA server, the host CPU was less than 20% 
utilized across all transfer sizes leaving more than 80% of 
one CPU idle and available.  In addition, the ETA 
transmit throughput considerably exceeded the standard 
Linux server for all transfer sizes. 
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Figure 4 – Transmit Performance 
 

Figure 5 shows throughput and available CPU for the 
receive path.  For all cases, both CPUs of the standard 
Linux server were 100% utilized running the networking 
stack, thus leaving zero CPUs left for other applications 
(that is why the dark gray bars don’t show on the graph). 
The Host CPU of the ETA prototype was less than 20% 
utilized for all receive transaction sizes, leaving 80% of a 
CPU idle and available. ETA receive throughput exceeds 
the Linux server by a relatively small margin. This smaller 
improvement is partly due to memory-to-memory copy 
performance.  Our ETA implementation uses a one-copy 
receive path due to the fact that we use off-the-shelf 
network interface controllers that place packets directly 
into a pre-allocated packet buffer. These packet buffers 
must then be copied to destination buffers by the PPE. 
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Figure 5 – Receive Performance 
 
Figure 6 compares the transmit performance of the 

standard Linux server (2P SMP), the ETA prototype in 
single-threaded mode (ETA ST), and the ETA prototype 
with Intel’s Hyper-Threading Technology [5] enabled on 
the packet processing engine (ETA HT). With HT 
enabled, the PPE runs on two hardware threads and 
provides a degree of parallelism, thus hiding the memory 
latency which we have found to be a performance limiter 
of TCP/IP processing on servers. The results show an 
approximately 50% increase in transmit performance on 
the ETA prototype with HT enabled, achieving over four 
gigabits of throughput. 
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Figure 6 – Transmit Performance with HT 
 

Figure 7 shows receive throughput for the standard 
Linux server (2P SMP), the ETA prototype with the PPE 
running in single-threaded mode (ETA ST) and the ETA 
prototype with the PPE running with HT enabled (ETA 
HT). In addition, we added a test path where we enabled 
HT, but did not execute the data copy on the PPE (ETA 
HT NoCopy). For receive, we see that enabling HT 
improved the ETA performance about 20 percent.  As 



noted before, this relatively small improvement is partly 
due to the copy performance on our prototype 
implementation. When we omit the copy by the PPE into 
the test application buffer, we see significant performance 
increase, similar to the performance of the transmit case 
(nearly four gigabits per second). 
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5. Analysis 
 

To understand the differences in performance between 
the SMP system and the ETA prototype, we used the 
VTuneTM [11] performance analysis tool to profile their 
execution. Figure 8 and 9 show a high-level execution 
profile for the SMP and ETA systems respectively. 
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Figure 8 – Execution profile of SMP system 

Each pie-chart contains the measured execution profile 
for the 1KB transmit test-case. Each slice of a pie 
represents the total amount of CPU that is being used for a 
certain function, e.g. a value of 10 equates to 10% 
utilization of 2 CPUs (or 20% usage of 1 CPU). To 
explain the terms within the charts, the term ‘stack’ 

equates to execution attributed to TCP/IP processing; 
‘driver’ equates to the driver for the Ethernet controller; 
‘kernel’ equates to kernel execution other than TCP/IP; 
and ‘app’ is the test application. 
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Figure 9 – Execution profile of ETA system 

The execution profiles for the two machines are quite 
different. First, TCP/IP related processing on the SMP 
system requires significantly more CPU utilization than on 
the ETA prototype (51% vs. 39%).  If we also assume that 
much of the kernel slice on the SMP machine is executed 
on behalf of the TCP/IP stack, the disparity is even larger. 
Much of this difference can be attributed to the efficiency 
of the interface between the test application and the 
TCP/IP stack.   

