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Abstract

This thesis is motivated by the difficulty in writing correct high-performance programs. W

ing shared-memory multithreaded programs imposes a complex trade-off between program

ease and performance, largely due to subtleties in coordinating access to shared data. To

correctness programmers often rely on conservative locking at the expense of performanc

resulting serialization of threads is a performance bottleneck. Locks also interact poorly

thread scheduling and faults, resulting in poor system performance.

We seek to improve multithreaded programming trade-offs by providing architectural sup

for optimistic lock-free execution. In a lock-free execution, shared objects are never locked

accessed by various threads. We propose two hardware techniques: Speculative Lock Elisi

Transactional Lock Removal.

Speculative Lock Elision (SLE) is a micro-architectural technique to remove dynamic

unnecessary lock-induced serialization and enable highly concurrent multithreaded executio

key insight is that locks do not always have to be acquired for a correct execution. Synchroniz

instructions are predicted as being unnecessary and elided. This allows multiple threads to c

rently execute critical sections protected by the same lock. Misspeculation due to inter-threa

conflicts is detected using existing cache mechanisms and rollback is used for recovery. Suc

elision is validated and committed without acquiring the lock and non-conflicting critical sect

execute and commit concurrently without any serialization on the lock. SLE can be impleme

entirely in the microarchitecture without instruction set support and without system-level mo

cations, is transparent to programmers, and requires only trivial additional hardware suppor

Transactional Lock Removal (TLR) uses SLE as an enabling mechanism but in addition

vides a successful lock-free execution of lock-based critical sections in the presence of dat

flicts if sufficient resources are available for buffering speculative state. TLR elides locks u

SLE to construct an optimistic lock-free critical section execution but in addition also uses a

stamp-based conflict resolution scheme to provide lock-free execution even in the presence

conflicts. By treating the lock-free critical section as a lock-free transaction, TLR provides tran

tional properties for critical sections and by using timestamps for conflict resolution, TLR prov

starvation freedom.
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The benefits of SLE and TLR include improved programmability, stability, and performa

Programmers can obtain benefits of lock-free data structures, such as non-blocking behav

wait freedom, while using lock-protected critical sections for writing programs.



v

jwar,

d like

f the

sies. I

right

ears.

rof.

l and

been

ark

phasiz-

rof.

rious

ko for

mmit-

nd

dback

for

aluja

s spent

nd I

ellent

er, and

reach

con-
Acknowledgments

I would like to thank my parents, Sushila and G.C.S. Rajwar, and my sister, Dr. Ritu Ra

for their constant support, inspiration, and encouragement throughout my education. I woul

to especially thank Nathalie Le Coutour for having shared with me in the ups and downs o

graduate program and life in general and I am still amazed she has tolerated my idiosyncra

owe much to her.

My advisor Prof. Jim Goodman taught me about research, thinking broad, and doing the

thing. I thank him for having supported me, both financially and academically, over the past y

I have learnt much from him. I have been lucky to have had the opportunity to interact with P

Jim Smith. His approach to research and life has influenced me quite a bit. Prof. Mark Hil

Prof. David Wood played an important role in my graduate career. I thank them for having

supportive of my research and having taken a keen interest in my work. I would like to thank M

for having given valuable advice on research and non-research issues and for repeatedly em

ing the importance of good presentation. I thank Prof. Guri Sohi, Prof. Mikko Lipasti, and P

Ras Bodik for having provided feedback on the work in this thesis, and valuable advice on va

academic and non-academic issues over the past many years. I would also like to thank Mik

having been there to listen to me while Jim Goodman was away on sabbatical. My thesis co

tee members David Wood, Guri Sohi, Jim Goodman, Jim Smith, Mark Hill, Mikko Lipasti, a

Ras Bodik contributed substantially to improving the quality of this thesis.

Prof. Maurice Herlihy was patient to answer numerous questions and gave valuable fee

on the work in this thesis. I thank him for his support. I would also like to thank Dr. Joel Emer

various discussions on the topics in this thesis. I would especially like to thank Prof. Kewal S

for his constant support and sage advice over the years. A summer at Cray Research wa

working with Dr. Steve Scott. I learnt quite a bit about multiprocessors during that summer a

thank Steve for having played an important role in the learning process.

I have been lucky to have known Eric Rotenberg. He has set an example of being an exc

researcher and a great friend and was always ready to discuss ideas. Alain Kägi, Doug Burg

Stefanos Kaxiras were very supportive during my initial years in graduate school. Scott B

was an excellent source of advice when it came to writing complex simulators. Timothy Heil



vi

him

hool

advice,

cellent

was

was

e dis-

lew,

learnt

h with

four

discus-

ank

mer-

n and

per-

s an

ptly

ke to

e nec-
tributed extensively to the SimpleMP simulation infrastructure and I learnt a great deal from

about software engineering and Java memory models.

Craig Zilles, Dan Sorin, Manoj Plakal, and Milo Martin have shared in my graduate sc

experience the entire time I have been at Wisconsin and have served as excellent sources of

criticism, and knowledge. Manoj Plakal has been more than a colleague; he has been an ex

friend. Our discussions over wide-ranging topics were a welcome break from work. Dan Sorin

always around to hit a few balls on the tennis court when the going got tough. Brian Fields

ready to give comments on my paper drafts at all odd hours. I learnt much from our extensiv

cussions on various issues, including computer architecture. Adam Butts, Amir Roth, Andy G

Shai Rubin, and Trey Cain have served as great architecture listening boards and I have

much from them. Subbu Sastry never ceased to amaze me with his ability to balance researc

time for issues of social good. My officemate, Paramjit Oberoi, put up with me for the past

years and he deserves due credit for his patience and tolerance. I have had many engaging

sions with Alaa Alameldeen, AlexeyLoginov, Collin McCurdy, Harit Modi, Jason Cantin, Min

Xu, Pacia Harper, and Vic Zandy and I am thankful to them for having indulged me.

I have met and interacted with many people during my stay in Madison. I would like to th

Etienne Kuntzel, Marie-Odile Souhaite, and Nita Sahai for being good friends. Robert Zim

man’s work has been a constant companion during the long hours of coding and contemplatio

I thank him. I would like to thank the staff at Muddy Waters for the 175 degree mocha made to

fection.

The CSL provides an excellent quality of computing service and the Condor staff provide

excellent quantity of computing service. I thank them for having effectively and prom

addressed any problems I may have had with the computing environment. Finally, I would li

thank the secretarial staff at the computer sciences department for having taken care of all th

essary administrative procedures required during the graduate program.



vii

. . . .17

. . . .18

 . . .19

. . . .

 

 . . .21

 . .

 . . .23

 . . .26

. . . .28

 . . .30

 . . . .32

. . . .32

 . . .33

 . . . .33

. . . .34

. . . .37

. . .38

 . . .38
Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

Table of Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Chapter 1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

1.1  Transactions and critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2  Multithreaded program aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2.1  Programmability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.2  Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3  Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .20

1.2.4  Limitations and solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3  Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

1.4  Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

1.4.1  Primary contributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4.2  Other contributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5  Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

1.6  Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Chapter 2.  Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

2.1  Shared-memory multiprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.1  Memory consistency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2  Cache coherence protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2.1  Aspects of cache coherence protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.2.2  Coherence granularity and false sharing  . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2.3  Correctness issues for cache coherence protocols . . . . . . . . . . . . . . . . .

2.1.2.4  Cache coherence protocol mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2  Synchronization techniques and concurrency control. . . . . . . . . . . . . . . . . . . . . . . . 

2.2.1  Mutual exclusion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.2  Lock-based synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii

 . .39

. .41

. . .42

. . .43

 . .48

. . . .49

 . . .50

. 

. . .50

 . . .54

. . 

. . .56

 . . .56

. . 

. . . .57

. . .57

. . .57

. . .58

. . . .58

 . . .59

 . . 

. . 

 . .

 . . .63

 . . .64

 . .6

. 

 . . .70

 . . .72

. . . .72

 . . .73
2.2.2.1  Locking primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.2.2  Limitations of locking primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.3  Lock-free and wait-free synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.3.1  Lock-free and wait-free techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.3.2  Limitations of lock-free and wait-free techniques . . . . . . . . . . . . . . . . . . .

2.2.4  Database concurrency control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3  Safety and liveness in concurrency control algorithms. . . . . . . . . . . . . . . . . . . . . . . .

2.3.1  Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

2.3.1.1  Serializability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3.1.2  Freedom from deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.2  Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

2.3.2.1  Freedom from livelock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3.2.2  Freedom from starvation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4  Speculative execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

2.4.1  Speculative execution proposals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4.1.1  Uniprocessor program optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4.1.2  Aggressive implementation of memory consistency . . . . . . . . . . . . . . . . 

2.4.1.3  Speculative parallelization of sequential programs . . . . . . . . . . . . . . . . . 

2.4.2  Handling speculative state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4.3  Detecting violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5  Chapter summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .59

Chapter 3.  Speculative Lock Elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.1  Chapter roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

3.2  Data conflict and lock contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3  Enabling concurrency by eliding locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4  An initial algorithm for SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

3.5  Silent store-pair elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

3.6  SLE algorithm using silent store-pair elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.1  Predictions and their resolution in SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.2  In search of silent store-pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.6.2.1  Simple hardware predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



ix

 . . .74

 . . .74

. . . .

 . 

. . . .76

 . . . .76

. . .

 . .78

. . .78

 . .79

 . .81

 . . .81

 . . .81

 . . .83

 . . .84

 . . .84

 . . .84

 . . .86

. . .86

. .86

 . . .89

. . .91

. . .92

. . . .93

. . .93

 . . .93

. . .95

 . . .96

 . . .97

. . . .97

 . . .97
3.6.2.2  Software annotations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.2.3  Silent store-pairs and non-lock operations . . . . . . . . . . . . . . . . . . . . . . . .

3.7  SLE algorithm example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8  SLE key enablers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .76

3.8.1  Speculative execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.8.2  Cache coherence protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9  SLE implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .77

3.9.1  Identifying speculation regions and initiating speculation  . . . . . . . . . . . . . . . . .

3.9.1.1  Identifying start and end points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.9.1.2  Identifying speculation region memory operations . . . . . . . . . . . . . . . . . .

3.9.1.3  Actions in initiating speculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.2  Speculative execution and buffering of speculative state  . . . . . . . . . . . . . . . . .

3.9.2.1  Buffering processor register state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.2.2  Buffering processor memory state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.3  Committing speculative state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.3.1  Committing processor register state. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.3.2  Committing processor memory state . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.4  Detecting and handling misspeculation conditions . . . . . . . . . . . . . . . . . . . . . .

3.9.4.1  Misspeculation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.9.4.2  Atomicity-violation induced misspeculation . . . . . . . . . . . . . . . . . . . . . . . 

3.9.4.3  Resource-constraint induced misspeculation . . . . . . . . . . . . . . . . . . . . . .

3.9.4.4  Handling other misspeculation conditions . . . . . . . . . . . . . . . . . . . . . . . . 

3.9.4.5  Recovering from misspeculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.10  SLE and nested critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.10.1  Trivially handling nested critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.10.2  Handling properly nested critical sections. . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.10.3  Handling improperly nested critical sections. . . . . . . . . . . . . . . . . . . . . . . . . . 

3.10.4  SLE and recursive critical sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.11  SLE interactions with software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.11.1  SLE and forward progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.11.2  Interactions with program semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



x

 . .99

 . .99

 . .101

 . .102

.102

 . .102

 . .103

. . .104

 . .104

 . . .

. . .109

 . .

 .110

.111

 . .111

 .113

. .114

. .117

. .120

. .123

 . .125

 . .125

 . .125

 . .127

 . .128

 . .129

 .133

 . .134

. . .139
3.11.3  Interactions with programs written with timing assumptions . . . . . . . . . . . . . .

3.11.4  Interactions with different locking algorithms. . . . . . . . . . . . . . . . . . . . . . . . . .

3.11.5  Interactions with operating systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.12  SLE interactions with hardware implementations. . . . . . . . . . . . . . . . . . . . . . . . . . .

3.12.1  Implementation with different synchronization primitives . . . . . . . . . . . . . . . . 

3.12.2  Interactions with memory consistency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.12.3  Interactions with false sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.12.4  SLE and hardware multithreaded processors. . . . . . . . . . . . . . . . . . . . . . . . . 

3.12.5  Implementation-specific issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.13  Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

3.14  Chapter summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Chapter 4.  Transactional Lock Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.1  Chapter roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

4.2  Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

4.2.1  Performance limitations of lock acquisition under conflicts . . . . . . . . . . . . . . . .

4.2.2  Stability limitations of lock acquisition under conflicts  . . . . . . . . . . . . . . . . . . . 

4.3  Transactional lock-free execution of critical sections . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1  Achieving serializability in the presence of conflicts  . . . . . . . . . . . . . . . . . . . . .

4.3.1.1  Necessity for conflict resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.1.2  Conflict resolution using timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.2  TLR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.3  TLR algorithm example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4  A TLR implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1  Mechanisms for retaining ownerships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1.1  Retaining ownership via negative acknowledgements . . . . . . . . . . . . . . .

4.4.1.2  Retaining ownership via request deferrals . . . . . . . . . . . . . . . . . . . . . . . .

4.4.2  A deferral-based implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.2.1  Deadlock danger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.2.2  Propagating priority information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.2.3  An example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.3  Handling the coherence protocol shared state . . . . . . . . . . . . . . . . . . . . . . . . . 



xi

. . .140

 . .144

 . .145

 . .145

 . .145

. .145

. . .146

 . .146

 . .146

 .

 .150

. . .151

. .152

 . .152

. .153

. . .154

 . . 

. . .158

 . .158

 . .1

. . .160

 

 . .166

. . .168

. .174

. .174

 . .174

 . . .

 . .175

 . .176
4.4.4  Performance interactions of timestamp order and coherence order  . . . . . . . . 

4.4.5  Selectively relaxing timestamp order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.6  Controlling misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.7  Implementation-specific resource constraints . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.7.1  Cache size and associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.7.2  Write buffer size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4.7.3  Deferred queue size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4.7.4  Scheduling quantum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.7.5  Finite size of timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5  Algorithm invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

4.6  Programmability and stability impact of TLR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6.1  Restartable critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6.2  Non-blocking behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6.3  Wait-free behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6.4  Handling deadlocks in locking hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6.5  Masking data races. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.7  Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

4.8  Chapter summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..156

Chapter 5.  Performance Evaluation Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1  SimpleMP simulation environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2  Compiling infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

5.3  Target system and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4  Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .165

5.4.1  Microbenchmarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.2  Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4.3  Synchronization primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4.3.1  Test&test&set locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4.3.2  MCS locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 6.  Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

6.1  Qualitatively understanding performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.1  No lock contention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



xii

 . .177

 . .177

 . .178

. .179

 . .181

. . .185

. . .186

. .189

. . .192

 . .193

. .196

 .197

 . .198

 .198

 . . 

 . .199

. . .200

. .202

 . .203

. . .205

. . .205

. .206

. . .220

. .2

. . .223
6.1.2  Lock contention and no data conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.3  Lock contention and data conflicts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.3.1  SLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.3.2  TLR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2  Microbenchmark evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3  Benchmark performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.1  SLE performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.1.1  Varying system configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.1.2  Restart thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.2  TLR performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.2.1  TLR data conflict characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.2.2  Impact of TLR on network traffic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.2.3  Coarse-grain vs. fine-grain experiment  . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.2.4  Read-modify-write prediction effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4  Chapter summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..199

6.4.1  Microbenchmark summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4.2  Benchmark summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7.  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

7.1  Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

7.1.1  Speculative Lock Elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.2  Transactional Lock Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2  Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

7.2.1  SLE mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.2  TLR mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.3  Stability and programmability interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A.  Correctness Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A.1  Maintaining serializability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.2  SLE and program order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



xiii

 . . .25

. . .29

 . . .31

. . . .53

 . . .54

 . . .61

. . .62

 . . .63

 . . .65

 . .66

 . . .68

 . .71

. . . .73

. . .75

 . .80

. .88

 . .92

 . . .94

. . .95

. . .96

 . . . .98

. .100

. .112

 .115

. . .117

. .121

 . .124

. .128

. . .130
List of Figures

Figure 1-1: Solution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2-1: A typical shared-memory multiprocessor.  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2-2: Conceptual view of sequential consistency. . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2-3: Serializable and non-serializable examples  . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2-4: Deadlock with two transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-1: Control-flow induced unnecessary serialization.  . . . . . . . . . . . . . . . . . . . . . .

Figure 3-2: Locking-granularity induced unnecessary serialization.  . . . . . . . . . . . . . . . . 

Figure 3-3: Data conflict and lock contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-4: SLE and global memory ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-5: Initial algorithm for SLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-6: Silent store-pair elision.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-7: Algorithm for SLE using silent store-pair elision. . . . . . . . . . . . . . . . . . . . . . .

Figure 3-8: Detecting silent store-pairs patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3-9: Speculative Lock Elision algorithm example.  . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3-10: Identifying memory operations within a critical section  . . . . . . . . . . . . . . . . .

Figure 3-11: Handling multiple critical sections in instruction window . . . . . . . . . . . . . . . . 

Figure 3-12: A microarchitectural implementation of SLE. . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-13: Handling properly nested critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-14: Handling improperly nested critical sections . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3-15: Handling complex improperly nested critical sections. . . . . . . . . . . . . . . . . . 

Figure 3-16: SLE does not change program semantics . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3-17: Critical sections written with timing assumptions . . . . . . . . . . . . . . . . . . . . . 

Figure 4-1: TLR and global memory ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-2: Livelock in a lock-free optimistic transaction  . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4-3: Constructing timestamps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-4: TLR algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-5: Serializable execution in the presence of conflicts.  . . . . . . . . . . . . . . . . . . . .

Figure 4-6: TLR implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-7: Deadlock with three processors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



xiv

 . .132

 . . .134

. .136

. .137

 . .141

. . .143

. . .144

 . .147

 .153

 . .159

 . .161

. .163

. .164

 . .165

. .168

. .181

 . .182

. .184

 . .185

. .187

. .188

 . .190

 . .190

. .191

. .192

. .195

 .197

 . .223
Figure 4-8: Understanding deadlock with request deferrals.. . . . . . . . . . . . . . . . . . . . . . .

Figure 4-9: Role of marker messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4-10: Example of a TLR implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-11: Example of a TLR implementation continued . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-12: Timestamp-order is identical to coherence-order . . . . . . . . . . . . . . . . . . . . . .

Figure 4-13: Timestamp-order is reverse of coherence-order . . . . . . . . . . . . . . . . . . . . . . 

Figure 4-14: Timestamp-order approximates coherence-order . . . . . . . . . . . . . . . . . . . . . 

Figure 4-15: Impact of finite size of timestamps on fairness  . . . . . . . . . . . . . . . . . . . . . . .

Figure 4-16: Deadlock possibility in programs using incorrect locking hierarchy . . . . . . . .

Figure 5-1: Simulation methodology.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5-2: Compile infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5-3: Chip multiprocessor (CMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 5-4: Symmetric multiprocessor (SMP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 5-5: Distributed shared-memory system (DSM) . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5-6: Doubly-linked list microbenchmark code  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-1: Multiple-counter microbenchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-2: Single-counter microbenchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6-3: Doubly-linked list microbenchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-4: Impact of unfairness on microbenchmark performance . . . . . . . . . . . . . . . . .

Figure 6-5: SLE performance for an 8-way CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-6: SLE performance for a 16-way CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-7: SLE performance for an 8-way SMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6-8: SLE performance for an 16-way SMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6-9: SLE performance for a 8-way DSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-10: SLE performance for a 16-way DSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-11: TLR performance for a 16-way CMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6-12: Impact of TLR on network traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure A-1: Program order for memory operations from a single processor . . . . . . . . . . .



xv

List of Tables

Table 5-1: Processor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Table 5-2: Memory system configuration: Chip multiprocessor. . . . . . . . . . . . . . . . . . . . . . .163

Table 5-3: Memory system configuration: Symmetric multiprocessor . . . . . . . . . . . . . . . . . .164

Table 5-4: Memory system configuration: DSM multiprocessor . . . . . . . . . . . . . . . . . . . . . .166

Table 5-5: Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Table 6-1: TLR-execution data conflict characteristics for 16 threads . . . . . . . . . . . . . . . . . .196



16

ware

ition-

of add-

asing

nology

, 131,

uc-

ible

ting

ional-

multi-

onal-

. For

ftware

per-

cost

is cost

mance

lti-

m in
Chapter 1

Introduction

Processor systems are increasingly providing explicit support for multithreaded soft

either in the form of low-cost multiprocessors or hardware multithreaded architectures. Trad

ally, processor systems have focused on improving single-thread performance and the cost

ing hardware resources for additional hardware threads was prohibitive. However, incre

transistor densities and transistor counts on chips today and improved semiconductor tech

have led to a distinct trend towards increased user-visible hardware parallelism [30, 35, 82

159, 162]. In addition to improving single-thread performance by extracting implicit instr

tion-level parallelism, processor systems are providing explicit support for user-vis

thread-level parallelism in hardware. Software writers now have, for the first time in compu

history, easily available and low-cost hardware threads to exploit for performance and funct

ity. Programmers can be expected to take advantage of such hardware advances by writing

threaded software.

While hardware systems have improved dramatically in terms of performance and functi

ity, the complexity of software systems has also risen owing to their increased functionality

example, the concept of a web browser as we know it today did not exist a decade ago. So

aspects of reliability, stability, and portability are becoming increasingly important along with

formance.

Writing correct, high-performance, and stable code is a complex and difficult task. The

of developing such programs is increasing rapidly as their complexity and use increases. Th

includes both the one-time development cost and the recurring costs of maintenance, perfor

tuning, porting, and debugging.

While writing correct and high-performance single-thread code is difficult, writing mu

threaded software is more so. Programming complexity is the single most significant proble
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writing multithreaded applications [27, 69]. Although the use of threads simplifies the conce

design of programs, care and expertise is required to coordinate correct interaction among v

threads. This expertise is higher than for most single thread programs because coordinatin

ing of data objects among various threads requires complex reasoning—actions of a thre

influence the subsequent behavior of other threads. Synchronization mechanisms are used

rectly coordinate thread accesses to shared objects. These mechanisms often enforce some

serialization while threads access shared objects to ensure a consistent view of the object. C

vative use of such mechanisms aid in writing correct programs but unfortunately, these m

nisms unnecessarily enforce serialization of thread execution and degrade performance.

Writing correct, high-performance, and stable multithreaded programs thus entails a c

trade-off among various aspects of the program. These aspects include the ease of writing a

program, its performance, and its behavior under unexpected conditions.

Before we discuss the above aspects, we briefly discusstransactionsandcritical sectionsas

popular mechanisms for coordinating concurrent access to shared data.

1.1  Transactions and critical sections

Transactions serve as an intuitive model for writing multithreaded programs. Atransaction

[39] comprises a series of read and write operations that provide the following properties:

ure-atomicity, consistency, and durability.Failure-atomicitystates a transaction must either ex

cute to completion, or in the presence of failures, must appear not to have executed

Failure-atomicity provides an all-or-nothing property of execution and guarantees a data stru

remains in a consistent state, even in the presence of failures.Consistencyrequires the transaction

to follow a protocol that provides threads with a consistent view of the data object. Serializa

is an intuitive and popular consistency criterion for transactions.Serializabilityrequires the result

of executions of concurrent transactions to beas if there were some global order in which thes

transactions had executed serially [39].Durability states that once a transaction is committed,

effects cannot be undone.

Serializability is similar to sequential consistency with regard to memory operations. Lam

[98] defined an execution to besequentially consistentif the result of any execution is the same a

if the operations of all the processors were executed in some sequential order, and the opera

each individual processor appear in this sequence in the order specified by its program. Sim
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an execution of transactions is consideredserializableif it appears as if all transactions were exe

cuted in some sequential (serial) order with no interleaving within transaction boundaries.

While the concept of transactions is simple and convenient for programmers to reason

[57], processors today provide only restricted support for such transactions in their instruction

Examples are the atomic read-modify-write operations on a single word. The restricted siz

these operations and limitations placed on their use render them ineffective in providing func

ality of general transactions.

A lack of general transaction support in processors has led to programmers often relyi

critical sections to achieve some of the functionality of transactions.Critical sectionsare software

constructs used by programmers to enforce mutually exclusive access among threads to

objects—only one thread is allowed to operate on the object at any given time—and thus tri

satisfy serializability. Providing failure-atomicity with critical sections is difficult since it requir

support for logging modifications performed by the transaction, and then making these ch

visible instantaneously using an atomic operation to commit the transaction. Critical sec

therefore do not provide failure-atomicity. Critical sections are most commonly impleme

using a software construct known as alock. A lock is associated with a shared object and dete

mines whether the shared object is currently available. Nearly all architectures support instru

for implementing lock operations. Locks have become the synchronization mechanism of c

for programmers and are extensively used in various software such as operating systems, d

servers, and web servers.

Critical sections provide an intuitive interface for reasoning about data sharing because

trivially satisfy serializability. Today, critical sections are arguably the most popular abstractio

reasoning about correctness and coordinating sharing in multithreaded programs.

1.2  Multithreaded program aspects

Three important aspects of multithreaded programs are: 1) ease of writing a correct pro

2) performance of the program, and 3) stability of the program.
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1.2.1  Programmability

Programmability, i.e., the ability to write a correct program easily, is perhaps the determ

factor for wide-spread use of multithreaded programs [27]. Two common approaches to w

correct multithreaded programs easily are: a) conservative synchronization, and b) coarse

locking.

To ensure correct interaction of multiple threads while accessing data objects, program

can conservatively use a lock to protect the object even though at run time the interactions

not cause an incorrect execution for that particular instance. We call thisconservative synchroniza-

tion. When multiple locks are used in the program, they must be managed with care or else

lock and other related issues arise. A solution to this problem involves minimizing the numb

locks in the program. Thus, if a thread potentially accesses multiple data objects, one lock is

to protect these objects. This iscoarse-grain locking—a lock protects a large set of shared dat

even though only a small part of it may be accessed at any time.

While conservative synchronization and coarse-grain locking assist in writing correct

reliable programs quickly, they limit concurrency of the program—execution of threads acce

disjoint data sets protected by the same lock are unnecessarily serialized. Furthermore, loc

tention may limit scalability.Lock contentionoccurs when a requested lock is currently held b

another thread. Lock contention may not be a problem for a two processor system, bu

become a severe bottleneck for an eight processor system. Often, improving scalability requ

expensive process of code restructuring, debugging, and performance tuning. An example

linux kernel [13]. The initial versions used a single global lock protecting all shared data in the

nel. Uniprocessor versions were not affected by this but as linux became more widely us

larger systems, severe scalability issues were encountered.

1.2.2  Performance

To extract high performance, synchronization use must be optimized. To improve the

ability of the linux kernel, fine-grain locking was employed. In contrast to coarse-grain lo

where one lock protects a large data set, a fine-grain lock protects a smaller (finer granularity

set. Efforts in breaking down locks and employing fine-grain synchronization has led to num

subtle synchronization errors that are hard to find and debug. Another example where fine
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locking may actually be detrimental is a thread-safe hash-table. Given a good hashing fun

bucket conflicts between threads are rare but must be avoided for correct operation. Using a

lock makes programming easy because all access to hash tables is guaranteed to occur

tently. Obviously, this limits concurrency because threads accessing different buckets in the

table are unnecessarily serialized. However, adding fine-grain locks is not a simple solution.

ing locks to each bucket may increase the footprint of the hash table itself resulting in poor m

ory system behavior and this can be critical for very large hash tables. Further, if multiple bu

are accessed, managing multiple locks gets tricky resulting in a higher probability of dead

and broken code. If the hash table needs to be rehashed, all locks must be acquired with

avoid deadlocks and doing so is not an easy task.

Programmability and performance thus appear to be an either-or proposition. While cons

tive locking methodologies help in writing correct and reliable code, they severely limit per

mance. Extracting performance requires the error prone and difficult task of fine-tuning

locking methodology.

1.2.3  Stability

We define stability as the behavior of the program under unexpected conditions. If a thre

descheduled by the operating system or a thread terminates due to software or hardware err

application must be stable enough to allow other non-faulty threads to proceed. These non

threads can take corrective action if necessary and the system does not crash or encounter a

long delays. Using lock-based critical sections makes it exceedingly difficult to provide stab

The difficulty arises from the notion of a programmer-specified wait while some thread is in

critical section. A lock marked held forces other threads to wait for the lock to become free

thread is descheduled while holding a lock, other threads waiting for the lock cannot pro

because the lock is not free. This results in convoying. Convoying occurs when a convoy of

ing threads is formed and the lock for which these threads are waiting will not be available

while.This may result in a critical problem of priority inversion if one is not careful [104]. Furth

if a thread terminates due to an error while holding a lock, other threads waiting for the lock n

complete as the lock is never free again. The problem is catastrophic in a transaction oriente

ronment where threads are largely independent except while accessing some critical shared

tures. Data modified within the critical section are left in an inconsistent state resultin
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application failure. This occurs primarily because critical sections typically do not provide

ure-atomicity.

1.2.4  Limitations and solutions

In summary, using locks for coordinating access to shared data structures results in th

lowing key limitations:

1. Lock acquisitions limit performance. Memory system behavior for lock variables is often po

because multiple processors read and attempt to write the variable simultaneously but on

processor succeeds in the write operation. The coherence protocol serializes write acce

lock variables and transferring write permissions among various processors using the

coherence protocol is expensive and introduces long latencies. Locks also serialize execu

threads even if the threads access disjoint data sets.

2. Lock acquisitions limit stability. Threads wait for the lock value to change from a held state t

free state and this “wait” is a key reason for the lack of non-blocking and wait-free behavio

conventional lock implementations.

Current proposals for addressing the trade-off among various aspects can broadly be d

in two categories: lock-based and lock-free mechanisms.

The lock-based mechanism supporters believe lock-based critical sections are here t

because they are easy to use and supported widely. Thus, the performance of lock primitive

be improved to provide fast and efficient coordination among threads. The programmer ca

will decide how and when to use synchronization and has to reason about program correc

Often programmers must optimize synchronization by hand to achieve high performance

results in a complex trade-off between programmability and performance and does not addre

bility issues. Most work to-date has focused on overlapping computation with communic

latency of the lock and many modern processors now support this in a limited form by emplo

speculative execution.

