
Performance and Scalability of EJB Applications
Emmanuel Cecchet Julie Marguerite Willy Zwaenepoel
Rice University/INRIA

655, avenue de l’Europe
38330 Montbonnot, France

Rice University
6100 Main Street, MS-132
Houston, TX, 77005, USA

Rice University
6100 Main Street, MS-132
Houston, TX, 77005, USA

emmanuel.cecchet@inrialpes.fr margueri@rice.edu willy@rice.edu

ABSTRACT
We investigate the combined effect of application implementation
method, container design, and efficiency of communication layers
on the performance scalability of J2EE application servers by
detailed measurement and profiling of an auction site server.

We have implemented five versions of the auction site. The first
version uses stateless session beans, making only minimal use of
the services provided by the Enterprise JavaBeans (EJB)
container. Two versions use entity beans, one with container-
managed persistence and the other with bean-managed
persistence. The fourth version applies the session façade pattern,
using session beans as a façade to access entity beans. The last
version uses EJB 2.0 local interfaces with the session façade
pattern. We evaluate these different implementations on two
popular open-source EJB containers with orthogonal designs.
JBoss uses dynamic proxies to generate the container classes at
run time, making an extensive use of reflection. JOnAS pre-
compiles classes during deployment, minimizing the use of
reflection at run time. We also evaluate the communication
optimizations provided by each of these EJB containers.

The most important factor in determining performance is the
application implementation method. EJB applications with
session beans perform as well as a Java servlets-only
implementation and an order-of-magnitude better than most of the
implementations based on entity beans. The fine-granularity
access exposed by the entity beans limits scalability. Use of
session façade beans improves performance for entity beans, but
only if local communication is very efficient or EJB 2.0 local
interfaces are used. Otherwise, session façade beans degrade
performance.

For the implementation using session beans, communication cost
forms the major component of the execution time on the EJB
server. The design of the container has little effect on
performance. With entity beans, the design of the container
becomes important. In particular, the cost of reflection affects
performance. For implementations using session façade beans,
local communication cost is critically important. EJB 2.0 local
interfaces improve the performance by avoiding the
communication layers for local communications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies, performance
attributes, measurement techniques.

General Terms
Performance, Measurement, Design, Experimentation.

Keywords
EJB container design, performance, scalability, communication
optimization, profiling.

1. INTRODUCTION
As the popularity of dynamic-content Web sites increases rapidly,
there is a need for maintainable, reliable and above all scalable
platforms to host these sites. The Java™ 2 Platform Enterprise
Edition (J2EE) specification addresses these issues. J2EE
primarily targets n-tier application development [2]. It defines a
set of Java APIs to build applications and provides a run-time
infrastructure for hosting these applications.

The J2EE run-time environment includes four different
containers: the application client container, the applet container,
the Web container and the Enterprise JavaBeans (EJB) container
(see Figure 1). The EJB server is often the bottleneck in J2EE
applications [9]. This paper seeks to explain the effect of
application implementation methods, container design, and
efficiency of communication layers on the performance of an EJB
server and the overall application.

We have developed five different EJB implementations of an
auction site modeled after eBay [13]. The semantics are the same
for each implementation. The five different application
implementation methods are: stateless session beans, entity beans
with container-managed persistence, entity beans with bean-
managed persistence, entity beans with session façade beans, and
EJB 2.0 local interfaces (entity beans with only local interfaces
and session façade beans with remote interfaces). For further
comparison, we have also implemented a Java servlets-only
version that does not use EJB.

We evaluate two different container designs that are
representative of most approaches used in EJB containers
available at this time. The dynamic proxy approach [19], used in
the popular JBoss [15] open-source EJB server, generates the
container classes at run time, making extensive use of reflection.
Most commercial implementations and the JOnAS [16] open-
source EJB container use pre-compilation: classes are generated
during deployment, reducing the use of reflection at run time. We
also configure the EJB servers with and without communication
optimizations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA ’02, November 4-8, 2002, Seattle, Washington.
Copyright 2002 ACM 1-58113-417-1/02/0011 …$5.00.

J2EE Application Server

Web server
Database server

Presentation logic Business logic

h
t
t
p
d Web container

...

h
t
t
p
d EJB container

servlet
servlet

servletservletservlet

Client

Internet

JSP
JSP

JSPJSPJSP

RMI /
IIOP

JNDI JDBC JMS JTA RMI /
IIOP

JNDI JDBC JMS JTA

EJB
EJB

EJB
EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

Applet container

Applet
Applet

AppletAppletApplet

Application Client
container

Application
Client

JMSJDBC

Figure 1. Enterprise Java Beans in the J2EE framework.

We use open-source software in common use for our experiments:
the Apache Web server [5], the Tomcat servlet server [14], the
JBoss [15] and JOnAS [16] EJB servers and the MySQL [18]
relational database. We have posted all software, configuration
files, and full experimental reports on our web site
http://www.cs.rice.edu/CS/Systems/DynaServer to allow others to
reproduce the results and evaluate the impact of new designs on
performance and scalability.

Each server runs on a separate node. In all cases except one, the
CPU on the EJB server is the bottleneck. The memory and disk
are never a limiting resource. The network can reach very high
utilization (up to 94%) when few services from the EJB container
are used.

The most important factor in determining performance is the
application implementation method. The implementation using
session beans performs as well as a Java servlets-only
implementation and an order-of-magnitude better than most of the
implementations based on entity beans. Use of session façade
beans improves performance, but only if local communication is
very efficient or EJB 2.0 local interfaces are used.

For the implementation using session beans, communication cost
forms the major component of the execution time on the EJB
server. The design of the container has little effect on
performance. With entity beans, the design of the container
becomes important. In particular, the cost of reflection affects
performance. For implementations using session façade beans,
local communication cost is critically important. JDK 1.4 reduces
reflection cost but the overall improvement remains modest.

The outline of the rest of this paper is as follows. Section 2
provides some background on EJB. Section 3 provides a detailed
description of the alternative application implementation methods,
container designs, and communication optimizations. Section 4
describes the auction site and provides some complexity measures
for the various implementation methods. Section 5 presents our
experimental environment and our measurement methodology.
Section 6 discusses the results of our experiments. Related work is
presented in section 7. Section 8 concludes the paper.

2. BACKGROUND
An EJB server provides a number of services such as database
access (JDBC), transactions (JTA), messaging (JMS), naming
(JNDI) and management support (JMX). The EJB server manages
one or more EJB containers. The container is responsible for
providing component pooling and lifecycle management, client

session management, database connection pooling, persistence,
transaction management, authentication and access control.

In this paper, we consider two types of EJB: entity beans that map
data stored in the database (usually one entity bean instance per
database table row), and session beans that are used either to
perform temporary operations (stateless session beans) or
represent temporary objects (stateful session beans).

A bean developer can choose to manage the persistence in the
bean (Bean-Managed Persistence or BMP) or let the container
manage the persistence (Container-Managed Persistence or CMP).
In the latter case, a deployment descriptor contains a one-to-one
mapping between bean instance variables and database columns.
The container uses the descriptor to generate the necessary SQL
statements and ensure concurrency control in the database. With
BMP beans the programmer embeds the SQL queries in the bean
code and only uses the database connection pooling and
transaction management services of the container.

3. DESIGN ALTERNATIVES
3.1 Application implementation method
We implement a servlets-only version and five EJB versions. The
servlets-only version implements both the business logic and the
presentation logic in the servlets in the usual manner. We next
describe the five EJB versions.

3.1.1 Session beans
We use session beans to implement the business logic, leaving
only the presentation logic in the servlets as depicted in figure 2.