Another major difference in the comparison is the 
efficiency of the drivers (27% vs. 10%). This efficiency 
can largely be attributed to the fact that the ETA PPE does 
not need to share resources with the OS and application, 
and can poll the devices descriptor queues without 
incurring an interrupt.  This avoids not only costly 
interrupt processing, but also reduces the number of 
device register accesses required over the (relatively) slow 
I/O bus. Additional and more detailed performance 
analysis is required, and planned. 

6. Related Work 
 
Recent commercial efforts to increase server network 

performance have centered on specialized TOE (TCP/IP 
Offload Engine) devices [4, 8]. TOE devices generally 
offload varying amounts of the TCP/IP protocol stack on a 
device that attaches to the I/O subsystem of a server. TOE 
devices generally utilize separate, specialized processing 
and memory resources. The ETA prototype described in 
this paper differs from these devices in that it utilizes 
processing and memory resources of the server itself, 
making the packet processing engine a first class citizen of 
the core CPU and memory complex. The software is 
partitioned in a manner that is much more efficient than in 
standard symmetric multiprocessing systems. 



Other related research efforts include the QPIP [9] 
work at Berkeley that showed the effectiveness of 
interfacing IP protocols implemented on an intelligent 
network adapter using the Queue Pair model of the 
InfinibandTM Architecture. The TCP Servers project [10] 
at Rutgers University showed a framework where the 
network processing could be partitioned onto a dedicated 
node, processor or an intelligent adapter and interface to 
the host applications through lightweight communication 
mechanisms. 
 
7. Conclusions 

 
We can see from the results that software partitioning 

can significantly increase the overall communication 
performance of a standard multi-processor server.  
Specifically, partitioning the packet processing onto a 
dedicated set of compute resources allows for 
optimizations that are otherwise not possible when time-
sharing the same compute resources with the OS and 
applications. For example, our prototype PPE does not 
need to incur the overhead of interrupts and system calls 
because it can poll shared memory for new work. Polling 
can be done without placing load on the memory 
subsystem or front-side bus of the platform because we 
can rely on the cache coherence protocols to allow the 
PPE to poll internally in cache. Memory load is only 
incurred when the associated memory location is updated 
by either a network device or one of the host processors. 
Cache interference is also largely avoided because we are 
not sharing caches with the OS and applications except 
through the ETA host interface. Other optimizations are 
possible, such as strategic pre-fetching of control and 
packet header information. 

We have seen that threading, Intel’s Hyper-Threading 
Technology in particular for our prototype, is an important 
factor in achieving greater performance.  Multi-threading 
allows parallelism that is useful for hiding memory 
latency.  Networking workloads tend to have poor locality 
and thus poor cache behavior.  For example, when a 
device receives a new packet, it never lands in the cache 
so that when it is referenced by the PPE, significant 
memory latency is incurred.  Given the growing disparity 
between processor speeds and memory latency, multi-
threading becomes more important over time. 

This paper has shown the capabilities of a general 
purpose Intel® XeonTM Processor for server-based packet 
processing. Specialized packet processors with support for 
specific networking functions have the potential for 
providing even greater absolute performance [6]. The type 
of processing and memory resources that are used for 
packet processing involve a set of trade-offs that include 
absolute performance, flexibility, extensibility and cost. 

The ETA host-PPE interface allows for low-overhead, 
asynchronous interaction between the host processors and 
the packet processing engine. The DTI queuing structures 
presented in this paper are built on proven concepts [3, 7], 
and extend those concepts for an optimized solution for 
IP-based networks. 

We have plans for additional ETA development and 
analysis along multiple vectors. We currently are 
performing analysis on the capabilities of our PPE to 
accelerate TCP connection establishment.  This capability 
is important for web servers that have to deal with a great 
number of short-lived connections. We also are in process 
of developing and analyzing an iSCSI storage stack over 
ETA and are investigating techniques to minimize data 
copies through the use of the DDP and RDMA protocols 
that are currently under definition. Additionally, we are 
working to enable legacy user-level sockets applications 
on ETA that once complete will allow us to run and 
analyze a large number of network applications. 
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