The lock-free mechanisms use special data structures to address inherent limitations o

and attempt to address the trade-off between programmability and performance. Loc

schemes often optimistically provide concurrent data structure implementations without a c

section or a software wait on a lock variable. While these techniques help address the st
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aspect of programs, they often require more complex operations than critical sections. Pro

mers still have to reason about correctness in the presence of complex data structures and

proof techniques are often required for correct implementations in software. These techn

often also suffer from high software overhead and thus unfortunately aggravate the comp

performance trade-off. Lack of portability and generality, and often poor performance with res

to lock-based schemes have resulted in lock-free approaches not being popular.

1.3  Problem statement

In summary, while lock-based critical sections are easy to use for writing correct and por

code, lock-free approaches overcome the inherent limitations of locks by avoiding using l

Lock-based critical sections often outperform lock-free implementations but require careful

gramming methodologies for high performance. The three aspects—programmability, p

mance, and stability—appear to be at odds; with only one, or at-most two, being satisfie

current methodologies.

The natural question then is this:is it possible to maintain a lock-based critical section as th

programming model while transparently obtaining the benefits of lock-free approaches and ac

ing high-performance while doing so?

This dissertation answers the above question in the affirmative and for the first time s

how one can maintain a lock-based critical section as the programming model of choice an

modest hardware support for automatically achieving behavior of lock-free data structures

high performance. The dissertation demonstrates how to address the multithreaded pr

trade-offs dynamically and transparently.

1.4  Contributions

This dissertation provides the first solution that bridges the long-standing gap between

ing correct and stable multithreaded code and writing high-performance multithreaded code

underlying philosophy behind the solution lies in maintaining the current programming m

while transparently transforming the model in hardware to a concurrent one.
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1.4.1  Primary contributions

The thesis makes two primary contributions:

1. Speculative Lock Elision. Speculative Lock Elision (SLE) [139] for the first time demon

strates that it is possible to execute and commit concurrently, critical sections protected b

same lock without acquiring (or requiring exclusive permissions on) the lock if the critical

tion executions do not experience any data conflict. SLE is a microarchitectural techniq

remove dynamically unnecessary lock-induced serialization of threads. Synchroniz

instructions are dynamically predicted as being unnecessary for a particular dynamic exe

and elided. This allows multiple threads to concurrently execute critical sections protecte

the same lock and without any dependence on the lock. Misspeculation due to inter-threa

conflicts is detected using existing cache coherence mechanisms and a rollback mecha

used for recovery. Successful elision is validated and committed without acquiring the

SLE can be implemented entirely in the microarchitecture without instruction set suppor

without system-level modifications. It is transparent to programmers and requires modest

tional hardware support. SLE thus provides the mechanism to extract a lock-free exec

from a lock-based execution. However, SLE provides a lock-free execution only if data

flicts do not occur. In the presence of data conflicts, SLE may require a lock acquisition. S

lock-based critical sections do not provide failure-atomicity, SLE cannot provide full tran

tional semantics (serializability and failure atomicity) in the presence of data conflicts.

2. Transactional Lock Removal. Transactional Lock Removal [140] uses SLE as an enabl

mechanism but in addition provides a successful lock-free execution even in the presen

data conflicts if sufficient resources are available for buffering speculative state. TLR treats

ical sections as optimistic lock-free transactions. TLR elides locks using SLE to constru

optimistic lock-free transaction but in addition also uses a timestamp-based conflict reso

scheme to provide lock-free execution even in the presence of data conflicts. A single, glo

unique, timestamp is assigned to all memory requests generated for data within the opti

lock-free transaction. Existing cache coherence protocols are used to detect data conflicts

conflict, some threads may restart (employing hardware misspeculation recovery mecha

but the same timestamp determined at the beginning of the optimistic lock-free transact

used for subsequent re-executions until the transaction is successfully executed. A time
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update occurs only after a successful execution. Doing so guarantees each thread will e

ally win any conflict by virtue of having the earliest timestamp in the system and thus will s

ceed in executing its optimistic lock-free transaction. If the speculative data can be lo

buffered, all non-conflicting transactions proceed and complete concurrently without seria

tion or dependence on the lock. Transactions experiencing data conflicts are ordered w

interfering with non-conflicting transactions and without lock acquisitions.

Both SLE and TLR avoid writing to the lock variables. By not writing to the lock variable

both, the overhead of lock acquires and the wait for lock variables to change value, are elimi

We show in this thesis that TLR performs better than common lock-based algorithms even

presence of high lock contention and data conflicts.

Since SLE and TLR use hardware resources, they are applicable only if the data set ac

within the critical section can be locally cached. Other implementation specific constraints

exist and are discussed in later chapters. Importantly, if any situation arises where SLE and

cannot be applied, the lock can always be acquired normally and a correct execution is guara

In these cases, complete transactional semantics and starvation freedom cannot be p

because the execution falls back on the conventional lock acquire sequence.

Our techniques are different from earlier approaches in two significant ways.

1. Rather than change the programming model to obtain transactional semantics, we chan

hardware implementation to transparently provide such semantics. A transaction is sem

cally stronger than a critical section since it also provides failure atomicity. A critical sectio

treated as a transaction and optimistically executed without lock operations. The intuition

in treating locks as defining the scope of a transaction, using a conflict resolution sche

order conflicting transactions correctly, and using a technique to give the appearance

atomic commit of the transaction, such as is provided by SLE.

2. TLR uses a conflict resolution scheme to provide starvation freedom and thus can pr

wait-free execution of critical sections subject only to potential resource limitations.

SLE and TLR maintain the programming interface of a familiar lock-protected critical sec

and thus programmers do not have to learn new methods to write programs. Additionally, ex

legacy code using critical sections can directly benefit from our proposals. By treating critica

tions as lock-free optimistic transactions, inherent concurrency in the transactions is exposed

pendent of lock granularity. By using a fair conflict resolution scheme and providing suffic
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resources for buffering speculative updates, we guarantee high-performance lock-fre

wait-free executions of lock-based critical section.

Figure 1-1 shows how the two techniques fit together. Conceptually, SLE accepts as in

program that uses locks as a synchronization mechanism and transforms the execution d

cally and transparently into a lock-free execution. TLR takes the lock-free execution outp

SLE, or may take a pre-processed output from some other source with transactions already

fied, and provides a high-performance transactional lock-free execution.

Figure 1-1: Solution overview.Speculative Lock Elision (Chapter 3) and Transactional Loc
Removal (Chapter 4) form the core contributions of the thesis. While we target lock-based
grams, TLR can be used without SLE if the input program to TLR is already lock-free and
transactions are identified.

Speculative Lock Elision

Transactional Lock Removal

Lock-based program Pre-processed program

Transactional
lock-free execution

Chapter 3

Chapter 4

conditional wait-free behavior
non-blocking behavior
high performance

lock-free execution
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1.4.2  Other contributions

Some of the other contributions are:

1. First technique to achieve transparent lock-free execution of lock-based programs. This

how concurrency can be naturally exposed and exploited for improving performance.

2. First proposal for achieving wait-free execution of critical sections subject only to pote

resource limitations. This can allow programmers to write high-performance wait-free a

rithms using the basic mechanisms developed in this thesis as building blocks for wait-free

chronization.

3. A distributed lightweight deadlock avoidance protocol for concurrency control using a ge

cache coherence protocol.

4. Demonstrate a lock-free algorithm can outperform lock-based techniques using modest

ware support.

1.5  Evaluation

Two aspects form the evaluation.

1. Performance. We use detailed cycle-accurate architectural simulations and a set of micro

marks and benchmarks to study the performance of our proposals. We identify the cond

under which high performance is achieved and the conditions under which performance

may occur.

2. Implementation overhead. We estimate the additional hardware required to implement ou

posals. We do not provide a detailed implementation as it is highly dependent upon the un

ing microarchitecture and system architecture. We however outline and discuss the

mechanisms to help estimate the implementation overhead in a system independent ma

1.6  Organization

Chapter 2 provides background information and surveys relevant previous work. The ch

attempts to provide a common ground for understanding the thesis. It provides sufficient

ground for multiprocessor system issues such as memory consistency and cache cohere
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discusses speculative execution techniques in modern processors. We also discuss some

aspects of concurrency control, namely their safety and liveness properties. This discussion

vates our correctness arguments and the design of our techniques. Apart from background,

work is discussed. The discussion includes lock-based, lock-free, and wait-free synchroni

techniques and some work in database concurrency control.

Chapter 3 describes Speculative Lock Elision. We provide the key insight for eliding lo

and present the complete algorithm. We also present various implementation strategies for 

Chapter 4 presents Transactional Lock Removal. TLR is analogous to database concu

control. We identify certain implementation-independent invariants that allow TLR to be im

mented on systems. We also discuss the limitations of TLR and the stability and programma

aspects of TLR, specifically non-blocking behavior, wait-free behavior, and operating sys

interactions.

Chapter 5 and Chapter 6 focus on performance evaluation. Chapter 5 outlines the p

mance evaluation methodology, discusses the simulation infrastructure and presents the

microbenchmarks and benchmarks. Chapter 6 presents performance evaluation results f

SLE and TLR using microbenchmarks and benchmarks.

Chapter 7 summarizes the contributions of the dissertation and suggest future topic

research.
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Chapter 2

Background

This chapter provides the background for understanding the thesis and presents related

The chapter is divided into four main sections. Section 2.1 provides a background

shared-memory multiprocessing. Shared-memory systems are the target architecture for th

in this thesis. We focus on two important and relevant features of shared-memory system

memory consistency model and mechanisms for maintaining cache coherence.

Section 2.2 focuses on concurrency control mechanisms and synchronization techniqu

discuss techniques such as lock-based, lock-free, wait-free, and non-blocking synchronizatio

do not provide a comparison between prior work and the techniques proposed in this thesis

specific comparisons are left to the related work sections of each individual chapter.

Section 2.3 lays the foundations for reasoning about correctness of our techniques by di

ing safety and liveness properties.

The techniques proposed in this thesis use speculative execution as an enabling mec

and Section 2.4 presents a background on common speculative execution techniques in proc

2.1  Shared-memory multiprocessing

Multiprocessor architectures are increasingly becoming a viable and cost-effective tec

ogy even for small processor counts. Most multiprocessor systems are differentiated based

communication mechanism among different processors. Two popular classifications are

sage-Passing Architectures and Shared-Memory Architectures. In message-passing systems, ea

processor has a local memory accessible only by that processor, and communication amon

ous processors occurs through explicit messages. On the other hand, shared-memory s

make at least part of the memory accessible to all processors and thus allow processors to c

nicate directly through read and write operations to memory. This thesis is concerned
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shared-memory multiprocessor architectures. A typical shared-memory system is show

Figure 2-1.

Shared-memory architectures have emerged as the dominant class of systems today

due to the relative ease of writing shared-memory parallel programs [26, 47, 72, 105, 115, 1

compared to writing message-passing parallel programs.

Two important aspects of shared-memory systems related to the thesis arememory consis-

tencyandcache coherence. A memory consistency model is a conceptual model for semantic

memory operations that allow programmers to use shared memory correctly. Such a model

fies how memory behaves with respect to read and write operations from multiple proce

Cache coherence is one of the mechanisms required to implement a memory consistency m

systems that support caching of shared data at the processors. In the remainder of this sect

discuss memory consistency and cache coherence.

memorymemory

Interconnection network

L1 cache

Ln cache

Processor

L1 cache

Ln cache

Processor

L1 cache

Ln cache

Processor

Figure 2-1: A typical shared-memory multiprocessor.Each node consists of a processor, multi-
ple levels of caches, L1 through Ln, and inter-cache buffers. The interconnection network may b

an ordered broadcast network or an unordered network. The cache coherence protocol im
mented may be snoop-based or directory-based.

memory
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2.1.1  Memory consistency

From the programmer’s perspective, a memory model allows for correct reasoning a

memory operations in a program, and from a system designer’s perspective, the model sp

acceptable memory behavior for the system.

The program for each processor imposes a conceptual total order on the operations iss

the processor in a given execution. Theprogram orderis defined as a partial order on all memor

operations that is consistent with the per-processor total order on memory operations defin

each processor. An operation is consideredatomic if the operations appear to occur instanta

neously with respect to all processors.

An intuitive memory model is based on the sequential semantics of memory operatio

uniprocessors and viewing a multiprocessor as a multiprogrammed uniprocessor. Lampo

mally defined such a model assequential consistency[98]:

“...the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.”

Sequential consistency provides an interface that most people expect [69]. Figure 2-2 sh

conceptual representation of sequential consistency. Memory is shared among multiple proc

Each processor issues its memory operation in program order. Operations are serviced by m

one-at-a-time; thus they appear to occur atomically with respect to other memory operation

order of servicing of operations from different processors may be arbitrary thus leading to an

trary ordering of memory operations from different processors into a single sequential orde

execution of a program is sequentially consistent if there exists at least one execution on a s

tially consistent system that provides the same result.

Architectural and compiler innovations, such as write buffers and caching, have introd

complexity in supporting sequential consistency as a model of choice on shared-memory mu

cessors. These have led to extensive work in specifying, defining, and implementing various

ory consistency models on modern shared-memory multiprocessors [2, 3, 4, 44, 45, 46, 133

Relaxed memory models have been proposed to enable the use of more optimizatio

relaxing the limitations on the ordering of memory operations as imposed by strict memory
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els such as sequential consistency. While sequential consistency requires the illusion of pr

order and atomicity to be maintained for all operations, relaxed models allow certain me

operations to execute out of program order and/or non-atomically.

Categorization of various relaxed memory consistency models is based on two characte

[44]:

1. How the program order requirement is relaxed. This may involve the relaxation of the order o

a write to a following read, a read to a following read or write, and between two writes. H

the relaxation only applies to operation pairs to different addresses.

2. How the write atomicity requirement is relaxed. This is based on whether a read is allowed

return the value ofanotherprocessor’s write before the write is made visible to all other proc

sors. Here, the relaxation applies to operation pairs to the same address.

Since relaxed models allow reordering of memory operations, programmers are pro

with explicit mechanisms to prevent such reordering from occurring if so desired. Such me

nisms are generically referred to assafety netsfor a model [3]. Examples of such safety ne

include read-modify-write operations in TSO and PC [70, 166], MEMBARs in the ALPHA arc

tecture [28] and SYNC in the PowerPC [31]. In all cases, there is a single point (at least

where all preceding operations have been completed and no succeeding operations have be

cuted.

A tutorial on shared-memory models by Adve and Gharachorloo [3] and their respective

ses [2, 44] provide detailed background into various memory consistency models.

Figure 2-2: Conceptual view of sequential consistency.Each processor interacts with shared
memory through a single switch in a one-at-a-time fashion.

Memory

P0 P1 Pn-1
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2.1.2  Cache coherence protocols

Caching is a popular technique to reduce long latency memory operations and to re

memory bandwidth requirements—processors access the local cache for a fast path to com

accessed data. Caching shared data in shared-memory multiprocessor systems results in

copies in the system for a given memory location. Cache coherence is the mechanism to k

such copies up-to-date with respect to one another. Nearly all shared-memory systems toda

port some form of cache coherence. While memory consistency models issues exist even

absence of caches, cache coherence is a central component for correctly implementing m

consistency models on multiprocessor systems that cache shared data. This section pro

background into cache coherence protocols.

2.1.2.1  Aspects of cache coherence protocols

Two mechanisms of any cache coherence protocol are:

1. Mechanism for locating all cached copies of a memory location

2. Mechanism for keeping all cached copies of a memory location up-to-date

Two common schemes for locating all copies of a memory location are:snoop-basedand

directory-basedschemes. In a snoop-based scheme, the address of the memory location is

cast to all caches. In a directory-based scheme, a directory per memory location is maintain

identifies the list of copies. Snoop-based schemes are more popular than directory-based s

in commercial implementations. Two popular approaches distribute directories either with m

ory or with caches. Memory-based schemes store directory information for a cache block

home node of the block. Examples of memory-based directory protocol systems include th

Origin 2000 [105]. In cache-based schemes, most of the sharing information is distributed a

the various copies (rather than at the home node). Each cache block contains a pointer to th

that has the next cached copy of the block in a distributed linked-list organization. The home

still needs to know if the memory block is cached and where one copy is. The IEEE 1596-

Scalable Coherent Interface (SCI) standard indicates a full specification and C code for a sta

ized cache-based directory organization and protocol [72]. Commercial implementations o

SCI include the Sequent NUMAQ [115] and the Convex Exemplar X [21].
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A write operation must ensure all cached copies are kept up-to-date. This can be a

plished by either invalidating any stale copies or updating the cached copies to the newly w

value. Such an action is often accompanied by an acknowledgement response to signal com

of the action. Cache coherence protocols serialize the effect of simultaneous write operation

given memory location. If two processors simultaneously issue a write to the same location

different values, cache coherence ensures the two writes are observed in the same order by

cessors with the same value persisting at all copies.

In most invalidation-based cache coherence protocols, the cache hierarchy with the dirty

(modified with respect to memory) of the cache block is responsible for servicing read req

from other processors for either shared copies or exclusive copies of the cache block since th

in memory is stale. A cache hierarchy that does not have the cache block in dirty state do

need to respond. For such caches, an incoming read request is simply ignored and an inc

read-for-exclusive-ownership request is treated as an invalidate request.

2.1.2.2  Coherence granularity and false sharing

Most systems today support cache coherence mechanisms in hardware [26, 29, 47, 59,

105, 115, 132] and typically maintain coherence at the granularity of a cache block, specifica

the coherence granularity [49]. This thesis deals with hardware shared-memory cache coh

protocols and we only discuss hardware cache coherence here. Cache block fetches and in

tions are performed at the granularity of a cache block. While a larger granularity helps when

spatial locality in data accesses is present, poor spatial locality may result in a performance

dation due tofalse sharing. Goodman and Woest [51] were the first to define false sharing as a

uation when two processors alternately read or write different parts of the same coherency

resulting in the block’s being moved repeatedly between the two processors as if the data

shared when in fact no sharing is occurring.

2.1.2.3  Correctness issues for cache coherence protocols

Gharachorloo [44] formalized three correctness conditions for implementing coherence

tocols and we restate them here. The three conditions that must be satisfied by the cache co

protocol for a correct implementation are:
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1. Termination condition for writes.Every write issued by a processor is eventually complet

with respect to all processors.

2. Value condition for reads.For read and write operations to the same address, a read oper

by a processor Pi returns a value that satisfies the following conditions: a) If there is a w

operation issued by Pi that has not yet completed with respect to Pi before the read completes

then the value returned by the read must be from the last such write that has been issuedi;

b) Otherwise, the value returned by the read must be from the latest write (from any proce

that has completed with respect to Pi before the read completes; c) If there are no writes th

satisfy either of the above two categories, then the read must return the initial value of the

tion.

3. Coherence requirement for writes.Writes to the same address complete in the same order w

respect to every processor.

In later chapters we show how our proposals do not change these underlying mechanis

cache coherence and thus maintain the correctness conditions for cache coherence protoco

2.1.2.4  Cache coherence protocol mechanisms

Sweazey and Smith [160] proposed theModified, Owned, Exclusive, Shared, and Invalid

(MOESI) classification of cache coherence protocols based on the stable states of a cache b

cache block in stable state has valid data and the block is not waiting for any state transit

occur. Many cache coherence protocols can be represented as a subset of the five-state

protocols. The five states are defined as follows: Modified—the block is dirty (memory is s

and exclusively owned by the cache; Owned—the block is dirty (memory is stale), the blo

possibly shared among multiple caches, and this cache is responsible for ensuring memory

up-to-date; Exclusive—the block is clean (memory is up-to-date) and exclusively owned b

cache; Shared—the block is clean (memory is up-to-date) and the block is possibly shared a

multiple caches; Invalid—the block is not present in the cache.

While cache coherence protocols are referred to by their stable states, implementing hig

formance cache coherence protocols often requires additional states, also known as trans

pending states. This is because a non-zero time may exist between the request initiatio

request completion phases of a memory operation during which other operations may b



35

at the

request

mains

ending

vide an

con-

n two

o-

at

ons—a

ions to

lexity

gical

gressive

ring is

Giga-

ploy

shared

wned

pport

ponses

d hard-

-based
formed. A cache block makes a transition out of the stable state (one of the MOESI states)

request initiation phase and makes another transition into a stable state at the end of the

completion phase (which may involve the completion of a data transfer). The cache block re

in a pending state between the two phases and may transition to multiple subsequent p

states depending upon the coherence events occurring. Hennessy and Patterson [62] pro

example demonstrating the complications introduced by the addition of pending states to a

ventional cache coherence protocol.

We briefly discuss some common cache coherence protocol mechanisms. We focus o

common classes of multiprocessors: snoop-based and directory-based.

Snoop-based systems typically rely on alogical busto propagate address requests to all pr

cessors simultaneously. A common design is asplit-transactionbus where address requests th

require a response (typically a data response) are split into two independent sub transacti

request transaction and a response transaction. Buffering is used to allow multiple transact

be outstanding on the bus waiting for responses from the controllers. While this adds comp

to the design, the bus is more effectively utilized.

The design space for such split-transaction logical buses is large. While conventional lo

buses have been implemented as actual “physical buses”, modern systems adopt an ag

approach. The logical bus is often organized as a complex interconnect and a logical orde

emulated on the interconnect. Examples include commercial systems such as the Sun

plane-XB [26].

Next we discuss two protocols: the Sun Gigaplane and the SGI Origin 2000. Since we em

the cache coherence protocol in this thesis to track shared data and track write operations to

data, we focus on how write operations are serialized and how requests to exclusively-o

cache blocks are handled.

Sun Gigaplane. The Sun Gigaplane uses a split-transaction, pipelined address bus with su

for a large number of outstanding transactions and out-of-order responses (the data res

return in any order irrespective of the order in which the address requests were generated an

ware is used to match up the requests appropriately). The bus implements an invalidation



36

aches

te (as

essor’s

dress

r is

quest is

a

st on

rency

on

ite

cy net-

d fast

same

uffer-

in a

arlier.
E states
three-state (Owned1, Shared, Invalid) snooping cache coherence protocol and the coherent c

implement the five-state MOESI protocol. The cache with the requested block in Owned sta

seen by the bus) will respond to the next request for that block.

An interesting aspect of the protocol is the wayinterventionsare handled. An intervention

occurs when a processor issues a request for a cache block that is currently in another proc

cache. Consider the case where processors issue read-for-exclusive-ownership (rd_X ) requests in

sequence. Anrd_X request gets the cache block in an exclusively-owned state. Assume ad

block A resides in memory and is not cached by any processor. Assume processors P0,..., Pn-1. P0

issues ard_X request for the blockA. The request misses in the local cache, a pending buffe

allocated to record the request, and the request is sent to the memory system. When this re

serialized by the coherence protocol, i.e., all processors areassumedto have seen the request in

given order, P0 gains exclusive ownership of the block. The memory, on observing the reque

the coherency network, initiates a data transfer. Now, P1 issues ard_X request for the same block

A and this request is serialized by the coherency network after P0’s request but before the data

transfer for blockA from memory to P0’s cache completes. Since P0 owns the blockA, P0 receives

P1’s request. However, P0 does not have the corresponding data yet. P0 buffers P1’s request locally.

Now, since P1’s rd_X has been serialized, P1 owns the block. However, P0 itself does not have the

data yet. Now, if P2 also issues anrd_X for block A, P1 will respond to P2. Thus, a chain of

requests is automatically formed according to the order of request-serialization in the cohe

network. At some time later, P0 receives the data block from memory, performs its operations

the block, and then services P1’s buffered request. P1 does the same and so on—the actual wr

operations on the cache block lag the time at which the request is serialized at the coheren

work and the requests are serviced in the form of a queue. This results in an efficient an

cache-to-cache transfer when multiple writes appear on the coherency network for the

address.

We shall see in the next protocol discussion an alternative approach where rather than b

ing requests for cache blocks in a valid state but currently without valid data (i.e., the block is

1. The Owned state here is different from the Owned state of the MOESI classification discussed e
Here, the Owned state determines which processor responds with the data and subsumes the MO
of the MOESI classification.
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pending state), a negative acknowledgement is sent and the requestor is asked to retry at

time.

SGI Origin 2000. The SGI Origin 2000 protocol supports the MESI (Modified, Exclusiv

Shared, Invalid) states and is non-blocking: memory does not buffer requests while waitin

other messages to arrive. The protocol supports request forwarding for interventions. The pr

does not rely on an ordered network. Only two virtual channels are provided and deadlock

request network (due to request forwarding) is broken by the use of backoff messages. Det

the SGI Origin 2000 protocol can be found elsewhere [34, 105].

In the protocol, memory is the owner for all clean cache blocks in the system: thus

request for clean data is immediately serviced by memory. In addition, for read-for-exclusive-

ership requests, ownership is transferred to the requestor and invalidates are sent to other

copies. The cached copies subsequently send invalidate acknowledgements to the requesto

Requests to a cache block not owned by memory are forwarded to the owner and in th

of a read-for-exclusive-ownership request, the requestor becomes the owner. The directory g

a pending busy state for that cache block until a revision message is received from the pr

owner. All requests received by the directory while in busy state are NACKed (a negative ackn

edgement is sent to the requestor) and asked to retry at a later time. On receipt of a revisio

sage, a transition to a stable state occurs. A processor receives only one intervention reque

given block at any time.

The SCI protocol [72] and newer directory protocols such as the Alpha server GS320

support the non-nack-based approach similar to the Sun Gigaplane protocol discussed abo

form chains of requestors.

2.2  Synchronization techniques and concurrency control

Concurrency control[16] is the activity of coordinating concurrent access to a shared obj

i.e., of controlling the relative order of conflicting operations from different threads.Synchroniza-

tion technique[16] is the algorithm to perform such concurrency control.

We start by discussing the classic mutual exclusion problem in Section 2.2.1. In Section

and Section 2.2.3 we discuss relevant research in the area of lock-based, lock-free, and w

synchronization. Much of this discussion focuses on shared-memory multiprocessors. Th
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Section 2.2.4 we discuss database concurrency control as we borrow some of its concepts

work.

2.2.1  Mutual exclusion problem

The mutual exclusion problem is as follows. There is a collection of asynchronous proce

each alternately executing a critical and a non-critical section. These processes must be sy

nized so that no two processes ever execute their critical sections concurrently. The mutual

sion problem was first described and solved by Dijsktra [36].

Since mutual exclusion is an intuitive model for reasoning about concurrency, it is the

popular way to coordinate correct access to shared data and has been extensively studied

years.

Almost all formal models of concurrent processing are based on the underlying assumpt

mutually exclusive atomic operations. Lamport however demonstrated that atomic read

writes can be implemented from non-atomic reads and writes without mutual exclusion [94,

101].

Mutual exclusion has similarities to concurrency control techniques. Discussion rega

differences between mutual exclusion and concurrency control can be found elsewhere [25

Lamport et al. recently introduced the notion of virtual mutual exclusion [103]. With virt

mutual exclusion, operations are executed in a way that makes it appear as if one critical s

precedes another. If only memory accesses are performed during critical sections, then

mutual exclusion is sufficient to achieve mutually exclusive access. However, if I/O operation

also performed during the critical section, then it can be shown that true mutual exclusi

needed. Thus, in the absence of any I/O operations, critical sections may concurrently exec

long as they appear to execute as if one critical section precedes another.

2.2.2  Lock-based synchronization

Lock-based synchronization techniques rely on the use of a software variable, called a

to guard entry into a critical region of code, known as a critical section. The lock ensures onl

thread is in the critical section at any time and access to shared data occurs within the critic
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tion. Lock-based techniques typically imply mutual exclusion—no two processes ever ex

their critical sections concurrently.2

A lock is a software construct associated with a shared object and determines wheth

shared object is currently available. Once a process acquires a lock, no other process will be

do so until the current lock holder releases the lock.3 The process wishing to perform the critica

section must acquire the corresponding lock first, which, once granted, guarantees its c

owner that no other process will access the locations accessed in the critical section. When th

owner completes its critical section, it releases the lock, allowing other processes to obser

updates performed by the now committed critical section.

2.2.2.1  Locking primitives

Lock-based synchronization has been extensively studied. The first synchronization prim

was test&set supported in the IBM System/360 series [7]. Test&set performs an atomic swa

location in memory. Test&set performs well in the absence of contention but is quite ineffic

under heavy load. Test&set can generate a large amount of traffic on the interconnection ne

Rudolph and Segal proposed test&test&set [145] which reduces load on the network by h

waiting processors spin on a local copy of the lock. This mechanism increases traffic for u

tended locks in exchange for reducing it when the locks are contended. The traffic can still be

stantial in the presence of lock contention.

Queue-based locking primitives attempt to minimize the number of network transac

required to acquire and release a lock to a constant factor. These primitives maintain a qu

waiting processors in which each node typically maintains pointers to adjacent processors

queue. Network traffic is minimized by performing arbitration for access to a critical section a

time of the lock request, by allowing processors to locally spin waiting for a lock, and by limi

the number of nodes involved in the actual lock transfer.

2. Variations such as read locks have also been proposed and these are useful when one has multiple
concurrently accessing the shared object.

3. Possibly, a process other than the lock holder may also release the lock by simply writing the vari
Lock acquire and release operations are merely software conventions and thus must be used with
because they rely on the programmer’s involvement for providing an execution free of data races.
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Goodman et al. proposed the first queue-based locking primitive, known

Queue-On-Lock-Bit (QOLB) [50].4 QOLB maintains the queue of waiting processors in har

ware, storing pointers to adjacent queue entries in the fields associated with each cache

When a processor requests a lock, it first allocates a cache block and then sends a reques

the queue. The processor waits for the lock by spinning locally until the cache block contains

data sent from the previous lock owner. When the holder releases the lock, it sends the corre

ing cache block directly to the next processor, thus transferring the lock in exactly one net

message.

Following the QOLB proposal, the Stanford DASH prototype implemented a variant of

queue-based synchronization primitive [110]. Unlike QOLB, their proposal stored the queue

directory rather than the caches. Doing so introduced an indirection in transferring locks—the

can no longer be transferred directly from the releaser to the next waiter; instead the lock m

through the directory. Lee and Ramachandran proposed an extension to QOLB with supp

read locks [107]. Recently, Rajwar et al. proposed Implicit QOLB (IQOLB) [141]. IQOLB is

hardware technique that transparently converts the test&set-based locking primitive to a har

queue-based lock using modest extensions to the cache coherence protocol. Unlike Q

IQOLB does not require any instruction set support nor does it require any software change

Software queue-based locking schemes were proposed by Anderson [9, 10] and Graun

Thakkar [55]. Mellor-Crummey and Scott proposed MCS, an improvement to Anderson’s a

rithm. The MCS scheme [120, 121] is a software-based queued lock scheme. MCS adds req

for a held lock into a software queue at the time of the request, using atomic operations su

swap and compare&swap to update the list. Arbitration for the eventual recipient of the lo

therefore performed in advance, first-come, first-served. Extensions to the above technique

been proposed [33, 116].