Session bean

Database

Web container

Servlet

EJB container

Business
logic

Servlet

Web container

Servlet

Database

Presentation

logic

Business
logic

Servlet

Presentation
logic

Business
logic

Presentation
logic

Presentation
logic

Session bean

Business
logic

Figure 2. Servlets-only to session bean implementation.

This implementation uses the fewest services from the EJB
container. The session beans benefit from the connection pooling
and the transaction management provided by the EJB server. It
greatly simplifies the servlets-only code, in which the connection
pooling has to be implemented by hand.

3.1.2 DAO separation with Entity Beans CMP
In this implementation, we extract the data access code from the
servlets, and move it into Data Access Objects (DAO) [25] that
we implement using entity beans. The business logic embedded in
the servlets directly invokes methods on the entity beans that map
the data stored in the database. Figure 3 illustrates the DAO
separation with entity beans.

EJB container

Entity
Bean

Database

Entity
Bean

Entity
Bean

Web container

Servlet

Presentation
logic

Business
logic

Servlet

Presentation
logic

Business
logic

Figure 3. DAO separation with Entity Beans.

With container-managed persistence (CMP), the vast majority of
the SQL queries is generated by the EJB container. EJB 1.1 CMP,
however, requires stateless session beans to execute complex
queries involving joins on multiple tables. To avoid fine-grain
access of getter/setter methods of the beans, we provide functions
that return results populated with the values of the bean instance
attributes. With this implementation, we evaluate the impact of
fine-grain accesses between the Web and EJB containers.

3.1.3 DAO separation with Entity Beans BMP
This implementation is the same as the DAO separation with
entity beans CMP version except that we use bean-managed
persistence (BMP). With BMP, the SQL queries have to be hand-
coded in the beans. We implement exactly the same queries as the
CMP version including the use of a stateless bean to execute
complex queries. The goal of this implementation is to evaluate
the cost of the container’s persistence service by comparing it
with the entity beans CMP version.

3.1.4 Session façade
The session façade pattern [3] uses stateless session beans as a
façade to abstract the entity components as shown in figure 4.

EJB container

Entity
Bean

Session facade

Web container

Session facade

Database

Entity
Bean

Entity
Bean

Business
logic

Business
logic

Servlet

Servlet

Presentation
logic

Presentation
logic

Figure 4. Session façade design pattern.

This method reduces the number of business objects that are
exposed to the client over the network, thus providing a uniform
coarse-grained service access layer. Calls between façade and
entity beans are local to the EJB server and can be optimized to

reduce the overhead of multiple network calls (see section 3.3).
We use container-managed persistence for the entity beans.1

This implementation involves a larger number of beans, and thus
stresses the component pooling of the container. It also exploits
the database connection pooling, transaction manager and
persistence services.

3.1.5 EJB 2.0 local interfaces
Although the session façade beans and the entity beans execute
inside the same JVM, with RMI (Remote Method Invocation)
communication between them has to go through all the
communication layers, as if they were on different machines. The
EJB 2.0 specification [22] introduces local interfaces to optimize
intra-JVM calls by bypassing the communication layers. Beans
with a local interface cannot be called remotely, i.e., from another
JVM even if the JVM runs on the same machine.

Our final implementation takes advantage of these local
interfaces. This implementation uses the session façade pattern,
and container-managed persistence. Only session façade beans
have a remote interface that is exposed to the servlets. The entity
beans only have a local interface that is used by the session façade
beans. Therefore, interactions between session and entity beans
bypass the communication layers. This implementation is the only
one that requires EJB 2.0 compliant containers.

3.2 EJB container design
An EJB container is a component that provides the EJB services
to a particular EJB. It acts as an interface between the client and
the bean. In fact, the client only interacts with the home and
component interfaces that are provided by the container, and then
the container forwards the calls to the bean. So, each bean access
is done through container-generated classes. There are two main
approaches to design an EJB container, differing in how and when
it generates those classes. With the pre-compiled approach,
container classes are compiled at deployment time. The other
method uses dynamic proxies to generate the classes at run time.

3.2.1 Pre-compiled approach
In a pre-compiled approach, the container generates custom
implementations of the home and component interfaces so that it
can directly call the appropriate method of the bean instance. The
resulting classes have to be available for the client by way of the
classpath or the ejb-jar file. This is the approach used in the
JOnAS EJB container and to the best of our knowledge in most
commercial EJB containers.

The container vendor provides a tool to generate the container
classes. The tool provided with JOnAS is called GenIC. GenIC
generates the source for the container classes for all the beans
defined in the deployment descriptor, and compiles them using
the Java compiler. Then, it generates stubs and skeletons for those
remote objects using the RMI compiler. Finally, it adds the
resulting classes in the ejb-jar file if needed.

3.2.2 Dynamic proxy based container
With this approach, the container uses dynamic proxy technology
to generate the home and component interfaces at run time. A
dynamic proxy is an object generated at run time that implements

1 We expect the results with bean-managed persistence to be

similar.

some specified interfaces and is responsible for routing the calls
using reflection. Using reflection the proxy can map method
signatures to the corresponding implementations or locate a bean
given the name of the class. The client sends its calls to the proxy
that analyzes and forwards them to the bean using reflection.

In the JBoss 2.4 container, which supports only EJB 1.1, home
and object interfaces are constructed as dynamic proxies. They
use four types of proxy classes: one for the home interface and
three for the component interface according to the type of the
bean (entity, stateless session, or stateful session bean).

The new JBoss 3.0 container, which supports EJB 2.0, uses the
Byte Code Engineering Library (BCEL) [6] to generate
specialized dynamic proxies for each bean. The goal of this
approach is to reduce the use of reflection at run time.

3.3 Communication layer
Remote Method Invocation (RMI) is the object request broker
(ORB) used by EJB. JBoss relies on Sun’s RMI using JRMP
(Java Remote Method Protocol) on top of TCP/IP, but it uses a
specific registry and naming called JNP (Java Naming Provider)
providing hierarchical namespaces. JOnAS can use either Sun’s
RMI or a modular ORB called Jonathan [12]. Jonathan has an
RMI personality called Jeremie. Jeremie uses a different protocol,
GIOP (General Inter-ORB Protocol), and can also optimize local
communication.

To reduce the cost of marshalling, JBoss offers an optimization
that passes objects by reference instead of by value. Although not
compliant with the specification, this optimization is commonly
used and it is the default setting in JBoss. Jeremie also uses this
technique for local calls.

4. APPLICATION
The RUBiS (Rice University Bidding System) models an auction
site similar to eBay.

4.1 Description
Our auction site defines 27 interactions that can be performed
from the client’s Web browser. Among the most important ones
are browsing items by category or region, bidding, buying or
selling items, leaving comments on other users and consulting
one’s own user page (known as myEbay on eBay [13]). Browsing
items also includes consulting the bid history and the seller’s
information. 5 of the 27 interactions are implemented using static
HTML pages. The remaining 22 interactions require data to be
generated dynamically. We define two workload mixes: a
browsing mix made up of only read-only interactions and a
bidding mix that includes 15% read-write interactions.

We size our system according to observations found on the eBay
Web site. We always have about 33,000 items for sale, distributed
among eBay’s 40 categories and 62 regions. We keep a history of
500,000 past auctions. There is an average of 10 bids per item,
resulting in 330,000 entries in the bids table. The users table has 1
million entries. We assume that users give feedback (comments)
for 95% of the transactions. The new and old comments tables
thus contain about 31,500 and 475,000 comments, respectively.
The total size of the database, including indices, is 1.4GB. More
details about the database configuration can be found in [4].

