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Abstract Table 1 surveys the system models used in a variety

Workload generators may be classified as based on @f web related workload generators used by systems re-
closed system model, where new job arrivals are onlysearchers today. The table is by no means complete;
triggered by job completions (followed by think time), however it illustrates the wide range of workload gen-
or an open system model, where new jobs arrive indeerators and benchmarks available. Most of these gen-
pendently of job completions. In general, system designerators/benchmarks assume a closed system model, al-
ers pay little attention to whether a workload generator ighough a reasonable fraction assume an open one. For
closed or open. many of these workload generators, it was quite difficult

Using a combination of implementation and simula-to figure out which system model was being assumed —
tion experiments, we illustrate that there is a vast differ-the builders often do not seem to view this as an impor-
ence in behavior between open and closed modelsin rea]ant factor worth mentioning in the documentation. Thus
world settings. We synthesize these differences into eighihe “choice” of a system model (closed versus open) is
Simp|e gu|d|ng princip|esl which serve three purposes_often not really a researcher’s ChOice, but rather is dic-
First, the princip|es Specify how Schedu”ng po"cies aretated by the avallablllty of the workload generator. Even
impacted by closed and open models, and explain the diftvhen a user makes a conscious choice to use a closed
ferences in user level performance. Second, the prinmodel, it is not always clear how to parameterize the
ciples motivate the use of partly open system modelsclosed system (e.g. how to set the think time and the
whose behavior we show to lie between that of closednultiprogramming level — MPL) and what effect these
and open models. Finally, the principles provide guide-Parameters will have.

lines to system designers for determining which system In this paper, we show that closed and open system

model is most appropriate for a given workload. models yield significantly different resulteven when
_ both models are run with the same load and service de-
1 Introduction mands Not only is the measured response time differ-

Every systems researcher is well aware of the impor€nt under the two system models, but the two systems
tance of setting up one’s experiment so that the systerf@SPond fundamentally differently to varying parameters
being modeled is “accurately represented.” Represen@nd to resource allocation (scheduling) policies.

ing a system accurately involves many things, includ- We obtain our results primarily via real-world imple-
ing accurately representing the bottleneck resource banentations. Although the very simplest models of open
havior, the scheduling of requests at that bottleneck, andnd closed systems can be compared analytically, analy-
workload parameters such as the distribution of servicesis alone is insufficient to capture the effect of many of
request demands, popularity distributions, locality dis-the complexities of modern computer systems, especially
tributions, and correlations between requests. Howevesize based scheduling and realistic job size distributions
one factor that researchers typically pay little attenton Real-world implementations are also needed to capture
is whether the job arrivals obey a closed or an open systhe magnitude of the differences between closed and
tem model. In aclosed system modeiew job arrivals open systems in practice. The case studies we consider
are only triggered by job completions (followed by think are described in Section 4. These include web servers
time), as in Figure 1(a). By contrast in apen system receiving static HTTP requests; the back-end database
mode] new jobs arrive independently of job completions, in e-commerce applications; and an auctioning web site.
as in Figure 1(b). In performing these case studies, we needed to develop
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Figure 1:lllustrations of the closed, open, and partly-open systesdets.

a flexible suite of workload generators, simulators, and33, 15]. When system designers seek to evaluate a new
trace analysis tools that can be used under closed, opescheduling policy, they often try it out using a workload
and other system models. The details of this suite argienerator and simulation test-bed. Our work will show
provided in Section 4. that, again, one must be very careful that one is correctly
Our simulation and implementation experiments leadmodeling the application as closed or open, since the im-
us to identifyeight principles summarizing the observed pact of scheduling turns out to be very different under
differences between open and closed system model9pen and closed models. For example, our principles
many of which are not obvious. These principles mayshow that favoring short jobs is highly effective in im-
be categorized by their area of impact. proving mean response time in open systems, while this
The first set of principles (see Sections 4 and 5.1) dels far less true under a closed system model. We find
scribe thedifference in mean response timader open that closed system models only benefit from scheduling
and closed system models and hearious parameters under a narrow range of parameters, when load is mod-
affect these differenceyVe find, for example, that for a erate and the MPL is very high. The message for system
fixed load, the mean response time for an open syste@esigners is that understanding whether the workload is
model can exceed that for a closed system model by aRetter modeled with an open or closed system is essential
order of magnitude or more. Even under a high MPL,in determining the effectiveness of scheduling.
the closed system model still behaves “closed” with re- The third set of principles (see Section 6) deal with
spect to mean response time, and there is still a signifpartly-open systemsWe observe that while workload
icant difference between mean response times in closegenerators and benchmarks typically assume either an
and open systems even for an MPL of 1000. With respecopen system model or a closed system model, neither
to service demands (job sizes), while their variability hasof these is entirely realistic. Many applications are best
a huge impact on response times in open systems, it haspresented using an “in-between” system model, which
much less of an effect in closed models. The impact ofwe call the partly-open model. Our principles spec-
these principles is that a system designer needs to bewaifiy those parameter settings for which the partly-open
of taking results that were discovered under one systermodel behaves more like a closed model or more like
model and applying them to a second system model. Forn open model with respect to response time. We also
example, if the workload generator being used createfind that, counter to intuition, parameters like think time
a closed system model, whereas the real world applicahave almost no impact on the performance of a partly-
tion is closer to an open system model, then the resultopen model. The principles describing the behavior of
obtained using the workload generator will be far from partly-open system models are important because real-
those witnessed in practice. world applications often fit best into partly-open models,
The second set of principles (see Section 5.2) deal witfand the performance of these models is not well under-
the impact of schedulingn improving system perfor- stood. In particular, the effect of system parameters and
mance. Scheduling is a common mechanism for improvscheduling on performance in the partly open system —
ing mean response time without purchasing additionaPoints which our principles address — are not known.
resources. While Processor-Sharing scheduling (PS) arf@ur results motivate the importance of designiegsa-
First-Come-First-Served (FCFS) are most commonlytile workload generators that are able to support open,
used in computer systems, many system designs givelosed, and partly open system models. We create such
preference to short jobs (requests with small service deversatile workload generators for several common sys-
mands), applying policies like Non-Preemptive-Shortesttems, including web servers and database systems, and
Job-First (SJF) or Preemptive-Shortest-Job-First (PSJFRYse these throughout our studies.
to disk scheduling [51] and web server scheduling [19, The third set of principles also provides system de-