Maintaining the requester queue in software has large overhead, especially in the abse

contention. When a lock is released, however, communication occurs only between the re

and the requester at the head of the queue. Network traffic is thus reduced to a constant num

network traversals per synchronization access. In addition, each processor waiting for the

spins locally on distinct memory addresses (instead of a single address as with test&test

4. QOLB was initially called QOSB (Queue-On-Synch-Bit).
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which further reduces the load on the network. Each processor in the queue maintains a poi

the address on which the next processor in the queue spins. When the current lock holder

the critical section, it simply clears the value pointed to by the address it maintains.

Lim and Agarwal proposed reactive synchronization, a technique that attempts to sele

software primitive best suited for a given level of lock contention [113].

Woest and Goodman [168] present a quantitative and qualitative comparison of test

MCS, and QOLB. Kägi et al. [81] were the first to perform a comprehensive performance com

ison of various popular synchronization algorithms. The study concluded that for the set of b

marks used, QOLB consistently performed the best among known synchronization primitive

In addition to the synchronization primitives, additional mechanisms have been propos

reduce the overhead of synchronization operations. Software techniques in the form of collo

[19, 50] and fuzzy acquires [133] and hardware techniques in the form of speculative exec

[45] have been proposed to overlap the transfer of lock and data.

2.2.2.2  Limitations of locking primitives

We discussed the limitations of locking primitives earlier in Section 1.2 and we summa

them again here. Lock-based synchronization techniques suffer from a lack of stability due

inherent limitation of their conventional implementation. The limitation of the locking constr

stems from the notion of the programmer-specified wait while some thread is in the critical

tion. A lock marked as held forces other threads to wait for the lock value to be free. This lim

tion manifests itself in two potentially catastrophic ways:

1. Poor system wide interactions with thread scheduling.If a thread holding a lock is deschedule

by the operating system, other threads waiting for the lock cannot proceed because the

not free. In a high concurrency environment, all threads may wait until the descheduled t

runs again. This results in convoying (a convoy of waiting threads is formed) and may res

a deadlier problem of priority inversion (no thread may ever proceed). This is known as

blocking problem where one thread blocks other threads from running.

2. Fault-tolerance limitations. If a thread holding a lock terminates due to a fault, other threa

waiting for the lock never complete as the lock is never free again. This problem is catastr

in a transaction oriented environment where threads are largely independent except
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accessing some critical shared structures. Data modified within the critical section is left

inconsistent state resulting in application failure.

Locking algorithms can be modified to address these limitations but require significant e

and creativity from the programmer. Software proposals have been made to make lock-base

cal sections non-blocking [163] and thread scheduling that is aware of blocking locks [87,

Bohannon et al. present a recovery strategy to allow a system to recover from a lock held by

cess believed to have failed [20].

Locks also restrict parallelism: two operations on the same object cannot execute in pa

even if they access disjoint parts of the object. In some cases, this problem can be addres

using finer granularity locks. By using several locks per object, operations that access disjoin

of the object can execute in parallel. Unfortunately, such an approach requires dynamic inf

tion about the operations at the time of writing the program and is error-prone because of co

reasoning required on the part of the programmer.

2.2.3  Lock-free and wait-free synchronization

Lock-free synchronization was proposed as an alternative to lock-based synchronizat

overcome the limitations of lock-based techniques. Lock-free synchronization techniques c

nate correct access to shared resources without relying on mutual exclusion and thus access

resources without employing a critical section. However, they rely on mechanisms other than

to guarantee a correct execution.

Lock-free synchronization is a loosely used term referring to the absence of locking se

tics. Two formally defined terms are non-blocking and wait-free synchronization and are

commonly used when referring to concurrent object operations.

A synchronization technique isnon-blockingif some process will complete an operation in

finite number of steps, regardless of the relative execution speeds of the processes [64

non-blocking condition guarantees the system as a whole makes progress despite individu

ing failures or delays.

A synchronization technique iswait-freeif any process can complete any operation in a fin

number of steps, regardless of the execution speeds of other processes [64]. Wait freedo

starvation freedom, even in the presence of failures, to the non-blocking condition. The termwait
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freedomimplies “not waiting forever.” It does not imply the processes never wait—processes

have to wait for a finite time—but they never wait for a process that has failed and aborted.

We briefly discuss key work in lock-free and wait-free techniques. As we shall see, t

techniques suffer from difficulty of use and often poor performance.

2.2.3.1  Lock-free and wait-free techniques

Lamport introduced lock-free synchronization to allow multiple threads to work on a d

structure concurrently without a lock [95]. In Lamport’s lock-free read/write buffer, the buffer c

sists of a sequence of digits which are read and written atomically. Only one writer is assum

there is no need to consider concurrent write operations. The writer may interfere with concu

read operations. If a read operation is interfered with, then it must be retried. Repeated retrie

be needed before a read can successfully complete. Two version numbersV1andV2are associated

with the buffer. These version numbers allow readers to detect when interference has occurr

perform a write operation, the writer incrementsV1, writes the buffer, and then incrementsV2. To

perform a read operation, a reader readsV2, reads the buffer, and then readsV1. If the values read

from V1 andV2 are identical, then a consistent value was read from the buffer. The order in w

the sequence numbers and the buffer are read is the opposite of the order in which they wer

ten. The version number themselves are multi-digit numbers with each digit written and re

opposite directions.

The above algorithm is optimistic in nature; in other words, a failed read operation re

until successful. As mentioned earlier, Lamport demonstrated that, in a sequentially cons

memory, atomic reads and writes can be implemented from non atomic reads and writes w

mutual exclusion [94, 100, 101]. Since then, extensive research has been conducted in loc

and wait-free synchronization [8, 11, 17, 58, 63, 64, 65, 66, 75, 78, 119, 126, 127, 128, 138

158, 164].

Lock-free and wait-free operation implementations consist of code that typically exec

multiple atomic statements and does not involve mutual exclusion. The correctness conditio

lock-free and wait-free implementations are necessarily more complicated than for mutual-e

sion-based implementations. To reason about correctness of concurrent objects,Linearizability

was proposed as a correctness condition [68]. Each operation is “invoked” in an “interval” of t

Since concurrent invocation of operations is possible by multiple processes, such interval
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overlap. Thus, for a correct execution of a series of invocations, each invocation on an objec

appear to the invoking process to be executed instantaneously at some distinct point duri

invocation’s interval.

Relevant here is the notion of a universal synchronization primitive. An object isuniversalif

it can be used as a building block to provide a wait-free implementation of any other object.

lihy drew the link between universality and the consensus problem5 [136] and proved that any

object with a consensus numbern is universal in a system of at mostn processors [63]. He further

showed that compare&swap and load-linked/store-conditional are both universal if one ass

unbounded memory (these primitives are discussed later). Plotkin proposed a sticky b

showed it to be universal even with bounded memory [138].

Until the late 1980s, most architectures did not have support for universal synchroniz

primitives. To implement such primitives, Bershad proposed an efficient software-only mecha

[17] and restartable atomic sequences [18]. Both techniques assume that the operating sy

aware of any long delay a process may encounter. The operating system can thus restart an

action that experiences the delay before the operation completes. A lock can be implemente

out a universal synchronization primitive and protects the sequence. Waiting processors s

the lock before performing the operation. The time the lock is held is bounded because the o

ing system releases the lock if the process is delayed. The operation is atomic with respect

cesses on the same processor since the operating system will restart the sequence if pre

The operation is atomic with respect to processes on other processors because it is protect

lock.

While substantial research has been conducted in lock-free and wait-free synchroniz

such techniques are quite difficult to design and verify as correct [64, 126]. To allow the

development of correct concurrent objects, Herlihy proposeduniversal constructions[63]. A uni-

versal construction takes as input a sequential implementation of an object and produ

lock-free or wait-free implementation of the given object.

While practical universal constructions have been proposed, these implementations still

from significant time and space overhead and complexity of reasoning about correctness. He

constructions [64, 65] required copying of the entire shared object, sometimes multiple times

5. The consensus problem involves an asynchronous system of processes, some of which may be un
The problem is for the reliable processes to agree on a binary value.
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space and time overhead for performing and maintaining the copies is quite large for large ob

While optimizations have been proposed for reducing this overhead, the process of doing

quite complex. Further, concurrent access to the object is not allowed. Barnes presented a

nism allowing concurrent access to the object [11]. The proposal required the object be pro

by a number of locks. Operations on the object acquire locks associated with relevant parts

object in such a way that processes can “help” each other to perform operations and release

Barnes’ technique is not wait-free. Since locks are used, the programmer must still deal with

currency. Another drawback is the presence of “useless helping”. If a processp that is helping

another processq encounters a lock that is held by a third processr, thenp must helpr before help-

ing q. This gives rise to long chains of useless helping.

Moir [126] extended Herlihy’s universal constructions and developed more efficient unive

constructions. Recently, Moir proposed the use of a lock-free multi-word compare-and-

(MWCAS) operation for efficient support for software wait-free transactions [127]. Israeli

Rappoport proposed lock-free constructions for multi-word synchronization primitives [76].

The compare&swap (CAS) was introduced in the IBM System/370 architecture [24] an

supported in some current architectures [166]. A CAS operation atomically swaps the valu

memory location with that of a register subject to a comparison.

The load-linked/store-conditional instructions (LL/SC), originally proposed by Jensen e

[78] have emerged as popular primitives for lock-free read-modify-write operations on a s

word. These instructions expose the steps involved in performing an atomic read-modify-

operation to the programmer and normally rely on the cache coherence mechanism to ensu

rectness. The load-linked (LL) instruction loads a memory location into a processor register

is followed by an arbitrary sequence of operations involving the register. The second sp

instruction in the pair, store-conditional (SC), attempts to write to the same memory location a

previous LL instruction. The store-conditional will succeed only if the hardware can guarantee

no other processor has successfully written to the memory location since the previous LL in

tion was executed. The success of an SC instruction implies that a read-modify-write sequen

occurred atomically, completing at the time of the SC. In the case of a failure, the entire seq

may be retried.

The LL/SC paradigm has been adapted for several architectures, including Alpha [28], M

[54], and IBM PowerPC [31] and is also known as load-locked/store-conditional
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load-with-reservation/store-conditional in various architectures. In various implementations,

flag and registers are used to store the load-link information. A register typically stores the p

cal address to which the LL was issued. The link flag is set when the LL is issued. The succ

an SC can only be determined at the point of coherency, that is, at the time a write operation

performed on the designated memory location. If, at that point, the link flag was still set, an

incoming invalidate to the address in the locked physical address register is encountere

store-conditional can successfully complete. Implementations differ among architectures

implementation details vary considerably depending on the type of coherence mechanism

vided. In either snoop-based or directory-based implementations, a store-conditional is treat

ferently from a traditional write operation, because the write of the store-conditional may or

not be completed on a given execution, and because the success of the operation must be r

back for testing by the processor.

While the basic concept is elegant and simple, in theory permitting the implementatio

arbitrarily complex synchronization primitives, in practice it is difficult to design a system that

reliably guarantee success of the sequence. Two obvious problems that must be accomm

demonstrate the difficulty: (1) A memory conflict that forces the cache block containing the

able to be evicted. This problem could be dealt with in a variety of ways, but the simplest is to

hibit memory operations that might cause such an eviction; (2) An intervening page fault or

interrupt that may result in a large delay between the LL and SC. It is difficult to account fo

possible actions that might occur before the following SC is executed, and a simple implem

tion will simply reset the link flag upon encountering most or all types of traps. Because of

considerations, each architecture provides a set of guidelines or requirements to increase th

hood of success, but even with such constraints, guarantees of success are very carefully w

For example, according to the Alpha Architecture Handbook [28], a write of a different word

the sameblock(the size of a block being an implementation-dependent constant of some pow

two, being no smaller than a cache block, and no larger than a page) as the target addre

cause the SC to fail. In addition, numerous system calls or traps will cause the link flag to be

Other restrictions apply as well, with the handbook indicating that “no useful program shoul

this” because a sequence may always fail for some implementations. Such restrictions inclu

that there be no instructions that access memory between the LL and SC instructions, (2) tha

be no taken branches between the immediately preceding LL and SC instructions (the pro
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may execute multiple LL instructions before it attempts the SC), and (3) that a “large numbe

instructions not be executed between the LL and SC. The term “large number” is not defin

though the specification does require a minimum number of instructions every implement

must execute between timer resets.

The requirements are similar in other architectures and implementations. A requirement

implementations we have studied is that an LL instruction on one processor must not affec

architecturally visible state on another processor, and in particular cannot cause a SC on a

processor to fail. This restriction is necessary to make possible forward progress claims, t

great care is necessary in the design of the inter-processor communication mechanism to p

starvation of processor nodes relying on LL/SC for fairness.

The load-linked/store-conditional primitives were later extended by Herlihy and Moss

and Stone et al. [158].

Herlihy and Moss proposed Transactional Memory [66]—a hardware mechanism that a

programmers to write transactions that execute atomically or fail without updating memory

thus implement lock-free data structures. Transactional Memory requires six new instruction

programmers to use and uses an extra cache called the transactional cache to buffer op

updates. Transactional Memory supports arbitrary read-modify-write operations and the size

operations is limited only by the processor’s transactional cache. The basic insight behind Tra

tional Memory is that invalidation-based cache coherence protocols can be used to detect tr

tion conflicts. By using the existing cache coherence protocol, atomic transactions ca

supported cheaply. Transactional Memory still requires programmers to reason about corre

of lock-free algorithms. The evaluation results showed that Transactional Memory outperf

locking implementations for all their benchmarks. Transactional memory relies on expone

backoff to provide forward progress and thus is strictly not non-blocking.

Stone et al. proposed Oklahoma Update [158], which exploits the existing cache cohe

protocol in the same fashion as Transactional Memory. The Oklahoma Update adds a set of

reservation registers to each processor and uses the concepts of transactional loads and

Transactional loads are like normal loads except they also update the reservation registers.

actional stores do not update memory and only update the reservation registers. At comm

Oklahoma Update resorts to a two-phase commit protocol. In the first phase, the precommit

addresses are sorted in ascending order, are checked for validity, and exclusive ownership
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appropriate addresses is requested. If any reservation is invalid, or the exclusive ownership r

fails, the transaction aborts and restarts. During the precommit phase, all external own

requests for addresses lower than the currently active address are deferred until after commi

precommit phase is successful, the commit phase atomically updates all modified shared va

by writing the data in the registers to the cache. During the commit phase, all external reque

deferred. They do not provide any simulation numbers. While the Oklahoma Update is non-b

ing, it is not wait-free.

Shavit and Touitou proposed Software Transactional Memory [149], a purely software im

mentation of Transactional Memory. Their scheme as presented does not support dynamic tr

tions (i.e., if the set of locations accessed by the transaction are not known at the start

transaction). Software transactional memory is lock-free but not wait-free.

Object specific lock-free implementations have also been proposed. Such implement

take advantage of the semantics of the object under consideration to improve performance.

techniques also suffer from the complexity of reasoning about correctness. Some techniqu

instructions stronger than normal reads and writes. Various concurrent queue implementatio

relying on mutual exclusion fall in this category [67, 75, 99, 122, 167]. Valois proposed lock

implementations of common data structures such as queues, trees, and lists [164, 165]. M

and Pu implemented an operating system using only lock-free synchronization techniques [

The terms non-blocking synchronization and lock-free synchronization have been used

changeably. A lock-based synchronization primitive can be made non-blocking with some e

However, locking algorithms, implemented conventionally, are blocking. On the other hand

lock-free and wait-free techniques are, by definition, non-blocking. The most effective us

non-blocking synchronization has been in the area of data-structure-specific algorithms. G

wald provides an extensive discussion of non-blocking synchronization techniques in his

[58].

2.2.3.2  Limitations of lock-free and wait-free techniques

Lock-free and wait-free techniques often require more complex operations than critica

tions and rely on programmers to write appropriate code. Programmers have to reason abo

rectness in the presence of complex data structures. These alternatives commonly suffe

difficulty of use, complex programming methodologies, and often high software overheads
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aggravating the trade-off between complexity and performance. These techniques have

shown to perform poorly with respect to lock-based schemes in the absence of failures and

[5, 17] primarily due to excessive data copying to allow rollback.

While substantial theoretical and practical research has been conducted in making loc

and wait-free techniques more efficient, a performance gap nevertheless remains and ne

proposals have required programmers to reason about correctness of the algorithms. Suc

niques are quite difficult to design and verify as correct. Most software, such as database s

web servers, and virtual machines, still rely on the intuitive parallel correctness reasoning mo

mutual exclusion and lock-based synchronization.

2.2.4  Database concurrency control

Extensive research has been conducted in databases on concurrency control and Tho

[161] provides a good summary and further references. Bernstein and Goodman present an

sive discussion of concurrency control mechanisms in distributed database systems [16]. Bo

Papadimitriou [135] and Bernstein, Hadzilacos, and Goodman [15] cover the topic of concur

control in detail.

Optimistic Concurrency Control (OCC) was proposed by Kung and Robinson [90] a

alternative to locking in database systems. OCC involves a read phase where objects are a

(with possible updates to a private copy of these objects) followed by a serialized validation p

to check for data conflicts (read/write conflicts with other transactions). This is followed by

write phase if the validation is successful.

In spite of extensive research, there are no commercially successful database systems

OCC as a concurrency control mechanism.6 Haerder [60] was the first to point out potential prob

lems with OCC schemes. An excellent discussion regarding the issues involved with

approaches and their shortcomings which make OCC unattractive for high-performance da

systems is provided by Mohan [124]. Special requirements of and guarantees required by da

systems, specifically for storage management, access path maintenance, recovery m

fine-granularity conflict checking, fine-grain locking and semantically-rich lock modes [1

6. Some objected-oriented database systems (such as Ontos) used to provide options for specifying
tic concurrency control or locking as the concurrency control mechanism but these systems have no
successful [130]. OCC in relational vendors is summarized elsewhere [142].
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make OCC hard to use for high performance. To provide these guarantees, substantial stat

mation must be stored in software resulting in large overheads in executing transactions. In

tion, with OCC, the validation phase is often serialized, thus limiting performance.

2.3  Safety and liveness in concurrency control algorithms

Safety and liveness were first described by Lamport [96]. We consider two properties u

safety: serializability and deadlock freedom. In later chapters, we will construct arguments to

why TLR provides a correct execution. We also discuss liveness and show how to provide a

of fairness.

2.3.1  Safety

Lamport informally defined safety as “bad things do not happen” [96]. A safety property c

strains permitted actions, and therefore the allowed state changes of a program—actions a

rithm may do. In general, a safety specification may be any safety property which is one that

for an execution if and only if it holds for all finite initial segments of the execution. Mutual exc

sion, deadlock freedom, serializability, FIFO processing, and partial correctness are all s

properties. Two safety properties we are interested in are: serializability and freedom from

lock.

2.3.1.1  Serializability

Serializability is a correctness condition commonly assumed by database and distribute

tems.Serializability requires the result of executions of concurrent transactions to beas if there

were some global order in which these transactions had executed serially [39]. While simila

exist between serializability and sequential consistency, the two correctness conditions targ

ferent problem domains. By treating critical sections as transactions and thus constraining th

satisfy serializability conditions, we can transparently apply much of the theoretical work in tr

actions while allowing programmers to use critical sections as their model of choice for reas

about sharing. For our discussion, sequential consistency is orthogonal to serializability con

ations mainly because sequential consistency deals with ordering among individual memory

tions while serializability deals with ordering among multiple memory locations.
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Our solution, while maintaining the appropriate underlying memory consistency mode

specified by the system, also meets serializability as a correctness condition, thus achievi

semantics of critical sections without requiring explicit lock acquires. One can envisage cr

section executions that are not serializable (i.e., programs that have data race constructs in

that may nevertheless be correct in a given execution, but all serializable executions will pr

the functionality and semantics of critical sections.

Since we are treating critical sections as optimistic lock-free transactions, we are interes

serializability as a safety property. Let E denote an execution of transactions T1,..., Tn. E is a serial

execution if no transactions execute concurrently in E; i.e., each transaction is executed to co

tion before the next one begins. Every serial execution is defined to be correct because the p

ties of transactions imply that a serial execution terminates properly and preserves me

consistency. An execution is serializable if it is computationally equivalent to a serial execu

that is, if it produces the same output and has the same effect on the memory image as som

execution. Since serial executions are correct and every serializable execution is equivale

serial one, every serializable execution is also correct.

We reproduce two theorems provided by Bernstein [14] and Papadimitriou [134] to chara

ize serializable executions precisely. Much of the discussion in this section is taken from Bern

and Goodman [16] and provides a context for the discussion of correctness of our proposal

Theorem 1

Let T = {T1,..., Tm} be a set of transactions and let E be an execution of these transact

modeled by logs {L1,..., Lm}. E is serializable if there exists a total ordering of T such that ea

pair of conflicting operations Oi and Oj from distinct transactions Ti and Tj (respectively), Oi pre-

cedes Oj in any log L1,...,Lm if and only if Ti precedes Tj in the total ordering.

The order hypothesized by theorem 1 is called a serialization order. To attain serializa

all executions must satisfy the condition of theorem 1, namely, that conflicting reads and writ

processed in a certain relative order.

While theorem 1 treatsrw (read-write) andww (write-write) conflicts together under the gen

eral notion of conflicts, these two types of conflicts can be further distinguished. For each p

transactions, Ti and Tj,
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1. Τi →rw Tj if in some log of E, Ti reads some data item into which Tj subsequently writes

2. Τi →wr Tj if in some log of E, Ti writes to some data item that Tj subsequently reads

3. Τi →wwTj if in some log of E, Ti writes into some data item into which Tj subsequently writes

4. Τi →rwr Tj if Τi →rw Tj or Τi →wr Tj

5. Τi → Tj if Τi →rwr Tj or Τi →wwTj

Every conflict between operations in E is represented by an→ relationship. Therefore, theo-

rem 1 can be restated in terms of→. E is serializable if there is a total order of transactions tha

consistent with→, and this is possible only if→ is acyclic. Theorem 1 is restated below using th

→ relationship.

Theorem 2

Let →rwr and→wwbe associated with execution E. E is serializable if (a)→rwr and→wware

acyclic, and (b) there is a total ordering of the transactions consistent with all→rwr and all →ww

relationships.

While different techniques can be used to guarantee the acyclic nature of→ww and→rwr,

there must be one serial order consistent with all→ relations. Thus, to show any execution seria

izable, we only need to show the graph to be acyclic. We will use this property later whe

describe our mechanisms in detail.

Serializability vs. atomicity. Lamport discusses the relationship between serializability a

atomicity [102]. In the absence of failures that result in transaction aborts, atomicity and ser

ability can be considered equivalent. For example, while a semaphore operation is atomic, a

base transaction appears to be atomic and the atomicity of database operations is achieved

serializable execution order.

Examples of serializable and non-serializable schedules.An example of a serializable

schedule is shown in the left part of Figure 2-3. Two transactions T1 and T2 are shown acce

locationsA, B, andC. The two transactions do not conflict on any data access and thus can ex

concurrently. A non-serializable schedule occurs when two transactions access the same da
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one of the transactions is modifying the data item, and the execution does not correspond

serial execution. A serial execution requires T1 and T2 to appear to occur in some serial

However, in the right part of Figure 2-3, T1 writesA and readsB. In between the two actions, T2

readsA and writesB. Thus, there is a cycle in the dependence graph. Three general conflict s

tions are:

1. Write-read conflict. T2 reads something T1 wrote

2. Read-write conflict. T2 overwrites what T1 read and T1 reads it again

3. Write-write conflict. T2 overwrites what T1 wrote

All these conflict situations must be avoided or the execution must be ordered so that

transactions do not occur concurrently.

Figure 2-3: Serializable and non-serializable examples.“A”, “B”, and “C” are locations
accessed by the transactions. On the left, T1 and T2 do not depend on each other for the e
tion and can concurrently execute. On the right, T1’s output depends on T2 and T2’s ou
depends on T1. A cyclic dependence exists and these concurrent executions cannot be se
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2.3.1.2  Freedom from deadlock

A transaction typically achieves serializability by obtaining ownership of various data it

the transaction is accessing, and then executing to completion. If ownership cannot be acq

the transaction must wait until it can be acquired. In database systems, these ownersh

acquired via the use of locks. In the remainder of this section, we discuss common techniqu

which database systems avoid deadlock while acquiring locks.

If a lock is held by a thread, another thread may have to wait for the lock. Such waiting

unavailable locks may be uncontrolled, thus leading to deadlock. Thus, the second safety pr

we are interested in is deadlock freedom. Deadlock situations can be characterized bywaits-for

graphs [71]—directed graphs that indicate which transactions are waiting for which other tra

tions. Nodes of the graph represent transactions, and edges represent the “waiting for” re

ship: an edge is drawn from transaction Ti to transaction Tj if T i is waiting for a lock currently

owned by Tj. There is deadlock in the systemif and only if the waits-for graph contains a cycle

This is illustrated in Figure 2-4.

Deadlock detection and deadlock prevention are two common techniques available for

lock resolution. Deadlock detection allows deadlock to occur and the deadlocks are detecte

odically by explicitly constructing the waits-for graph and testing for cycles. If a cycle is fou

one transaction in the cycle is aborted thereby breaking the deadlock. Deadlock preventio

conservative scheme in which a transaction is restarted when a system thinks a deadloc

Figure 2-4: Deadlock with two transactions.Transactions T1 and T2 are part of a cycle in the
waits-for graph. T1 waits for T2 for B while holding A and T2 waits for T1 for A while holdin
B.

request/wait for A

request/wait for B

T1 holds A T2 holds BT1 T2
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occur. A watchdog timer is also commonly employed that detects deadlock with some false

tives.

Deadlock detection.The difficulty in implementing deadlock detection in a distributed syste

is in the efficient construction of the waits-for graph at a global level. This technique requires

odic transmission of local waits-for graph information to the deadlock detector sites in ord

construct a global picture of the waits-for graph and detect cycles.

Deadlock prevention.Consider two transactions Ti and Tj, and Ti requests a lock currently

owned by Tj. If Ti is restarted, the deadlock prevention algorithm is considered non-preemptiv

Tj is restarted, the algorithm is considered preemptive.

A common approach to deadlock prevention is to assign priorities to transactions. Again

sider two transactions Ti and Tj. Ti could wait for Tj if T i has a lower priority than Tj. This prevents

deadlock because for every edge (Ti, Tj) in the waits-for graph, Ti has a lower priority than Tj.

Since Ti cannot have a lower priority than itself, no cycle can exist.

Assigning static priorities can lead to cyclic restarts—a transaction may continually re

without ever completing. Rosenkrantz et al. [144] proposed using timestamps as priorities.

transaction is assigned a unique timestamp. The timestamp consists of the local clock

appended with a unique identifier to the lower order bits. A new timestamp is not assigned un

next clock tick. Timestamps are unique across the system and the clocks at different sites

have to be precisely synchronized. A restarting transaction is not assigned a new timestamp

successfully completes.

Two timestamp-based deadlock prevention schemes proposed are Wait-Die and Woun

[144].

1. Wait-Die. This is a nonpreemptive technique in which the requesting transaction either wa

dies (hence the name). Suppose Ti tries to wait for Tj. If Ti has lower priority than Tj, then Ti is

permitted to wait; else it is aborted and forced to restart (“dies”).

2. Wound-Wait.This is a preemptive technique in which the requesting process in any con

either waits or wounds the other process or processes (hence the name). Suppose Ti tries to wait

for Tj. If T j has higher priority than Ti, then Ti is permitted to wait; else Tj is aborted

(“wounded”) and forced to restart.
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Rosenkrantz et al. [144] present several distributed concurrency control algorithms and

them correct. We use key concepts (such as use of timestamps for deadlock-free concurren

trol and starvation freedom) developed in that work and adapt them to our proposals.

Another common approach is preordering requests to avoid restarts altogether. This ap

requires predeclaration of locks and each transaction acquires its locks before starting. Eac

is assigned a number and the priority of a transaction is the highest numbered lock it owns

transaction requests locks serially (and one-at-a-time) in numeric order. No deadlock can

because a transaction only waits for transactions with higher priority. The disadvantages of s

technique include the requirement for pre-declaration and the sequential acquisition of lock

leading to increased response times.

2.3.2  Liveness

Informally, liveness dictates that something “good” must eventually happen during exec

[96]. Examples of liveness properties include starvation freedom, termination, and guarantee

vice. Liveness does not restrict what a “good thing” can be. Liveness properties cannot stip

that some “good thing”alwayshappens, only that iteventually(at an unspecified time later) hap

pens [6].

Two liveness properties we are interested in are: freedom from livelock, and freedom

starvation.

2.3.2.1  Freedom from livelock

Informally, freedom from livelock may be paraphrased as: “If some process wants to ex

a transaction,some process will eventually execute the transaction.”

2.3.2.2  Freedom from starvation

Informally, freedom from starvation may be paraphrased as: “If some process wants to

cute a transaction, thenthat process will eventually execute the transaction.” To ensure starva

freedom, all threads must eventually succeed. This is achieved by using an appropriate confl

olution scheme guaranteeing all conflict losers eventually become winners.
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2.4  Speculative execution

Speculative execution has emerged as a key enabling technique for numerous processo

vations and is supported on nearly all modern processors [35, 70, 82, 108, 170]. Speculative

niques often require support for buffering speculative state and for recovering from misspecu

conditions. While most implementations today allow speculative updates to registers in the p

sor, they do not allow speculative updates to be propagated to the memory system. These u

may still be buffered in the store buffers of the processor core. Recently, proposals allowin

speculative values to update memory have also been made and we discuss them below. We

some applications of speculative execution and schemes for buffering speculative state.

2.4.1  Speculative execution proposals

In this section, we discuss some of the speculative execution proposals made. Three c

ries we discuss are: uniprocessor optimizations, aggressive memory consistency implemen

and speculative parallelization of sequential programs.