4.2 Implementation Complexity
Table 1 presents the total number of classes and the total code size
(including comments) for each implementation, and the
breakdown of the number of classes and the code size between
servlets and beans.

Table 1. Number of classes and code size of servlets and beans
for each application implementation method.

Servlets Beans Total

C
la

ss
es

 Lines
of

code C
la

ss
es

 Lines
of

code C
la

ss
es

 Lines
of

code

Servlets-only 25 4590 - - 25 4590

Session beans 22 2730 51 5270 73 8000

EB CMP 23 3980 40 6780 63 10760

EB BMP 23 3980 40 9850 63 13830

Session façade 22 2660 85 10780 107 13440

EJB 2.0 local 22 2725 91 11070 113 13795

4.2.1 Servlets
The number of servlet classes varies little between the various
application implementation methods, from 22 to 25. The number
of lines of code in the different versions, however, varies
considerably.

In all versions, there is a one-to-one match between the dynamic
interactions and the servlets except for the BrowseCategories
servlet that implements 3 interactions (browse categories, browse
categories in region, and browse categories to sell item).
Therefore, the 22 dynamic interactions are implemented with 20
servlets. All versions have two extra classes: one that manages
HTML output and another one that handles platform-specific
configuration variables.

Both the EB and the servlets-only versions use a servlet for user
authentication. In the EB versions, only the data access code is
moved to the entity beans; the business logic is still performed by
the servlets. In all other implementations, the business logic is
moved from the servlets to the session beans so user
authentication is done in the beans. The servlets-only version also
uses two additional classes for connection pooling and time
management, which are taken care of by the container in the other
versions.

The servlets-only version has the largest number of lines of code
in the servlets. This is not surprising, since the servlets encode
both the presentation logic and the business logic. The number of
lines of code for the EB versions is quite high as well since only
the data access code has been moved to the beans, and the
presentation and the business logic remains in the servlets.

4.2.2 Beans
The session beans implementation contains 51 classes, but is the
smallest version in terms of code size with 5270 lines. The
number of bean classes is the same for both EB versions with 40
classes, but the number of lines of code varies considerably
between the two implementations: 6780 lines for the CMP version

and 9850 lines for the BMP version. The session façade version is
a little smaller than the EJB 2.0 local interfaces implementation
with 85 classes and 10780 lines of code, compared to 91 classes
and 11070 lines of code.

Each bean requires 3 classes: the home (or local home) interface,
the remote (or local) interface and the bean implementation. We
also implement a primary key class for each entity bean. Having 3
or 4 classes for each bean makes the implementation of the
business logic very verbose, reaching up to 80% of the total
application code size.

The session beans version contains 17 bean implementation
classes, each with their home and remote interfaces, for a total of
51 bean classes. There is a one-to-one match between the servlet
and the bean classes, except for the user authentication bean that
is called by 3 different servlets (PutBidAuth, BuyNowAuth, and
PutCommentAuth) for different interactions. The two remaining
servlets are the ones discussed in section 4.2.1 (HTML output
management and platform-specific configuration variables).

Both EB versions contain 10 bean implementation classes. Each
has a primary key class, a home and a remote interface, for a total
of 40 bean classes. The EB BMP version requires more lines of
code than the CMP version since the finder methods and all the
SQL queries are no longer generated by the container but have to
be written in the beans. The entity beans provide a large number
of getter/setter methods and need to implement a larger interface
than the session beans (methods such as ejb_create(),
ejb_remove(), etc). Therefore, the code size for the EB versions is
larger than for the session beans implementation.

Both the session façade and the EJB 2.0 local interfaces
implementations contain the same entity beans as the EB CMP
version. When we add the session façade bean code to the EB
code, it results in the largest implementations in terms of lines of
code along with the EB BMP version. The session façade version
contains 15 façade session beans, each with three classes.
Together with the 40 entity bean classes, this accounts for a total
of 85 classes.

In the session façade implementation, two entity beans are
accessed directly from the servlets to perform inserts (create new
entity beans). Remote entity bean access is not allowed in the EJB
2.0 local interfaces implementation, since all entity beans have
only a local interface. Therefore, we have introduced two more
session façade beans (6 classes) in the EJB 2.0 local interfaces
implementation to act as proxies for those entity beans. Those 17
session façade beans correspond to the beans of the session beans
version.

4.2.3 Summary
Although EJBs are easy to write, the number of beans can become
quite large, resulting in a larger code base and negatively affecting
development time and maintenance cost. There are also portability
problems between the two containers, which each have their own
limitations and peculiarities, such as naming conventions. Even in
the common part of the deployment descriptors, both containers
have slightly different conventions, especially for inter-bean
references.

5. EXPERIMENTAL ENVIRONMENT
5.1 Client emulation
We implement a client-browser emulator as follows. A session is
a sequence of interactions for the same customer. For each
customer session, the client emulator opens a persistent HTTP
connection to the Web server and closes it at the end of the
session. Each emulated client waits for a certain think time before
initiating the next interaction. The next interaction is determined
by a state transition matrix that specifies the probability to go
from one interaction to another one.

The think time and the session time are generated from a negative
exponential distribution with a mean of 7 seconds and 15 minutes,
respectively. These values are chosen in analogy with the values
specified for the think time and the session time in the TPC-W
benchmark, which models an online bookstore (see clauses
5.3.1.1 and 6.2.1.2 of the TPC-W v1.65 specification [25]). We
vary the load on the site by varying the number of clients. We
have verified that in none of the experiments client emulation is
the bottleneck.

5.2 Software environment
We use Apache v.1.3.22 as the Web server. We increase the
maximum number of Apache processes to 512. With that value,
the number of Apache processes is never a limit on performance.

The servlet container is Jakarta Tomcat v3.2.4 [14], running on
Sun JDK 1.3.1. For all experiments, except the ones with EJB 2.0
local interfaces, we use the JOnAS v2.4.4 [16] and JBoss v2.4.4
[15] containers. JOnAS v2.4.4 embeds Jonathan 3.0a5 that can be
used for optimized communication. Both containers implement
the EJB 1.1 specification. JBoss 3.0 and JOnAS 2.5 are used for
the EJB 2.0 local interfaces implementation.

For all experiments, except for the ones in section 6.5, we use the
Sun JVM from JDK 1.3.1 for Linux with the following options:

• -server: use the server JVM instead of the client JVM.

• -Xms128m: set the initial Java heap size to 128 MB to
prevent spending time in increasing heap size during
application warm-up.

• -Xmx768m: set the maximum Java heap size to 768 MB
instead of the default of 64 MB to avoid that the EJB
containers run out of memory.

• -Xss32k: set the thread stack size to 32 KB instead of the
default Linux thread stack size of 2 MB to avoid running
out of process virtual address space and not being able to
create new threads. Our application does not do any
recursion. Therefore, a 32 KB stack size is sufficient.

For the experiments in section 6.5, we use JDK 1.4.0_01. This
JDK requires a 96 KB minimum stack size, therefore we use the
–Xss96k option for these experiments.

For each implementation, we only start those container services
that are necessary to perform the experiment. We avoid reloading
the beans from the database if they are not modified (tuned
updates in JBoss, shared flag/isModified in JOnAS). For all
experiments, the transaction timeout is set to 5 minutes.

We use MySQL v.3.23.43-max [18] as our database server with
the MM-MySQL v2.0.12 type 4 JDBC driver and MyISAM non-
transactional tables. This means that transaction commands like

begin/commit are accepted but have no effect, and a rollback
generates an exception. MySQL never becomes the bottleneck in
our experiments.

All machines run the 2.4.12 Linux kernel.