Type of benchmark | Name | System model

Model-based web workload generator | Surge [10], WaspClient [31], Geist [22], WebStone [47], Closed
WebBench [49], MS Web Capacity Analysis Tool [27]
SPECWeb96 [43], WAGON [23] Open
Playback mechanisms for HTTP request MS Web Application Stress Tool [28], Webjamma [2],
streams Hammerhead [39], Deluge [38], Siege [17] Closed
httperf [30], Sclient [9] Open
Proxy server benchmarks Wisconsin Proxy Benchmark [5], Web Polygraph [35], Ink- Closed
tomi Climate Lab [18]
Database benchmark for e-commencd@PC-W [46] Closed
workloads
Auction web site benchmark RUBIS[7] Closed
Online bulletin board benchmark RUBBO0SI[7] Closed
Database benchmark for online transacTPC-C [45] Closed
tion processing (OLTP)
Model-based packet level web traffic IPB (Internet Protocol Benchmark) [24], GenSyn [20] Closed
generators WebTraf [16], trafgen [14]
NS traffic generator [52] Open
Mail server benchmark SPECmail2001 [42] Open
Java Client/Server benchmark SPECJ2EE [41] Open
Web authentication and authorization AuthMark [29] Closed
Network file servers NetBench [48] Closed
SFS97R1 (3.0) [40] Open
Streaming media service MediSyn [44] Open

Table 1:A summary table of the system models underlying standardelsted workload generators.

signers with guidelines fdrow to choose a system model Nyjink + Nsystem = IN. Theresponse timeT’, in a
when they are forced to pick a workload generator thatlosed system is defined to be the time from when a re-
is either purely closed or purely open, as are almost alfjuest is submitted until it is received. In the case where
workload generators (see Section 7). We consider tethe system is a single server (e.g. a web server), the
different workloads and use our principles to determineserver load denoted byp, is defined as the fraction of
for each workload which system model is most appropri-time that the server is busy, and is the product of the mean
ate for that workload: closed, open, or partly-open. TothroughputX and the mean service demand (processing
the best of our knowledge, no such guide exists for sysrequirement)z[S].
tems researchers. Yet given the tremendous impact of the Figure 1(b) depicts anpen systemconfiguration. In
system model on performance, as described above, it isn open system model there is a stream of arriving users
critical that one take care to make this decision carefullywith average arrival rat&. Each user is assumed to sub-
mit one job to the system, wait to receive the response,
and then leave. The number of users queued or running
2 Closed, open, and partly-open systems at the system at any time may range from zero to infinity.
In this section, we define how requests are generated uri-he differentiating feature of an open system is thiat-a
der closed, open, and partly-open system models. guest completion does not trigger a new request: a new
Figure 1(a) depicts alosed systenconfiguration. In  request is only triggered by a new user arrivas be-
a closed system model, it is assumed that there is sonfere, response timel’, is defined as the time from when
fixed number of users, who use the system forever. Thig request is submitted until it is completed. Tever
number of users is typically called thaultiprogramming  load is defined as the fraction of time that the server is
level (MPL) and denoted byV. Each of theséV users  busy. Here loadp, is the product of the mean arrival rate
repeats these 2 steps, indefinitely: (a) submit a job, (bpf requests), and the mean service demah@S].
receive the response and then “think” for some amount Neither the open system model nor the closed system
of time. In a closed systena new request is only trig- model is entirely realistic. Consider for example a web
gered by the completion of a previous request all site. On the one hand, a user is apt to make more than
times there are some number of use¥s,;,x, who are  one request to a web site, and the user will typically wait
thinking, and some number of uset§...n, who are  for the output of the first request before making the next.
either running or queued to run in the system, wherdn these ways a closed system model makes sense. On



the other hand, the number of users at the site varies ovenean throughput, the interested reader can directly infer
time; there is no sense of a fixed number of ugérdhe  those numbers by interpreting load as a simple scaling
point is that users visit to the web site, behave as if theyof throughput. In an open system, the mean throughput
are in a closed system for a short while, and then leavés simply equal toA = p/FE]S], which is the same as
the system. throughputin a closed system.

Motivated by the example of a web site, we study a In order to fairly compare the open and closed sys-
more realistic alternative to the open and closed systertems, we will hold the system loador the two systems
configurations: thepartly-open systemshown in Fig- equal,and study the effect of open versus closed system
ure 1(c). Under the partly-open model, users arrive acmodels on mean response time. The load in the open sys-
cording to some outside arrival process as in an open sysem is specified by, sincep = AE[S]. Fixing the load
tem. However, every time a user completes a request aif a closed system is more complex, since the load is af-
the system, with probability the user stays and makes fected by many parameters including the MPL, the think
a followup request (possibly after some think time), andtime, the service demand variability, and the scheduling
with probability1 — p the user simply leaves the system. policy. The fact that system load is influenced by many
Thus the expected number of requests that a user makesore system parameters in a closed system than in an
to the system in a visit is Geometrically distributed with open system is a surprising difference between the two
meanl/(1 — p). We refer to the collection of requests systems.Throughout, we will achieve a desired system
a user makes during a visit to the system asession load by adjusting the think time of the closed system (see
and we define thiengthof a session to be the number of Figure 7(a))
requests in the session/visit. Therver loads the frac- The scheduling policies we study in this work span the
tion of time that the server is busy equalling the productrange of behaviors of policies that are used in computer
of the average outside arrival rak¢ the mean number systems today.
of requests per visiE[ k], and the mean service demand FCFS (First-Come-First-Served) Jobs are processed in
E[S]. For a given load, whep is small, the partly-open the same order as they arrive.
model is more similar to an open model. For lapgéhe

partly-open model resembles a closed model. PS (Processor-Sharing) The server is shared evenly

among all jobs in the system.