2.4.1.1  Uniprocessor program optimizations

While speculation on branch direction through the use of branch prediction is comm

recent proposals have included speculative execution based on the predicted values of m

locations [114].

2.4.1.2  Aggressive implementation of memory consistency

Speculative execution for aggressive implementation of memory consistency models wa

posed by Gharachorloo et al. [45]. As we discussed earlier in Section 2.1.1, memory m

enforce an ordering on the execution of certain memory operations. Gharachorloo et al. prop

technique where the ordering restriction for loads was relaxed. These synchronization load

were speculatively executed using the processor reorder buffer and any violations were de

using the cache coherence protocol. This was later extended by Ranganathan et al. [143

used speculative retirement for tolerating longer latencies and used a history buffer to recove

any misspeculation. Gniady et al. [48] further extended the techniques by using additional sp
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tive hardware support. These techniques showed ways to reduce the performance gap b

sequential consistency and relaxed memory models.

2.4.1.3  Speculative parallelization of sequential programs

To the best of our knowledge, the first proposal for speculative parallelization of seque

programs was by Knight in the context of functional languages [86]. Knight described an arch

ture to automatically extract and execute parallel portions of a sequential program while givin

appearance to the programmer that the program is being executed sequentially. Hardware w

to dynamically check the correctness of the execution and fully associative caches were use

means of maintaining and enforcing dependencies between portions of the program.

The Multiscalar proposals [41, 154] have popularized and driven current research into s

lative parallelization. Multiscalar divided a single program into a collection of tasks by a comb

tion of software and hardware and the tasks were distributed to numerous parallel processin

on the processor with one task always being the non-speculative task. This research led to

more general applications of speculation such as memory dependence speculation where m

accesses may occur speculatively without knowledge of preceding loads or stores [129].

thread-level speculations proposals followed the Multiscalar work [61, 156].

2.4.2  Handling speculative state

Buffering speculative register state is well studied and supported in modern processors

in the form of checkpoints, history buffers, or future files [153]. Nearly all proposals for spec

tive execution discussed earlier use local buffers to store speculative updates to memory.

[86] used the “confirm cache” local to each processor to store uncommitted data. Herlihy

Moss [66] used a “transactional cache” to track and buffer speculative updates of the transa

The multiscalar work proposed the “address resolution buffer” [42] and the “speculative ver

ing cache” [52] to perform memory disambiguation and store speculative memory updates.

Gharachorloo et al. [45] used the processor reorder buffer to track speculatively issued

and the coherence protocol to check for violations. Ranganathan et al. [143] used a history

[153] to store speculatively retired instructions. These two schemes do not update memory
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latively. Gniady et al. [48] use a special buffer, the Store History Queue, to buffer specul

updates to memory.

2.4.3  Detecting violations

Nearly all techniques discussed above that speculate on memory ordering and spe

across speculative threads use the cache coherence mechanisms to detect violations. Kni

posed using cache coherence protocols in the context of speculatively parallelizing sequentia

[86]. Subsequently the Herlihy and Moss [66] used the same mechanism for implementing T

actional Memory. Gharachorloo et al. [45] used cache coherence protocols for detecting viol

to memory ordering. Franklin proposed the use of the address resolution buffer for detectin

races in shared-memory multiprocessors [40].

2.5  Chapter summary

We have presented concepts key for understanding the thesis and have provided a back

into related work in the area of synchronization, concurrency control, and speculative exec

We use concepts developed in database concurrency control and we use much of the hardwa

port proposed for speculative execution in our work.

We do not study barriers as a synchronization method for coordinating activities in a pa

program. Barriers are well studied [53, 85, 109, 137, 148] and recent work has proposed spe

ing past barriers in parallel programs [146]. This thesis is concerned with programs tha

lock-based synchronization.
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Chapter 3

Speculative Lock Elision

This chapter presents Speculative Lock Elision1 (SLE). SLE is a hardware technique to elid

lock operations from a dynamic execution if the locks were not required for correctness. We

discuss two examples to demonstrate that a lock acquisition may not be necessary for exec

critical section if data conflicts did not occur among various threads concurrently exec

threads in a particular dynamic execution. Figure 3-1 shows an example from a multithre

applicationocean-cont [169]. The C code and the corresponding ALPHA instructions [28] a

shown. Since a store instruction (inst. i12) is present, the lock is required to coordinate acc

the shared structure. Branch instruction (inst. i11) is a mostly taken branch because of cond

error code calculations and most dynamic executions follow the control p

“7,8,9,10,11,13,14,15” within the critical section where the store instruction (inst. i12) is not

cuted. These executions do not require a lock.

Another example where lock acquisitions may not be necessary is when multiple th

update disjoint fields of a shared object while holding the shared object lock. A thread-safe

table is such an example and is shown in Figure 3-2. This example is similar to an implemen

from SHORE, a database object repository [23]. Although hash lookups and updates can u

proceed concurrently, the lock prevents such parallelism from being exposed to the microarc

ture, thus serializing execution and limiting performance.

Critical sections provide a mechanism to obtain atomic access (all reads and writes in th

ical section appear to occur atomically and instantaneously) to shared objects (Section 2.2).2 Here,

1. Elision: the act or an instance of dropping out or omitting something.

2. Since critical sections are a software convention, atomic access (including atomic updates) is p
only if such a convention is followed. In the presence of unprotected accesses—cases where pr
data is accessed without a lock—critical sections may not provide atomicity of updates.
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the appearance of instantaneous change is key. By acquiring a lock, a thread can preven

threads from observing any memory updates that are in progress until the lock is released.

this conventional approach trivially guarantees atomicity of all access (including updates) i

critical section, it is only one way to achieve atomicity. In this chapter, we present another w

achieve such atomicity—Speculative Lock Elision (SLE).

 9

16

L2:

mostly taken

(lock == 0)

(lock == 0)

(lock := 1)

(lock := 0)

Figure 3-1: Control-flow induced unnecessary serialization.The lock acquire and release
sequence is shown shaded. In most executions, threads skip store inst. 12 and thus the lock
required. However, this cannot be determined at compile time because in other execu
instances, the store is performed. The lock often unnecessarily serializes execution of mu
threads.

L1:1.
2.
3.
4.
5.
6.
7.

ldl t0, 0(t1)
bne t0, L1:
ldl_l t0, 0(t1)
bne t0, L1:
lda t0, 1(0)
stl_c t0, 0(t1)
beq t0, L1:

#t0 = lock
#if not free, goto L1
#load linked, t0 = lock

#t0 = 1
#conditional store, lock = 1
#if stl_c failed, goto L1

8.
9.

10.
11.
12.

L2:13.
14.
15.

ldq t0, 0(s4)
ldt $f10, 0(t0)
cmplt $f10,$f11,$f10
fbeq $f10, L2:
stt $f11, 0(t0)
ldq t1, -31744(gp)
ldq t0, 0(t1)
ldq t1, 32(t0)

#if condition, goto L2
#store to shared structure

16. stl 0, 0(t1) #lock = 0, release lock

 1

 2

 6

 8

15

 3

 5

 4

L1:

mostly taken
branch

 7

10

11

12

13

14

 branch

LOCK(locks->error_lock)

if (local_err > multi->err_multi)

multi->err_multi = local_err;

UNLOCK(locks->error_lock)
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3.1  Chapter roadmap

The chapter is divided into four parts. The first part (Section 3.2 through Section 3.7)

cusses the concepts behind Speculative Lock Elision. The algorithm of SLE is present

Section 3.4. We introduce the concept of silent store-pairs in Section 3.5 and show how it c

employed to elide lock operations.

The second part, Section 3.9, discusses implementation details of SLE. Included in thi

tion is a discussion of identifying regions of speculation, buffering speculative state, condition

misspeculation, recovering from misspeculation, and committing speculative state.

The third part comprises of Section 3.10, Section 3.11, and Section 3.12. These section

cuss SLE’s handling of nested critical sections, and SLE’s interactions with software and

ware.

The fourth part is the rest of the chapter. Related work is contrasted in Section 3.13

chapter summary is presented in Section 3.14.

Figure 3-2: Locking-granularity induced unnecessary serialization.Example of a
thread-safe hash table is shown. With good hash functions, conflicts are not common and
the operations to the hash table would occur without conflicts. However, access is unneces
ily serialized. A similar thread-safe hash table (the table is protected by a single lock) is use
[23], a database repository manager.

threads are blocked for

hash_table->mutex

LOCK(hash_table->mutex);
var = hash_table->lookup(X);

if (!var)

hash_table.add(X);

UNLOCK(hash_table->mutex);

LOCK(hash_table->mutex);
var = hash_table->lookup(Y);

if (!var)

hash_table.add(Y);

UNLOCK(hash_table->mutex);

Thread 1 Thread 2
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3.2  Data conflict and lock contention

We distinguish betweendata conflictandlock contention. Consider Figure 3-3. Two threads

T1 and T2, operate on a shared object (represented as an array of memory locations) in

memory. The left half of the figure shows the threads accessing a common data memory lo

unprotected by a lock. Adata conflictoccurs if at least one thread is writing to a data memo

location simultaneously while another thread is accessing the same data memory location. I

situations, atomicity of operations (read and write operations to the data location) cannot be

anteed. The right half of the figure shows the same example but now the array locations ar

tected by a lock. Thread T1 owns the lock and performs memory accesses to the memory lo

while thread T2 waits for the lock to become free. We call this waitlock contention. Since the lock

only allows one thread to access the object at any time, no data conflicts are experienced a

threads observe a consistent view of memory.

If the two threads access distinct memory locations, the lock is not required because

conflict does not exist. However, this may not be known a priori and the lock is used to ser

access to the shared array. The lock unnecessarily inhibits concurrent access to the data s

even though correctness is guaranteed because data conflicts are not present. Thus, only d

flicts limit concurrency; lock contention by itself does not. Unfortunately, processors today do

differentiate between data conflicts and lock contention.

Figure 3-3: Data conflict and lock contention.

T1 T2

shared object

shared memory

writesreads/writes

T1 T2

shared object

shared memory

reads/writes

T1

wait on lock
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In shared-memory programming models, memory locations corresponding to lock vari

are treated no different than the data variables they protect—locks and data share the same

space. The conceptual difference between locks and the data they protect is however fund

tal—locks are the only locations associated with a critical section that may be touched from

side the critical section (this is true of programs that are free of data races). Lock contention

example of a conflict because multiple threads race for the lock variable.3 However, we do not

consider this to be adata conflict because locks are not considered part of the critical section d

3.3  Enabling concurrency by eliding locks

SLE enables concurrency in multithreaded program execution by removing unnecessar

cution serialization on control variables such as locks.

As we show next, with SLE, lock acquires can be elided and critical sections can be co

rently executed and committed if serializability is maintained for all memory operations within

critical section. Serializability can be maintained by providing the “appearance” of atomicity o

operations in the critical section. For example, in a distributed system, two events may be ini

at the same physical time but the propagation delays inherent in the system may make them

to have occurred at different instances. While locks enforce ordering of critical sections in phy

time to achieve serializability, critical section executions can also be made to appear serial

without using locks to enforce ordering.

A processor can provide the appearance of atomicity for memory operations (and thus

ally provide serializability) within the critical section without acquiring locks by ensuring the p

tial updates performed by a thread within a critical section are not observed by other thread

the critical section completes. The desired effect is illustrated in Figure 3-4. The entire critica

tion appears to have executed atomically and program semantics are maintained.

The appropriate memory consistency model must be maintained for ordering the critica

tion operations with operations prior to the critical section and operations after the critical se

The specific ordering constraints are dependent upon the underlying memory model implem

and are discussed in Section 3.12.2.

3. The test&set operation for implementing lock acquires constitute a race where multiple threads re
location while one (or more) threads write the location.
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For serializability, the following conditions must be true for an execution of a specula

lock-free critical section:

1. Data read within a speculatively executing critical section does not appear to be modifi

another thread before the speculating critical section completes.

2. Data written within a speculatively executing critical section does not appear to be acc

(read or written) by another thread before the speculative critical section execution comp

If a data conflict occurs, i.e., two threads access the same data simultaneously other th

reading, serializability may not be guaranteed (because atomicity of updates cannot be guara

and the lock needs to be acquired. Any execution not meeting the above two conditions

retired architecturally. The tracking of data access by various threads and detection of dat

flicts among threads rely on hardware mechanisms such as processor caches and cache co

protocols. We discuss the details of these mechanisms in Section 3.9.

3.4  An initial algorithm for SLE

The algorithm for SLE is shown in Figure 3-5. A sequence of instructions is identified

atomic execution—we call this sequence theatomic region.4 SLE aims at providing atomic execu

4. An atomic region is the same as a critical section except we are allowing multiple threads concur
within the critical section. The term critical section typically implies mutual exclusion.

Figure 3-4: SLE and global memory ordering.While critical section executions (without lock
acquires) overlap in physical time (with or without data conflicts), each critical section logica
appears to be inserted atomically and instantly in a logical ordering of memory operations w
respect to other atomically inserted critical sections and individual memory operations.

logical ordering

P
hy

si
ca

l t
im

e

Thread 1 Thread 2 Thread 3 Thread 4

normal memory operations
atomic critical section
(set of memory operations)

CS1

CS2

CS3

CS4

CSi A lock-free critical section of thread i



66

pre-

rding

de in

-free

t lock

le in

ply the

-free

ll
eri-
tion without requiring lock acquires. When an intent for an atomic execution is observed or

dicted (say, by the processor decoding a synchronization instruction), a prediction rega

whether the execution can be serializable without locks is performed. If the prediction is ma

favor of speculative lock-free execution (i.e., the probability of having a successful conflict

lock-free execution of the critical sections is high and correctness can be guaranteed withou

acquisitions), SLE is invoked. The lock acquire operation is elided thus leaving the lock variab

a free state. Doing so removes serialization on the lock variable and other threads can ap

same algorithm for higher concurrency. The critical section is speculatively executed in a lock

Figure 3-5: Initial algorithm for SLE. The SLE algorithm is shown shaded. Updates of a
writes performed within the speculative lock-free execution are buffered until commit. The s
alizability violation check is performed as the execution proceeds.

speculate?
no

intent for atomic

elide ‘lock acquire’

speculative
lock-free execution

end atomic region
 (elide ‘lock release’)

 commit

yes

serializability
violation?

acquire lock

normal
lock-based execution

 release lock
serializability
violation?

start atomic region

 execution
(lock acquire inst.)
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manner. During the speculative execution if any condition precludes serializability, a misspe

tion is triggered and execution restarts. Since execution is speculative, any update perform

memory or registers is speculative and thus must be buffered. End of the speculative exe

region is determined by observing a lock release operation. At such point, the lock release

tion is also elided and the updates (to memory) are committed in an atomic manner.

Even though the lock was not modified, either at the time of the acquire or the release, c

section semantics are maintained because all operations within the critical section appear

cute atomically with respect to other memory operations in the system and thus trivially guar

serializability.5 In the event of a misspeculation, a processor may repeat the speculation a bo

number of times in the event that the execution may still succeed without lock acquisitions

number of times the processor restarts before explicitly acquiring the lock is therestart threshold.

Forward progress is always guaranteed because the speculation can be forced to fail and t

mal lock-based execution sequence is followed where locks are explicitly acquired.

Semantically, the lock is a control variable employed to provide the illusion of atomicity

actually enforcing mutual exclusion) and thus removing the lock variable is acceptable if the

sion of atomicity of memory operations is provided by other means.However, to show the transfor-

mation of a lock-based execution to a lock-free execution to be correct, we need to stud

instructions executed, independent of the semantics implied by the program. Further, m

instruction set architectures do not have a special instruction for acquiring and releasing

Instead, they provide atomic read-modify-write primitives that may be used to implement va

locking algorithms and may also be used for various other operations unrelated to locks.

often hardware does not have sufficient information to decide whether an instruction is acces

lock. The processor only observes a sequence of loads, stores and synchronization primitiv

cannot associate semantic information.

In the next section we introduce the notion of silent store-pairs and propose a techniqu

allows the transformation shown in Figure 3-5 without requiring precise semantic informa

from the software.

5. This is discussed in detail in the appendix at the end of the dissertation. In short, the execution ac
by SLE corresponds to a legal execution of the critical sections if the locks had indeed been acqui
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3.5  Silent store-pair elision

We would like to elide lock acquire and release operations without knowledge of the se

tics of the operations but must provide a correct execution. We make a key observation abou

variables. Lock acquire and release operations comprise store operations that “undo” each

The lock acquire operation reads the lock, thenwrites the lock changing its value fromfree to

held . A lock release operation alsowrites the lock changing its value fromheld to free .

Figure 3-6 shows memory references of a lock acquire and release sequence in three colum

Program Semantic Instruction Stream Value of _lock_

as seen by
self

as seen by
other threads

TEST_lock_ L1:i1 ldl t0, 0(t1) FREE FREE

i2 bne t0, L1:

TEST_lock_ i3 ldl_l t0, 0(t1) FREE FREE

& i4 bne t0, L1:

SET _lock_ i5 lda t0, 1(0)

i6 stl_c t0, 0(t1) HELD FREE

i7 beq t0, l1:

critical section i8-i15

RELEASE_lock_ i16 stl 0, 0(t1) FREE FREE

Figure 3-6: Silent store-pair elision.The locking algorithm shown is test&test&set. Inst. i6
and i16 can be elided if i16 restores the value of _lock_ to its value prior to i6 (i.e., val
returned by i3), and i8 through i15 appear to execute atomically with respect to other threa
Although the speculating thread elides i6, it still observes the held value itself (because of
gram order requirements within a single thread) but others observe a free value. The test co
sponding to instruction i1 is shown but is not necessary for the elision. The elision relies on
store instructions; in this case the instructions are i6 and i16.

if (lock == UNHELD)

lock = HELD
.
.
.

lock = UNHELD

//  these two operations

//  are executed atomically
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assume the lock acquire algorithm is based on the popular test&set.6 Instructions are numbered in

program order. The first column shows the programmer’s view, the second column shows the

ations performed by the processor, and the third column shows the value of location _lock_ a

by different threads.

If i3 returns free , i6 writes held to location _lock_. i16 releases the lock by marking

free . After the lock release (i16), the value of _lock_ is the same as it was at the start of the

acquire (i.e., before i6)—i16 restores the value of _lock_ to its value prior to i6. We exploit

property of store operations to elide lock acquires and releases. If critical section memory o

tions appear to occur atomically, then stores i6 and i16 form asilent pair. The architectural

changes performed by i6 are undone by i16. When executed as a pair, the stores aresilentbecause

the second store undoes the effects of the first thereby not affecting the architectural state

the stores; individually, they are not. These two write operations (i6 and i16) delimit the s

instructions that are executed atomically.Location _lock_ must not be modified by another threa

else i6 and i16 cannot form a silent pair. Other threads can read memory location _lock_.

The above observation means the SLE algorithm need not depend on accurate pr

semantic information, specifically whether an operation is a lock acquire or lock release.

merely guesses such information and does not require a validation of the guess. The lock

can be done by simply observing load and store sequences and the values read and to be w

the location _lock_ is not modified by another thread, and the memory operations in the c

section appear to execute atomically, the two stores corresponding to i6 and i16 are elide

location _lock_ is never modified, and other threads can proceed without being serialized o

value of _lock_.

What does store elision imply?Eliding a store means not exposing the new value outside

processor context and not requesting write permissions for the address. The store instructio

still fetched, dispatched, and committed by the processor core. In a multithreaded environme

thread elides a store, the value that the store operation would have written to the shared m

6. This includes the test&test&set algorithm and variants thereof. Discussion regarding other algo
such as ticket locks, MCS software queued locks, etc. are found later in the chapter. Note the diffe
between a test&set instruction as proposed by the IBM System/360 and the test&set synchron
algorithm. In the example above, the test&set algorithm is implemented using the load-linked/store
ditional instructions. In the IBM System/360, this would correspond to a single test&set instruction
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space is not made visible to the other threads. The assumption is that a subsequent store wil

that will undo the changes made by the first store and thus the two stores would be silent. By

ing stores associated with lock operations, the lock is not written to and exclusive coherenc

missions arenot required. As a result, memory traffic and latency associated with lo

operations—namely obtaining exclusive permissions on them—can be eliminated.

By maintaining the illusion of atomicity of operations between the two stores that are pa

the silent store-pairs, the entire sequence of operations starting from the first store of the

store-pair to the second store of the silent store-pair can be considered atomic because the a

tural value of memory locations at the end of the sequence of operations would be identical e

the elided stores had actually been performed.

Additionally, since the execution of a critical section appears atomic, it can arbitrarily be r

dered with respect to the memory operations of other threads (we discuss this lat

Section 3.12.2). However for correctness, one must maintain program order. Thus, the value writ-

ten by the elided store must be visible to the thread that elided the store (even though the v

not visible to other threads). This is required for maintaining program order and the implica

of doing so are discussed in Section 3.11.2. The key point is that coherence ownership of the lo

variable is not required to successfully execute and commit non-conflicting critical sections.

3.6  SLE algorithm using silent store-pair elision

To use SLE when the processor core cannot precisely identify lock acquire and release

tions, we augment the SLE algorithm with the concept of silent store-pairs. An additional pr

tion is thus added to the algorithm of Figure 3-5. On a store operation, the processor predic

the changes performed by the store will be undone shortly by another store, and no other

will modify the location in question. If this occurs, the two stores can be elided because the e

sequence is globally observed to occur atomically and the value of the memory location c

sponding to the two store operations remains the same at the start and at the end of the se

The first store can be seen as an approximation of the lock acquire operation and the secon

can be viewed as an approximation of the lock release operation. The new SLE algorithm re

on silent store-pair elision is shown in Figure 3-7.
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The key difference between the new algorithm of Figure 3-7 and the earlier algorithm

Figure 3-5 is that the new algorithm does not rely onsemanticinformation from the program.

Unlike Figure 3-5 where the notion of lock acquires and releases was present in the algorith

new algorithm has no notion of lock acquires and releases. Instead, the speculation is based

presence of silent store-pairs.

The critical section is deduced by the presence of silent store-pairs. When the first such

of the store-pair is identified, a determination regarding speculative execution is made. If the

Figure 3-7: Algorithm for SLE using silent store-pair elision.The SLE algorithm is shown
shaded. The second elided store completes the silent store-pair. Unlike Figure 3-5, the algor
shown above has no notion of lock acquire or release semantics. The algorithm ident
regions for atomic execution as delimited by the two stores that form a silent pair.

speculate?
no

predict

elide first store

speculative
 execution

endpredicted

 elide second store
 commit

yes

serializability
violation?

normal execution

serializability
violation?

startpredicted

silent store-pair

atomic region

atomic region
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diction is made to elide the store, the store elision is performed and speculative execution

entered. The speculation typically ends when the second store of the silent store-pair is en

tered and the speculation is committed. The two stores elided conveniently match the patte

are interested in eliding—the lock acquire and release sequence. If the second store is enco

but it does not undo the effect of the first store, in other words the stores do not form a silen

the second store is performed and a commit is attempted and the processor makes a transit

a non-speculative mode.

The two stores may not actually correspond to the lock acquire and release operations

the hardware does not have semantic information. However, a correct execution will neverth

be guaranteed—the instructions between the two elided stores will simply appear to be exe

atomically.

3.6.1  Predictions and their resolution in SLE

SLE involves two key predictions that make no assumptions about the program semant

1. On a store, predict that another store will shortly follow and undo the changes by this store

prediction is resolved without stores being performed (with respect to other threads) b

requires the memory location (of the stores) to be monitored. If the prediction is validated

two stores are elided.

2. Predict that all memory operations within the region bounded by the two elided stores c

made to appear to execute atomically.

The above predictions do not rely on semantics of the program. In addition, no partial up

are made visible to other threads until the end of the critical section thus maintaining serializa

of the execution and maintaining critical section semantics. Store elision works because the

tectural state at the end of the second elided store is the same, with or without SLE.

3.6.2  In search of silent store-pairs

A naïve implementation of the above algorithm would apply the elision to every store op

tion assuming it forms part of a silent store-pair. However, most store-pairs would not form a s

store-pair. Further, it may not always be possible to exploit such situations.
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We have discussed how common lock operations match the patterns of silent-pairs. Th

detect opportunities for speculation, we only need to detect a silent-pair pattern. Silent store

can be detected using various techniques. In this dissertation, we use a simple hardware-bas

dictor. Alternatively, software annotations can be employed by the compiler to reduce hard

requirements.

3.6.2.1  Simple hardware predictors

Detecting silent store-pairs involves detecting a sequence of instructions that match the

pattern of Figure 3-8.

This pattern may match non-lock operations also, but correctness is nevertheless guara

Whenever such a pattern is detected, an atomic execution of all operations between the tw

operations is attempted and this is always a correct execution. The precise implementation

silent-pair predictor depends on the underlying architectural specification.

We must emphasize that while we are interested in eliding locks, our hardware dete

mechanism is not specifically trying to detect locks. The hardware isonly looking for silent

store-pair patterns. Spin-locks often match such a simple silent store-pair pattern and thus

able to apply it quite effectively.

Instruction pattern Locationaddr value pattern

load e X, addr FREE

...

store Y, addr HELD

...

store X, addr FREE

Figure 3-8: Detecting silent store-pairs patterns.We are interested in identifying pairs of store
instructions that match the store address and value pattern shown above. X and Y are va
written to location addr.
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3.6.2.2  Software annotations

As an alternative to hardware-based silent store-pair predictors, compiler hints can al

used for reducing the hardware required to detect the pattern in Figure 3-8. Importantly, these

can be ignored and they need not be correct because program semantics are always gua

because SLE does not rely on this semantic information for correctness. Using software hints

ever requires either architectural support (in the form of new instructions) or a convention to

information from the software to the hardware (e.g., by using some specific instruction sequ

or nops ).

3.6.2.3  Silent store-pairs and non-lock operations

The algorithm detects patterns independent of whether the instructions correspond

lock-unlock pair; it does not rely on any semantic information. As such, if any silent store

instructions are detected, they will be detected and potentially elided. While it is unclear wh

doing this is useful for non-lock patterns, the technique will automatically detect and exploit

situations and provide a correct execution. Importantly, SLE will always provide a correct ex

tion even if it detects non-lock silent store-pairs.

3.7  SLE algorithm example

Figure 3-9 shows the application of SLE to our earlier example Figure 3-1. The modified

trol flow is shown on the right with instructions 6 and 16 elided. All threads proceed without s

alization. Instructions 1 and 3 bring the _lock_ into the cache in a shared state. Instructio

elided and the modified control flow is speculatively executed. The location _lock_ is monit

for writes by other threads. All loads executed within the critical section are recorded. All st

executed within the critical section are temporarily buffered.7 If instruction 16 is reached without

any serializability violations, SLE is successful.

7. Requests for exclusive ownership for the corresponding cache blocks are issued to the memory
but the data updates are not made visible until SLE commits.
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L1:1.
2.
3.
4.
5.
6.
7.

ldl t0, 0(t1)
bne t0, L1:
ldl_l t0, 0(t1)
bne t0, L1:
lda t0, 1(0)
stl_c t0, 0(t1)
beq t0, L1:

#t0 = lock
#if not free, goto L1
#load linked, t0 = lock

#t0 = 1
#conditional store, lock = 1
#if stl_c failed, goto L1

8.
9.

10.
11.
12.

L2:13.
14.
15.

ldq t0, 0(s4)
ldt $f10, 0(t0)
cmplt $f10,$f11,$f10
fbeq $f10, L2:
stt $f11, 0(t0)
ldq t1, -31744(gp)
ldq t0, 0(t1)
ldq t1, 32(t0)

#if condition, goto L2
#store to shared structure

16. stl 0, 0(t1) #lock = 0, release lock

1

2

3

4

7

11

12

13

16

1

2

3

4

Figure 3-9: Speculative Lock Elision algorithm example.Often, branch 11 is taken thus skip-
ping the store inst. 12. The greyed portion on the right graph is not executed. Inst. 6 and 16
elided and the code sequence executes with no taken branches between i1 and i8.

6

7

11

12

13

16

6

LOCK(locks->error_lock)

if (local_err > multi->err_multi)

multi->err_multi = local_err;

UNLOCK(locks->error_lock)
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If the thread cannot record accesses between the two stores, or the hardware cannot m

serializability, a misspeculation is triggered, and execution restarts from instruction 6. On a re

if the restart threshold has been reached, the lock is acquired and the execution occurs conv

ally.

3.8  SLE key enablers

In this section, we discuss two key mechanisms that enable SLE implementations easil

first is the concept of speculative execution and the second is the emergence of invalidation

cache coherence protocols that make detection of data conflicts straightforward.

3.8.1  Speculative execution

The concept of speculative execution is well understood and widely used in modern pr

sors. Keys to the success of speculative execution include a high probability of success, ab

buffer speculative state, fast validation of successful speculation, and a low overhead rec

from misspeculation. SLE handles speculative state (buffering state and recovering from mis

ulation) in a way similar to that employed by other common speculative execution technique

we discuss this later in Section 3.9.

SLE is unique in the way it validates a successful speculation. As discussed in Section

predictions involved in SLE are resolved locally without any global information, other than

cache coherence information, being exchanged across multiple processors (even though SL

optimization that affects executions on multiple processors). While SLE elides locks and thus

not perform lock acquisitions,validating a successful lock-free execution of a critical section do

not require a lock acquisition. The success is determined by simply observing the local mem

interface and the absence of any misspeculation events (such as data conflicts) by the end

critical section is sufficient validation of success. Thus, the validation latency for SLE in the e

of successful speculation is essentially nonexistent.

3.8.2  Cache coherence protocols

We revisit the discussion about ownership-based cache coherence protocols (Section

When a data block not present in the cache is accessed, the cache coherence protocol is tr
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and the block is brought into the cache. Writing the data block requires the cache to have exc

write permissions for the block. This is done by invalidating all shared copies of the block in o

caches. Once other caches have been invalidated, the local copy can be modified if nec

Exclusive permissions force other processors to request the latest architecturally correct dat

from the exclusive owner of the block.

The above protocol functionality provides us with two capabilities. First, accessed data is

ily tracked by local caching. Second, data conflicts are detected trivially—writes to shared

trigger invalidation messages to sharers, and requests to exclusively owned blocks are au

cally forwarded to the exclusive owner. The coherence protocol typically tracks cache b

rather than individual words of the cache block. As a result, the information tracked is conserv

because of the potential for false sharing. While the information may not be precise it will be

rect because it is conservative. This is discussed in detail later in Section 3.12.3 where we d

SLE’s interactions with false sharing.