5.3 Hardware platform
The Web server, the servlet server, the EJB server and the
database server each run on a different machine, a PIII 933MHz
CPU with 1GB SDRAM, and two Quantum Atlas 9GB
10,000rpm Ultra160 SCSI disk drives. A number of PII 450MHz
machines run the client emulation software. We use enough client
emulation machines to make sure that the clients do not become a
bottleneck in any of our experiments. All machines are connected
through a switched 100Mbps Ethernet LAN.

5.4 Measurement methodology
We perform measurements for the five implementations of the
application for each EJB container using both non-optimized and
optimized communication layers. The only exception is the EJB
2.0 local interfaces implementation using JBoss, where we are not
able to disable the communication optimization.

Each experiment is composed of 3 phases. A warm-up phase
initializes the system until it reaches a steady-state throughput
level. We then switch to the steady-state phase during which we
perform all our measurements. Finally, a cool-down phase slows
down the incoming request flow until the end of the experiment.
For all experiments we use the same length of time for each phase,
namely 2, 15 and 1 minute, respectively. These lengths of time are
chosen by observing when the experiment reaches a steady state
and by observing the length of time necessary to obtain
reproducible results.

To measure the load on each machine, we use the sysstat utility
[24] that every second collects CPU, memory, network and disk
usage from the Linux kernel. The resulting data files are analyzed
post-mortem to minimize system perturbation during the
experiments.

We perform a separate set of experiments to profile the containers
using the OptimizeIt [19] offline profiling tool. We use
instrumentation profiling, which is more suitable than a sampling
profiler for applications with a large number of threads and many
small functions. Due to the overhead of the profiler, the peak
point is reached earlier for a given configuration. For each
application implementation method, we choose the lowest number
of clients for which we observe a peak point with any of the
container configurations. For each configuration we analyze a
snapshot of a 10-minute run with this number of clients.

Each point in the graphs in section 6 represents the best result of
three runs of the experiment for the given number of clients and
container configuration. The difference between runs is minor. A
more complete report of all experimental results, including
throughput, response time and resource usage (CPU, memory,
processes, network, disk), is available from our Web site at
http://www.cs.rice.edu/CS/Systems/DynaServer/RUBiS/Results.

6. EXPERIMENTAL RESULTS
We compare the results for the different implementation methods
in section 6.1. Next, in sections 6.2 to 6.5, we present the results
for each application implementation method, in the same order as

they are introduced in section 3.1. For each implementation, we
evaluate four different configurations referred to as follows:
- JBoss: the JBoss container using JNP and passing objects by
value,
- JOnAS-RMI: the JOnAS container using RMI,
- JBoss optimized calls: the JBoss container using JNP and
passing objects by reference,
- JOnAS-Jeremie: the JOnAS container using the Jeremie
communication layer.
We report additional results comparing JDK 1.3 to JDK 1.4 in
section 6.6. We summarize the results of the performance
evaluation in section 6.7.

6.1 Overall results
Figure 5 presents the results for the different application
implementation methods, using for each method the configuration
that results in the best performance results. In addition, we
compare the results to a Java servlets-only implementation.

0

2000

4000

6000

8000

10000

12000

Browsing mix Bidding mix

M
ax

im
u

m
 t

h
ro

u
g

h
p

u
t

in
 r

eq
u

es
ts

/m
in

u
te

Servlets-only

Session Beans

EB-CMP

EB-BMP

Session façade

EJB 2.0 Local

Figure 5. Maximum achievable throughput for each
implementation method.

Session beans offer performance comparable to the Java servlets-
only implementation. All other EJB-based implementation
methods fare considerably worse. Session façade beans and EJB
2.0 local interfaces are more than a factor of 2 slower than the
session beans implementations. Implementations based solely on
entity beans experience an even bigger performance drop,
regardless of whether they use container-managed or bean-
managed persistence.

We now turn to a detailed analysis of the results for each
application implementation method.

6.2 Session beans
Figure 6 reports the throughput in interactions per minute as a
function of number of clients for the browsing mix workload, for
the four configurations previously introduced and for the Java
servlets-only implementation.

For both versions of JBoss, the peak point is reached at 800
clients with nearly 8600 interactions per minute. JOnAS-RMI
peaks at about 8900 interactions per minute, for the same number
of clients. JOnAS-Jeremie scales further, reaching 10150
interactions per minute with 1000 clients. The Servlets-only

implementation shows even better performance with 12000
interactions per minute for 1200 clients.

At the peak point, the CPU utilization with JBoss is around 65%
and the bottleneck appears on the servlet server. The high load on
the servlet server is due to the JBoss stub used by the servlets to
access the JBoss container. For JOnAS-RMI, the CPU on the EJB
server is the bottleneck at the peak point, and the servlet server
CPU utilization is 80%. JOnAS-Jeremie saturates the EJB, the
servlet and the database server CPU at the peak point. The
network bandwidth on the Web server is also very high with
80Mb/s exchanged with the clients and 14Mb/s with the servlets.

Though the bottlenecks are different, we do not observe a
significant difference in performance between JOnAS-RMI and
both versions of JBoss. Due to its more scalable communication
layer, JOnAS-Jeremie scales better and offers 33% more
throughput after the peak point, compared to JBoss optimized
calls. The Servlets-only version does not have the RMI overhead,
and has direct access to the database without going through an
EJB container. This explains the better performance of the
servlets-only implementation.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4
JOnAS 2.4.4 - RMI
JBoss 2.4.4 optimized calls
JOnAS 2.4.4 - Jeremie
Servlets-only

Figure 6. Session beans implementation throughput in
interactions per minute as a function of number of clients for

the browsing mix using JBoss and JOnAS containers
compared with a servlets-only implementation.

As shown in figure 7, the throughput for the bidding mix changes
the ordering of the best performers. JBoss and JOnAS-RMI still
have the lowest throughput at 6600 interactions per minute with
700 clients, JBoss optimized calls offers a significant
improvement with a peak at 7500 interactions per minute with
800 clients. JOnAS-Jeremie gives performance comparable to the
Servlets-only version until 1100 clients where it peaks at 9750
interactions per minute. Servlets-only reaches 10440 interactions
per minute with 1200 clients.

Figure 8 shows the execution time breakdown resulting from
profiling the session bean implementation for the bidding mix at
700 clients (the peak point of the JBoss and JOnAS-RMI
configurations). In this figure and in all further figures showing
breakdowns of execution times, the results are normalized to the
execution time of the slowest configuration for the application
implementation method being discussed.

As expected, communication costs dominate the execution time in
this implementation where few of the container’s services are

used. It is also interesting to observe that the bean code we have
written represents less than 1.5 percent of the total execution time.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4
JOnAS 2.4.4 - RMI
JBoss 2.4.4 optimized calls
JOnAS 2.4.4 - Jeremie
Servlets-only

Figure 7. Session beans implementation throughput in
interactions per minute as a function of number of clients for
the bidding mix using JBoss and JOnAS containers compared

with a servlets-only implementation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 8. Execution time breakdown for the session beans
implementation for the bidding mix at the peak point of the

JBoss and JOnAS-RMI configurations.

JOnAS-RMI spends more time in communications than JBoss.
This difference in communication cost is explained by the stub
implementation on the client side. JBoss’s stubs can handle some
calls locally, avoiding calls over the network [8]. The amount of
time spent in the container is considerably smaller in JOnAS than
in JBoss. In terms of overall performance, the differences in
communication and container overhead cancel each other out, and
the resulting throughput is the same for both configurations.