3 Comparison methodol PESJF (Preemptive-Expected-Shortest-Job-First) The
pariso ethodology job with the smallest expected duration (size) is
In this section we discuss the relevant parameters and  given preemptive priority.

metrics for both the open and the closed system model§RpT (Shortest-Remaining-Processing-Time-First): At

and discuss how we set parameters in order to compare  eyery moment the request with the smallest remain-

open and closed system models. _ ing processing requirement is given priority.
Throughout the paper we choose the service demangdg| ;¢ (Preemptive-Expected-Longest-Job-First) The

distribution to be the same for the open and the chsqu job with the longest expected size is given preemp-
system. In the case studies the service demand distri- o priority. PELJF is an example of a policy that

bution is either ta_ken from a trace or determined by the performs badly and is included to understand the
b_enchn_1ark used_m the expen_ments. In the model-based ¢ range of possible response times.

simulation experiments later in the paper, we use hy-
perexponential service demands, in order to capture thﬁ Real-world case studies
highly variable service distributions in web applications

Throughout, we measure the variability in the service dedn this section, we compare the behavior of four differ-
mand distribution using the square coefficient of varia-ent applications under closed, open, and partly open sys-
tion, C2. The think time in the closed systei, follows ~ tem models. The applications include (a) a web server
an exponential distribution, and the arrival process in thedelivering static content in a LAN environment, (b) the
open system is either a Poisson arrival process with avedatabase back-end at an e-commerce web site, (c) the
age rate\, or provided by trace5.The results for all sim-  application server at an auctioning web site, and (d) a
ulations and experiments are presented in terms of meaweb server delivering static content in a WAN environ-
response times and the system lgadVhile we do not ment. These applications vary in many respects, includ-
explicitly report numbers for another important metric, ing the bottleneck resource, the workload properties (e.qg.
job size variability), network effects, and the types of
INote that we choose a Poisson arrival process (i.e. expahent scheduling policies considered. We study applications

inter-arrival times) and exponential think times in orderallow the : PR _
open and closed systems to be as parallel as possible. Tiiigsen- (a), (b), and (d) through fullimplementationin a real test

derestimates the differences between the systems whenbmesy ~ P€d, Wh_"e our study of application (c) relies on trace-
arrival processes are used. based simulation.




As part of the case studies, we develop a set of workan input file. The entries in the input file are of the form
load generators, simulators, and trace analysis tools that ¢;, f; >, wheret; is a time andf; is a file name.
facilitate experimentation with all three system mod- For the closed system, the input file only specifies the
els: open, closed, and partly-open. For implementationnames of the files to be requested. To implement closed
based case studies we extend the existing workload gesystem arrivals in Sclient, we have Sclient maintain a list
erator (which is based on only one system model) towith the times when the next requests are to be made.
enable all three system models. For the case studieBntries to the list are generated during runtime as fol-
based on trace-driven simulation, we implement a versalows: Whenever a request completes, an exponentially
tile simulator that models open, closed, and partly-opertistributed think timeZ is added to the current ting, .,
systems and takes traces as input. We also develop toadsd the resulf + .., is inserted into the list of arrival
for analyzing web traces (in Common Logfile Format or times.
Squid log format) to extract the data needed to parame- In the case of the partly-open system, each entry in
terize workload generators and simulators. the input file now defines sessionrather than an indi-

Sections 4.1 — 4.4 provide the details of the case studvidual request. An entry in the input file takes the form
ies. The main results are shown in Figures 2 and 4. Fok t;, f;,, ..., fi. > wheret; specifies the arrival time of
each case study we first explain the tools developed fothe session and f;,, ..., f;, > is the list of files to be
experimenting in open, closed, and partly-open modelstequested during the session. As before, a list with ar-
We then then describe the relevant scheduling policiesival times is maintained according to which requests are
and their implementation, and finally discuss the resultsmade. The list is initialized with the session arrival times
The discussions at the end of the case studies are meaftfrom the input file. To generate the arrivals within a
only to highlight the key points; we will discuss the dif- session, we use the same method as described for the
ferences between open, closed, and partly-open systerstsed system above: after requgst , completes we
and the impact of these differences in much more detaiarrange the arrival of requegt, by adding an entry con-

in Sections 5 and 6. taining the arrival timeZ + ¢, to the list, wherée ..,
is the current time and is an exponentially distributed
4.1 Static web content think time.

Our first case study is an Apache web server running on All the input files for the workload generator are cre-
Linux and serving static content, i.e. requests of the formated based on a web trace. We modify the Webalizer tool
“Get me a file,” in a LAN environment. Our experimen- [12] to parse a web trace and then extract the information
tal setup involves six machines connected by a 10/10@eeded to create the input files for the open, closed, and
Ethernet switch. Each machine has an Intel Pentium Ilpartly-open system experiments. In the case of the open
700 MHz processor and 256 MB RAM, and runs Linux. system, we simply output the arrival times together with
One of the machines is designated as the server and rutise names of the requested files. In the case of the closed
Apache. The others generate web requests based onsgstem, we only extract the sequence of file names. Cre-
web trace. ating the input file for the partly-open system is slightly

Workload generation: In this case study we generate more involved since it requires iden.tifyin.g t.he sessipns
static web workloads based on a trace. Below we firsf! @ trace. A common approach for identifying sessions

describe our workload generator which generates web re(-"?md the one taken by Webah_zer) IS to group all succes-
quests following an open, closed, or partly-open modelSVe requests_by the same cllt_ent (i.e. same IP address)
We then describe the tool for analyzing web traces that"®© orclje session, unIesE thehtllrg_e beﬁwﬁen two requests
produces input files needed by the workload generatof£X¢€€ ssomg timeoutthreshold in whic caseha New Ses-
Finally we briefly describe the actual trace that we areSion Is started. In.our experl|ments, we use t e timeout
using in our work. parameter to specify the desired average session length.