3.9  SLE implementation

We now show how SLE can be implemented using well understood and commonly used

niques. Assume the locking algorithm discussed in Section 3.5 for the discussion in this se

Other locking algorithms are discussed in Section 3.11.4. The architecture provides

load-linked/store-conditional synchronization primitives for implementing locks.

Four aspects of implementing SLE are:

1. Identifying speculation regions8 and initiating speculation

2. Speculative execution and buffering speculative state

3. Committing speculative state

4. Detecting and handling misspeculation conditions

8. Ideally this corresponds to a critical section. However, because the processor core does not know w
a region is indeed a critical section, we refer to the region as a speculation region.
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3.9.1  Identifying speculation regions and initiating speculation

Once the start point of a speculation region is identified, speculative execution mo

entered. The mode is exited when the region end is detected. In this section we discuss an

mentation for identifying these regions, identifying the memory operations in these regions

actions performed when speculation is initiated.

3.9.1.1  Identifying start and end points

As discussed in Section 3.6, SLE looks for silent store-pairs for identifying regions for sp

lation. Detailed discussions about various ways to identify such regions can be foun

Section 3.6.2 and here we discuss one implementation we use in our experiments.

Region start. The start of the speculation region is identified by looking for a candidate s

instruction predicted to be the first store of the silent store-pair to be elided. Once the can

store instruction is decoded, a confidence prediction table is consulted to determine wheth

store elision should be performed. The confidence table records among other information,

tory of success in correctly identifying this store to belong to a silent store-pair, and a succe

elision. This confidence prediction is mainly to identify conditions where store-pair elision is

successful and may hurt performance due to frequent conflicts or due to resource and othe

straints. If the prediction is made to apply the store-pair elision, then the processor enters sp

tion mode when this elided store is speculatively retired. Speculative retirement here m

instruction retirement in SLE mode. All uniprocessor program order retirement rules are m

tained.

Since only the store of the lock acquire is elided, the instructions in the critical section

cute normally. The processor core is unaware of a spin loop of the lock acquire algorithm

example, if the lock is already held by another thread, the lock acquire algorithm spins (by

forming load operations) and waits for the lock to be released. Under SLE, the spin would

occur because SLE is only concerned with the store operations associated with the lock a

and release and treats load operations normally. Thus SLE will automatically not enter specu

mode. Similarly, if the load operation of the test returns a held lock, the algorithm may do s

thing else (such as yield or execute other code sequences) and under SLE the same se
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would also occur. Remember this will only happen if SLE could not be applied otherwise du

lack of exploitable concurrency and some other thread then acquired the lock.

The older and newer value of the location to which the store has been elided, is recorde

hardware structure along with the address of the location. This is done to detect and handle

store-pairs. We discuss handling multiple silent store-pairs later in Section 3.10 where we d

nested critical sections.

While every store instruction can be considered while determining the starting point

speculation region, to keep the confidence table size small one implementation may use on

store-conditional instruction as a candidate for the first store of the predicted silent store-pair

is because lock acquires are often implemented using the load-linked/store-conditional in

tions or some similar atomic read-modify-write primitive.

Region end. The end of the speculation region is identified by the second store of the s

store-pair. This is done by observing the retirement stream and identifying a store operatio

completes the silence prediction of the two stores of the silent-store pair to be elided. Every

instruction is analyzed because a lock release operation may be implemented using a simp

operation (i.e., not a store-conditional or any such special primitive).

The identified region may not actually correspond to a critical section since the hardware

not have semantic information. However, a correct execution will nevertheless be guaranteed

instructions between the two elided stores will simply appear to be executed atomically.

3.9.1.2  Identifying speculation region memory operations

Memory operations that are part of the predicted speculation region (critical section) mu

identified. These operations correspond to all memory operations speculatively retired betwe

start and end regions of atomic execution. By identifying these operations, data accesses wit

lock-free transaction are tracked and any data conflicts detected. Again, compiler support c

used for identifying these operations but we focus on hardware-only techniques in this discus

Consider Figure 3-10. The processor reorder buffer is conceptually shown with the he

the reorder buffer to the right. For ease of explanation, assume instructions in the reorder buf

also the instructions in the instruction window of the processor core. Assume the critical sect

identified by region_start and region_endand is somewhere in the instruction window. I
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out-of-order processors, loads from anywhere in the window may issue in any order. Thu

core has no clear way of differentiating between say ld3 and ld6.

A simple and conservative way to identify the operations within the critical section (i.e.,4,

ld5, and ld6) is by assuming all memory operations issued while a critical section is predicted

in the instruction window. Thus, whenregion_startis decoded, any subsequent memory load op

ations are assumed to be part of the critical section. For example, assume the current inst

window is as shown andregion_starthas not retired (i.e., SLE mode has not been entered), and3

operation is issued to the memory system. The processor conservatively assumes ld3 as part of the

critical section even though clearly it is not. Thus, the data set is dilated due to the out-of-

issue characteristics of modern processors.

Alternatively, a bit can be associated with every load operation in the core. Since instruc

are decoded and dispatched in program order, the bit for the load operation is set onl

region_starthas been decoded and dispatched. This helps in differentiating precisely bet

operation ld6 and say operation ld3. Since the operation will only retire (speculatively) when SL

mode has been entered, at that time the bit is checked. If the bit is not set and the instruc

ld9 ... st8 ... region_end ... st7 ... ld6 ... ld5 ... ld4 ... region_start ... ld3 ... st2 ... ld1 ...

reorder buffer headoperations in instruction window

reorder buffer

memory operations in atomic region

Figure 3-10: Identifying memory operations within a critical section.In a modern
out-of-order processor, memory operations may issue from anywhere in the window. The
cessor has no clear way of identifying the operations that indeed belong to the critical sect
For example, the processor cannot distinguish between operations ld3 and ld6.
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retiring in SLE mode, the instruction must be re-executed. This check is required to handle

tions where arbitrary goto code sequences may be present jumping into critical sections w

the lock acquire sequence. A disadvantage of this approach is that the bit must be carried alo

processor core pipeline with the instruction. An advantage is that the load data set is pre

identified. Store operations do not have the issue of dilation.

3.9.1.3  Actions in initiating speculation

Once a candidate store is ready for speculative elision, the processor enters SLE spec

mode. Before entering this mode, the processor register state must be stored for recovering

event of a misspeculation. Only a single register checkpoint is typically sufficient. Store-pai

sions simply eliminate write requests to the memory system and prevent the values of the

from being observed by the other threads whereas the checkpoint serves as a recovery poin

event that the atomic execution of the speculation region (which may consist of multiple nes

in the form of multiple silent store-pairs) could not be successful. At this point, we know

regions for speculation, and the memory operations predicted to be part of the region. For e

discussion, we consider single nesting even though multiple store-pair elisions may be perfo

We discuss handling nested critical sections later in Section 3.10. In short, multiple s

store-pairs may be elided automatically using little additional hardware.

3.9.2  Speculative execution and buffering of speculative state

During SLE, all instructions (included the first elided store discussed in the above section

speculatively retired—they are not committed to architectural state until after SLE succes

completes. Uniprocessor retirement rules are maintained; i.e., an instruction is specula

retired only if it is determined to be correct according to the microarchitecture specification.

aspects to be handled during speculative execution are: buffering speculative register sta

speculative memory state. We discuss these two aspects in the following sections.

3.9.2.1  Buffering processor register state

Most modern microprocessors support speculative execution where processor register

speculatively modified. In the event of a misspeculation, the architecturally correct processo
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ister state is restored and any speculative updates are discarded. Examples of such techniq

branch-prediction-based speculative execution where control flow prediction is made and e

tion is based on the prediction. If a branch mispredict is detected, the architected registe

prior to the incorrect prediction is restored.

In the simplest SLE implementation, only a single restoration point is required. This p

corresponds to the architected state just prior to entering SLE mode independent of the nes

critical sections. A single checkpoint is sufficient and optimizations for finer checkpoints ca

considered if necessary. Multiple checkpoint optimizations are however not necessary for ha

and eliding nested critical section locks.

Smith and Pleszkun [153] discuss various schemes for buffering speculative updates t

cessor register state such as history buffers, future files, reorder buffers, etc. Techniques dis

in this section are well understood and well studied in literature and have been propos

researchers for optimizations other than SLE. Two techniques applicable to SLE we discus

using the reorder buffer, and using a register checkpoint approach.

Using the reorder buffer (ROB). The ROB can be used to buffer all speculative updates

registers in a manner similar to branch-prediction-based speculative execution technique

same mechanisms for branch prediction are employed (except in this case, the speculative

tion is based on a silent store-pair prediction rather than a branch prediction) and the rec

mechanisms are identical. Instructions (including loads and stores) are speculatively retired b

removed from the ROB until after SLE is validated.

The disadvantage of using the ROB is the limitation on the size of the critical section

dynamic instruction count of the critical section) that can be speculatively executed. Addition

the commit rate of the critical section at the end of SLE validation is limited by the commit ba

width of the core: for Ndyn_instdynamic instructions in the critical section speculatively execut

and Ncommit_bwbeing the number of instructions that the core can retire in a single cycle (ass

ing all instructions are treated equal at retirement time), the core takes at least (Ndyn_inst/

Ncommit_bw) cycles to retire the speculative execution to architectural state.

Using a register checkpoint.The checkpoint may either be of the register state itself or of

register dependence maps. The latter case may place restrictions on how physical regist

freed. Prior to entry into SLE mode, an appropriate checkpoint is created. On a misspeculatio
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checkpoint is restored and the instructions are re-executed similar to a branch misprediction

ery event. Instructions (including loads and stores) on being speculatively retired can be rem

from the ROB.

Using a checkpoint approach frees the limitation of the critical section size (dynamic ins

tion counts) on the reorder buffer size because in the event of a misspeculation, an architec

correct register state is available for recovery in the form of a single checkpoint.

3.9.2.2  Buffering processor memory state

Although most modern processors support speculative execution of load instructions, th

not retire store instructions speculatively; store instructions are only removed from the re

buffer once their program order and memory consistency requirements have been maintain

their values are written to the memory system (including the cache) once the stores are kno

be non-speculative. SLE, like other proposals for speculation [48, 61, 154, 156], uses spec

store retirement.

Use the processor write buffer.In the proposed implementation, the processor write buff

lying between the processor and the level-one cache, is augmented to buffer speculative sto

ues. While the write buffer is used to store speculative memory updates, the speculative valu

not committed to the cache and the lower memory hierarchy until after SLE is successfully

dated. On a misspeculation, the speculative memory updates in the write buffer are discard

An advantage of the write buffer approach is that an architecturally correct value fo

address (to which a speculative store has been retired) is always available in the processor c

the event of a misspeculation and the cache does not require support for speculative store

ing.

As an additional benefit, under SLE, speculative writes can now be merged in the write b

independentof the memory consistency model. For example, while sequential consistency

processor consistency prevent some write operations from being merged in the write buffer9, under

SLE the merging is legal. This is possible because, for successful speculation, all memory ac

are guaranteed to appear to complete atomically. The write buffer size limits the number of u

9. This is true under conventional implementations. One can construct complex implementations
such support may be possible.
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cache blocks modified in the critical section and does not restrict the dynamic number of

instructions executed in the critical section.

Use the processor cache.Alternatively, the speculative memory state can be exposed to

processor caches. Other proposals have been made for allowing caches to buffer speculati

[42, 52, 61, 155] and these proposals can be adapted for use in SLE. The requirement, as

case for any speculative technique that allows stores to retire speculatively, is that an archi

ally correct value of the speculatively modified cache block must be available in the event of a

speculation. This can be achieved by using a special buffer below the level-one cache to sto

architecturally correct values or using the level-two cache for doing so [155].

3.9.3  Committing speculative state

The discussion in this section focuses on committing register state and committing spe

tive memory state when speculation is successful.

3.9.3.1  Committing processor register state

If the reorder buffer approach is used to implement SLE, the processor core retires in

tions at its peak commit bandwidth and the architected registers are written.

If the register checkpoint approach is used, the processor simply discards the register

point created at the start of speculation. Since under speculative retirement, the registe

already being written to, the current register state is marked as being non-speculative (with r

to SLE). Note, the processor may perform speculative execution (e.g., branch prediction an

value prediction driven speculative execution) with and without SLE.

3.9.3.2  Committing processor memory state

Committing memory state requires ensuring that buffered speculative stores are comm

and made visibleinstantaneouslyto the memory system—they must appear to execute atomica

We exploit cache coherence protocols for doing so. Processor caches have two aspects:

and 2) state. The cache coherence protocol determines state transitions of cache block

Importantly, these state transitions can occur speculatively as long as the data is not change
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ulatively. This is how speculative loads and exclusive prefetches (operations that bring d

exclusive state into caches) are issued in modern processors. We use these two aspects in p

ing atomic memory commit without making any change to the cache coherence protocol.

Using non-binding exclusive prefetches.When a speculative store is added to the wri

buffer, a non-binding request for exclusive ownership of the cache block is sent to the memor

tem. The request is non-binding because the block, once brought into the local cache, re

exposed to the coherence protocol. The request initiates pre-existing state transitions in the

ence protocol and brings the cache block into the local cache in the exclusive state. Note thecache

block data is not speculative—speculative data is buffered in the write buffer. When the critic

section ends (i.e., the second elided store is encountered), all speculative entries in the write

will have a corresponding block in exclusive state in the cache, otherwise a misspeculation

have been triggered earlier. At this point, the write buffer is marked as having the latest arc

tural state.

Draining the speculative write buffer. The instantaneous commit is possible because

process of marking the write buffer as having the latest state involves setting one bit—exc

permissions have already been obtained for all speculatively updated and buffered blocks

approach is to add functionality to the write buffer of being able to source data for requests

other threads. Alternatively, the write buffer can be lazily drained into the cache as needed o

porarily stalling the processing of incoming requests from the lower memory hierarchy while

write buffer is drained. Note, however, that a read to such a location from another processo

be serviced perhaps with a small delay—with the recently modified value. During the drainin

the write buffer entries into the cache, no deadlock possibilities exist because all required e

sive permissions have been obtained in the cache for the appropriate cache blocks. The d

process must be atomic and during the process, any interrupts must be delayed until af

draining is complete. All external requests to the cache must also be delayed. This delay is

ever bounded because all blocks are available in the cache in appropriate state (no miss wil

during the draining process) and the delay is a function of the number of speculative entries

write buffer and the latency of writing a block into the level-one cache.
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If all appropriate blocks are not yet in the local cache in appropriate state (exclusiv

shared), then speculative execution can proceed until the blocks corresponding to the write

are available in appropriate state.

3.9.4  Detecting and handling misspeculation conditions

We now discuss conditions under which SLE may trigger a misspeculation and mecha

to handle such situations.

3.9.4.1  Misspeculation conditions

A misspeculation is triggered only if misspeculation conditions occur while the process

in SLE mode. The misspeculation conditions under SLE are 1) atomicity violations, and 2) v

tions due to limited resources.

An atomicity violation potentially occurs when at least two threads perform compe

accesses to a common memory location and one thread is in its speculative lock-free critica

tion execution mode. This may prevent an atomic commit of memory operations and thus pr

serializability from being maintained.

Resource-limitation-induced violations occur when the processor in SLE mode cannot b

speculative state. This includes, buffering speculative memory updates, or an inability to ma

book-keeping information (e.g., tracking data locations accessed by the speculative transact

detect atomicity violations.

3.9.4.2  Atomicity-violation induced misspeculation

Atomicity violations are detected using the cache coherence protocol. As discussed e

(Section 2.1.2), cache coherence is a mechanism to propagate memory updates to other cac

make memory operations visible to other processors. Invalidation-based coherence protocol

antee an exclusive copy of the memory block in the local cache when a store is performed.

most modern processor systems already implement some form of invalidation-based coh

control as part of the cache hierarchy, the mechanism for detecting conflicts (i.e., among sim

neous operations to a given memory location, at least one is a write operation) already exi

most processors. Using the coherence protocol to detect data conflicts and using the coh
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granularity as the granularity for sharing results in false positives due to false sharing. These

tions are treated as true sharing by SLE and we discuss this later in Section 3.12.3.

A mechanism to track data locations accessed within the speculative lock-free critical se

including the lock variable itself, is required. We discuss two such mechanisms: 1) using the

cessor load/store queue, and 2) augmenting the local cache to record blocks accessed.

Using the load/store queue.Some modern processors such as the MIPS R10K [170] and

Intel Pentium 4 [70] allow aggressive implementations of memory models by allowing load

issue speculatively similar to the proposal by Gharachorloo et al. [45]. The speculatively is

loads are tracked using the load/store queue (LSQ). If an invalidation is received from the c

ency mechanism and the invalidation reaches the core, the LSQ is snooped to determine wh

memory consistency violation may have occurred. If SLE is implemented using the ROB app

discussed above, then the LSQ itself could be used to track speculatively issued memory

tions (both loads and stores). The additional functionality would be to snoop the LSQ if ext

requests are received for data blocks that have speculatively been modified during SLE.

If the register checkpoint approach is adopted for implementing SLE, then the LSQ a

cannot be used to track atomicity violations because memory operations may speculatively

and be speculatively removed from the ROB (and thus the LSQ). Note, this is a greater conce

loads because store values are buffered in the write buffer and hence they are implicitly tr

(the write buffer must be snooped in such cases if the LSQ is used for tracking data sets). F

checkpoint approach, a table at the cache could be employed that records all addresses a

and is matched in parallel with a cache lookup to detect conflicts. Alternatively, the cache

themselves could be extended to track blocks accessed. We discuss the latter approach ne

Augmenting the local cache.Each cache block is augmented with aspeculative access bit.

Every memory access issued by the processor core and predicted to belong to the critical s

sets the speculative access bit for the corresponding cache block. The identification of m

accesses predicted to belong to the critical section was discussed in Section 3.9.1.2. W

external request is received by the coherency controller, the local cache is already snoop

maintain cache coherence). The additional bit is also tested in parallel with the cache tag look

data conflict occurs if any of the following occurs:

1. An external invalidate request to a cache block with a set speculative access bit.
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2. An external read request to a cache block to which the processor has speculatively re

store (i.e., a write has been performed to that location by the processor) and the block’s s

lative access bit is set.

In condition 2, the speculative value is buffered in the write buffer and the cache is only

to track whether a write has been performed to the location. Alternatively, the write buffer

also be snooped to determine such conflicts. In a MOESI cache coherence pro

(Section 2.1.2), condition 2 corresponds to a cache block in the M (modified) state.10

On misspeculation and processor commit events, the speculative access bit may be re

all cache blocks using a technique such as flash invalidation [106]. The speculative access b

be reset only if the processor determines it has not issued any subsequent memory ope

belonging to a later uncommitted critical section. Consider Figure 3-11. The first critical se

retiring is identified byregion_end1 at the head of the ROB. However, at this moment, anoth

10.This is not quite accurate. The discussion here also includes the case where the cache block mig
been in the M state before the processor entered speculative execution mode. To differentiate b
such cases, a second bit (speculative dirty bit) can be used to track whether the block has been w
within the critical section.

... region_end2 ... st6 ... ld5 ... ld4 ... region_start2 ... ld3 ... st2 ... ld1 ... region_end1

reorder buffer headoperations in instruction window

reorder buffer

second atomic region in processor core first atomic region committing

Figure 3-11: Handling multiple critical sections in instruction window.Out-of-order proces-
sors allow memory operations to be simultaneously issued from multiple critical sections if th
critical sections are present in the instruction window at the same time. In such situations,
speculative access bits may not be reset at the end of the first critical section because
accesses may also correspond to the subsequent uncommitted critical sections in the instru
window.
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atomic region is in the processor core identified byregion_begin2 and region_end2. If this is an

out-of-order core implementation, memory operations from the second atomic region may

have issued and may have set the speculative access bit for the corresponding cache block

the speculative access bits must not be reset if the first atomic region commits and another

dicted to be in the processor core. This is mainly because the processor core has no simple

differentiate between memory operations within a critical section from those issued outside c

sections. Further optimizations are possible but we do not discuss them.

The above scheme is independent of the number of cache levels in the local hierarchy be

all caches maintain coherence and any requests that require coherence state transitions (th

correspond to the requests that trigger conflicts) are propagated to all coherent caches au

cally by the existing cache coherence protocols.

3.9.4.3  Resource-constraint induced misspeculation

Limited resourcesmayforce a misspeculation. Since we use the cache coherence protoc

track data accesses and detect conflicts, situations that make it impossible to track data ac

and detect conflicts may result in a misspeculation. Note that while resource constraints are

damental limitation, they can be made small (arbitrarily unimportant) by providing additio

resources.

Common conditions for possible misspeculation are:

1. Finite cache size or associativity. If the cache is used to track the lock and data accesses wi

a critical section, the finite size of the cache restricts the data set size that can be tracked

latively. The associativity of the cache also places a limit because conflict misses force

tions of cache blocks. Well known and well understood techniques for handling such situa

exist, such as victim caches [79]. Victim caches are small, fast, fully associative structure

buffer cache blocks evicted from the main cache due to conflict and capacity misses. The

cache can be extended with a speculative access bit per entry to track the cache block

issue of sufficient buffering resources is an engineering decision involving a trade-off. W

more resources can be provided, caches today are sufficiently large to buffer most critica

tions.
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2. Finite write buffer size. Since the write buffer is used to buffer speculative memory updates

size restricts the number of static addresses that can be written to within a critical section.

since stores are retired (speculatively) in program order the write buffer has the precise

within the critical section. This is because once in SLE mode (when the candidate s

store-pair is elided), the processor sends all store updates to the write buffer. Since writ

merged in the write buffer and memory locations can be rewritten within the write bu

(because atomicity is guaranteed), the number of unique cache blocks written to within th

ical section is limited by the size of the write buffer.

3. Finite reorder buffer size. The ROB size restriction exists only if the reorder buffer approach

implementing SLE is adopted. This works well for small critical sections but may not work

larger critical sections. The size of the critical section here is determined by the nu

dynamic instructions executed and retired within the critical section.

4. Uncached accesses and other such events.These are events that occur within a critical sectio

where the processor cannot use the cache coherence protocol for tracking accessed m

locations. Examples of such events are uncached memory accesses or certain operating

events, such as I/O, that may prevent tracking data accesses.

5. Instructions that cannot be undone.Instruction set architectures may have certain instructio

where their effects cannot be undone. These instructions cannot be executed specul

Such instructions may involve operations that force caches to be flushed. Included he

memory mapped I/O operations that may require immediate external visibility.

6. Expiration of operating system scheduling quantum.If the time to execute a critical section is

longer than the operating system scheduling quantum assigned for that thread, the thre

be descheduled by the operating system. An operating-system-induced descheduling

results in a misspeculation being triggered.

Misspeculation conditions need not always trigger misspeculation.We have listed

common misspeculation conditions above. If any situation arises that cannot be handled eas

lock can always be acquired and a correct execution guaranteed. A misspeculation need

triggered for all of the conditions listed. For example, for cache-size-limitation-induced

write-buffer-size-limitation-induced misspeculation conditions, one approach is to stall the pr

sor and allow the elided store (which was buffered at the start of SLE mode) to go to the me
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system. This essentially emulates the acquiring of the lock (without having to misspeculate

re-execute the lock acquire code sequence). If the write operation succeeds, the processor s

be assumed committed. This is because writes to a given location are serialized by the

coherence protocol (Section 2.1.2) and only one such write succeeds while the invalidation re

generated by this write would trigger a misspeculation in all other processors forcing the

restart. The current processor can then find itself within its critical section (by virtue of having

cessfully acquired the lock) and all speculative work performed is committed.

3.9.4.4  Handling other misspeculation conditions

An advantage of SLE is that in the event of unexpected conditions, the lock can alwa

acquired and a correct execution guaranteed along with forward progress. If silent store-pa

dictors are employed, then no guarantee can be made regarding whether the second stor

silent-store pair will be encountered. In such an event, execution may proceed for a while b

the processor runs out of buffer space. However, the problem may be more acute where o

consider a malicious critical section. In such a critical section, the thread acquires the lock

goes into an infinite loop. In other words, the program is broken. However, SLE must repro

the error faithfully. To handle such situations atime-outmechanism is employed. The time-ou

mechanism tracks the number of dynamic instructions executed within a critical section (o

order of 10s of thousands of instructions and will typically be less than the instructions that

cally execute in a given operating systems scheduling quantum).11 Once a time-out threshold is

achieved, a misspeculation is triggered and the execution is restarted. After a preset num

restarts (the restart threshold), the lock is acquired, thus guaranteeing a correct execution w

ward progress even under unexpected and unknown conditions.

11.The number chosen here is somewhat arbitrary but is one way to guarantee that the processor d
speculate forever.
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3.9.4.5  Recovering from misspeculation

On a misspeculation, the execution restarts. The architected register state is restored a

speculative write buffer entries are discarded. All speculative access bits in the cache are r

necessary.12

SLE may be reapplied. However, the processor core may decide to acquire the lock on

restart threshold is reached or certain conditions (as discussed earlier) make it necessary to

the lock. If a thread acquires the lock on a restart, the lock variable (cached in shared state) i

ten to. This automatically triggers the coherence protocol and invalidate messages are sen

sharers of the cache block containing the lock variable. This is already handled by the conven

cache coherence protocol. Thus, all other speculating threads are automatically informed

lock is acquired, forcing them to misspeculate if in speculation mode.

Figure 3-12 shows a design point for SLE. The SLE additions are shown shaded. All mo

cations are within the processor complex.

12.See Section 3.9.2 and Figure 3-11 for the situations involving multiple critical sections simultaneou
the reorder buffer where the speculative access bits must not be reset.

Figure 3-12: A microarchitectural implementation of SLE.The additional hardware is
shown shaded. All changes are made within the processor core and additional bits for
level-one cache.
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3.10  SLE and nested critical sections

We now discuss how nested critical sections are handled under SLE. In Section 3.10.

first discuss the simplest approach of handling nesting by essentially not eliding nested

Then we show how modest hardware can be used to apply SLE to properly nested critical se

in Section 3.10.2 and then discuss how SLE interacts with improperly nested critical sectio

Section 3.10.3.

3.10.1  Trivially handling nested critical sections

The simplest SLE implementation would apply elision to a single store-pair. Thus, it wo

handle only one lock at a time for elision. If the processors enters SLE mode and subseq

encounters nested locks (at least conceptually because the processor does not quite have

of locks), these nested locks are treated as normal memory operations. In other words, the

operations corresponding to the lock acquire and releases are performed to these nested l

another thread reads the value of the nested lock, it will trigger a misspeculation becau

nested locks are treated as normal data operations. If the outermost nesting cannot be

because of resource limitations, SLE will acquire the outermost lock and then apply SLE t

next inner level—applying SLE one-at-a-time.

3.10.2  Handling properly nested critical sections

We now discuss how SLE can be easily extended to handle nested critical sections. Co

Figure 3-13. The solid black circles correspond to lock acquire, the crossed solid black circle

respond to lock releases, and the white circles correspond to accesses to data protected

locks. Further assume the value 1 corresponds to a held lock and the value 0 corresponds t

lock. The program execution and commit stream as seen by the processor is shown in the t

of the figure with time progressing to the right. Multiple locks are acquired and released in

sequence. The same execution is expanded in detail in the lower part of the figure. For c

nience, assume the number of nesting levels,i, is 4. Four horizontal lines are shown correspondin

to the execution of each nesting level. The white circles on each line correspond to the



94

which

inter-

L

le L

silent

d to

criti-

heck-

sting
ware
accesses protected by the appropriate lock. While the programmer may be able to determine

data is protected by which nested lock, this is not possible to determine dynamically in the

leaved execution stream as seen by the processor. To be conservative, the outermost lock1 pro-

tects all data accesses below itself; i.e., level Li protects all data accessed by level Li and below.

Assume Li corresponds to the lock at each level. The initial and final values of the variabi

are shown. The solid black circle and the crossed solid black circle on each line make a

store-pair. Multiple silent store-pair elisions can be performed if sufficient hardware is provide

track the multiple silent store-pairs. A simple stack mechanism is used to track silence if the

cal sections are properly nested. Even if multiple silent store-pairs are elided, only a single c

point of register state is necessary.

Figure 3-13: Handling properly nested critical sections.The program execution is shown
above and the execution is expanded in the lower part of the figure. The various levels of ne
are shown and the initial and final values of the nested locks are also shown. A simple hard
stack mechanism is employed to apply store-pair elision to every level of nesting.
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3.10.3  Handling improperly nested critical sections

Figure 3-14 shows an example of improperly nested inner critical sections. These can a

handled as long as silence of all elided stores is maintained.

Note, store-pair elision only eliminates the write requests to the memory system a

unaware of the notion of nesting levels. If a silent store-pair region cannot be identified, stor

sion cannot be performed. Further, if the data accessed by level L1 cannot be buffered in the loca

cache hierarchy, its lock is acquired but the inner levels are still candidates for elision.

A complex critical section nesting is shown in Figure 3-15. Here, a new lock is acqu

before the earlier lock is released and thus improper nesting is present throughout the exe

This is similar to a B-Tree walking algorithm [12, 43]. If only a single level of silent store-pai

exploited, then every second lock is acquired. Thus the outermost is not acquired but the nex

Figure 3-14: Handling improperly nested critical sections.Although the inner locks are not
properly nested, the overall execution shows proper nesting because silence of lock variab
maintained.
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lock is acquired and so on. As the number of levels to be exploited increases, so does the p

on local caching resources. In the case of B-Tree locking, the root is not locked in our exam

Note, additional hardware is required to track the nesting. However, if the nesting level fo

silent store-pairs crosses the hardware provided limit, elision is not performed and the store

responding to the predicted lock operations) are executed if necessary, and thus a correct ex

is always guaranteed. Again, a correct execution results because semantically the critical se

executed in an atomic manner.

3.10.4  SLE and recursive critical sections

In recursive critical sections, a thread may repeatedly acquire a lock but increments a co

field associated with the lock. Here also there is silence but across a range rather than a pa

silent store-pair is separated by a series of increments in between. This may be handled

L2 = 1

Figure 3-15: Handling complex improperly nested critical sections.In this example, every
level is improperly nested.
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silence of store-pairs is maintained but hardware resources are required to track the level of

sion. We leave adapting SLE for recursive critical sections as future work.