JBoss optimized calls shows a small improvement in
communication cost compared to JBoss. The container overhead
remains proportionally the same, leading to a small overall
performance improvement. JOnAS-Jeremie spends considerably
less time in communications, but the generated container classes
are more expensive than the ones generated for RMI. Overall,
though, performance is superior to the other configurations and
approaches that of Java servlets-only.

All RMI-based configurations spend 79% of the communication
time in the TCP/IP layers (java.net.* classes) and 21% in the RMI
protocol and in serialization. JOnAS-Jeremie has a different
distribution of communication costs, with 43.2% in TCP/IP and
56.8% in Jeremie and its serialization mechanism. Even though
Jeremie’s protocol is more expensive than JRMP (used in RMI),
Jeremie greatly reduces the amount of information sent over the
network. As a result, Jeremie cuts overall communication time by
35 to 51% compared to RMI-based configurations.

In summary, with session beans, the communication cost
dominates the costs associated with the container. An efficient
communication layer leads to better performance. The container
design does not have a significant impact.

6.3 Entity beans with CMP and BMP
Figure 9 reports the throughput using entity beans with CMP in
interactions per minute as a function of number of clients for the
browsing mix workload. Figure 10 reports the same results using
entity beans with BMP. The absolute throughput numbers are
between 5.5 (for JOnAS-Jeremie) and 16 times (for JBoss) lower
than with the previous session beans implementation.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 9. DAO separation with EB CMP implementation
throughput in interactions per minute as a function of number

of clients for the browsing mix using JBoss and JOnAS.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 10. DAO separation with EB BMP implementation
throughput in interactions per minute as a function of number

of clients for the browsing mix using JBoss and JOnAS.

There is little difference between the CMP and BMP
implementations. Both JBoss CMP configurations give
comparable peak performance, with 534 and 559 interactions per
minute reached with 80 clients for JBoss and JBoss optimized
calls, respectively. JBoss BMP peak throughput is about 4%
below the CMP version with 514 and 538 interactions per minute
reached with 60 clients for JBoss and JBoss optimized calls,
respectively. JOnAS-RMI peaks at 1670 interactions per minute
with 300 clients using the CMP version, and at 1570 interactions
per minute with 260 clients using the BMP version. The best
results are achieved by JOnAS-Jeremie with 1858 interactions per
minute with 200 clients using the CMP version and 1813 with
330 clients using the BMP version.

Figure 11 and figure 12 show the throughput in interactions per
minute as a function of number of clients for the bidding mix for
the CMP and BMP implementations, respectively.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Number of clients

T
h

ro
u

g
h

tp
u

t
in

 r
eq

u
es

ts
/m

in
u

te
s

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 11. DAO separation EB CMP throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss and JOnAS.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 12. DAO separation EB BMP throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss and JOnAS.

The ordering of the different configurations in terms of
performance is the same as for the browsing mix. JBoss reaches a
peak of 615 interactions per minute for 100 clients with CMP and
563 for 140 clients with BMP. There is an 8% improvement in

CMP when passing objects by reference, resulting in 666
interactions per minute for JBoss optimized calls with 100 clients.
The BMP version improves by less than 6% (598 interactions per
minute with 80 clients). The improvement is due to the fact that
for each write interaction, there is a call to a bean assigning
unique identifiers that can be optimized. This interaction does not
occur in the browsing mix, and therefore there is no comparable
improvement. JOnAS-RMI achieves 1504 interactions per minute
for 200 clients with CMP and 1377 for 180 clients with BMP.
JOnAS-Jeremie achieves 1848 interactions per minute with 220
clients for CMP. The results for BMP are almost the same, with a
peak of 1846 interactions per minute with 260 clients.

We notice a drop in performance for JOnAS-RMI and both
configurations of JBoss with 240 clients in the CMP version. The
same thing happens for BMP but earlier and more abruptly for
JBoss than for JOnAS-RMI. This sharp drop in performance
occurs when the container is overloaded and transactions starts to
timeout. After this point, it becomes very hard to obtain stable
results.

The BMP and CMP implementations offer similar performance
and have comparable behavior. Therefore, the drop in
performance compared to the session beans implementation is not
due to the container persistence service. On the contrary, the CMP
version performs a little bit better than the hand-coded BMP
version that cannot benefit from some internal container
optimizations on lookups (see profiling analysis).

Rather than the container-managed persistence, it is the fine
granularity of the interactions resulting from entity beans that is
responsible for its performance being much lower than that of
session beans. This granularity is a major issue for performance
since each data access needs 2 network round-trips: one from the
servlet to the entity bean and one from the entity bean to the
database (unless there is a cache hit in the EJB server on this
entity bean). Looking at the network statistics, we find that
carrying the same amount of data requires about twice as many
messages in EB, compared to SB.

Figure 13 shows the execution time breakdown for the EB CMP
implementation for the bidding mix at 80 clients (the peak point
of the JBoss configuration). Compared to the session beans
implementation, the container is more heavily involved in the
processing due to the persistence management. The time spent in
the communication layers is significantly reduced. As most of the
code is generated by the container, the overall execution time
spent in our bean classes is less than 0.1%.

The time spent in the JBoss container is more than 40% of the
total execution time. Of that 40%, one fourth is due to reflection.
In comparison, the JOnAS container uses much less CPU time
(both in the container in general and in reflection in particular).
JBoss’s client stub optimization does not seem to work with entity
beans. As a result, the communication time is slightly lower for
JOnAS-RMI than for JBoss, JOnAS-RMI thus performs better both
in terms of communication and container time, and has better
overall throughput. JBoss optimized calls reduces the time spent
in communication, resulting in some performance improvement
over JBoss. The large amount of time spent in the container,
however, results in inferior throughput compared to JOnAS, even
with RMI. JOnAS-Jeremie shows a further improvement in
throughput over JOnAS-RMI. Again, even though its container
classes are more expensive than JOnAS-RMI, the gain in

communications time leads to an overall improvement. The
breakdown of the communication cost between TCP/IP and the
layer above it (RMI or Jeremie) is the same as the one observed
with session beans.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 13. Execution time breakdown for the EB CMP
implementation for the bidding mix at the peak point of the

JBoss configuration.

Figure 14 shows the execution time breakdown for the EB BMP
implementation for the bidding mix at 80 clients (the peak point of
the JBoss configuration). The time spent in the bean code has
almost doubled, but it is still very low with about 0.2% of the
overall execution time. The counterpart is a slight decrease of the
time spent in the container, but the results are very close to those
obtained with EB CMP. Therefore, using container- or bean-
managed persistence with entity beans has little influence on
performance since container CPU usage remains almost the same.
The contributions of various aspects of the implementation
remains roughly the same as with entity beans and CMP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss 2.4.4 JOnAS 2.4.4
RMI

JBoss 2.4.4
optimized calls

JOnAS 2.4.4
Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 14. Execution time breakdown for the EB BMP
implementation for the bidding mix at the peak point of the

JBoss configuration.

The slight performance slowdown with EB BMP compared to EB
CMP is due to the extra time spent in the naming service. When
using BMP, lookups are less efficient with both containers than
when using CMP. Naming with EB CMP represents 0.1% of
overall execution time with JBoss and 0.2% with JOnAS. With

BMP, the naming service takes more than 1.5% of the total
execution time.

In summary, unlike for the session beans version, the container
design has the largest impact on performance for entity beans.
Bean- or container-managed persistence offer similar performance
demonstrating that performance slowdown compared to session
beans is due to the excessively fine granularity data access
exposed by entity beans. Optimized communications still improve
performance but to a lesser extent.

6.4 Session façade implementation
Figure 15 presents the throughput in interactions per minute as a
function of number of clients for the browsing mix using the 4
container configurations.