Our workload generator is built on top of the Sclient[9] TTde trace we use anS,'St(Sj ?f onehday from the 1;?,98
workload generator. The Sclient workload generator usegvor_ Soccer Cup, obtaine rom L e Internet 'I_'ra Ic
a simple open system model, whereby a new request fdprehive [21]. Virtually all requests in this trace astatic

file y i§ made exactly every msec. Sclient is de;igned_ Number | Mean | Variability Vin Vo
as a single process that manages all connections using | Req. | size (C?) size size
thesel ect system call. After each call teel ect, 15.10° | BKB 9% 41 bytes| 2MB
Sclient checks whether the currentmsec interval has
passed and if so initiates a new request. We generaliz8cheduling: Standard scheduling of static requests in a
Sclient in several ways. web server is best modeled by processor sharing (PS).
For the open system, we change Sclient to make reHowever, recent research suggests favoring requests for
guests based on arrival times and filenames specified ismall files can improve mean response times at web
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(c) Auctioning site

Figure 2:Results for real-world case studies. Each row shows thdteefar a real-world workload and each column shows the
results for one of the system models. In all experimentstivititlosed system model the MPL is 50. The partly-open system
at fixed loadd.9.

servers [19]. In this section we therefore consider bothport for the user/kernel Netlink Socket, QOS and Fair

PS and SRPT policies. Queuing, and the Prio Pseudoscheduler and by using the
We have modified the Linux kernel and the Apachet c[6] user space tool. We also modify Apache to use

Web server to implement SRPT scheduling at the serveset sockopt calls to update the priority of the socket

For static HTTP requests, the network (access link out ofis the remaining size of the transfer decreases. For de-

the server) is typically the bottleneck resource. Thus, outails on our implementation see [19].

solution schedules the bandwidth on this access link by

controlling the order in which the server’s socket bufferssynopsis of resultsFigure 2(a) shows results from the

are drained. Traditiona”y, the socket buffers are draineqhe static web imp'ementation under C|Osed’ open, and
in Round-Robin fashion (similar to PS); we instead givepartly open workloads in a LAN environment. Upon first

priority to sockets corresponding to connections whergylance, it is immediately clear that the closed system re-
the remaining data to be transferred is small. Figure &ponse times are vastly different from the open response
shows the flow of data in Linux after our modifications. times. In fact, the response times in the two systems are
There are multiple priority queues and queéueay only  orders of magnitude different under PS given a common

system load. Furthermore, SRPT provides little improve-

Socket 1 1st Priority Queue

TP 1P I e ment in the closed system, while providing dramatic im-
proc. proc. ﬁv\fthemet Card .

Socket 2 ’ IR provement in the open system.

]E —= TCP _» P \:nd Priority Quet'/ Wire
proc. > proc T _ _

seets 7 second. The third column of Flgur_e 2(a) shows the results for
proc. . proc. the partly-open system. Notice that when the mean num-

ber of requests is small, the partly-open system behaves
very much like the open system. However, as the mean
number of requests grows, the partly-open system be-
haves more like a closed system. Thus, the impact of
scheduling (e.g. SRPT over PS) is highly dependent on
the number of requests in the partly-open system.

Figure 3: Flow of data in Linux with SRPT-like scheduling
(only 2 priority levels shown).

drain if queueg) to i — 1 are empty. The implementa-
tion is enabled by building the Linux kernel with sup-



4.2 E-commerce site To implement the priorities needed for achieving
Our second case study considers the database back-eRESJIF and PELJF, we modify our PostgreSQL server
server of an e-commerce site, e.g. an online bookstore@s follows. We use thesched_set schedul er ()

We use a PostgreSQL[32] database server running ongystem call to set the scheduling class of a Post-
2.4-GHz Pentium 4 with 3GB RAM, running Linux 2.4, greSQL process working on a high priority transaction
with a buffer pool of 2GB. The machine is equipped with to “SCHED.RR,” which marks a process as a Linux real-
two 120GB IDE drives, one used for the database logime process. We leave the scheduling class of a low pri-
and the other for the data. The workload is generated brity process at the standard “SCHEDIHER.” Real-
four client machines having similar specifications to thetime processing in Linux always has absolute, preemp-
database server connected via a network switch. tive priority over standard processes.

Workload generation: The workload for the e- Synopsis of resultsFigure 2(b) shows results from the
commerce case study is based on the TPC-W [46] bencte-commerce implementation described above. Again,
mark, which aims to model an online bookstore such aghe difference in response times between the open and
Amazon.com. We build on the TPC-W kit provided by closed systems is immediately apparent — the response
the Pharm project [13]. The kit models a closed systentimes of the two systems differ by orders of magnitude.
(in accordance with TPC-W guidelines) by creating onelnterestingly, because the variability of the service de-
process for each client in the closed system. mands is much smaller in this workload than in the static
We extend the kit to also support an open system withweb workload, the impact of scheduling in the open sys-
Poisson arrivals, and a partly-open system. We do so biem is much smaller. This also can be observed in the
creating a master process that signals a client whenevétot for the partly open system: even when the number
it is time to make a new request in the open system or t®f requests is small, there is little difference between the
start a new session in the partly-open system. The magesponse times of the different scheduling policies.
ter process repeats the following steps in a loop: it slee . .
for an exponential interarrival time, signals a cFI)ient, angﬁ'3 _Auctlonlng Web S_'te L .
draws the next inter-arrival time. The clients block wait- OUr third case study investigates an auctioning web site.
ing for a signal from the master process. In the case of thd NS case study uses simulation based on a trace from
open system, after receiving the signal, the clients mak&"e Of the top-ten U.S. online auction sites.
one request before they go back to blocking for the nexWorkload generation:For simulation-based case stud-
signal. In the case of the partly-open system, after receivies we implement a simulator that supports open, closed,
ing a signal, the clients generate a session by executingnd partly-open arrival processes which are either cre-
the following steps in a loop: (1) make one request; (2)ated based on a trace or are generated from probabil-
flip a coin to decide whether to begin blocking for a sig- ity distributions. For a trace-based arrival process the
nal from the master process or to generate an exponentialmulator expects the same input files as the workload
think time and sleep for that time. generator described in Section 4.1. If no trace for the
TPC-W consists of 16 different transaction types in-arrival process is available the simulator alternativeiy o
cluding the “ShoppingCart” transaction, the “Payment” fers (1) open system arrivals following a Poisson process;
transaction, and others. Statistics of our configuratior(2) closed system arrivals with exponential think times;

are as shown: (3) partly-open arrivals with session arrivals following a
Database] Mean | Variability | Min | Max Poisson process and think times within the sessions be-
size size (c? size | size ing exponentially distributed. The service demands can
3GB 101 ms 4 2ms| 5s either be specified through a trace or one of several prob-

Scheduling: The bottleneck resource in our setup is the@Pility distributions, including hyper-exponential dist
CPU, as observed in [25]. The default scheduling pol-Putions and more general distributions. _

icy is therefore best described as PS, in accordance with FOF our case study involving an auctioning web site we
Linux CPU scheduling. Note that in this application, US€ the S|mglator and a trace containing tht_a service de-
exact service demands are not known, so SRPT canngtands obtained from one of the top ten online auction-
be implemented. Thus, we experiment with PESJF and:i”g sites in the US. No data on the request arrival process

