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% Why Control Theory

= Systematic approach to analysis and design
= Transient response
= Consider sampling times, control frequency
= Taxonomy of basic controls
= Select controller based on desired characteristics

= Predict system response to some input

= Speed of response (e.g., adjust to workload
changes)

= Oscillations (variability)

= Approaches to assessing stability and limit
cycles
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$ Examples of CT in CS

= Network flow controllers (TCP/IP — RED)
= C. Hollot et al. (U.Mass)

Lotus Notes admission control
= S. Parekh et al. (IBM)

= QoS in Caching

= Y. Luetal. (U.Va)

Apache QoS differentiation
= C. Luetal. (U.Va)




% Outline

= Examples and Motivation

= Control Theory Vocabulary and Methodology
= Modeling Dynamic Systems

= Standard Control Actions

= Transient Behavior Analysis

= Advanced Topics

= Issues for Computer Systems

= Bibliography
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% Control System Goals

= Regulation
= thermostat, target service levels
= Tracking

= robot movement, adjust TCP window to
network bandwidth

= Optimization

= best mix of chemicals, minimize response
times
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% System Models

= Linear vs. non-linear (differential eqns)
= €0, a,y+a,y =b,X+DyX
= Principle of superposition

= Deterministic vs. Stochastic

= Time-invariant vs. Time-varying
= Are coefficients functions of time?

s Continuous-time vs. Discrete-time
«tT R vs kil Z
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Approaches to
$ System Modeling

= First Principles

=« Based on known laws
= Physics, Queueing theory

= Difficult to do for complex systems
= Experimental (System ID)

= Statistical/data-driven models

= Requires data

= Is there a good “training set”?
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% The Complex Plane (review)
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Basic Tool For Continuous
% Time: Laplace Transform

LT (O] =F(s) = f (e “d

= Convert time-domain functions and operations
Into frequency-domain
= f()® F(s) (tI &, o #A)
= Linear differential equations (LDE) ® algebraic
expression in Complex plane

= Graphical solution for key LDE characteristics
= Discrete systems use the analogous z-transform
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Laplace Transforms of
$ Common Functions

Name f(t)
il t=0

f(t) =i
Impulse (t) }0 (50

Step f(t)=1

Ramp f(t)=t
Exponential f(t)=¢€"

Sine f (t) = sin(wt)

F(s)

l‘l_\ m|\)||—‘ tn | =
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% Laplace Transform Properties

Addition/Scaling

Differentiation

Integration

Convolution

L[af, (t) + bf, ()] = aF,(s) £ bF,(s)

éd 0 oo o
LSE f (t)H =sF(s)- f(0x)
Lt ] = 9,2 o o]

t

Ofi(t - Df(t)dt = Fy(s)F,(s)

Initial-value theorem

Final-value theorem

f(0+) = L!@T sF(s)

!g@rgf(t)zl;@rrol sF(s)
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Insights from Laplace
Transforms

= What the Laplace Transform says about f(t)
= Value of f(0)

= Initial value theorem

= Does f(t) converge to a finite value?
= Poles of F(s)

= Does f(t) oscillate?
= Poles of F(s)

= Value of f(t) at steady state (if it converges)
= Limiting value of F(s) as s->0
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% Transfer Function

= Definition X(s) = H(s)

—> Y(9)

= H(s) = Y(s) / X(s)

= Relates the output of a linear system

(or component) to its input

= Describes how a linear system responds

to an impulse

= All linear operations allowed
= Scaling, addition, multiplication
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% Block Diagrams

Pictorially expresses flows and relationships

between elements in system
Blocks may recursively be systems

Rules
= Cascaded (non-loading) elements: convolution
= Summation and difference elements

Can simplify
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Block Diagram of System
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Combining Blocks
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Block Diagram of
w AcCcCess Control
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Key Transfer Functions

Open-Loop: Bs) _ G,(5)G,(s)H(s) Feedback :Y(S) =

Reference
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Controller ———» Plant
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B( SJQ H(s)

Transducer «

Y(S) _ Y(9 U(s) _
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Rational Laplace Transforms

F(s) = AlS)
B(s)
A(s)=a,s" +..+as+a,
B(s)=b, s" +...+bs+Db,
Poles:s*' B(s*) =0(So, F(s*) =¥)
Zeroes:s*' A(s*) =0(So, F(s*) =0)
Poles and zeroes are complex
Order of system =# poles =m
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First Order System
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% First Order System

Impulse K Exponential
response 1+<T
Step response K K Step,
- exponential
s s+1/T
Ramp response | K KT KT |Ramp,
2 ) B Step!
S s s+UT exponential

No oscillations (as seen by poles) 2



Second Order System

Y(s) _ K W

Impulse response : 5 =— 5
R(s) Js°+Bs+K s°+2w, S+wy

Oscillates if poles have non - zero imaginary part (ie, B* - 4JK < 0)

Damping ratio:x = BE where B, = 2v JK

c

Undamped natural frequency :w, = \/%
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Second Order System:
% Parameters