3.11  SLE interactions with software

In this section, we discuss interactions between SLE and software. We first discuss th

ward progress guarantee that SLE maintains (Section 3.11.1). We also discuss how SLE do

change program semantics (Section 3.11.2), SLE interactions with programs that make

assumptions (Section 3.11.3), and SLE interactions with various synchronization algor

(Section 3.11.4). Finally we discuss SLE interactions with thread scheduling (Section 3.11.5

3.11.1  SLE and forward progress

SLE always guarantees forward progress (similar to the implementation of the locking

rithm itself) because the lock can always be acquired if necessary. SLE does not change thi

antee (or lack thereof) or make it any worse.

3.11.2  Interactions with program semantics

In this section, we discuss how SLE does not rely on program semantics for a correct e

tion and how SLE does not change any program semantics.

SLE does not rely on program semantics.We now discuss why SLE guarantees a corre

execution even in the absence of precise semantic information from the software and indep

of nesting levels and memory ordering. As mentioned earlier, SLE involves two predictions

are resolved locally:

1. On a store, predict that another store will shortly follow and undo the changes by this store

prediction is resolved without stores being performed but it requires the memory locatio

the stores) to be monitored. If the prediction is validated, the two stores are elided.

2. Predict that all memory operations within the window bounded by the two elided stores

occur atomically. This prediction is resolved by using preexisting cache coherence m

nisms.
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The above predictions do not rely on semantics of the program (a silent store-pair predic

used to identify loads/stores as candidates for prediction 1 but is not integral to the idea and

ware could alternatively provide these hints).

If another thread explicitly acquires the lock by writing to it, a misspeculation is trigge

because the write will be automatically observed by all speculating threads (because the l

also tracked in a shared state by the speculating processors). This trivially guarantees corr

even when one thread is speculating and another thread acquires the lock.

Since SLE does not rely on program semantics (and only relies on silent store-pair pr

tions), SLE does not require software support for correctness. However, software suppo

always help performance issues as discussed in a later discussion on false sharing (Section

SLE does not change program semantics.Two thread executions are shown in Figure 3-1

Assume SLE is successful and the lock is elided and the two critical sections did not observ

data conflicts while executing. No timing assumptions are made among the two threads. In

words, the executions of the two threads can be arbitrarily interleaved in physical time and

guarantees they will be logically ordered in a serializable manner. Thread 1’s assertion will e

ate to true because the speculating thread observes a held lock. It is legal for the thread w

speculative mode to read the value of the lock and it must find the value of the lock to be the

Figure 3-16: SLE does not change program semantics.Two non-conflicting thread executions
are shown. Both assertions in the threads evaluate true because program order is mainta
even though the lock has been elided. Thread 1 observes a held lock within its critical sec
while thread 2 observes a held lock outside its critical section.

LOCK_ACQUIRE(lock);
.
.
assert ( LOCK_IS_HELD(lock) );
.
.
LOCK_RELEASE(lock);

LOCK_ACQUIRE(lock);
.
.
assert ( LOCK_IS_HELD(lock) );
.
.
LOCK_RELEASE(lock);

.
assert ( LOCK_IS_FREE(lock) );
.

Thread 1 Thread 2
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the thread “wrote” even though the processor has no permission to actually write the value

cache. This is because program order is maintained. The thread of course knows no other

wrote that location because the lock location is cached locally in a shared state. Thread 2’s

tion for a free lock outside its critical section will also evaluate to true because the lock has

elided and thus not actually been acquired by thread 1.

3.11.3  Interactions with programs written with timing assumptions

We now discuss the impact of using SLE on programs that make assumptions about t

properties of the multiprocessor system. An example is a situation where a programmer u

loop (for example afor loop in a critical section looping for a fixed number) to introduce dela

The example is shown in Figure 3-17. Here, the programmer is making an assumption abo

time to execute thefor loops. Even though these two critical sections do not share any data s

ture, under conventional locking implementations, these executions would not occur concur

because both critical sections are protected by the same lock. Under SLE, both would execu

currently.

Note, this is valid behavior under the architectural specification. While the naïve program

may assume such code sequences will stagger executions, such a guarantee is not provide

implementation because multiprocessor memory ordering issues are always based on

ordering and independent of any timing assumptions. This program segment will not provid

assumed behavior under any implementation.

Thus, SLE does not change the semantics of the operations based on timing assump

rather the program itself is making an incorrect assumption in such cases. Traditionally, n

implementations of processors may speed up some operations while slowing others down an

writing code assuming certain timing properties of the system is error-prone, and hazardous

3.11.4  Interactions with different locking algorithms

We have focused on test&set based locking algorithms (this includes both test

test&test&set, and their variants). To elide locks from execution streams, they must first be id

fied. Since processors lack instructions to unambiguously identify lock instructions, predicti

employed. Test&set-based locks are easy to identify in hardware because these locks demo
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a simple silent store-pair pattern (Section 3.6.2). By doing so, SLE does not rely on the know

of locks and can use silent store-pair predictors

The simplicity and portability of test&test&set locks make them quite popular. Hardw

architecture manuals recommend [28, 31, 54, 73] and database vendors are advised [83]

these simple locks as portable locking mechanisms. The POSIX threads standard recom

synchronization be implemented in library calls such aspthread_mutex_lock() and these

calls implement the test&set or test&test&set locks.

While test&set-based locks are quite popular and widely used, other locking algorithms

also been proposed and sometimes are used when the occasion demands it. Common exa

such algorithms are MCS locks and ticket locks. If a program using such algorithms are ru

hardware supporting SLE relying on silent store-pair detection, these algorithms may not nec

ily be easily identified but will nevertheless execute correctly. SLE aims at executing lock-free

ical sections to expose and exploit concurrency. Thus, in situations where SLE is advanta

the use of simple algorithms is recommended because silent store-pairs is a simple prop

detect and exploit. Alternatively, for identifying more complex algorithms, either more hardw

would be required (which would make the hardware too specialized), or the program must be

ten in a form exploitable by simple silent store-pair predictors.

Figure 3-17: Critical sections written with timing assumptions.Executing this program may
give different timing results on different systems and thus is a broken program if the progra
mer is trying to exploit timing assumptions in the program.

LOCK_ACQUIRE(lock);
.
for (i = 0; i < 200; i++);
.

LOCK_RELEASE(lock);

LOCK_ACQUIRE(lock);
.

.
LOCK_RELEASE(lock);

for (j = 0; j < 600; j++);

critical section 1 critical section 2
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3.11.5  Interactions with operating systems

We briefly discuss SLE interactions with thread scheduling at the operating system and

space when multiple threads are executed in the same hardware context (a uniprocessor).

Thread scheduling.If the operating system deschedules a process, certain book-keeping is

formed, for example, certain registers are set, processor contexts are saved, and the addre

mapping is changed. While the exact operations depend upon the underlying implementat

general when such a context switch occurs and is detectable, a misspeculation is triggered

processor was in SLE mode. Even if a misspeculation is not triggered, and the processor re

in SLE mode, eventually it will run out of resources and trigger a misspeculation. The add

space is handled conventionally and no special support is required.

Regarding multiple user-level software threads on the same “hardware” context,

user-level thread switch occurs (and the operating system is not involved at all), the address

does not change, and no misspeculation is otherwise triggered, then the newly scheduled

will see a held lock (remember, the speculative values do not leave the hardware context b

visible only within the hardware context). If the new thread was outside a critical section th

would not be able to enter the critical section. The new thread could not have been inside the

cal section. If the new thread accesses data without a lock, then it would be a data race in the

cation itself and the execution would be a legal execution. There won’t be a starvation

because when the older thread runs again, it will complete. For two user-level threads runn

the same hardware context (without a misspeculation having been triggered), one would see

lock and thus experience blocking behavior.

If a user level thread from some other processor is scheduled on this processor, then the

invoked and because speculative state is never allowed to leave a processor, a misspecu

triggered. Thus, correct execution is always guaranteed.

Yields. If a lock is held for some time, the thread spinning on the lock may invoke ayield com-

mand to deschedule itself and give the processor back to the operating system. This is done

prevent idle spinning. The hardware itself is unaware of the yield and the operating system

ages the descheduling operation. While the issue of yields is orthogonal to SLE, and SLE do

change the semantics or is affected by yields, we briefly discuss yields. If SLE encounters
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lock, the test of the test&test&set algorithm will automatically spin and if necessary a yield w

automatically occur. SLE only elides the store of the lock acquire and executes the othe

instructions normally—these instructions may correspond to the spin loop. If SLE is succe

and does not result in a lock acquisition, no yielding occurs as there is no spinning. Often yie

is useful if a long latency operation such as I/O is occurring within the critical section. We do

expect this to be a major issue because yielding is useful if a thread is in a critical section for a

period—something that often involves I/O within the critical section. In such a case, SLE ca

provide any speculative execution behavior (I/O cannot be undone) and hence we would fal

on the lock acquisition sequence. Recent work has suggested that yielding may not be a goo

for performance reasons if only memory accesses are being performed within the critical s

because the overhead associated with yielding is quite high [91].

3.12  SLE interactions with hardware implementations

We now discuss SLE interactions with various implementation specific hardware featur

3.12.1  Implementation with different synchronization primitives

While SLE as discussed relies only on silent store-pair identification, lock acquire algori

employ synchronization instructions such as the load-linked/store-conditional [28, 31, 54], s

and compare&swap [166], among others. For load-linked/store-conditional instructions

store-conditional is treated as a store and thus is also considered as part of the store-pair ide

tion process. Instructions like the compare&swap are implemented as atomic read-modify

operations. Processor cores often split these instructions into a read and a write micro-ope

for efficient implementation. Thus, these instructions can also be considered as candida

store-pair identification. The precise implementation depends upon the underlying instru

implementation.

3.12.2  Interactions with memory consistency

Informally, no memory ordering problems exist because speculative memory opera

under SLE have the appearance of atomicity. Regardless of the memory consistency mod

always correct for a thread to insert anatomicset of memory operations into the global order o
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memory operations as shown in Figure 3-4 earlier. For weakly ordered systems, a fence u

occurs at the beginning and end of the critical sections and these must still be observed. We d

this below.

The appropriate memory consistency model is maintained for ordering the atomic critica

tion with operations prior to the critical section and operations after the critical section. The o

ing constraints are dependent upon the underlying memory model implemented.

The store elision also works correctly because the two elided stores form a silent store

Thus, these two stores can be combined with the atomic region between the two stores to for

giant atomic region. Note, all locations within the region are monitored for conflicting acce

and thus in the absence of any conflicting access, a correct atomic execution is guaranteed

We selectively impose the requirement of atomicity for a set of memory operations. If

underlying model employs fences for ordering request, we obey these fences as defined

model. Commonly, fences are used to force visibility of certain memory operations to the c

ence protocol. Our technique maintains these conditions if necessary. While fences force ope

visibility, a processor may not provide any speculatively modified values associated with

operations—the protocol transitions are independent of the cache block data.

3.12.3  Interactions with false sharing

Cache coherence protocols typically maintain coherence at the granularity of a cache

also known as the coherence granularity. Cache block fetches and invalidations are perform

the granularity of a cache block. While a larger granularity helps when good spatial locality in

accesses is present, poor spatial locality may result in a performance degradation due to fals

ing. Goodman and Woest [43] coined the term false sharing to describe the situation whe

processors alternately read and at least one writes different parts of the same coherency

resulting in the block’s being moved repeatedly between the two processors as if the data

shared when in fact no sharing is occurring.

Since we use the cache coherence protocol to detect data conflicts, a false-sharing-in

conflict is treated as a data conflict and thus is treated identically to true sharing, (i.e., it is cor

handled). This sometimes serializes critical sections that do not share data but the data map

same common unit of coherency. False sharing has performance implications even withou

due to unnecessary memory traffic and latency. Programmers often address this performan



104

ifferent

ectness

ort is

re. SLE

hard-

ulti-

r two

upon

ware

essive

a mul-

rt that

-aside

seman-

n, as

o-

-free

e data

ftware
radation by appropriately padding the data structures to ensure data objects accessed by d

processors do not lie on the same cache block. False sharing does not introduce any corr

issues with SLE.

3.12.4  SLE and hardware multithreaded processors

For implementing SLE on hardware multithreaded processors, additional hardware supp

necessary because now multiple thread contexts are concurrently executing on the same co

tracks cache blocks accessed using an extra bit. This bit now needs to be unique for every

ware thread executing. To support memory consistency models correctly in hardware m

threaded processors, a form of coherence activity must be locally invoked. For example, fo

hardware threads T1 and T2 on a processor, if T1 writes to a cache block X, then depending

the memory consistency model, an invalidation will need to be sent to T2 (and any other hard

threads) to ensure the memory consistency model is enforced. This will be true in any aggr

implementation of sequential consistency, processor consistency, or release consistency for

tithreaded processor. The solution is specific to the implementation but SLE can use suppo

will already be present for supporting aggressive memory consistency implementations.

3.12.5  Implementation-specific issues

Numerous implementation-specific issues may exist, such as certain translation look

buffer issues, operations that cannot be delayed or undone, certain interrupts, and special

tics for certain memory operations that result in a misspeculation. All these conditions ca

usual, be handled by simply not speculating and acquiring the lock.

3.13  Related work

Software only lock-free.Lamport introduced lock-free synchronization [95] and gave alg

rithms to allow multiple threads to work on a data structure without a lock. Operations on lock

data structures support concurrent updates and do not require mutual exclusion. Lock-fre

structures have been extensively investigated [17, 65]. Experimental studies have shown so



105

unter-

].

ere

pro-

hough

olve-

quired

pro-

re both

d by

mic

nges,

bina-

o con-

, we

tional

he

ner in

ta-

refer-

ajor

e data-

ed by a

ther

f the

l mecha-
implementations of lock-free data structures do not perform as well as their lock-based co

parts primarily due to excessive data copying involved to enable rollback, if necessary [5, 66

Hybrid lock-free. Transactional Memory [66] and the Oklahoma Update protocol [158] w

the initial proposals for hardware support for implementing lock-free data structures. Both

vided programmers with special memory instructions for accessing these data structures. Alt

conceptually powerful, the proposals required instruction set support and programmer inv

ment. The programmer had to learn the correct use of new instructions and the proposal re

coherence protocol extensions. Additionally, existing program binaries could not benefit. The

posals relied on software support for guaranteeing forward progress. These proposals we

direct generalizations of the load-linked and store-conditional instructions originally propose

Jensen et al. [78]. The load-linked/store-conditional combination allows for optimistic ato

read-modify-write sequences on a word.

In contrast to the above proposals, our proposal does not require instruction set cha

coherence protocol extensions, or programmer support. As a result, we can run unmodified

ries in a lock-free manner in most cases when competing critical section executions have n

flict. We do not have to provide special support for forward progress because, for conflicts

simply fall back to the original code sequence, acquiring and releasing the lock in the conven

way.

Hardware-only lock-free. To the best of our knowledge, Speculative Lock Elision [139] is t

first hardware-only lock-free proposal that executes lock-based programs in a lock-free man

the absence of data conflicts.

Database optimistic concurrency control.Extensive research has been conducted in da

bases on concurrency control and Thomasian [161] provides a good summary and further

ences. Kung and Robinson [90] proposed Optimistic Concurrency Control (OCC) as a m

alternative to locking in database management systems. OCC involves a read phase wher

base objects are accessed (with possible updates to a private copy of these objects) follow

serialized validation phase to check for data conflicts (to check for read/write conflicts with o

transactions). This is followed by the write phase if the validation is successful. In spite o

extensive research, there are no database systems that use OCC as a concurrency contro
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nism. Haerder [60] was the first to point out potential problems with OCC schemes. Mohan

provides an excellent discussion regarding the issues involved with OCC approaches an

shortcomings which make OCC unattractive for high performance database systems is provi

The special requirements and guarantees required by database systems, specifically for

management, access path maintenance, recovery models, fine-granularity conflict che

fine-grain locking, and semantically-rich lock modes [125], make OCC very hard to use for

performance. To provide these guarantees about database transactions, substantial state

tion must be stored in software resulting in large overheads in executing transactions. In ad

with OCC, the validation phase is serialized, thus limiting performance.

Our proposal is quite different from database OCC proposals. We are not providing an

native to lock-based synchronization: we detect instances when these synchronization ope

are unnecessary, and eliminate them. The requirements imposed on critical sections are

strict than those mentioned above for database systems. Since we do not require re-execu

explicit acquisition of a lock to determine success, we do not have a serialized validation ph

Using cache coherence protocols for conflict detection.Knight proposed using cache

coherence protocols in the context of speculatively parallelizing sequential code [86]. S

quently the Herlihy and Moss [66] used the same mechanism for implementing transac

memory. Gharachorloo et al. [45] used cache coherence protocols for detecting violations to

ory ordering. Franklin proposed the use of the address resolution buffer for detecting data ra

shared-memory multiprocessors [40].

Speculative buffering and retirement.Prior work exists in microarchitectural support fo

speculative retirement [48, 143] and buffering speculative data in caches [42, 52]. Our wor

leverage these techniques and coexist with them. However, none of these earlier tech

dynamically remove conservative synchronization from the dynamic instruction stream.

Value prediction. Our scheme of silent store-pair elision is an extension to thesilent storepro-

posal of Lepak and Lipasti [111]. While they squashed individual silent store operations, we

pairs of stores that individually are not silent but when executed as a pair are silent. The not

silent store-pairs employed by SLE is an example of the notion of Temporal Silence rec

investigated by Lepak and Lipasti [112].
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3.14  Chapter summary

In this chapter we proposed Speculative Lock Elision—a microarchitectural techniqu

remove unnecessary serialization from a dynamic instruction stream. The key idea behind

involves using the cache coherence protocol to obtain appropriate permissions on the nec

cache blocks, accessing and modifying data speculatively if needed, and then providin

appearance of instantly committing the critical section by making updates visible to other pr

sors at a single commit point.

SLE has the following key features

1. Enables highly concurrent multithreaded execution. Multiple threads can concurrently execut

critical sections guarded by the same lock. Additionally, correctness is determined wi

acquiring (or modifying) the lock. No write permissions are required on the lock variable in

event of a successful speculation.

2. Simplifies correct multithreaded code development. Programmers can use conservative sy

chronization to write correct multithreaded programs without significant performance imp

If the synchronization is not required for correctness, the execution will behave as if the

chronization were not present.

3. Can be implemented easily. SLE can be implemented entirely in the microarchitecture, witho

instruction set support and without system-level modifications (e.g., no coherence pro

changes are required) and is transparent to programmers. Existing synchronization instru

are identified dynamically. Programmers do not have to learn a new programming method

and can continue to use well understood synchronization routines. The technique can be

porated into modern processor designs, independent of the system and the cache cohere

tocol.

With SLE, the control dependence implied by the lock operation is converted to a true

dependence among the various concurrent critical sections. As a result, the potential para

masked by dynamically unnecessary and conservative locking imposed by a programmer

static analysis is exposed by a hardware-based dynamic analysis.

The technique proposed does not require any coherence protocol changes. Additiona

programmer or compiler support and no instruction set changes are necessary. The key no

atomicity of memory operations enables the technique to be incorporated in processors wit
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dependence upon the memory consistency model as correctness is guaranteed because o

commit of memory operations.

SLE is a step towards enabling high performance multithreaded programming. With m

processing becoming more common, it is necessary to provide programmers with suppo

exploiting these multiprocessing features for functionality and performance. SLE permits

grammers to use frequent and conservative synchronization to writecorrect multithreaded code

easily; our technique automatically and dynamically removes unnecessary instances of sync

zation. Synchronization is performed only when necessary for correctness; and performance

degraded by the presence of such synchronization. Since SLE is a purely microarchitectura

nique, it can be incorporated into any system without any changes to the underlying cohe

protocols or without dependence on any system design issues.
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Chapter 4

Transactional Lock Removal

SLE breaks a critical performance barrier by allowing non-conflicting critical sections to

cute and commit concurrently. SLE showed how lock-based critical sections can be executed

ulatively and committed atomically without acquiring locks if no data conflicts were obser

among the critical sections. While SLE provided concurrent completion for critical sect

accessing disjoint data sets, data conflicts result in threads restarting and acquiring the loc

ally. Thus, when data conflicts occur, SLE suffers from the key problems of locks due to

acquisitions.

This chapter proposes Transactional Lock Removal—a technique that uses SLE

enabling mechanism but in addition provides a successful lock-free execution of lock-based

cal sections in the presence of data conflicts if sufficient resources are available for buffering

ulative state. TLR elides locks using SLE to construct an optimistic lock-free critical sec

execution (and treats the lock-free critical section as a lock-free transaction) but in addition

uses a timestamp-based conflict resolution scheme to provide lock-free execution even in th

ence of data conflicts. A single, globally unique, timestamp is assigned to all memory req

generated for data within the optimistic lock-free critical section. Existing cache coherence p

cols are used to detect data conflicts. On a conflict, some threads may restart (employing ha

misspeculation recovery mechanisms) but the same timestamp determined at the beginning

optimistic lock-free critical section is used for subsequent re-executions until the optim

lock-free critical section is successfully executed. A timestamp update occurs only after a su

ful execution. Doing so guarantees each thread will eventually win any conflict by virtue of ha

the earliest timestamp in the system and thus will succeed in executing its optimistic lock-free

ical section. If the speculative data can be locally buffered, all non-conflicting transactions pro

and complete concurrently without serialization or dependence on the lock. Transactions e
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encing data conflicts are ordered without interfering with non-conflicting transactions and wit

lock acquisitions.

4.1  Chapter roadmap

Section 4.2 provides the motivation for Transactional Lock Removal by discussing the pe

mance and stability limitations of SLE in the presence of data conflicts. Section 4.3 presen

concepts of TLR. Details of conflict resolution policies and timestamp schemes are also disc

and the TLR algorithm is presented. Section 4.4 discusses an implementation of TLR. The s

discusses mechanisms for retaining ownership of cache blocks using the coherence protoc

sents an implementation of TLR, qualitatively analyzes TLR performance potential, and st

implementation specific constraints. Section 4.5 presents implementation independent inva

and the programmability and stability issues of TLR are discussed in Section 4.6. We s

related work in Section 4.7 and summarize the chapter in Section 4.8.

4.2  Motivation

The motivation for Transactional Lock Removal lies in the critical limitation of Speculat

Lock Elision—in the presence of data conflicts, the lock may have to be acquired. Data con

are inherent in multithreaded programs and thus numerous situations requiring lock acqu

exist. We now discuss the impact of lock acquisitions on performance and stability.

4.2.1  Performance limitations of lock acquisition under conflicts

When a data conflict triggers a misspeculation in SLE, rather than acquiring the lock,

may be retried a finite number of times. While retrying SLE in these situations may succes

elide locks, such a retry policy involves a careful trade-off. Applying SLE to situations where

data conflict rates occur may result in performance degradation because of coherence p

interference among conflicting critical sections. Cache blocks may ping-pong among va

caches before any thread successfully completes its critical section execution. Further, m

threads may repeatedly restart. SLE automatically handles these situations by acquiring th



111

pond-

or-

ction

rial-

-grain

of the

sent

iable

ys-

-

does

ed) or

nce is

d pro-

sence

cally

these

can be

in the
ase also
after a certain number of retries. While this guarantees forward progress trivially, the corres

ing locking overhead still limits performance.1

Additionally, lock acquisitions serialize execution of multiple threads thus limiting perf

mance. While there may be opportunity to overlap some computation within the critical se

with communication of the lock, the threads cannot commit until the lock acquisitions are se

ized by the coherence protocol. Under high conflict conditions, such as cases where fine

locking is present and no concurrency can be extracted, the performance is limited to that

underlying synchronization algorithm. Further, if dynamic, hard-to-detect concurrency is pre

in the application, identifying opportunity for concurrent execution is a non-trivial task [66].

4.2.2  Stability limitations of lock acquisition under conflicts

As discussed in Section 1.2, the semantic operation of writing a new value to a lock var

and of waiting for the value to change (by spinning on it) inherently limits the stability of the s

tem. The inherent limitation stems from thewait actionwhile some thread is in the critical sec

tion—a lock marked held forces other threads to wait for the lock value to be free. If the value

not change for an arbitrarily long time (the thread holding the lock may have been deschedul

does not ever change (the thread holding the lock may have aborted), system performa

affected and the system may fail to perform as expected. Data conflicts occur in multithreade

grams and by acquiring locks in such situations, the limitations of locks are exposed.

4.3  Transactional lock-free execution of critical sections

TLR aims to achieve a serializable schedule of lock-free critical sections, even in the pre

of data conflicts, where all memory operations within a critical section appear to be atomi

inserted into some global order. This is illustrated in Figure 4-1.

Serializability requires the result of executions of concurrent transactions to be as if

transactions executed in some serial order. In the absence of data conflicts, serializability

1. This overhead is essentially the overhead of lock acquisitions present in the base algorithm used
system and is fundamental to a lock-based approach. Further, when locks are contended, their rele
frequently results in a cache miss and excessive coherence traffic.
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ensured using a technique such as SLE but the presence of data conflicts among concurren

cuting threads requires additional mechanisms provided by TLR.

The basic idea behind TLR is as follows:

a) Treat locks as defining scope of a transaction

b) Speculatively execute the transaction without requesting or acquiring locks

c) Use a conflict resolution scheme to order conflicting transactions

d) Use a technique to give the appearance of an atomic commit of the transaction, such as

vided by SLE

TLR performs active concurrency control to ensure correct coordinated access to the

experiencing conflicting access by using the data itself rather than locks. Unlike TLR, SLE

identifies situations where lock-based concurrency control is not necessary—namely the ab

of data conflicts among threads—and relies on the default lock-based concurrency control m

nisms if data conflicts occur.

Since TLR implements a concurrency control algorithm, it must provide the following

properties (Section 2.3):

Figure 4-1: TLR and global memory ordering.While critical section executions (without lock
acquires) overlap in physical time (with or without data conflicts), each critical section logica
appears to be inserted atomically and instantly in a logical ordering of memory operations w
respect to other atomically inserted critical sections and individual memory operations.

logical ordering

P
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e

Thread 1 Thread 2 Thread 3 Thread 4

normal memory operations
atomic critical section
(set of memory operations)

CS1

CS2

CS3

CS4

CSi A lock-free critical section of thread i
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1. Safety. The algorithm must guarantee “nothing bad ever happens” [96]. We show how to

vide serializability of transactions, thus achieving the behavior of critical sections without

acquisitions.

2. Liveness. The algorithm must guarantee “something good will eventually happen” [96].

show how TLR is free from livelock and further, how TLR provides starvation freedom.

In the discussion in this section, we refer to a lock-free optimistic critical section as a tran

tion. In Section 4.3.1 we discuss achieving serializability of transactions in the presence o

conflicts. Section 4.3.2 presents the TLR algorithm and Section 4.3.3 illustrates the algo

using an example.

4.3.1  Achieving serializability in the presence of conflicts

An execution of an optimistic lock-free transaction can be made serializable if the data s

latively modified by any transaction are not exposed until after the transaction commits an

other transaction writes to speculatively read data. A serializable execution can be achieved

ally by acquiring exclusive ownership of all required resources. If the thread executing the tra

tion does so for all required resources, the thread can operate upon the resources and then

the updates atomically and instantly, thus achieving serializability.

In cache-coherent shared-memory multiprocessors, the above requires:

1. Acquiring all cache blocks that are accessed within the transaction in an appropriate own

state

2. Retaining such ownership until the end of the transaction

3. Executing the sequence of instructions forming the transaction

4. Speculatively operating upon the cache blocks if necessary

5. Making all updates visible atomically to other threads at the end of the transaction

However, as we shall see next, the presence of conflicts may prevent resources from

retained thus preventing a successful execution of the lock-free transaction.
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4.3.1.1  Necessity for conflict resolution

Livelock can occur if processors executing critical sections speculatively and in a lock

manner repeatedly experience conflicts. As with SLE, the lock can always be acquired and fo

progress is guaranteed but we require a solution that does not rely on lock acquisitions for fo

progress.

Consider two processors, P1 and P2, each executing a lock-free critical section and

accessing (and writing) shared memory locationsA andB in the critical sections. The two proces

sors write the two locations in reverse order of each other—P1 writesA first and thenB while P2

writesB first and thenA. The code sequence within the critical section is shown in Figure 4-2.

messages and the state transitions for the corresponding blocks are also shown in Figure 4

Time instances are labeled as ti where i denotes progressing instances. Physical tim

progresses down and the changing cache block coherence state is shown over time. Assum

P1 and P2 have elided the lock by employing SLE and are in an optimistic lock-free exec

mode. P1 has speculatively accessed blockA and cached it in exclusive state (M). P2 has specu

tively accessed blockB and cached it in the M state.

At t1, P1 issues a request for exclusive ownership (rd_X ) for block B corresponding to the

write operation toB within P1’s critical section and at t2, P2 issues anrd_X block A correspond-

ing to the write operation toA within P2’s critical section. The corresponding requests are acco

panied by a transition of the respective cache blocks into a transient (pending P) state. At4, P1

receives P2’srd_X request for blockA. P1 detects this as a data conflict (blockA speculatively

written to by P1 is accessed by another thread before P1 has completed its optimistic transa

P1 triggers a misspeculation and restarts its optimistic lock-free execution. Similarly, P2 rec

P1’srd_X for B at t3 and P2 restarts execution. Both P1 and P2 respond with the valid non-sp

lative data. This sequence may occur indefinitely with no processor making forward pro

because each processor repeatedly restarts the other processor.

Livelock occurs because neither processor obtains ownership ofboth cache blockssimulta-

neouslyin order to execute the transaction in a serializable manner and commit it atomically w

out locks. Cache coherence protocols can be used to allow processors to retain ownership o

blocks. To ensure livelock freedom, among conflicting processors one processor must win th
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employs the following key idea:

“Transactions with higher priority never wait for transactions with lower priority. In
the event of a conflict, the lower priority transaction is restarted or forced to wait.”

Consider two transactions T1 and T2 executing speculatively. Suppose T2 issues a request tha

causes a data conflict with a request previously made by T1, and T1 receives T2’s conflicting

Figure 4-2: Livelock in a lock-free optimistic transaction.In this example, both processors
repeatedly restart. A and B are memory locations. M corresponds to the modified state of
cache block and P corresponds to a pending (transient) state of the cache block. I is the inva
state. Time progresses downwards. The contents of the cache blocks are not shown.
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request. The conflict is resolved as follows: if T2’s priority is lesser than T1’s priority, then T2 waits

for T1 to complete (T1 wins the conflict), else T1 is restarted (T2 wins the conflict). The “wait”

mechanism may either involve an explicit negative acknowledgement or a delayed process

the request.