PELJF policies where the expected service demand of § available. The characteristics of the service demands

transaction is based on its type. The “Bestseller” transaciecorded in the trace are summarized below:

tion, which makes up 10% of all requests, has on average Number | Mean Vafiagi”ty Min | Max
the largest service demand. Thus, we study 2-priority ofjobs | size () size | size
PESJF and PELJF policies where the “Bestseller” trans- | 300000 ] 0.09s| 919 | 001s| 50s

actions are “expected to be long” and all other transacScheduling: The policy used in a web site serving dy-
tions are “expected to be short.” namic content, such as an auctioning web site, is best



Closed System Open System module for the Linux kernel that can drop or delay in-

grsoof Ee ] Pl coming and outgoing TCP packets (similarly to Dum-
;m Emm i mynet [34] for FreeBSD). More precisely, we change
F ; F thei p_rcv() and thel p_out put () functions in the

;Z 5°°_____,,___J 2 BDOM Linux TCP-IP stack to intercept in- and out-going pack-

ets to create losses and delays. In order to delay packets,
we use thedd_t i mer () facility to schedule the trans-
mission of delayed packets. We recompile the kernel

==

1 82 0.6 0.8 1

(@ Static web — Good WAN conditions

.4

gy o = with HZ=1000 to get a finer-grained millisecond timer
1000 Ewof resolution. In order to drop packets, we use an indepen-

dent, uniform random loss model which can be config-
ured to a specified probability, as in Dummynet.
= 83 o5 0% 1 Synopsis of results:Figures 4 compares the response
. o times of the closed and the open systems under (a) rel-

b) Static web — Poor WAN conditions . -

(b) atively good WAN conditions (50ms RTT and 1% loss
Figure 4: Effect of WAN conditions in the static web case rate) and under (b) poor WAN conditions (100ms RTT
study. The top row shows results for good WAN conditions (avand 4% loss rate). Note that results for the partly-open
erage RTT=50ms, loss rate=1%) and the bottom row showssystem are not shown due to space constraints; however
results for poor WAN conditions (average RTT=100ms, lossthe results parallel what is shown in the closed and open
rate=4%). In both cases the closed system has an MPL okystems.
200. Note that, due to network effects, the closed system can \ne find that under WAN conditions the differences be-
not achieve aloa%of ﬁ ever;]when th'”hk, t|m§||slzear;|3.qBUnder théween the open and closed systems are smaller (propor-
settings we consider here, the max achievable load (893. o411y than in a LAN (Figure 2 (a)), however, they are

modeled by PS. To study the effect of scheduling in thisStill significant for high server loads (loadl 0.8). The

environment we additionally simulate FCFS and PSJF. réason that the differences are smaller in WAN condi-
tions is that response times include network overheads

Syn(_)ps_ls of resultsFigure 2(c) shows res_ults from the (network delays and losses) in addition to delays at the
auct|0n|ng.trace-based case study d_escnbed above. T'%%rver. These overheads affect the response times in the
plots here illustrate thg same properties that we observe&ipen and closed system in the same way, causing the pro-
n the case of the static web implementation. In fact, Fh%{:rtional differences between open and closed systems to
_dlfference betweer_1 the open and closed response iMeginy For similar reasons, scheduling has less of an ef-
IS extreme, especially unde_r FCFS. As a result, thereI"ect when WAN effects are strong, even in the case of an
is more than a factor of ten improvement of PSJF overOloen system. SRPT improves significantly over PS only

FCFS (forp > 0.7), whereas there is little difference in ¢, high |0ads, and even then the improvementis smaller
the closed system. than in a LAN

This effect can also be observed in the partly-open sys-

tem, where for a small number of requests per sessiog Open versus closed systems
the response times are comparable to those in the open

system and for a large number of requests per sessioffé have just seen the dramatic impact of the system
the response times are comparable to those in the closdB0del in real-world case studies. We will now develop

system. The actual convergence rate depends on the vaRrinciples that help explain both the differences between
ability of the service demand&’®). In particular, the e-  th€ open and closed system and the impact of these dif-

commerce case study (Io@?) converges quickly, while ferences with respect to scheduling. In addition to the
the static web and auctioning case studies (h’ig]?@r case studies that we have already discussed, we will also
converge more slowly. use model-based simulations in order to provide more

control over parameters, such as job size variability, that

4.4 Study of WAN effects are fixed in the case studies.

To study the effect of network conditions, we return to

the case of static web requests (Section 4.1), but this timé'1 FCFS ] ] o
we include the emulation of network losses and delays ifPur study of the simple case of FCFS scheduling will il-
the experiments. lustrate three principles that we will exploit when study-
Workload generation: The setup and workload genera- INg more complex policies.

tion is identical to the case study of static web request$rinciple (i): For a given load, mean response times are
(Section 4.1), except that we add functionality for emu-significantly lower in closed systems than in open sys-
lating WAN effects as follows. We implement a separatetems.
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Figure 5:0pen versus closed under FCFS. Model and trace-based dioui@sults showing mean response time as a function
of load and service demand variability under FCFS schedul{a) and (b) use model based simulation, while (¢) usestlmsed
simulation. In all cases, the solid line represents an opgstesn and the dashed lines represent closed systems vigrenif
MPLs. The load is adjusted via the think time in the closetksysand via the arrival rate in the open system. In the mbdskd
simulations,E[S] = 10. In (a) we fixC? = 8 and in (b) we fixo = 0.9.

Principle (i) is maybe the most noticeable performancea closed system with a high MPL; however, though this
issue differentiating open and closed systems in our casean be true in some cases, the closed and open system
studies (Figure 2). We bring further attention to this models may still behave significantly differently if the
principle in Figure 5 due to its importance for the vast service demands are highly variable.

literature on capacity planning, which typically relies pyininie (jii): while variability has a large effect in
on closed models, and hence may underestimate the rgy oy systems, the effect is much smaller in closed sys-
sources needed when an open model is more appropriatg,,,s.