Interpretation of damping ratio
X =0:Undamped oscillation (Re =0, Im?* 0)
O<x <l:Underdamped (Re® 0 1 Im)
1 £x :0Overdamped (Re* 0,Im =0)

Interpretation of undamped natural frequency
w, gives the frequency of the oscillation
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Transient Response
Characteristics

175}
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t, :Rise time = delay until first reach steady state value
t,: Time at which peak value is reached
t, : Settling time = stays within specified % of steady state ,q



% Transient Response

= Estimates the shape of the curve based
on the foregoing points on the x and y
axis

= Typically applied to the following inputs
= Impulse
= Step
= Ramp
= Quadratic (Parabola)
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$ Effect of pole locations

Faster Decay
(&)

Oscillations
(higher-freq)
ims) T
< > Faster Blowup
= (")
\ 4
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Basic Control Actions: u(t)

. U (s)
Proportional control: u(t) = K gt —2 =K
p (t) = K &t) £ )
t U(s) K
Integral control:  u(t) = K. oe(t)dt =
g (t) .g)e() 9 s
Differential control:  u(t) = K, Ee(t) uls) _ K4S
dt E(S)
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$ Effect of Control Actions

= Proportional Action
= Adjustable gain (amplifier)
= Integral Action
= Eliminates bias (steady-state error)
= Can cause oscillations
= Derivative Action (“rate control”)
= Effective in transient periods
= Provides faster response (higher sensitivity)
= Never used alone
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% Basic Controllers

= Proportional control is often used by
itself

= Integral and differential control are
typically used in combination with at
least proportional control

= eg, Proportional Integral (PI) controller:

:—U(S):K +ﬁ:K +i9
p

() E(s) " s T sfz
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Summary of Basic Control

= Proportional control
= Multiply e(t) by a constant
= Pl control
= Multiply e(t) and its integral by separate constants
= Avoids bias for step
= PD control
= Multiply e(t) and its derivative by separate constants
= Adjust more rapidly to changes
= PID control

= Multiply e(t), its derivative and its integral by separate
constants

= Reduce bias and react quickly
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% Root-locus Analysis

= Based on characteristic eqn of closed-loop
transfer function

= Plot location of roots of this egn
= Same as poles of closed-loop transfer function
= Parameter (gain) varied from O to ¥

= Multiple parameters are ok
= Vary one-by-one
= Plot a root “contour” (usually for 2-3 params)

= Quickly get approximate results
= Range of parameters that gives desired response
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% Digital/Discrete Control

More useful for computer systems
Time is discrete
= denoted k instead of t
Main tool is z-transform §
Z[f()]=F(=a fkz"
k=0
s f(K) ® F(2) , where zis complex
= Analogous to Laplace transform for s-domain
Root-locus analysis has similar flavor
= Insights are slightly different
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Z-Transforms of Common

Name f(t) F(s) F(2)
i1 t=0
f(t)=q
Impulse (t) [y t>0 1 1
S f(t)=1 . =
ep S z-1
_ 1 z
Ramp f(t) =t 2 (z- 12
Ex tial f(t)=€" - e
ponenti ()_e S- a z- €
_ e 1 zSina
Sne f(t) - Sln(\Nt) w2 +52 22 2(Cosa)z +1
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Root Locus analysis of
$ Discrete Systems

= Stability boundary: |z=1 (Unit circle)
= Settling time = distance from Origin

= Speed = location relative to Im axis
= Right half = slower
« Left half = faster
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Effect of discrete poles

I m(s)A

Higher-frequech'\

response »

/ onger settling time
>

Unstable |Z| =1

Intuition: z=e™
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System ID for Admission
Control

E@)
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ARMA Models N(Z) = By Z
q(t) = aq(t - 1) +beu(t) Z- &
m(t) =igm(t - 1) +d,q(t) +d,q(t - 1) S(2) = doz+d,

Z- ¢

Control Law Gzy=z 1

u(t) = u(t - 1) + Kje(t) z-12°

b,z dy,z+d;, K.z 1
z-a z-¢ z-17° s

Open-Loop: |N(2) S(2) G(2) =




Root Locus Analysis of
Admission Control
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Experimental Results
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Advanced Control Topics

= Robust Control

= Can the system tolerate noise?
= Adaptive Control

= Controller changes over time (adapts)
= MIMO Control

= Multiple inputs and/or outputs
= Stochastic Control

= Controller minimizes variance
=  Optimal Control

= Controller minimizes a cost function of error and control energy
= Nonlinear systems

= Neuro-fuzzy control

= Challenging to derive analytic results
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% Issues for Computer Science

= Most systems are non-linear

= But linear approximations may do
= eg, fluid approximations

= First-principles modeling is difficult
= Use empirical techniques

= Control objectives are different
= Optimization rather than regulation

= Multiple Controls
= State-space techniques
= Advanced non-linear techniques (eg, NNSs)
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