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Example 1: Liquid Level 
System
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Input valve 
control

float

Output 
valve

Goal: Design the input 
valve control to maintain a 
constant height regardless 
of the setting of the 
output valve
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Example 2: Admission Control

Users

Administrator

Controller

RPCs

Sensor

Server

Reference
value

Queue
Length

Tuning
control

Server
Log

Goal: Design the controller 
to maintain a constant 
queue length regardless of 
the workload
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Why Control Theory
n Systematic approach to analysis and design

n Transient response
n Consider sampling times, control frequency
n Taxonomy of basic controls
n Select controller based on desired characteristics

n Predict system response to some input
n Speed of response (e.g., adjust to workload 

changes)
n Oscillations (variability)

n Approaches to assessing stability and limit 
cycles
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Example: Control & Response in 
an Email Server

Control
(MaxUsers)

Response
(queue length)

Good

Slow

Bad

Useless
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Examples of CT in CS
n Network flow controllers (TCP/IP – RED)

n C. Hollot et al. (U.Mass)

n Lotus Notes admission control
n S. Parekh et al. (IBM)

n QoS in Caching
n Y. Lu et al. (U.Va)

n Apache QoS differentiation
n C. Lu et al. (U.Va)
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Outline
n Examples and Motivation
n Control Theory Vocabulary and Methodology
n Modeling Dynamic Systems
n Standard Control Actions
n Transient Behavior Analysis
n Advanced Topics
n Issues for Computer Systems
n Bibliography
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Feedback Control System
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Controller Design Methodology

Block 
diagram 

construction

Model 
Ok?

Stop

Start

Transfer function 
formulation and 

validation

Controller 
Design

Objective 
achieved?

Controller 
Evaluation

Y

Y

N N

System Modeling
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Control System Goals
n Regulation

n thermostat, target service levels
n Tracking

n robot movement, adjust TCP window to 
network bandwidth

n Optimization
n best mix of chemicals, minimize response 

times
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System Models
n Linear vs. non-linear (differential eqns)

n eg,  
n Principle of superposition

n Deterministic vs. Stochastic
n Time-invariant vs. Time-varying

n Are coefficients functions of time?
n Continuous-time vs. Discrete-time

n t ∈ R   vs   k ∈ Z

xbxbyaya 0201 +=+ &&&
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Approaches to 
System Modeling
n First Principles

n Based on known laws
n Physics, Queueing theory

n Difficult to do for complex systems
n Experimental (System ID)

n Statistical/data-driven models
n Requires data
n Is there a good “training set”?



13

The Complex Plane (review)
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Basic Tool For Continuous 
Time: Laplace Transform

n Convert time-domain functions and operations 
into frequency-domain 
n f(t) → F(s)   (t∈þ, s∈ÿ)
n Linear differential equations (LDE) → algebraic 

expression in Complex plane

n Graphical solution for key LDE characteristics
n Discrete systems use the analogous z-transform
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Laplace Transforms of 
Common Functions
Name f(t) F(s)
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Laplace Transform Properties
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Insights from Laplace
Transforms
n What the Laplace Transform says about f(t)

n Value of f(0)
n Initial value theorem

n Does f(t) converge to a finite value?
n Poles of F(s) 

n Does f(t) oscillate?
n Poles of F(s) 

n Value of f(t) at steady state (if it converges)
n Limiting value of F(s) as s->0
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Transfer Function
n Definition

n H(s) = Y(s) / X(s)
n Relates the output of a linear system 

(or component) to its input
n Describes how a linear system responds 

to an impulse
n All linear operations allowed

n Scaling, addition, multiplication

H(s)X(s) Y(s)
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Block Diagrams
n Pictorially expresses flows and relationships 

between elements in system
n Blocks may recursively be systems
n Rules

n Cascaded (non-loading) elements: convolution
n Summation and difference elements

n Can simplify
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Block Diagram of System
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Combining Blocks
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Block Diagram of 
Access Control
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Key Transfer Functions
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Rational Laplace Transforms
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First Order System
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First Order System

Ramp, 
step, 
exponential
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Second Order System
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Second Order System: 
Parameters
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Transient Response 
Characteristics
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Transient Response
n Estimates the shape of the curve based 

on the foregoing points on the x and y 
axis

n Typically applied to the following inputs
n Impulse
n Step
n Ramp
n Quadratic (Parabola)
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Effect of pole locations

Faster Decay Faster Blowup

Oscillations
(higher-freq)

Im(s)

Re(s)(e-at) (eat)
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Basic Control Actions: u(t)
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Effect of Control Actions
n Proportional Action

n Adjustable gain (amplifier)

n Integral Action
n Eliminates bias (steady-state error)
n Can cause oscillations

n Derivative Action (“rate control”)
n Effective in transient periods
n Provides faster response (higher sensitivity)
n Never used alone
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Basic Controllers

n Proportional control is often used by 
itself

n Integral and differential control are 
typically used in combination with at 
least proportional control
n eg, Proportional Integral (PI) controller:
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Summary of Basic Control
n Proportional control

n Multiply e(t) by a constant

n PI control
n Multiply e(t) and its integral by separate constants
n Avoids bias for step

n PD control
n Multiply e(t) and its derivative by separate constants
n Adjust more rapidly to changes

n PID control
n Multiply e(t), its derivative and its integral by separate 

constants
n Reduce bias and react quickly
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Root-locus Analysis
n Based on characteristic eqn of closed-loop 

transfer function
n Plot location of roots of this eqn

n Same as poles of closed-loop transfer function
n Parameter (gain) varied from 0 to ∞

n Multiple parameters are ok
n Vary one-by-one
n Plot a root “contour” (usually for 2-3 params)

n Quickly get approximate results
n Range of parameters that gives desired response
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Digital/Discrete Control
n More useful for computer systems
n Time is discrete

n denoted k instead of t
n Main tool is z-transform

n f(k) → F(z) , where z is complex
n Analogous to Laplace transform for s-domain

n Root-locus analysis has similar flavor
n Insights are slightly different

∑
∞

=

−==
0

)()()]([
k

kzkfzFkfZ



38

z-Transforms of Common 
Functions
Name f(t) F(z)
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Root Locus analysis of 
Discrete Systems

n Stability boundary: |z|=1 (Unit circle)
n Settling time = distance from Origin
n Speed = location relative to Im axis

n Right half = slower
n Left half = faster
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Effect of discrete poles
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System ID for Admission 
Control
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Root Locus Analysis of 
Admission Control

Predictions:
•Ki small => No controller-induced oscillations
•Ki large => Some oscillations
•Ki v. large => unstable system (d=2)
•Usable range of Ki for d=2 is small
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Experimental Results

Control
(MaxUsers)

Response
(queue length)

Good

Slow

Bad

Useless
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Advanced Control Topics
n Robust Control

n Can the system tolerate noise?
n Adaptive Control

n Controller changes over time (adapts)
n MIMO Control

n Multiple inputs and/or outputs
n Stochastic Control

n Controller minimizes variance
n Optimal Control

n Controller minimizes a cost function of error and control energy
n Nonlinear systems

n Neuro-fuzzy control
n Challenging to derive analytic results
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Issues for Computer Science
n Most systems are non-linear

n But linear approximations may do
n eg, fluid approximations

n First-principles modeling is difficult
n Use empirical techniques

n Control objectives are different
n Optimization rather than regulation

n Multiple Controls
n State-space techniques
n Advanced non-linear techniques (eg, NNs)
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