For fixed high loads, the response time under the
closed system isrders of magnitudewer than those for
the open system. While Schatte [36, 37] has proven tha
under FCFS, the open system will always serve as an u
per bound for the response time of the closed syste o _ o
the magnitude of the difference in practical settings hagIOW ‘_’a”at?"'ty) Qnd the others (high varlab|I|W). ]
not previously been studied. Intuitively, this difference _ USINg simulations, we can study this effect directly.
in mean response time between open and closed systeridure 5(b) compares open and closed systems under a
is a consequence of the fixed MPY,, in closed systems, fixed loadp = 0.9, as a function of the service demand

o :
which limits the queue length seen in closed systems ty@"iability C=. For an open system, we see tat di-

N even under very high load. By contrast, no such limit rectly affects mean response time. This is to be expected
exists for an open system. since highC?2, under FCFS service, results in short jobs

o N being stuck behind long jobs, increasing mean response
Principle(ii): As the MPL grows, closed systems becomgime - |n contrast, for the closed system with MPL 10,
open, but convergence is slow for practical purposes. 2 has comparatively little effect on mean response time.

Principle (i) is illustrated by Figure 5. We see that This is counterintuitive, but can be explained by observ-
as the MPL,N, increases from 10 to 100 to 1000, the ing that for lower MPL there aréewershort jobs stuck
curves for the closed system approach the curves for theehind long jobs in a closed system, since the number
open system. Schatte [36, 37] proves formally thatvas of jobs in the systemN,ssemm) is bounded. As MPL is
grows to infinity, a closed FCFS queue converges to aincreasedC? can have more of an effect, sind&,iem
open M/GI/1/FCFS queue. What is interesting howevercan be higher.
is how slowly this convergence takes place. When the It is important to point out that by holding the load
service demand has high variabilit¢'?), a closed sys- constant in Figure 5(b), we are actually performing a
tem with an MPL of 1000 still has much lower responseconservative comparison of open and closed systems. |If
times then the corresponding open system. Even whewe didn’t hold the load fixed as we chang€@d, increas-
the job service demands are lightly variable, an MPLing C? would result in a slight drop in the load of the
of 500 is required for the closed system to achieve reclosed system as shown in Figure 7(b). This slight drop
sponse times comparable to the corresponding open sy#t load, would cause a drop in response times for closed
tem. Further, the differences are more dramatic in thesystems, whereas there is no such effectin open systems.
case-study results than in the model-based simulations.

This principle impacts the choice of whether an open5.2  The impact of scheduling
or closed system model is appropriate. One might thinkThe value of scheduling in open systems is understood
that an open system is a reasonable approximation foand cannot be overstated. In open systems, there are or-

This principle is difficult to see in the case-study fig-

gres (Figure 2) since each trace has a fixed variability.
Jowever, it can be observed by comparing the magni-
ude of disparity between the e-commerce site results
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Figure 6:Model-based simulation results illustrating the differeffects of scheduling in closed and open systems. In tkedtlo
system the MPL is 100, and in both systems the service denmtribution has mean 10. For the two figures in (&} was fixed
at 8 and in the two figures in (b) the load was fixed at 0.9.

oF wrio : sponse times than the closed system.

| = We can build intuition for the limited effects of
e E scheduling in closed systems by first considering a closed
feedback loop with no think time. In such a system, sur-
* = s’ prisingly, the scheduling done at the queue is inconse-
I O e quential — all work conserving scheduling policies per-
(a) Think time vs. load  (b) Variability vs. load form equivalently. To see why, note that in a closed sys-
_ tem Little’s Law states tha. = X E[T], whereN is
F|gure 7:Model-based simulation results i”UStrating how the the constant MPL across po"cieS. We will now exp'ain
service demand varia_bility, the MPL, and the think time c&n a why X is constant across all work conserving scheduling
fect the .system load in a closed system. These plots use FCFp%IiCies (when think time is 0), and hence it will follow
scheduling, however results are parallel under other sahed . . .
ing policies. f[hatE[T] is also constant across sched_ullng p9|ICIKS.
is the long-run average rate of completions. Since a new

rﬁ)b is only created when a job completes, over a long

Load

05

1
Think time

d]?r O:] mdaiqnltudel.d]ffersnces betwr?eg tlhe performanc eriod of time, all work conserving scheduling policies
0 S(ﬁ _ebu :cng policies e;al;lsedslc € l_“l?g Ican Prevert complete the same set of jobs plus or minus the ini-
small jobs from queueing behind large Jobs. In contrastyj,| se 7 As time goes to infinity, the initial seV be-

scheduling in closed systems is not well understood. comes unimportant; hencé is constant. This argument
Principle (iv): While open systems benefit significantlydoes not hold for open systems because for open systems
from scheduling with respect to response time, closed.ittle’s Law states thaf?[N] = AE[T], and E[N] is not
systems improve much less. constant across scheduling policies.

Principle (v): Scheduling only significantly improves re- ~ Under closed systems with think time, we now allow
sponse time in closed systems under very specific pararf-Varying number of jobs in the queue, and thus there is

eter settings: moderate load (think times) and high MpL.Some difference between scheduling policies. However,
as think time grows, load becomes small and so schedul-

Figure 2 illustrates the fundamentally different behav-.
. L ing has less effect.
ior of mean response time in the open and closed systems ) ) .
in realistic settings. In Figure 6, we further study thisdif ~ A Very subtle effect, not yet mentioned, is that in
ference as a function of (a) load and (b) variability using@ closed system the scheduling policy actually affects
simulations. Under the open system, as load increasefe throughput, and hence the load. “Good” policies,
the disparity between the response times of the schedullke PESJF, increase throughput, and hence load, slightly
ing policies grows, eventually differing by orders of mag- (less than 10%). Had we captured this effect (rather than
nitude. In contrast, at both high and low loads in theholding the load fixed), the scheduling policies in the
closed system, the scheduling policies all perform simi-closed system would have appeared even closer, result-
larly; only at moderate loads is there a significant differ-ing in even starker differences between the closed and
ence between the policies — and even here the differenc&€n systems.
are only a factor of 2.5. Another interesting pointis that, The impact of Principles (iv) and (v) is clear. For
whereas for FCFS the mean response time of an opeciosed systems, scheduling provides small improvement
system bounded that in the corresponding closed systericross all loads, but can only result in substantial im-
from above, this does not hold for other policies suchprovement when load (think time) is moderate. In con-
as PESJF, where the open system can result in lower rérast, scheduling always provides substantial improve-
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Figure 8:Model and implementation-based results for the partlyropgstem. (a) and (b) are model-based simulations showing
mean response time as a function of the expected numberu#segper session. (c) and (d) show the mean response time as a
function of the think time, for a fixed load. In (a)-(&)[S] = 10 andC? = 8. In (c) and (d), we fixo = 0.6 andp = 0.75, which
yields and average of 4 requests per session.