Due to the communication overhead between the session façade
beans and the entity beans, both JBoss and JOnAS-RMI perform
worse than with the EB CMP implementation. JBoss peaks at 378
interactions per minute with 60 clients, while JOnAS-RMI
achieves 689 interactions per minute with 100 clients. This
represents almost a 30% drop in performance for both
configurations, compared to EB CMP. We do not report
throughput for more than 200 clients, because JBoss becomes
unable to handle the load and transactions abort on timeout.

JBoss optimized calls shows a significant improvement with a
peak at 1081 interactions per minute with 120 clients. The
optimization improves the throughput by a factor of 2.86
compared to JBoss without optimized calls. JOnAS-Jeremie peaks
at 3970 interactions per minute with 440 clients providing a
speedup of 5.3 compared to JBoss optimized calls. The ability of
Jeremie to optimize the local calls clearly shows its benefits here.

Figure 16 reports the throughput in interactions per minute as a
function of number of clients for the bidding mix. The scenario is
the same for JBoss and JOnAS-RMI. They peak at 448 and 777
interactions per minute, with 60 and 140 clients respectively.
Inter-bean communication adds to the overall communication
overhead and pulls performance down giving the worst
throughput of all implementations.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 15. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the browsing mix using JBoss and JOnAS.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss 2.4.4

JOnAS 2.4.4 - RMI

JBoss 2.4.4 optimized calls

JOnAS 2.4.4 - Jeremie

Figure 16. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss and JOnAS.

JBoss optimized calls offers better performance with a peak at
1507 interactions per minute with 180 clients. However, response
time dramatically increases under saturation. At 340 clients some
transactions take more than 5 minutes to complete and are timed
out by the transaction manager. Then, the number of completed
interactions drops to around 600 per minute.

JOnAS-Jeremie has more scalable behavior and sustains up to
3565 interactions per minute between 380 and 420 clients. This
leads up to a 6.2 factor of improvement compared to JBoss
optimized calls with the same number of clients.

Figure 17 presents the execution time breakdown for the session
façade implementation for the bidding mix at 60 clients (the peak
throughput of the JBoss configuration). Once again our bean code
represents less than 1% of the overall execution time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 17. Execution time breakdown for the session façade
implementation for the bidding mix at the peak point of the

JBoss configuration.

There is little difference with the EB implementation for both
JBoss and JOnAS-RMI. Communication time is the largest
component of execution time, but the difference between the two
configurations stems from differences in the container.

As the number of beans and interactions between beans increase,
the time spent in reflection with the JBoss optimized calls
configuration increases, as does the time spent in the container.
The call optimization is visible in the reduction of the CPU
utilization dedicated to communication. For the first time, we
observe that more time is spent in the container than in
communications.

JOnAS-Jeremie reduces the communication time even further.
The container CPU time is also low, resulting in good overall
throughput. The larger number of lookups on beans explains the
time spent in the naming directory. Whereas RMI-based
configurations have still a 71%/29% distribution of
communication costs between TCP/IP and RMI, with Jeremie the
distribution becomes 65.8% for Jeremie versus 34.2% to TCP/IP.
This is due to the fact that Jeremie’s optimization for local calls is
heavily exercised in this implementation, resulting in more
computation in the Jeremie layers and less communication going
through TCP/IP.

In summary, with session façade beans both the container and
communication layer designs have a significant impact on
performance. With a larger number of beans, reflection proves to
be a significant limitation to scalability. The pre-compiled
approach reduces the time spent in reflection and offers scalable
performance when coupled with an optimized communication
layer such as the one implemented in Jeremie.

6.5 EJB 2.0 local interfaces
Figure 18 shows the throughput in interactions per minute as a
function of number of clients for the browsing mix using 3 of the
4 container configurations. We do not present the results for
JBoss without the optimized communication layer, because we
cannot disable this optimization. Note that this experiment uses
different containers, namely JBoss 3.0 and JOnAS 2.5.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

tp
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JOnAS 2.5 - RMI

JBoss 3.0 optimized calls

JOnAS 2.5 - Jeremie

Figure 18. EJB 2.0 local interfaces implementation throughput
in interactions per minute as a function of number of clients

for the browsing mix using JBoss and JOnAS.

All three configurations give better peak performance when using
EJB 2.0 local interfaces than with the EJB 1.1 session façade
version. JOnAS–RMI improves by a factor of 4.5 and peaks at
3125 interactions per minute with 300 clients. JBoss optimized
calls and JOnAS–Jeremie give almost the same performance until
420 clients. JBoss optimized calls reaches its peak point at 4623
interactions per minute with 420 clients (4.3 times better than the

EJB 1.1 implementation), but afterwards performance drops to
678 with 500 clients. This big drop in performance is due to the
way the container handles transaction timeouts. As soon as the
container has to rollback transactions, performance drops sharply.
JOnAS–Jeremie peaks at 4605 interactions per minute for 480
clients, and remains stable for larger numbers of clients. As
Jeremie already optimizes the local calls, we only notice a 16%
improvement compared to the EJB 1.1 implementation.

Figure 19 reports the throughput in interactions per minute as a
function of number of clients for the bidding mix. Results are
similar to those obtained with the browsing mix. JOnAS-RMI
achieves 2837 interactions per minute for 320 clients. JBoss
optimized calls peaks 3641 interactions per minute with 380
clients, but performance falls for higher loads, to around 500
interactions per minute. JOnAS-Jeremie still offers more stable
behavior and scales further achieving 4228 interactions per minute
with 460 clients.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JOnAS 2.5 - RMI

JBoss 3.0 optimized calls

JOnAS 2.5 -Jeremie

Figure 19. EJB 2.0 local interfaces implementation throughput
in interactions per minute as a function of number of clients

for the bidding mix using JBoss and JOnAS.

The bidding mix involves more transactions, and therefore the
JBoss container collapses earlier than with the browsing mix.
However, the J2EE servers using communication layers relying on
RMI (JOnAS-RMI and JBoss optimized calls) get a significant
factor of improvement using EJB 2.0 local interfaces. Optimized
communication layers such as Jeremie can still benefit from EJB
local 2.0 interfaces but the improvement remains below 19%.

Figure 20 shows the execution time breakdown for the EJB 2.0
local interfaces implementation for the bidding mix with 320
clients (the peak point of the JOnAS-RMI configuration). A major
change appears in the new JBoss container where reflection now
only represents a small fraction of the total execution time.

Communication remains the main CPU consumer for RMI-based
configurations. Jeremie still shows the gain of an optimized
communication layer. The communication time distribution
between TCP/IP and RMI is now 79.5% and 20.5% for both
JOnAS-RMI and JBoss optimized calls. JOnAS-Jeremie is more
balanced with 48% for TCP/IP and 52% for Jeremie.

Due to the large number of beans and higher throughput, now a
large fraction of time is spent in connection pooling that is less
efficient with JOnAS than with JBoss. This increase of connection
pooling time results in a decrease of time spent in the database
driver when compared to the session façade implementation using
EJB 1.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JOnAS 2.5 RMI JBoss 3.0
optimized calls

JOnAS 2.5
Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Log

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 20. Execution time breakdown for the EJB 2.0 local
interfaces implementation for the bidding mix at the peak

point of the JOnAS-RMI configuration.

The new logging mechanism used in JOnAS 2.5 (a wrapper on top
of log4j [17]) results in noticeable CPU consumption.. JBoss uses
log4j directly and only spends 0.6% of its execution time in
logging.