The above uses concepts developed by Rosenkrantz et al. [144] (discussed ear

Section 2.3.1.2) and specifically we adapt some of the key ideas in theirwound-waitproposal for

distributed concurrency control.

In the above approach, there cannot be any deadlock because for any finite set of transa

the oldest cannot wait for any other transaction unless that transaction has first been wounde

restarted). The wounded transaction cannot be part of the deadlock because it is restarted

relinquishes ownership of the block in question. In the wound-wait system, an older transa

never waits for a younger one except when the older transaction has wounded the younger tr

tion and is waiting for the wound to take effect. The oldest transaction therefore runs throug

system wounding any younger transaction in its path. Thus the older transaction acquires

resources it needs.

Rosenkrantz et al. [144] also proposed thewait-dieapproach. Suppose T1 issues a request in

conflict with T2. Under wait-die, the conflict is resolved as follows. If T1 has lower priority than

T2, then T1 is permitted to wait; else it is aborted and forced to restart (“dies”).

Restart behavior of wait-die and wound-wait.We contrast the wait-die scheme and th

wound-wait scheme and discuss why we use the wound-wait scheme. See Section 2.3.1

[144] for detailed difference between wound-wait and wait-die schemes. Suppose transactio1

and T2 have a conflict and T1 is restarted. The new sequence of requests issued by T1 may be the

same as the original one and the same sequence reach the site of the previous conflict. At th

a new conflict will result if T2 is still executing.

In the wait-die system, T1 was the requestor that caused the original conflict (only t

requestor can die in the wait-die system). In the new conflict T1 is still the requestor and dies

again. Thus there can be a long sequence of “dies” and while both T1 and T2 will eventually termi-

nate, repeated attempts to run T1 will consume system resources.
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By contrast, in the wound-wait system, T1 was not the requestor of the original conflict an

T1 was younger than T2. In the new conflict, T1 is still younger than T2 but this time T1 is the

requestor and hence waits. Transaction T1 presumably consumes far less system resources if

waiting than if it is continually being restarted.

For starvation freedom, the resolution mechanism must guarantee all contenders eve

succeed and become winners. We use timestamps for conflict resolution and we discuss the

4.3.1.2  Conflict resolution using timestamps

We use timestamps for resolving conflicts to decide a conflict winner—earlier timest

implies higher priority. Thus, the contender with the earlier timestamp wins the conflict.

The timestamps we use have two components: a local logical clock and processor ID

logical clock is a way of assigning a number to an event and the number is thought of as the t

which the event occurred. An event in our case is a successful execution of a TLR instance

local logical clock value is increased by 1 or higher on a successful TLR execution and cap

time in units of successful TLR executions on a given processor. Since these logical clock

local, the logical clocks on different processors may have the same value. Such ties are bro

using the processor ID. Thus the timestamp comprising of the local logical clock and the proc

ID are globally unique. Timestamp construction is shown in Figure 4-3. A strictly monotonic

increasing sequence is defined as a sequencean if an+1 > an for all n ∈ N. To construct a globally

Figure 4-3: Constructing timestamps.Bits from a strictly monotonically increasing counter are
concatenated and combined with all bits from the local processor ID to construct a globa
unique timestamp.

. . . . . .

strictly monotonically increasing local counter local processor ID

. . . globally unique
timestamp

m bitsl bits

n bits

(dynamic component) (static component)
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unique timestamp (n bits), bits from the local counter (l bits) and the local processor identifier (m

bits) are concatenated together.

All requests generated from within a given transaction on a processor are assigned the

timestamp—namely the value of the timestamp at the start of the transaction. On a successfu

execution, the processor increments its local logical clock to a value higher than the previous

(typically by 1) or to a value higher than the highest of all incoming conflicting requests rece

from other processors, whichever is larger. Doing so keeps the local logical clocks on the va

processors loosely synchronized whenever a conflict is detected.

Our use of timestamps is similar to that proposed by Lamport [97]. Lamport used timest

derived from logical clocks to implement distributed mutual exclusion with a starvation free

guarantee. However, we only require timestamps for conflict resolution while Lamport used

stamps forexplicitly ordering the execution of mutual exclusion regions among different proc

sors. Thus with TLR, transactions that conflict in their data sets but do not actually observ

detected conflicts during their execution can execute inanyorder independent of the timestamps o

the transactions. Since TLR does not require synchronized clocks, real-time system clock

also be used.

The static component need not be explicitly exchanged and can be deduced simply

inspecting the sender identifier of the message. Thus the actual timestamp exchanged isl bits. We

next discuss Lamport’s logical clock construction and its application to TLR.

Lamport’s logical clock construction.The simplest timestamp generation algorithm is due

Lamport [97] and is reproduced here. For now, assume unbounded timestamps.

Lamport defined→ as a “happened before” relation. Informally,a → b means that is is possi-

ble for eventa to causally affect eventb. Two events are concurrent if neither can causally affe

the other. Define a clock Ci for each process Pi to be a function which assigns a number Ci〈a〉 to

any eventa in that process. The entire system of clocks is represented by the function C w

assigns to any eventb the number C〈b〉, where C〈b〉 = Cj〈b〉, if b is an event in processor Pj. Each

Ci is implemented as counters with no actual timing mechanism.

A clock condition is defined as: for any eventsa, b: if a → b then C〈a〉 < C〈b〉

To satisfy the clock condition, two conditions must hold:

C1. If a andb are events in process Pi, anda comes beforeb, then Ci〈a〉 < Ci〈b〉.
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C2. If a is the sending of a message by process Pi andb is the receipt of that message by pro

cess Pj, then Ci〈a〉 < Cj〈b〉.

The process clock “ticks” through every number, with the ticks occurring between the

cess’ events. Now assume the processes are algorithms, and the events represent certain

during their execution. Process Pi’s clock is represented by a register Ci so that Ci〈a〉 is the value

contained by Ci during the eventa. The value of Ci will change between events, so changing Ci is

not itself an event.

Lamport defined two implementation rules for ensuring clock conditions C1 and C2.

IR1. Each process Pi increments Ci between any two successive events.

IR2. (a) If eventa is the sending of a messagem by process Pi, then the messagem contains

a timestamp Tm = Ci〈a〉. (b) Upon receiving a messagem, process Pj sets Cj greater than or

equal to its present value and greater than Tm.

Lamport further used these clocks to provide a distributed mutual exclusion algorithm g

anteeing starvation freedom because a process would eventually have the earliest timestam

system (all others, on a successful event execution, would increment their clocks as per th

IR2 above).

Lamport’s logical clocks applied to TLR.Lamport’s logical clocks can be utilized for TLR

A successful lock-free execution of a critical section is considered to be an event. Thus, the

stamp update occurs at the completion of a successful lock elision. The new timestamp u

occurs according to the rule IR2 described above—this requires the local node to keep track

highest incoming timestamp from other processors. In TLR, all nodes are not guaranteed to

timestamps at any time, only the ones that conflict. Nevertheless, only one timestamp—the

est—need be tracked.

By using Lamport’s logical clocks, at any time, two clocks will not drift2 arbitrarily far

because they synchronize on every conflict in which they both participate. For example, con

processor P0 executes 1000 successful lock-free executions and has now set its local cou

1000. Meanwhile P1 executes no critical sections. Subsequently, P1 executes a critical s

2. When two clocks tick at different rates, it creates an ever-widening gap in perceived time. This is c
clock drift. Clock skew is the difference between two clocks at one point in time.
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conflicts with P0, and wins the conflict because P1’s timestamp is 0 and is earlier than P1’s

stamp. P0 restarts and issues its request again and the request for the conflicting data is for

to P1. Thus, while P1’s current clock value is 0, on a successful execution, its new clock valu

be 1001 (> 1000). The drift between the two clocks is contained and they re-synchronize.

Achieving starvation freedom.Starvation freedom is achieved by retaining and reusing tim

stamps in the event of a misspeculation and restart. By reusing timestamps, processors reta

position. By updating timestamps as above, a processor will eventually have the earliest time

in the system and thus will eventually win all conflicts. TLR uses timestamps solely for the

pose of comparing priorities of two conflicting threads to determine which has a higher prio

The starvation freedom property follows from the use of Lamport’s logical clocks.

4.3.2  TLR algorithm

We assume a processor with support for SLE. A processor executing the TLR algorith

considered to be in TLR mode. All operations executed by a processor in TLR mode are part

optimistic lock-free transaction and are speculative. For brevity, we will refer to an optim

lock-free transaction as simply a transaction. Conventional cache coherence protocols are

allow processors to retain ownership of cache blocks. In an invalidation-based cache coh

protocol, a processor with an exclusively-owned cache block receives and must respond to

quent requests for the block. The processor controls the block and can appropriately res

Figure 4-4 shows the TLR algorithm. In the discussion below, we use the term deferred to i

the processor retains ownership.

The first step is calculating the globally unique local timestamp.

The second step is identifying start of a transaction. We use SLE to identify the start an

of transactions. SLE does so by exploitingsilent store-pairs: a pair of store operations where th

second store undoes the effects of the first store and the intervening operations appear to

atomically. The first store of the pair corresponds to the start of the transaction and the s

store of the pair corresponds to the transaction end. Once the start is identified, the lock is

thus leaving the lockfree. The processor register state is saved for recovery in the event of a

speculation.

The third step comprises actions that may occur concurrently and are listed below.
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• A cache miss generated for data within the speculative execution carries with it the proce

timestamp.

• Requests from other processors that result in a data conflict for data accessed within the

action are checked for priority. If the incoming request has a later timestamp than the loca

cessor, the incoming request’s response is deferred. If the incoming request has an

timestamp, the local processor loses the conflict. It must service earlier deferred requests

order they were received, thus maintaining the coherence protocol ordering, and then s

the conflicting incoming request. By ensuring we always maintain coherence protocol orde

1. Calculate local timestamp

2. Identify transaction start
a) Initiate TLR mode (use SLE to elide locks).
b) Execute transaction speculatively.

3. During transactional speculative execution
• Locally buffer speculative updates.
• Append timestamp to all outgoing requests.
• If incoming request conflicts with retainable block and has later timestamp, retain

ownership and force requestor to wait.
• If incoming request conflicts with retainable block and has earlier timestamp, service

request and restart from step 2b if necessary. Give up any retained ownerships.
• If insufficient resources, acquire lock.

• No buffer space
• Operation cannot be undone (e.g., I/O)

4. Identify transaction end
a) If all blocks available in local cache in appropriate coherence state, atomically commit

memory updates from local buffer into cache (write to cache using SLE).
b) Commit transaction register (processor) state.
c) Service waiters if any.
d) Update local timestamp.

Figure 4-4: TLR algorithm. A mechanism for retaining ownership of cache blocks is
assumed to be present. A retainable cache block is defined as a block in an exclusive
owned coherence state. Requests are forwarded to the cache with the writable copy of th
block.
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we do not change the coherence protocol correctness conditions discussed ear

Section 2.1.2.3. The execution may restart but the local clock is not updated.

• If any resource constraints, or operations that cannot be undone, are encountered, TLR

be applied. The processor requests the lock by exposing the elided writes and exits TLR

Since the lock is kept in shared state under TLR, any write to the lock triggers invalida

thus automatically informing other participating processors of the violation of the si

store-pair elision under TLR. During speculative execution, data modified is buffered in

write buffer and exclusive requests for the cache block are issued to the memory system

Finally, when a transaction end is identified, the transaction is committed. If all approp

blocks have been brought into the cache in appropriate state (exclusive or shared), then th

ered data in the write buffer isatomically committed into the cache—all required blocks a

already in writable state in the cache. If not, then speculative execution can proceed un

blocks corresponding to the write buffer are available in appropriate state. After the specu

data has been committed into the cache, deferred requests from before are then serviced i

The local logical clock update is performed as discussed in Section 4.3.1.2.

Up to now, we have focused on interaction among timestamped requests—requests th

part of critical sections. However, in some programs, the data protected by locks may be ac

from outside a critical section and hence without locks, and may conflict with timestam

requests. While this is a data race, it may be acceptable for the program. Such situations m

correctly handled in various ways. One approach is to trigger a misspeculation when an un

stamped request is received. Thus, if any thread performs a conflicting access from outside

cal section, then TLR cannot be applied because a data race exists. Another approach is

un-timestamped requests as deferrable and thus achieve successful lock-free execution eve

presence of data races. Such a request is assumed to have the latest timestamp in the sys

thus the lowest priority) and the un-timestamped request is atomically ordered after the c

critical section. Since a data response is not sent until after the critical section, the requestor

consume the data and hence is ordered with the correct value. TLR, in effect, is masking th

race and forces the data race to be ordered after the critical section completes. We discuss

bility implications of this in Section 4.6 where subtle unwanted data races may be prevented

being exposed in the system for a given execution thus resulting in stable software.
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4.3.3  TLR algorithm example

We revisit the example of Figure 4-2 and apply the algorithm outlined in Figure 4-4 to

Consider Figure 4-5. Two processors, P1 and P2, execute a lock-free critical section and bot

shared memory locationsA andB in the critical section. Both the processors have a unique tim

stamp—TS1 for P1 and TS2 for P2 where TS1 < TS2 (processor P1 has higher priority than

cessor P2 and wins all conflicts). Assume both processors have the additional ability to buffe

delay responding to incoming requests. As in the earlier example, the two processors write th

locations,A andB, in reverse order of each other. Assume both P1 and P2 have elided the lo

employing SLE and are in the optimistic lock-free execution mode. P1 has speculatively acc

block A and cached it in exclusive state (M). P2 has speculatively accessed blockB and cached it

in the M state.

At t1, P1 issues ard_X for blockB corresponding to the write operation toB within P1’s crit-

ical section and at t2, P2 issues ard_X for block A corresponding to the write operation toA

within P2’s critical section. The respective cache blocks transition into a transient (pendin

state. All memory operations within the transaction are assigned the same timestamp. The

P1’s rd_x for B has TS1 appended and P2’srd_X for A has TS2 appended. At t3, P2 receives

P1’s request and compares the incoming request’s timestamp TS1 with its local timestamp

Since the incoming request has an earlier timestamp than P2, P2 services the request and r

with the data for blockB (non-speculative value). On applying the incoming request, a data c

flict is triggered at P2 and P2 restarts execution of its transaction. At t4, P1 receives P2’srd_X

request for blockA. Since TS1 < TS2, P1 wins the conflict and defers the request by bufferin

The cache block forA stays in state M. At t6 P1 receives data for blockB from P2. P1 has acquired

and retained permissions onboth cache blocksA andB and can successfully execute and atom

cally commit the transaction. At t8, P1 completes its transaction, architecturally commits its spe

lative state and services P2’s deferred request. P1 responds with the latest architecturally

data. Meanwhile, P2 has restarted and is re-executing its transaction. The key difference be

Figure 4-2 and Figure 4-5 is P1’s ability to retain exclusive permissions in the latter example
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Figure 4-5: Serializable execution in the presence of conflicts.A conflict resolution scheme is
employed allowing processor 1 to retain exclusive ownership of both cache blocks A and B
deferring a response, conflicts are masked and a successful atomic execution is achieved.
B are memory locations. M corresponds to the modified state of the cache block and P co
sponds to a pending (transient) state of the cache block. I is the invalid state. Time progre
downwards. The contents of the cache blocks are not shown.
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4.4  A TLR implementation

In this section, we discuss how TLR can be implemented. The algorithm outlined earli

Figure 4-4 relies on the ability of a processor to retain ownership of a cache block. In Section

we discuss various mechanisms for retaining ownerships of cache blocks and in Section 4.

discuss one such mechanism in detail. Until now we have not discussed the interactions o

with the shared coherence state and in Section 4.4.3 we discuss handling the shared coh

state under TLR. We qualitatively discuss the performance implications of the interac

between timestamp-enforced order and the coherence-protocol-enforced order in Section

TLR enforces fair and deadlock-free concurrency control using timestamps. However, if me

nisms exist otherwise for achieving such concurrency control, the use of timestamps m

relaxed and the coherence protocol order may itself be used. In Section 4.4.5 we discuss

detail and show when timestamp order may be relaxed for better performance. In Section 4.4

discuss an optimization for controlling misses. Finally in Section 4.4.7 we discuss implem

tion-specific constraints for TLR.

4.4.1  Mechanisms for retaining ownerships

Two policies to retain exclusive ownership of cache blocks are NACK-based and d

ral-based. With NACK-based techniques, a processor refuses to process an incoming con

request (and thus retains ownership) by sending anegative acknowledgement(NACK) to the

requestor. Doing so forces the requestor to retry at a future time. With deferral-based techniq

processor defers processing an incoming request by buffering the request and masking an

flict. The requestor assumes the request is being processed and has been ordered by the co

protocol but the requestor does not get a response right away. We discuss retaining own

using NACKs in Section 4.4.1.1 and retaining ownership using request deferral in Section 4

4.4.1.1  Retaining ownership via negative acknowledgements

In the scheme for retaining ownership using NACKs, the conflict-winning processor wit

exclusively owned cache block responds to the incoming conflicting request to the cache blo

sending a NACK message to the requestor. This message informs the requestor to retry the

again after a bounded time.
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The advantages of a NACK-based approach are:

+ The approach is conceptually simple and all interactions among various processo

explicitly handled. No deadlock dangers due to ownership retention exist (as discuss

Section 2.3.1) because of explicit handshaking among conflicting processors.

+ Many protocols already support NACKs. Thus, adapting the TLR to such protocols w

be straightforward.

The disadvantages of a NACK-based approach are:

- A NACK-based approach requires the ability of the processor to prevent a cache b

coherence state transition, that results in ownership loss, from occurring. Doing so a

a processor to retain exclusive ownership even if another processor requests the bloc

venting state transitions from occurring may be difficult to achieve in some systems

as modern broadcast-snooping systems built using high-performance indirect netw

Such systems do not often have the ability to NACK requests and state transitions are

sidered to have implicitly occurred depending upon the serialization point (often a log

bus) of the coherence protocol. Since the transitions occur implicitly, preventing such

sitions from occurring may be difficult. In the absence of explicit messages (as in the

of directories), implementing NACKs may be a non-trivial task in such systems.3

- Apart from the implementation difficulty on some systems, the protocol may need t

changed in systems that do not support NACKs for other reasons. Such a change m

be desirable since the NACKs may have been avoided for a specific reason.

- Since NACK-based approaches rely on retrying the request, the timing of the retry is a

ical factor for performance. A retry that is too early will result in unnecessary netw

traffic and coherence protocol interference resulting in additional latency, while retr

too late will result in unnecessary delay. Often, this is similar to the exponential bac

problem—the time interval between two attempts may be sensitive to the workload

and may be difficult to tune.

3. Logical bus designs do exist that allow a request to be NACKed even in high performance broadca
tems. The Gigaplane has support for the ignore signal that prevents coherence input queues in the
to avoid observing a request on the bus for optimal global request ordering [152]. Such support c
used for implementing NACK-based ownership retention schemes on modern broadcast systems.
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4.4.1.2  Retaining ownership via request deferrals

With deferrals, the conflict-winning processor with an exclusively owned cache block de

processing the incoming request for a bounded time (preferably until the processor has com

its transaction) and thus defers the request. The coherence transitions (and state transitions

by the “outside world”) are assumed to have occurred but the processor does not locally app

incoming request. Request deferral and delayed responses works in split-coherence-trans4

systems where the address request processing is split into two sub-coherence-transac

request and response. The response (often the data) may appear an arbitrary time later a

number of other requests and responses may occur between the two sub-coherence-transa

The advantages of a deferral-based approach are:

+ Since coherence protocol processing is delayed, the coherence protocol itself is esse

unchanged. The existing state transition tables do not require changes nor do any

sophical design decisions of the coherence protocol. Doing so allows the policy t

implemented in just about any protocol without changing the protocol itself.

+ By deferring requests until the end of the transaction, traffic is reduced to the minim

because the external request is serviced at theright time. Retries are not necessary for tha

request and therefore the requestor does not have to worry about the accurateness

timing of the retry. This provides performance benefits and we discuss them later.

+ Ordering can be easily maintained, providing benefits such as fairness, starvation fre

etc.

The main disadvantages of a deferral-based approach are:

-  Additional hardware is required to buffer the incoming request.

- Request deferral introduces deadlock possibilities in the protocol because we now

waiting processors and thus a danger of a cyclic waits-for graph exists

Section 2.3.1.2). Special mechanisms are required to handle such situations.

4. We use the term coherence-transactions and sub-coherence-transactions to differentiate them f
use of the term transactions in this dissertation. While coherence-transactions are also commonly r
to as transactions, they are a low level representation consisting of individual requests and respo
the coherence protocol. Our use of the term transactions refers to a high level concept.
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4.4.2  A deferral-based implementation

In this thesis, we use a deferral-based scheme because it does not require coherence p

support (such as NACKs). We now discuss a deferral-based implementation of the algo

Figure 4-6 shows a shared-memory multiprocessor where every processor has a local cache

chy and they are connected together via an interconnection network. We make no assum

regarding the memory consistency model, coherence protocol, or interconnection network

protocol may be snoop-based or directory-based and the interconnect may be ordered o

dered. The processor is assumed to have SLE capability: support for predicting regions as tr

tion, support for buffering local speculative updates, mechanism to track data accessed

transactions (an access bit per cache block tracks data accessed during the transaction), an

to detect data conflicts.

Coherence

Figure 4-6: TLR implementation details.The additional hardware structures are shown
shaded.

Interconnection network

L1 cache

Ln cache

memory

controller

Processor with SLE support

Support (1 bit per block) to track
data accessed within transaction

Hardware queue for buffering
deferred requests

Processor
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TLR support is required at the coherence controller where decisions for deferrals are m

We do not require changes to the coherence protocol state transitions. The TLR concurrenc

trol algorithm runs in parallel and along with the coherence protocol and only performs d

lock-free concurrency control.

Misses generated within a transaction carry a timestamp. An additional deferred cohe

input queue is present to buffer incoming requests that have been deferred by the local pro

Two messages sent only within the local cache hierarchy (start_deferandend_defer) from the pro-

cessor to the cache controller are needed. Thestart_deferis sent when the processor transition

into speculative lock-free transaction mode andend_deferis sent on exiting such a mode. Th

end_defermessage may clear the access bits in the local cache hierarchy if necessary. Thes

sages are ordered with respect to each other and multiple pairs of messages may be prese

local hierarchy.

In section Section 4.4.2.1 we discuss implementation-specific coherence protocol intera

with TLR. We base our discussion around a modern broadcast snooping protocol, the Sun

plane [151]. This choice does not take away from the generality of our discussion. Interac

because of the presence of transient states in coherence protocols may result in priority in

tion not being completely propagated. In Section 4.4.2.2 we discuss a way to address this is

Section 4.4.2.3 we give an example to better understand how TLR works with coherence-

col-specific aspects.

4.4.2.1  Deadlock danger

In this section we discuss how deadlock5 may occur because of the interaction of TLR wit

transient states in cache coherence protocols. Transient states in cache coherence protoco

have valid data available yet and may not have a readable/writable copy of the cache bloc

though the cache block state is valid and the request that initiated this transition state ha

ordered by the coherence protocol. On a cache miss, the cache block performs a transitio

invalid to a pending state and it stays in a pending state between the request initiation and co

tion. At some time between the two phases, the request gets ordered by the coherence proto

the cache may become the owner of the cache block according to the coherence protoco

5. This deadlock is not related to software deadlocks that may arise due to incorrect locking methodo
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though data is unavailable. This request-response decoupling introduces a complication b

even though a processor may lose a conflict under TLR, it does not have data to provide to th

flict-winning requestor.

In mechanisms where processors delay servicing incoming requests, if only two proce

are involved (as shown in Figure 4-5) deadlock is not a problem. This is because both proc

are aware of each others requests and can make a determination based completely on the in

identifier and the local identifier. The situation is however complicated by the addition of ano

processor.

Consider Figure 4-7 where three processors P0, P1, and P2 are shown executing trans

The arcs correspond to requests generated within the transaction. The arc labelling “1:rd_

means a read for exclusive ownership (rd_X ) request for blockA was issued at time t1. Assume

the priority ordering among the processors is as follows: P0 > P1 > P2 where P0 has the h

priority. P0 has cache blockA in exclusive owned (M) state and P1 has cache blockB in M state.

At time t1, P1 issues ard_X request for cache blockA. As per the cache coherence protoco

P0 owns the cache block and thus P1’s request is forwarded to P0. P0 compares its local id

with P1’s incoming message and wins the conflict. P0 buffers P1’srd_X request forA and delays

responding to the request. According to the cache coherence protocol P1 exclusively ow

cache blockA but the data (and hence the actual write permissions to the block) are still with

P1 is waiting for P0 for cache block A.

At time t2, P2 issues ard_X request forB. According to the cache coherence protocol, P

owns the cache block and thus P2’s request is forwarded to P1. P1 compares its local ide

Figure 4-7: Deadlock with three processors.Unlike the earlier example with 2 processors, the
presence of an additional processor complicates issues because now all requests are dis
uted in the system and all processors are not guaranteed to observe all other requests.

P0 P1

P2

M MB:A: 1: rd_X:A

2: rd_X:B3: rd_X:B
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with P2’s incoming message and P1 wins the conflict. P1 buffers P2’srd_X for B request and

delays a response. Now, according to the cache coherence protocol, P2 exclusively owns the

block B but the write permissions to the block are still with P1.P2 is waiting for P1 for cache

block B.

At time t3, P0 issues ard_X request forB. According to the cache coherence protocol, P

owns the cache block (even though the data is still with P1) and thus P0’s request is forward

P2. P2 compares its local identifier with P0’s incoming message and loses the conflict. P2

service P0’s request by responding with data. However, P2 cannot do so because P2 is wai

P1 to release cache blockB. P1 will not release the cache block because P1 won the conflict

cache blockB) but P1 is itself waiting for P0 for cache blockA.

P2 is waiting for P1 (for cache blockA) which is waiting for P0 (for cache blockB) which is

waiting for P2 (for cache block B). If this wait is uncontrolled, deadlock is present. The wai

processors are unaware of other waiting processors and inadvertently form acyclic waits-for graph

[71].

Deadlock danger exists only if more than two processors are involved and only if more

one cache block is involved. If only a single cache block is under conflict, then a cyclic waits

graph cannot exist because a processor cannot have more than one request outstanding fo

block at any time.6 One processor will have the cache block in exclusive owned state (and thus

not “wait for” any other processor) and will complete its optimistic lock-free transaction. On c

pleting the transaction, any deferred requests will be serviced.

The deadlock problem discussed above has strong parallels to the database concurren

trol problem. Each cache block in our example can be conceptually treated as a lock in a dat

The process of retaining ownership of a cache block by deferring incoming requests is anal

to that of acquiring a lock in a database. Hence, multiple cache blocks conceptually corresp

multiple locks. Deadlock occurs because the concurrency control mechanism in our exa

above did not coordinate the acquisition of exclusive ownership of the caches blocks in a m

guaranteeing forward progress (the same way a database system deadlocks if the locks

managed and acquired properly).

6. In processors with blocking caches, a second request cannot be issued until the first outstanding re
serviced. In processors with non-blocking caches subsequent requests (secondary misses) to a b
already has a request outstanding (the primary miss) for it, are merged with the primary miss [88].
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We first reproduce the example shown above again in Figure 4-8. The coherence pr

chains for two cache blocks,A andB, are shown. The protocol chain for any coherence block

always rooted at a stable block; in the figure the stable state is the modified (M) state o

MOESI classification (Section 2.1.2). Further assume the conflict resolution priority for the

cessors is as follows P0 > P1 > P2. Therefore P0 can defer P1’s requests and P1 can de

requests. We do not show data responses since we assume a split-transaction system and th

ence protocol transitions (or the appearance of such transitions) occur at the time the coh

request is ordered at the point of serialization either at the directory or the broadcast netwo

assumptions are made about the implementation of the coherence protocol, namely wheth

snoop-based or directory-based.

At t1, processors P0 and P1 have blocksA andB respectively in the M state. P1 subsequent

requests ownership of the blockA as shown by the solid arc between P1 and P0. Since P0 de

P1, the waits-for arc, shown dotted, goes from P1 to P0. P2 requests ownership of the block

similarly the arcs are constructed. At t3, P0 now requests blockB and the request is forwarded to

P2. P2 cannot respond to P0 because P2 does not have data. P2 cannot defer P0 becaus

lower priority than P0. No waits-for arc exists between P0 and P2. An important point to no

Figure 4-8: Understanding deadlock with request deferrals.This is similar to the earlier fig-
ure except here the chains are shown separately. To prevent a deadlock, P1 must be awa
P0’s request for block B. In the example shown, P2 receives P0’s request and thus preven
from observing the conflicting request.

M

M

Chain for A

Chain for B

P0

P1

P1

P2 P0

1:rd_X

2:rd_X 3:rd_X

conceptual

coherence
protocol arc

(remaining nodes)

(remaining nodes)

“waits-for” arc
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that P1 does not know that P0 is waiting for blockB because the request from P0 was forwarded

P2.

4.4.2.2  Propagating priority information

The key idea for implementing a deferral-based concurrency control mechanism is to p

gate information about processor priorities along the coherence protocol chains to prevent

waits. On a miss, a processor allocates a pending buffer, a miss status handling register (M

and tracks the request. If the processor receives a request (an intervention) from another pro

for the outstanding block, an intervention buffer or the MSHR tracks the incoming request. W

the processor receives data for the block, the processor operates upon the data and sends

requestor based on the information stored in the local MSHR. In Figure 4-8, for the chain for b

A, P0 is aware of P1 but P1 is not aware of P0. Similarly, for blockB, P1 is aware of P2 but not

vice versa and P2 is aware of P0 but not vice versa. P0 can send information to P1 (regarding

lock-free concurrency control) but P1 cannot send information to P0 because P1 is unaware

P0 must inform P1 that P0 has higher priority and must not be forced to wait for blockB. The

presence of P2 in the chain prevents P1 from observing P0’s request. Mechanisms can be a

propagate such information along the chain. The conflicting requests must propagate alo

coherence chain towards the root (i.e., the stable block) to “restart” lower priority requests. W

special messages, we callmarker messages, for doing so.