ments for open systems. we studied, and across a wide range of parameters, the
point where the separation between the performance of
scheduling policies becomes small is, as a rule-of-thumb,

around 10 requests per session. Note however that this

_ Forboth the open and closed systems, better schedulisint can range anywhere between 5 and 20 requests per
ing (PS and PESJF) helps combat the effect of increasinggggion a¢? ranges fromt to 49 respectively. We will

variability, as seen in Figure 6. The improvement; how-qemqnstrate in Section 7 how to use this rule-of-thumb
ever, is less dramatic for closed systems due to Principlgg 4 guideline for determining whether a purely open

(iii) in Section 5.1, which tells us that variability has¢es purely closed workload generator is most suitable, or
of an effect on closed systems in general. whether a partly-open generator is necessary.

Principle (vi): Scheduling can limit the effect of variabil-
ity in both open and closed systems.

6 Partly-open systems I_3r|nC|pIe (viii): In a partly open system, think time has
little effect on mean response time.

In this section, we dIS.CU.SS a partly-open model that (a) Figure 8 illustrates Principle (viii)). We find that the

serves as a more realistic system model for many appli-, . X :

S ; . N think time in the partly-open system does not affect
cations; and (b) helps illustrate when a “purely” open or .
) L . the mean response time or load of the system under

closed system is a good approximation of user behavior. - . :

any of these policies. This observation holds across all

We focus on the effects of the mean number of requests ; .
. s artly-open systems we have investigated (regardless of
per session and the think time because the other paramg- . ) :
e number of requests per session), including the case-

ters, e.g. load and job size variability, have similar effec ; . . .
X . tudies described in Section 4.
to those observed in Sections 5.1 and 5.2. Throughout .~ . .
Principle (viii) may seem surprising at first, but for

the section, we fix the load of the partly-open system byPS and FCFS scheduling it can be shown formally un-

adjusting the arrival rate). Note that, in contrast to the . -
o N der product-form workload assumptions. Intuitively, we
closed model, adjusting the think time of the partly-open : A
: can observe that changing the think time in the partly-
model has no impact on the load.

o - o open system has no effect on the load because the same
Principle (vii): A partly-open system behaves similarly amount of work must be processed. To change the load,
to an open system when the expected number of requesig must adjust either the number of requests per session
per session is smalk( 5 as a rule-of-thumb) and sim-  or the arrival rate. The only effect of think time is to add

ilarly to a closed system when the expected number o§mall correlations into the arrival stream.
requests per session is large (L0 as a rule-of-thumb).

Principle (vii) is illustrated clearly in the case study / Choosing a system model

results shown in Figure 2 and in the simulation resultsThe previous sections brought to light vast differences in

shown in Figure 8(a). When the mean number of re-system performance depending on whether the workload
guests per session is 1 we have a significant separatiggenerator follows an open or closed system model. A

between the response time under the scheduling policieslirect consequence is that the accuracy of performance
as in open systems. However, when the mean number avaluation depends on accurately modeling the underly-
requests per session is large, we have comparatively lithg system as either open, closed, or partly-open.

tle separation between the response times of the schedul- A safe way out would be to choose a partly-open sys-

ing policies; as in closed systems. Figures 2 and 8(a)em model, since it both matches the typical user behav-
are just a few examples of the range of configurationgor in many applications and generalizes the open and



Type of site Date Total #Red. oo Sies
1 Large corporate web site Feb'01 16097 sies
2 CMU web server [3] Nov'01 90570 ¢ (| ed T
3 Online department store June’00 8913
4  Science institute (USGS[1]) Nov’'02 107078 2ol B T
5 Online gaming site [50] May’'04 4577 e ———
6 Financial service provider Aug’'00 275786 O %00 1000 00 000 2900 G000 b SO0 000 Ity P00 280 000
7 Supercomputing web site [4]  May’'04 82566  (a) Number of sessions vgb) Number of requests vs
8 Kasparov-DeepBlue match May’'97 580068 Timeout length Timeout length
9 Site seeing “slashdot effect” Feb'99 194968
10 Soccer world cup [21] Jul'98 4606052 Figure 9:Choosing a system model. Statistics for 3 represen-

tative web traces (sites 3, 6, and 10) illustrating (a) thenter
Table 2: A summary table of the studied web traces. of user sessions as a function of the timeout threshold and (b
the expected number of requests per session as a functibe of t
closed system models — depending on the parameterstitneout threshold. The vertical line on each plot corresgmon
can behave more like an open or more like a closed sydgo a timeout of 1800s. From these plots we can conclude that
tem. However, as Table 1 illustrates, available workloacen open model is appropriate for site 6, a closed model is ap-
generators often support only either closed or open Sysc)rppriate fc_)r site 10, and neither an open or a closed is appro
tem models. This motivates a fundamental questions foPriate for site 3.
workload modelingGiven a particular workload, is a _ . . .
purely open or purely closed system model more accuratgcc.omphs.hed .by ending a session whenever there is a
for the workload? When is a partly-open system modepenod of inactivity !arger than timeout threshotd In
necessary?” some cases, web S|tes_ themselves enfo_rce such a thresh-
In the remainder of this section we illustrate how our0|d; howevgr, more typlcally must be est!matgd.
eight principles might be used to answer this question for Ve consider two different ways of estimating The
various web workloads. Our basic method is as follows.fI'St One is to use a defacto standard valuerfowhich
For a given system we follow these steps: is 1800s (30 min) [26]. The second method is to e_stl—
1. Collect traces from the system mater fromthe traces themselves by studylng_the o_lenva-
' ' . tive of how r affects the total number of sessions in the
2. Construct a partly-open model for the system, SINC&race. We illustrate this latter method for a few represen-

the partly-open model is the most general and 8Ctative traces in Figure 9(a). Notice that as the thresh-