Figure 21 shows the execution time breakdown for the JBoss 3.0
container after its peak point. The transaction manager clearly
becomes the largest component of the overall execution time,
followed by communications and the container

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss 3.0 overload

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Log

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 21. Execution time breakdown of the JBoss 3.0
configuration for the EJB 2.0 local interfaces implementation

for the bidding mix after the peak point.

In summary, when using a session façade pattern, EJB 2.0 local
interfaces result in reduced communication overhead and greatly
improve RMI-based configurations. However, optimized
communication layers such as Jeremie still offer more scalable
performance and need less CPU resources. The results show that

every component of an EJB container is important to provide
reliability and high performances. The JBoss transaction manager
is the bottleneck after the peak point resulting in a dramatic
collapse of performance.

6.6 JDK 1.4
Sun has introduced many improvements in the J2SE (Java 2
Standard Edition) version 1.4. The Performance and Scalability
Guide [23] claims that reflective method invocation has been
improved by a factor of 20. Other enhancements include JNI
method invocation, object serialization and thread management.
Unfortunately, we observe a lot of instability in our measurements
with JDK 1.4 with Sun’s JVM version 1.4.0_01 for Linux. We are
not able to obtain reproducible results with JOnAS and JBoss 3.0.
We are, however, able to perform experiments with JBoss 2.4.4,
for which reflection is a significant portion of the execution time.

6.6.1 Entity beans
Figure 22 reports the throughput in interactions per minute as a
function of number of clients for the browsing mix on the EB
CMP implementation (see section 6.3) using JDK 1.3 and 1.4
with the JBoss 2.4.4. optimized calls configuration. The peak
point with JDK 1.4 improves by less than 2.6%, achieving 587
interactions per minute with 80 clients, whereas JDK 1.3 achieves
572 interactions per minute with 60 clients. Except for the peak
point, overall performance is worse with JDK 1.4, and we notice a
significant drop of the throughput starting with 200 clients.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss - JDK 1.3

JBoss - JDK 1.4

Figure 22. EB CMP implementation throughput in
interactions per minute as a function of number of clients for

the browsing mix using JBoss 2.4.4 for JDK 1.3 and 1.4.

Figure 23 reports the throughput in interactions per minute as a
function of number of clients for the bidding mix for the EB CMP
implementation using JDK 1.3 and 1.4 with the JBoss 2.4.4.
optimized calls configuration. The peak throughput with JDK 1.4
improves by less than 12%, to 746 interactions per minute with
100 clients. The JDK 1.3 configuration peaks at 666 interactions
per minute with the same number of clients. Just after the peak
point, JDK 1.4 performance drops below the throughput obtained
with 1.3.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss - JDK 1.3

JBoss - JDK 1.4

Figure 23. EB CMP implementation throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss 2.4.4 for JDK 1.3 and 1.4.

Figure 24 shows the execution time breakdown with 100 clients
(the peak point with JDK 1.3) for the bidding mix using the JBoss
optimized calls configuration with JDK 1.3 and 1.4. Reflection
time has been reduced with JDK 1.4, but container time has
increased. This increase is mainly due to the timer tasks being
less efficient in JDK 1.4. As a result, overall container time,
including reflection, has only decreased marginally, resulting in
only a small improvement in throughput.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JBoss 2.4.4
JDK 1.3

JBoss 2.4.4
JDK 1.4

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 24. Execution time breakdown for the EB CMP
implementation for the bidding mix at the peak point of the

JBoss optimized calls configuration using JDK 1.3.

In summary, JDK 1.4 does not improve the overall performance
of the EB CMP implementation with JBoss. We expect similar
results with the EB BMP implementation since its profiling
results are very similar to those for EB CMP. JDK 1.4 reduces the
reflection cost compared to JDK 1.3, but the container cost rises
mainly due to inefficiencies in timer task management.

6.6.2 Session façade beans
Figure 25 reports the throughput in interactions per minute as a
function of number of clients for the browsing mix for the session
façade implementation (see section 6.4) using JDK 1.3 and 1.4
with the JBoss optimized calls configuration.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss - JDK 1.3

JBoss - JDK 1.4

Figure 25. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the browsing mix using JBoss 2.4.4 on JDK 1.3 and 1.4.

JDK 1.4 peak throughput is 1787 interactions per minute with 240
clients, 65% better than the 1081 interactions per minute with 120
clients obtained with JDK 1.3.

Figure 26 reports the throughput in interactions per minute as a
function of number of clients for the bidding mix on the session
façade implementation (see section 6.4) using JDK 1.3 and 1.4
with the JBoss optimized calls configuration. JDK 1.4 peak
performance is 10% better than JDK 1.3 at 1657 interactions per
minute with 200 clients, whereas JDK 1.3 achieves 1507
interactions per minute with 180 clients. JDK 1.3’s performance
drops to just above 600 interactions per minute with 340 clients,
but JDK 1.4’s performance remains more stable between 1172
and 949 interactions per minute.

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss - JDK 1.3

JBoss - JDK 1.4

Figure 26. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss 2.4.4 using JDK 1.3 and 1.4.

Figure 27 shows the execution time breakdown with 180 clients
(the peak point with JDK 1.3) for the bidding mix using the JBoss
optimized calls configuration with JDK 1.3 and 1.4. We observe
less gain in reflection compared to EB CMP. Once again.
container time has increased. Therefore, overall container time
including reflection has only decreased by a moderate amount,
resulting in a modest throughput improvement. We have not been
able to explain the larger improvement for the bidding mix.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JBoss 2.4.4 - JDK 1.3 JBoss 2.4.4 - JDK 1.4

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 27. Execution time breakdown for the session façade
implementation for the bidding mix at the peak point of the

JBoss optimized calls configuration using JDK 1.3.

6.7 Summary
Figure 28 and figure 29 summarize the peak throughput obtained
for the different application implementation methods and
container configurations for the browsing and the bidding mix,
respectively.

The session beans implementation gives the best throughput. The
communication layer is the bottleneck and hides most of the cost
of the container. Therefore, container design has little impact on
performance for this implementation.

0

2000

4000

6000

8000

10000

12000

Session Beans EB-CMP EB-BMP Session façade EJB 2.0 Local

M
ax

im
u

m
 t

h
ro

u
g

h
p

u
t

in
 r

eq
u

es
ts

/m
in

u
te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

JBoss optimized calls JDK 1.4

Figure 28. EJB implementations maximum throughput in
interactions per minute for the browsing mix.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Session Beans EB-CMP EB-BMP Session façade EJB 2.0 Local

M
ax

im
u

m
 t

h
ro

u
g

h
p

u
t

in
 r

eq
u

es
ts

/m
in

u
te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

JBoss optimized calls JDK 1.4

Figure 29. EJB implementations maximum throughput in
interactions per minute for the bidding mix.

The DAO separation with entity beans implementation gives the
least scalable results. Container-managed persistence gives
slightly better results than bean-managed persistence. The poor
performance is therefore not due to the container implementation
of persistence. Instead, the excessively fine-grain access exposed
by the entity beans to the servlets causes too many remote
interactions. This implementation, however, shows that container
design has a significant impact on the performance of entity
beans. The pre-compiled approach of JOnAS shows better
scalability than the dynamic proxy based approach used by JBoss.

The overhead of reflection is also noticeable in the session façade
implementation. The optimized calls improve throughput for
JBoss at lower loads, but performance does not scale and response
time quickly rises after the peak point. The communication
optimizations are not sufficient to mask the overhead of reflection
in the container. JDK 1.4 reduces the cost of reflection, but
increases the cost of the container. Therefore, performance does
not improve much. Only the combination of pre-compiled
container classes and an optimized communication layer such as
Jeremie allows for scalable performance with session façade
beans.