curate. In particular, obtain the relevant parameters, |y increases from 1-100s the number of sessions de-

for the partly-open model. ) creases quickly; whereas from 1000s on, the decrease is
3. For the partly-open model, decide whether an opefych smaller. Furthermore, Figure 9(b) shows that with

or a closed model is appropriate, or if the partly- respect to the number of requests, stabilization is also

open model is necessary. reached at > 1000s. Hence we adopt = 1800s in
Table 2 summarizes the traces we collected as part afhat follows.
Step 1. Our trace collection spans many different types The mean number of requests per session when
of sites, including busy commercial sites, sites of major{gnos is summarized below for all traces:
sporting events, sites of research institutes, and an@nlin

aming site Site 1 2 3 4 5
gaming site. . Requests per sessign2.4 1.8 54 3.6 12.9
We next model each site as a partly-open system. Ac- S = : 3 5 0

cording to Principles (vii) and (viii) the most relevant pa- e .
. Requests per sessignl.4 6.0 24 12 11.6
rameter of a partly-open system model is the number of

requests issued in a user session. Other parameters suthe table indicates that the average number of requests
as the think time between successive requests in a sessifer web sessions varies largely depending on the site,
are of lesser importance. Determining the average nunmranging from less than 2 requests per session to almost
ber of requests per user session for a web site requirek3. Interestingly, even for similar types of web sites the
identifying user sessions in the corresponding web tracenumber of requests can vary considerably. For exam-
While there is no 100% accurate way to do this, we em-ple sites 8 and 10 are both web sites of sporting events
ploy some common estimation techniques [8, 26]. (a chess tournament and a soccer tournament), but the
First, each source IP address in a trace is taken to reptumber of requests per session is quite low (2.4) in one
resent a different user. Second, session boundaries agase, while quite high (11.6) in the other. Similarly, sites
determined by a period of inactivity by the user, i.e. a2, 4, and 7 are all web sites of scientific institutes but the
period of time during which no requests from the cor- number of requests per sessions varies from 1.8 to 6.
responding IP address are received. Typically, this is Using the rule of thumb in principle (vii), we can con-



clude that neither the open nor the closed system modégh) the magnitude of the difference in response times be-
accurately represents all the sites. For sites 1, 2, 4, @ween closed and open systems can be very large, even
8, and 9 an open system model is accurate; whereasunder moderate load; (b) the convergence of closed to
closed system model is accurate for the sites 5 and 1@pen as MPL grows is slow, especially when service de-
Further, it is not clear whether an open or closed modemand variability C?) is high; and (c) scheduling is far
is appropriate for sites 3 and 7. more beneficial in open systems than in closed ones. We
The impact of choosing between open and closed sysalso compare the partly-open model with the open and
tem models correctly is demonstrated by site 10, theclosed models. We illustrate the strong effect of the num-
world cup dataset. This is the same dataset used in thieer of requests per session afition the behavior of the
static web case study, where we saw large differencepartly-open model, and the surprisingly weak effect of
depending on whether we modeled the workload usinghink time.
an open or a closed system. We have just concluded o )
that a closed model is most appropriate for this work-. These prlnC|p_Ies underscore the importance of ChOOS-
load, thus the magnitude of differences between the ope'rtfIg the appropriate system model. For example, in ca-

and closed results in Figure 2 illustrates the impact of thdacity planning for an open system, choosing a workload
choice of a system model. generator based on a closed model can greatly underes-

timate response times and underestimate the benefits of
8 Prior Work scheduling.

Work explicitly comparing open and closed system mod- All of this is particularly relevant in the context of web
els is primarily limited to FCFS queues. Bondi and Whitt applications, where the arrival process at a web site is
[11] study a general network of FCFS queues and conbest modeled by a partly-open system. Yet, most web
clude that the effect of service variability, though domi- workload generators are either strictly open or strictly
nantin open systems, is almost inconsequential in closedlosed. Our findings provide guidelines for choosing
systems (provided the MPL is not too large). We cor-whether an open or closed model is the better approx-
roborate this principle and illustrate the magnitude of itsimationbased on characteristics of the workload. A high
impact in real-world systems. Schatte [36, 37] studies anumber of simultaneous users (more than 1000) suggests
single FCFS queue in a closed loop with think time. Inan open model, but a high number of requests per session
this model, Schatte proves that, as the MPL grows to in{more than 10) suggests a closed model. Both these cut-
finity, the closed system converges monotonically to arpffs are affected by service demand variability: highly
open system. This result provides a fundamental underwariable demands requires larger cutoffs. Contrary to
standing of the effect of the MPL parameter; howeverpopular belief, it turns out that think times are irrelevant
the rate of this convergence, which is important whento the choice of an open or closed model since they only
choosing between open and closed system models, is naffect the load.

understood. We evaluate the rate of convergence in real- ) )
Once it has been determined whether a closed or open

world systems. . L . .
Though these theoretical results provide useful intu-M0d€! i a better approximation, that in turn provides

ition about the differences between open and closed sy 9uideline for the effectiveness of schedulinignder-

tems,theoretical results alone cannot evaluate the effectstanding the appropriate system model is essential to
of factors such as trace driven job service demand distnderstanding the impact of schedulingcheduling is

tributions, correlations, implementation overheads, and_mOSt ef_“fectlve in open systems, but can hav_e moderate
size-based scheduling policiesience, simulation and impact in closed systems when both the load is moderate

implementation-based studies such as the current pap&eughly 0.7-0.85) and™ is high.

are needed. In conclusion, while much emphasis has been placed
. in research on accurately representing workload param-
9 Conclusion eters such as service demand distribution, think time, lo-

This paper provides eight simple principles that functioncality, etc, we have illustrated that similar attentionaee

to explain the differences in behavior of closed, opento be placed on accurately representing the system itself
and partly-open systems and validates these principleas either closed, open, or partly-open. We have taken
via trace-based simulation and real-world implementa-a first step toward this end by providing guidelines for
tion. The more intuitive of these principles point out that choosing a system model and by creating tools and work-
response times under closed systems are typically lowdpad generators versatile enough to support all three sys-
than in the corresponding open system with equal loadtem models. We hope that this work will encourage oth-
and that as MPL increases, closed systems approadhrs to design workload generators that allow flexibility in
open ones. Less obviously, our principles point out thatthe underlying system model.
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