The use of EJB 2.0 local interfaces reduces the cost of
communications, because intra-JVM calls do not go through the
communication layers. This implementation offers more scalable
results. Both JBoss and JOnAS EJB 2.0 compliant containers
make little use of reflection and offer a significant improvement
for RMI-based configurations. Optimized communication layers
such as Jeremie can also benefit from local interfaces but to a
lesser extent.

The bean code written by the programmer represents at most two
percent of the overall execution time. Most of the bean code
consists of calls to middleware services. This confirms that
application implementation method and the middleware design
have the biggest impact on performances. The two have to be
considered in combination, as evidenced, for instance, by the poor
performance of session façade beans without optimized inter-bean
communication.

7. RELATED WORK
Performance and scalability of J2EE application servers is a very
hot topic in the e-business community. Sun has released the
ECperf specification [21] as a first attempt to standardize the
evaluation of EJB servers. This benchmark is aimed at evaluating
a particular J2EE application server with a single application,
while we target the evaluation of different EJB containers with
various implementations of the same application. Other
benchmarks such as TPC-W [25] overload the database tier [4]
preventing evaluation of middle-tier performance under
saturation.

To the best of our knowledge, ours is the first study of EJB
application scalability, analyzing the container and
communication layer designs. Others have given guidelines for
EJB server comparison [11], but they use the EJB 1.0
specification and they do not propose an application to perform
the comparison. We have made available the application,
container configurations and experimental results on our Web site
http://www.cs.rice.edu/CS/Systems/DynaServer to allow further
evaluation of other containers.

UrbanCode provides a performance benchmark of design idioms
(design patterns applied to a specific programming language)
[27]. Their conclusions about relative performance between
session beans and entity beans confirm our results. They do not,
however, evaluate the impact of container design or
communication layer optimizations. Allamaraju et al. [2] discuss
container design but conclude that reflection is never an issue,
because its cost is insignificant compared to network latency or
roundtrips to the database. We have shown, for example with the
session façade pattern, that reflection can become a real issue for
scalability.

The EJB CMP 2.0 specification [22] addresses the issue of fine-
grain access exposed by the entity beans and provides a specific
EJB QL query language for complex finder queries. This
evaluation will be part of our future work when the
implementation becomes available. We also plan to experiment
with a Message Driven Beans implementation of RUBiS to
evaluate the performance and scalability of J2EE applications
using asynchronous communications.

Another solution to achieve scalability is to use a cluster. Major
J2EE vendors implement such as BEA [7] or IBM [10] use
clustering to achieve scalability and high availability. We plan to
evaluate clustering when it becomes available in the open-source
containers we use for our evaluation.

8. CONCLUSIONS
We have experimented with several EJB implementations of the
same e-commerce application, using different application
implementation methods, container designs and communication
layers. The source code, container configurations, database
contents and full experimental reports including performance
charts and resource usage, are available for download from our
Web site at http://www.cs.rice.edu/CS/Systems/DynaServer/.

We have shown that stateless session beans with bean-managed
persistence coupled with an efficient communication layer offer
performance comparable to a servlets-only implementation. Entity
beans impose a row-level access to the database resulting in a
finer-grain access and significantly lower performance.

Container design has no significant influence on session beans,
because communication costs dominate, but it has a direct impact
on performance with entity beans. The dynamic proxy approach
has a large overhead that limits scalability. Pre-compiled
approaches reduce the use of reflection at run-time, thus providing
better scalability. Although reflection is cheaper in JDK 1.4, it
does not improve the performance of entity beans, because of
other inefficiencies.

Container design and the cost of local communication are the
determining factor for the scalability of the session façade
implementation. Only the container with pre-compiled classes
combined with an optimized communication layer offers scalable
performance. Reflection cost increases with the number of beans,
quickly resulting in a bottleneck. JDK 1.4 reduces the cost of
reflection but increases the time spent in the container classes.
The end result is performance that remains inferior to that
obtained with pre-compiled container classes and fast local
communication. EJB 2.0 local interfaces avoid the communication
layers for local communications and allow RMI-based
configurations to scale better.

9. ACKNOWLEDGMENTS
We are grateful for the people of the JBoss and JOnAS
communities for the useful help and information they provided us.
We also thank the anonymous reviewers for their valuable
comments that helped us to improve the quality of this article.

10. REFERENCES
[1] Rahim Adatia et al. – Professionnal EJB – Wrox Press, ISBN

1-861005-08-3, 2001.

[2] Subrahmanyam Allamaraju et al. – Professional Java Server
Programming J2EE Edition - Wrox Press, ISBN 1-861004-
65-6, 2000.

[3] Deepak Alur, John Crupi and Dan Malks – Core J2EE
Patterns – Sun Microsystems Press, ISBN 0-13-064884-1,
2001.

[4] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan
L. Cox, Sameh Elnikety, Romer Gil, Julie Marguerite,
Karthick Rajamani and Willy Zwaenepoel – Bottleneck
Characterization of Dynamic Web Server Benchmarks –
Technical Report TR02-388, Rice University, 2001.

[5] The Apache Software Foundation – http://www.apache.org/.

[6] Byte Code Engineering Libray (BCEL) –
http://jakarta.apache.org/bcel/.

[7] BEA Systems, Inc – Achieving Scalability and High
Availability for E-Business – BEA white paper,
http://www.bea.com, 2001.

[8] Vladimir Blagojevic and Rickard Oberg – Container
architecture - design notes – http://www.jboss.org/online-
manual/HTML/ch12.html.

[9] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie
Marguerite and Willy Zwaenepoel – A Comparison of
Software Architectures for E-business Applications –
Technical Report TR02-389, Rice University, 2001.

[10] Willy Chiu – Design for Scalability – IBM white paper,
http://ibm.com/websphere/developer/zones/hvws, 2001.

[11] Distributed Systems Research Group, Charles University –
EJB Comparison Project – http://nenya.ms.mff.cuni.cz, 2000.

[12] Bruno Dumant, François Horn, Frédéric Dang Tran and Jean-
Bernard Stefani – Jonathan : an Open Distributed Processing
Environment in Java – Distributed Systems Engineering
Journal, vol. 6, 3-12, 1999.

[13] eBay – http://www.ebay.com/.

[14] Jakarta Tomcat servlet container –
http://jakarta.apache.org/tomcat/.

[15] JBoss EJB server – http://jboss.org.

[16] JOnAS: Java Open Application Server –
http://www.objectweb.org/jonas.

[17] Log4j – http://jakarta.apache.org/log4j/docs/index.html.

[18] MySQL Reference Manual v3.23.36 –
http://www.mysql.com/documentation/.

[19] OptimizeIt Profiler – http://www.borland.com/optimizeit/.

[20] Sun Microsystems – Dynamic Proxy Classes –
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html,
2001.

[21] Sun Microsystems – ECperf specification –
http://java.sun.com/j2ee/ecperf/, 2001.

[22] Sun Microsystems – EJB 2.0 specification –
http://java.sun.com/products/ejb/docs.html, 2001.

[23] Sun Microsystems – Java 2 Platform Standard Edition 1.4,
Performance and Scalability Guide –
http://java.sun.com/j2se/1.4/performance.guide.html, 2002.

[24] Sysstat package – http://freshmeat.net/projects/sysstat/.

[25] Owen Taylor – J2EE Data Access Objects – The Middleware
Company - http://www.middleware-company.com/documents/DAOPattern.pdf,
2002.

[26] Transaction Processing – http://www.tpc.org/.

[27] UrbanCode, Inc. – EJB Benchmark –
http://www.urbancode.com/projects/ejbbenchmark, 2001.