Marker messages are directed messages sent in response to a request for a block und

flict for which data is not provided immediately. The delay may be because either the proces

forcing the requestor to wait or the processor does not have the data for the block in question

considered to be the owner of the block. The idea behind marker messages is to make pro

aware of their immediate neighbors in a chain. These messages have no coherence inter

The marker messages areonly required when the processor is doing TLR and receives a conflic

request for an exclusively-owned block. If a marker message is sent, the subsequent data re

(which is sent at some unspecified but finite time later) must carry the information that a m

message was sent. This is used to match up a marker message with its data response in the

system.
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Consider Figure 4-9. P0 sends a marker message to P2 informing P2 of the waits-for g

Similarly, P2 sends a marker message to P1 informing P1 of the waits-for graph. Consid

chain for blockA. P0 sends a marker message to P2 because P0 is deferring P2. P2 sends a

message to P1 because P2 cannot provide data (P2 is waiting for P0). Now consider the ch

block B. P1 sends a marker message to P2 (because P1 is deferring P2) and P2 sends a

message to P0 because P2 cannot provide data yet.

We have a mechanism to propagate timestamps requests upstream (probes) to the cache that

has the block with valid data. Probes are only used to propagate a conflict request upstrea

cache coherence protocol chain. Thus, when P2 receives P0’s request forB, P2 forwards the probe

(with P0’s timestamp) to P1 since P2 received a marker message from P1. P1 receives P0

warded probe (via P2) and loses the conflict because P0 has higher priority than P1. P1 re

ownership of blockB and the cyclic wait is broken.

4.4.2.3  An example

We step through an example to show how TLR works with a coherence protocol with

sient states. The algorithm is based on the algorithm discussed in Section 4.3.2 and uses the

Figure 4-9: Role of marker messages.Marker messages are primarily used to construct back
ward pointers: the requestor is informed about the node that is participating in the waits-f
graph.

M

M

Chain for A

Chain for B

P0

P1

P2

P2 P0

1:rd_X

3:rd_X 7:rd_X

P1
5:rd_X

marker message
coherence
request

2:marker 6:marker

4:marker 8:marker
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nology of the wound-wait algorithm discussed in that section. The example is split over

figures: Figure 4-10 and Figure 4-11. The system state is shown at various times. Four proc

P0, P1, P2 and P3 are part of the system. In priority ordering, P0 > P1 > P2 > P3; P0 has the

est priority and P3 has the lowest. The solid lines are the coherence messages and the dott

are the new TLR messages. The system state is numbered from (i) through (vii) over the tw

ures.

Initially, in (i), the system state consists of two processors P0 and P1 both execut

lock-free optimistic transaction. Processor P0 has accessed blockA and has it locally cached in the

exclusive modified state (M). Similarly P1 has accessed blockB and has it locally cached in the M

state. In the discussion below, a processor that has been restarted because of an incoming

priority conflicting request is said to be wounded.

Consider (ii). Two additional processors, P2 and P3, issue requests. At t1, P3 issues ard_X

(read-for-exclusive-ownership request) for blockA and this request is forwarded to P0. P0 ha

higher priority and can defer incoming requests to a block exclusively owned by it and acce

within the transaction. Thus, P0 buffers P3’s request and at t2 sends a marker message to P3. Th

purpose of this message is to inform P3 that P0 will respond to P3’s request but after a delay

message succeeds in creating a backward arc (P0 knows P3 requested the block and now P

P0 will respond). Similarly, at t3, P2 sends anrd_X for block B to P1. The sequence is similar a

earlier. P1 buffers the request and responds with a marker message to P2. Both, P0 and P

retained ownership of blocksA andB respectively. P3 and P2 nowwait for P0 and P1.

Now consider (iii). At t5, P1 issues ard_X for block A. Since P3’srd_X request for blockA

was the last request for the block ordered by the coherence protocol, P3 owns the block an

respond to P1. P1’s request is therefore forwarded to P3. P3 compares priorities, and notes

lower priority than P1. P1 thuswoundsP3. Since P3 does not yet have valid data for the block (

writable copy of the block is still with another processor upstream), P3 forwards the incom

message as aprobeupstream to P0. P3 is aware of P0 because of the earlier marker messag7 P3

7. P3 need not forward the probe to P0 if P3 is aware of P0’s priority and P0’s priority is higher than P1
that case, P3 only sends the marker back because P1 cannot wound P0 and must wait for P0.
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Figure 4-10: Example of a TLR implementation.The figure shows an application of the TLR
algorithm to a cache coherence protocol. Various stages of the algorithm are shown and wi
each stage a sequence of events is shown. The sequence is continued in the next figure.

P0
P0block A (M)

block B (M)

P3

3:B:rd_X

P1 P2
P1

P0block A (M)

block B (M) P1

7:A:marker

6:A:P1:probe P0
P0block A (M)

block B (M)

P3

P3

5:A:rd_X

8:B:rd_X10:B:P0:probe

9:B:marker

P1

P1 P2 P0

P2

P1

P0
P0block A (M)

block B (M)

P3

P3

P1

P1 P2

P1

2:A:marker

4:B:marker

11:B:data

TLR msg

coherence msg

wounded processor

X:Y:Z

At time “X”

for address “Y”
this is msg “Z”

“Initial system state”

Priority ordering: P0 > P1 > P2 > P3

(i)

(ii)

(iii)

(iv)

P0

12:B:data
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Figure 4-11: Example of a TLR implementation continued.This figure is a continuation from
the earlier figure. As can be seen, the TLR algorithm implementation results in the chain
block B being reordered. Thus, eventually, P0, the processor with the highest priority, gets o
ership of the block after “wounding” processors P1 and P2. The stage (vii) shows P1 and
re-issuing requests and rejoining the coherence protocol chain. However, in this specific c
where P2 re-issued the request after P1, P2 is chained behind P1 and P1 is not wounded. T
when P0 completes its transaction, the blocks A and B will be forwarded on to the next requ
ors as per the coherence protocol chain.

P0
P0block A (M)

block B (M)

P3

P3

13:B:rd_X

P1

P0 P1

P0
P0block A (M)

block B (M)

P3

P3

P1

P0

P0
P0block A (M)

block B (M)

P3

P3

15:B:rd_X

16:B:marker

P1

P0 P1 P2

P1

P0

14:B:marker

P0

(v)

(vi)

(vii)
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is shown with a cross mark because P3 has now been wounded.8 If the probe is forwarded to P0,

P0 ignores the probe because P0 has higher priority than the incoming forwarded probe fro

and P1 is forced to wait for P0. P1 is also waiting for P3butP3 has been wounded and the woun

ing takes time to be effective—namely when P0 responds with the data to P3, P3 forwards th

along to P1 without using the data.9 This wait of P1 for P3 is acceptable according to th

wound-wait definition because P3 has been wounded. Similarly, at t8, P0 issues anrd_X request

for blockB. P2 receives P0’s request. P2, being a lower priority than P0, is wounded. Howeve

forwards P0’s request as a probe upstream to P1. Unlike P3’s probe message, P0’s request

forwarded because P0’s priority is higher than P1’s. P2 also responds with a marker messag

to P0.

In (iv), P1 has received P0’s forwarded probe. P1 has lower priority than P0 and thu

wounds P1. P1 is now shown crossed. P1 relinquishes ownership of blockB and services the buff-

ered request for the block (this was the request by P2 made in (ii)). Note the probe messag

only used for wound-wait algorithm coordination and do not interact with or change the coher

ordering in the system. As per the base coherence protocol, P1 sends the data to P2. Since

also wounded, P2 simply forwards the data downstream, in this case to P0. Again, as discus

the footnote, P2 may decide to use the data and complete its transaction if possible.

Figure 4-11 (v) shows the system state after the wound has taken effect for blockB. Now, pro-

cessor P0 has blockB in exclusive owned state (M) and is not waiting for any other process

Meanwhile, P1 and P2 restart because they were wounded. P1’s request for blockA is merged with

its earlier outstanding, and not yet serviced, request if necessary (this occurs as per the

functioning of the MSHR). P1 re-issues the request for blockB at time t13. The request is for-

warded to the owner of the block P0. Now, P0 has higher priority and thus P1 waits for P0. A

responding marker message is sent at t14.

8. Optimizations are possible and we discuss them later. Specifically, Rosenkrantz et al. [144] dis
modified wound-wait algorithm and that can be applied here.

9. In a modified wound-wait algorithm P3 even though wounded can continue executing and com
because it happens to have all required blocks in its local cache and is not waiting and will not wa
another processor. This breaks down the priority ordering temporarily but may provide better p
mance. We do not study this optimization in the thesis and leave it as future work.
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In (vii), at t15, P2 re-issues the request for blockB and since P1 was the last requestor to

ordered by the coherence protocol, P2’s request is forwarded to P1. P1 has higher priority th

and thus P1 forces P2 to wait. No probe is sent upstream because P2 cannot wound P1.

Interaction of probe and marker messages.Since the probe and marker messages can

out of order, additional book-keeping is required to track these messages. If a processor rec

probe for a block not cached locally, the processor ignores the probe because this implies

response has crossed the probe in the network and the processor sending the probe up will

a data response—the coherence protocol queue is being serviced. Multiple probes may b

upstream on the same coherence protocol chain depending upon the order in which proc

enter the protocol queue. Of course, these probes upstream can proceed in any order and t

bypass each other because they only determine whether a block can be retained by a pr

upstream. Again, if a probe is encountered by a node which does not have the block lo

cached, the probe can simply be ignored.A probe does not expect any response from the proc

sors upstream.Further, probes are only sent upstream—thus they will eventually terminate w

they either reach the root of the chain or they reach a processor that cannot be wounded (d

ing upon the priority of the receiving and probing processors).

A corner case is when a processor immediately re-issues a request to the same block w

serviced and then a probe is received from below. For a processor to receive a probe, it mus

already sent a marker message. Thus, if a marker message has not yet been sent then this p

be ignored. If a marker message has been sent, and if the incoming probe’s source is differen

the target of the marker message, even then the probe can be ignored. This is because of

coherence protocol chains are constructed in a non-nack-based protocol. When a proces

vices a request, and then re-issues the request, the processor goes to the tail of the existing

thus it cannot insert itself before the recipient in the chain. A discussion of this was conduct

detail earlier in Section 2.1.2.

4.4.3  Handling the coherence protocol shared state

Often, within a critical section, a processor may read a shared location, operate upo

value and write a new value to the same location. The read operation brings the correspo

cache block locally in a shared state and the subsequent write results in an upgrade op
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where the processor requests exclusive ownership of the cache block so that the proces

update the block. External invalidation requests to shared blocks typically cannot be de

because no processor exclusively owns the block (upgrades in some protocols may not exp

acknowledgement). These requests must be serviced without delay and may trigger a miss

tion (violation in atomicity of the transaction). To reduce the probability of such upgrade-indu

misspeculation, we employ instruction-based prediction to reduce the necessity of req

upgrades following misspeculation.

The basic idea behind the predictor is as follows. Load operations within a critical section

SLE and TLR, this corresponds to the period they are executing in an optimistic lock-free m

are recorded and any store operations within the critical section to the same address result

predictor update occurring corresponding to the appropriate load operation. For out-of-orde

cessors, the predictor update must occur at instruction commit because only then does the

sor know for certain if the memory operation occurred within the transaction (out-of-o

processors issue memory operations without regard to program order but instruction retirem

in program order). The predictor is indexed by instruction address. Instruction-based predicto

optimizing read-modify-write patterns as above have been proposed earlier [84]. Address-

techniques for optimizing read-modify-write patterns have also been proposed [32, 157].

Cache blocks that are only read within critical sections are brought into the cache in a s

state. If repeated upgrade-induced violations occur, the processor can issue exclusive requ

all blocks accessed within the critical section, obtain the blocks in owned state and defer ex

requests to such blocks. Doing so guarantees a successful TLR execution even without the

optimization.

We show in the evaluation chapter that the use of the simple read-modify-write predict

described above substantially improves performance of the base system without TLR as w

with TLR.

4.4.4  Performance interactions of timestamp order and coherence orde

The order in which processors executeconflicting critical sections is determined by time

stamps—calledtimestamp-order. The order in which coherence permission and data for ca

blocks move around in the system is determined by the coherence protocol order—the or

which requests were received by the coherence protocol—calledcoherence-order. The defer-
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ral-based TLR algorithm maintains a separation between timestamp-order and coherence

thus leaving the protocol unchanged and maintains the protocol correctness conditions ou

earlier in Section 2.1.2.3. However, if timestamp-order and coherence-order do not match, p

mance issues may arise. We discuss three cases below. The three cases are: a) timestamp

identical to coherence-order, b) timestamp-order is exactly reverse of coherence-order,

timestamp-order approximates coherence-order.

Timestamp-order is identical to coherence-order.This situation occurs when the time

stamps faithfully represent the order in which various processors issue requests and are ord

the coherence protocol. In addition to the absence of any locking overhead, the data transfe

is optimized and occurs with minimum latency. No queue breakdowns occur and all proce

issue a single request for the cache block, operate upon the block, and then forward the upd

the next requestor in line without any explicit handshaking.

Figure 4-12 shows four processors P0, P1, P2, and P3 with timestamps TS0, TS1, TS

TS3 respectively. All processors request the same cache blockA thus exhibiting data conflict

where P0 is ordered before P1 in the coherence protocol ordering, then P2, and then P3. A

the timestamp ordering is as follows: TS0 < TS1 < TS2 < TS3; TS0 has the highest priority

TS3 has the lowest priority. P0 is currently executing its optimistic lock-free transaction and

accessed cache blockA. P0 defers (and buffers) P1’s request forA. P2’s request is buffered by P1

and P3’s request is buffered by P2. P0 operates onA, completes its critical section and the

responds to P1’s request with the latest data forA. Subsequently, P1 operates upon the data, e

Figure 4-12: Timestamp-order is identical to coherence-order.The figure shows how a queue
is maintained and data transfer occurs. TS0 < TS1 < TS2 < TS3 and thus the coherence o
ing is identical to the timestamp ordering. This represents an ideal condition.

P0 P1 P2 P3

A: modifiedcache block: A: pending A: pending A: pending

TS0 TS1 TS2 TS3
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cutes its own transaction, and on completion, respond to P2’s request with the latest data forA, and

so on.

Thus, while processors attempt to execute the same transaction, they are automa

ordered on the data request itself and no explicit lock requests are generated. This direct tran

data, coupled with the absence of lock requests and overhead, provides the intuition for hig

formance in the presence of data conflicts. Further, while P0 is operating onA, other processors

wait for the latest copy rather than introduce contention in the system by repeatedly requ

lock and data.

The behavior is similar to hardware queue locks [50, 141] but now the queueing is occu

on the data itself and no lock requests are generated.10 Removing explicit lock requests and lock

ing overhead under contention reduces network contention and latency. The properties

wound-wait proposal hold here and retries are eliminated because lower priority processors s

wait rather than consume system resources.

Later we discuss an optimization where we can relax timestamp order selectively and ac

the ideal behavior as discussed above even when the coherence-order and timestamp-orde

match.

Timestamp-order is reverse of coherence-order.This situation occurs when various pro

cessors issue requests and are ordered by the protocol in a reverse order than their time

While no locking overhead occurs, the data transfer itself is not optimized because a queue

down occurs because processors in the queue end up getting wounded repeatedly. Hot spot

does not exist and quite possibly performance may still be better than the base case. Howev

performance is not optimal.

Similar to the earlier example, Figure 4-13 shows four processors P0, P1, P2, and P3 re

ing the same cache blockA thus exhibiting data conflict where P0 is ordered before P1 in

coherence protocol ordering, then P2, and then P3. Assume the timestamp ordering is as fo

TS3 < TS2 < TS1 < TS0; TS3 has the highest priority and TS0 has the lowest priority. P0 is

rently executing its optimistic lock-free transaction and has accessed cache blockA. P0 receives

P1’s request forA. P0 is wounded and restarted because P1 has higher priority than P0. Sim

10.Because no lock overhead is experienced, performance is expected to be better than QOLB and 
tially the same as QOLB with collocation.
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P1 is wounded by P2 and P2 is wounded by P3. Depending upon the timing in the system,

worst case P3’s request will be forwarded as a probe all the way up to P0. A queue break

occurs and P3 obtains the block for writing after a latency of the data transfer from P0 to P1

and then to P3.

However, the actual probability of such a long chain being created is very low because P

be wounded right when P1’s request is received by P0. P0 will thus send the block to P1

probe from P3 to P0 is not serialized but parallelized by the presence of other probes from P

P2 that are also flowing upstream. Even though a successful lock-free execution occurs, a d

experienced before the processors can get through their critical sections.

Timestamp-order is approximate to that of coherence-order.This occurs when the

coherence-order and timestamp-order are mostly similar except for one or two processo

example of this is shown in Figure 4-14 where four processors P0, P1, P2, and P3 are show

timestamps are ordered as: TS0 < TS2 < TS3 < TS1. Thus, P1 has the lowest priority. P0

P1’s request. P2 wounds P1 but since P0 has higher priority than P2, P2 ends up waiting

request is also deferred by P2 because P2 has higher priority than P3. When P0 completes i

cal section, the cache block is forwarded to P1 as per the coherence protocol order. Howev

has been wounded and the data block is forwarded to P2 without P1 operating upon it. An

tional latency has thus been experienced by P2 because of the presence of a wounded proce

Figure 4-13: Timestamp-order is reverse of coherence-order.The figure shows how a queue is
maintained and data transfer occurs. TS3 < TS2 < TS1 < TS0 and the coherence orderin
exactly reverse of timestamp ordering. Probes from processor later in the coherence chain
propagate upstream wounding processors upstream. The chain repeatedly breaks down alth
the processor with the earliest timestamp still successfully complete its transaction.

P0 P1 P2 P3

A: modifiedcache block: A: pending A: pending A: pending

TS0 TS1 TS2 TS3

P0, P1, and P2 are wounded and thus result in unnecessary delays
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in the chain. As discussed earlier in Section 4.4.2.3, P1 might attempt to nevertheless exec

critical section by using the data block it receives even though P1 has been wounded. We

discuss this optimization. We however discuss another optimization in the next section whe

timestamp order may itself be selectively relaxed and prevent a wound from occurring.

4.4.5  Selectively relaxing timestamp order

Deadlock is not possible if only one cache block is under conflict within the transac

because a cyclic wait is impossible (the head node of the coherence chain is always a stab

and does not wait for anyone else). Timestamps serve two functions: providing starvation fre

and deadlock freedom. In protocols such as the Sun Gigaplane (which are non-nacking prot

a queue of requests is automatically formed for a given block if multiple processors issue o

ship requests while the block states are pending and the deferred queue is serviced in a seria

In such situations, strict timestamp order can be relaxed. Thus, a timestamp-induced restart

temporarily avoided if only a single cache block is contended for. However, if an additional c

block is accessed that may deadlock (i.e., generates a cache miss), then the timestamp ord

be enforced.

Figure 4-14: Timestamp-order approximates coherence-order.The figure shows how a queue
is maintained and data transfer occurs. TS0 < TS2 < TS3 < TS1 and thus the coherence o
ing is approximate to the timestamp ordering.

P0 P1 P2 P3

A: modifiedcache block: A: pending A: pending A: pending

TS0 TS1 TS2 TS3

P1 is wounded and thus result in a temporary delay in the data transfer
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4.4.6  Controlling misses

While wound-wait minimizes protocol interference and prevents unnecessary restarts

processor has been wounded, it might be useful to not issue an additional request until any

ous requests (that were pending and thus resulted in a wound) have been serviced. Wh

wound-wait approach reduces coherence protocol interference, an optimization such as con

misses may be useful in NACK-based approaches.

4.4.7  Implementation-specific resource constraints

In this section, we discuss the impact of implementation-specific constraints—cache siz

associativity, write buffer size, deferred queue size, operating systems scheduling quantum

finite size timestamps—on TLR.

4.4.7.1  Cache size and associativity

TLR has resource limitations similar to SLE. If the cache is used to track the lock and

accesses for a critical section, the finite size of the cache restricts the data set size that

tracked speculatively. The associativity of the cache also places a limit because conflict m

force evictions of cache blocks. Well known and well understood techniques, such as v

caches [79], for handling such situations exist. Victim caches are small, fast, fully assoc

structures that buffer cache blocks evicted from the main cache due to conflict and capacity m

The victim cache can be extended with a speculative access bit per entry to achieve the sam

tionality as a regular cache. For example, if the system has a 16 entry victim cache and a

data cache, the programmer can assume any transaction accessing 20 cache blocks o

ensured a lock-free execution under TLR.

4.4.7.2  Write buffer size

Since the write buffer buffers speculative memory updates, its size restricts the numb

static block addresses that can be written to within a critical section. Since writes are merged

write buffer and memory locations can be rewritten within the write buffer (because atomici
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guaranteed), the number of unique cache blocks written to within the critical section determ

the required size of the write buffer.

4.4.7.3  Deferred queue size

For the implementation we provide, TLR requires sufficient buffering for deferred reque

The size of buffering can be calculated a priori and is a function of the system size and v

cache size. In any case, TLR like SLE can guarantee correctness under all circumstances an

presence of unexpected conditions can always acquire the lock, but at a loss of transactiona

erties.

4.4.7.4  Scheduling quantum

Another resource constraint is the operating systems scheduling quantum—it must be

ble to execute the critical section within a single quantum. The time determination can be

formed a priori using worst case analysis. The quantum length is typically much larger tha

time it takes to execute most critical sections and this is not expected to be an issue.

4.4.7.5  Finite size of timestamps

TLR uses timestamps only for conflict resolution. The size of the timestamp eventually

affects the fairness aspects of TLR and not its safety aspects (serializability and deadlock

dom). In this section we discuss issues related to the finite size of timestamps (bounded

stamps).

Bounded timestamps have received considerable attention in the past [1, 37, 38, 74, 77

problems introduced by bounded timestamps were critical for the problem domains these res

ers were focusing on because they relied on the absolute ordering introduced by the times

Bounded timestamps introduce a problem because of wrap-around that occurs once the tim

size is exceeded, thus breaking the strict monotonically-increasing property provide

unbounded timestamps. For example, Jacobsen et al. [77] needed to ensure packets did not

if received out-of-order. Israeli and Ming [74], Dolev and Shavit [37] and Dwork and Waarts [

were concerned with problems where timestamps were used to construct a total order of e

TLR however only uses timestamps for determining which thread has a higher priority and
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will win a conflict. The correctness condition of serializability is not affected by the limited size

the timestamp though a strict notion of fairness may be momentarily compromised.

The timestamp size contributes to the probability of timestamp wrap-around. If the times

size is large, wrap-around probability is small and any overhead associated with dealing

wrap-around is amortized. Thus, selecting the size of the timestamp involves a trade-off be

wrap-around effects and the overhead of dealing with wrap-around. However, the dynamic co

nent must have a minimum size—a size of 0 results in the timestamp being completely made

static component and thus being static in nature.

While bounded timestamps do not affect the safety property of TLR, they may introduce

ness issues for TLR. Consider Figure 4-15. Two examples are shown. The timestamps of tw

cessors P0 and P1 are also shown. Consider the example on the left. P0 initially has time

11000 and every successful TLR execution results in the new timestamp also being 11000 b

of wrap-around and of an update granularity greater than 1. Thus P0 wins all conflicts, and un

executes its critical section repeatedly while P1 keeps failing and restarting. Now conside

example on the right. In this case, P0 willalwayswin all conflicts. This happens because P0 a

P1 both have reached the maximum count for the left side bits and employ the processor ide

tie breaker to decide a conflict winner. Since the tie-breaker is static, P0 will increment its t

stamp beyond 11100, wrap-around, and start at 000000. Meanwhile, P1’s timestamp st

11101. P1 lost the initial conflict with processor 0 (when its timestamp was 11100) and now

lose all conflicts with P0. Once P0’s timestamp reaches 11100, the cycle repeats and P1 sta

Figure 4-15: Impact of finite size of timestamps on fairness.Two examples are shown where
one processor may experience starvation.

P0

110 00
110 00

110 00

P1

110 01
110 01

110 01

P0

110 00
100 00

101 00

P1

111 01
111 01

111 01

110 00
111 00

100 00

111 01
111 01

111 01

.

.

.
.
.
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For TLR, the wrap-around time must allow all conflicting processors to succeed at least

in their lock-free execution in order to maintain fairness. Timestamps in TLR need only guara

that all processors eventually successfully win all conflicts—they do not have to enforce a

first-come first-served discipline. To ensure freedom from starvation, no pathological cond

must occur where a given processor continuously loses conflicts and never becomes the

timestamp in the system. The two figures above show examples where such behavior may

The wrap-around time can be quite large depending upon the size of the dynamic compon

the timestamp. Assume a timestamp update occurs every successful TLR execution.11 For a 24-bit

dynamic component, a wrap-around would occur after 16,777,215 successful TLR execution

given processor. Assuming 100 cycles per critical section, a timestamp wrap-around would

approximately every 1.7 billion cycles if the processor executes the critical sections repeated

tight loop.

One approach to handling bounded timestamps is the use ofk-bit unsigned integers in a mod-

ular k-bit space as is commonly used in TCP/IP sequence numbers (k for TCP/IP is typically 32)

[77, 92]. If sandt are timestamp values,s< t if 0 < (t - s) < 2k-1, computed in unsignedk-bit arith-

metic. For fairness, the size ofk should be sufficient to allow each processor to execute at least

lock-free critical section successfully. The update of the local clocks are again performed

Lamport’s rules outlined earlier.

Other techniques may be employed. On a wrap-around of a local counter, a global rese

other local clocks may be performed. This requires a message from the processor whose co

going to wrap-around to all other processors. For the wrap-around time calculated above, th

for the message to reach all other processors must be less than 1.6 billion cycles—a very r

able assumption. On receiving a wrap-around message, a processor resets its local clock.12 Doing

so eliminates the problem illustrated in Figure 4-15 where a processor stays at the sat

counter value and keeps restarting because another processor wraps around and repeate

11.Since timestamps affect fairness, starvation freedom can still be guaranteed if this update cond
relaxed. Further, locally succeeding non-conflicting critical sections do not have to increment the c

12.This will involve a misspeculation if the processor is in TLR mode because a processor in TLR
must not update its local clock while it is speculating. A misspeculation is not necessary if no con
have been detected as yet.
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out this processor. The overhead of sending a broadcast message every 1.6 billion cycles

small. This message is a point-to-point message and does not require a coherent bus.

The key as to why a global reset can be arbitrarily performed lies in the way TLR emp

timestamps. TLR does not use timestamps to explicitly order events and does not use them f

sality. TLR only uses timestamps for conflict resolution and providing a degree of fairness (p

rily starvation freedom). Thus, a global reset may result in a temporary jitter where fairness i

because the priorities get reordered temporarily but correctness is always guaranteed by th

commit mechanism.

Another way to handle wrap-around is for each node to remember the last timestamp rec

from a given node. Then a comparison with that number for every subsequent timestamp he

current node detect a wrap-around. At such a time, the node may decide to reset its own co

As we have seen, numerous mechanisms exist to handle the issue of fairness that ma

due to the limited size of timestamps in TLR.

4.5  Algorithm invariants

In the TLR algorithm described in Section 4.3.2, three key invariants must hold:

a) The timestamp is retained and reused following a conflict-induced misspeculation

b) Timestamps are updated in a strictly monotonically increasing order following a succe

TLR execution

c) The earlier timestamp request never loses a resource conflict and thus succeeds in ob

ownership of the resource

If TLR is applied, these invariants collectively provide two guarantees:

1. A processor eventually has the earliest timestamp in the system

2. A processor with the earliest timestamp eventually has a successful lock-free transaction

cution

The two properties above result in the following observation:

“In a finite number of steps, a node will eventually have the earliest timestamp for all
blocks it accesses and operates upon within its optimistic transaction and is thus guar-
anteed to have a successful starvation-free lock-free execution.”
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In the next section we discuss the implications of the above observation on the programm

ity and stability of multithreaded programs.

4.6  Programmability and stability impact of TLR

We will now discuss the implications of TLR on programmability and stability of mul

threaded programs. The guarantees discussed in the earlier section hold only if TLR c

applied. In the presence of constraints, such as resource limitations and uncacheable reque

guarantee of stability properties become conditional. These limitations make the guarantee

bility properties conditional. Such a guarantee can be constructed using the size of the

cache and the scheduling quantum. Some of these parameters can be architecturally specifi

example, if the system has a 16 entry victim cache and a 4-way data cache, the programmer

assured any transaction accessing 20 cache blocks or less is ensured a lock-free execution

grammer expecting guaranteed behavior will need to be aware of precise specifications. For

ical section to be executed in a wait-free manner, the lock must be positively identified. TLR

SLE, which must be implemented to identify all locks that satisfy a certain idiom. The spin-

loop of the lock acquire will only be reached if TLR has failed, thus giving the programmer a

able method of detecting when wait freedom has not been achieved. This is an area of future

Until now we have assumed the lock and the protected data are in different cache b

While this is the most common implementation for performance reasons, situations may

where the lock and data are collocated. In these situations, write operations to data colloca

the same cache block as the lock may result in a misspeculation being triggered because th

ware assumes the lock is being acquired (the granularity of conflict detection is the cohe

granularity). TLR properties can still be guaranteed. In the event that the processor nee

acquire a lock because it has received an invalidation to the cache block containing the lock

able, the processor can simply request exclusive permissions for the lock variable but still

partial lock elision. In other words, the processor acquires the cache block holding the lo

exclusive state but does not write the lock variable. The processor defers incoming requests

cache block containing the lock the same way it defers requests to the data by employing

While concurrent execution will not occur because the lock is temporarily unavailable to o

processors, the properties of TLR are maintained because the lock is never written to. By no
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ing the lock, in the event of a failure or operating systems descheduling event, the lock is lef

free state and all speculative updates discarded.

The behavior of this mechanism becomes quite similar to that of IQOLB [141] because

the processors are queueing up on the lock. The difference now is, unlike IQOLB, the lock

written to and explicitly acquired.

Multiple nested locks can also be elided if hardware for tracking these elisions is suffic

This was discussed in Section 3.10. If some inner lock cannot be elided due to an inability to

multiple elisions, the inner lock is simply treated as data. This does not change TLR’s prope

the execution is still lock-free and lower priority threads will be deferred by higher priority thre

temporarily. It is the outermost lock that controls whether TLR’s properties are met becaus

outermost lock demarcates the lock-free transaction. Eliding the outermost lock is sufficie

maintain TLR properties.

4.6.1  Restartable critical sections

SLE provides light-weight support for restartable critical sections. This is a direct result o

failure atomicity guarantee provided by SLE (in the absence of conflicts) and TLR (even in

presence of conflicts). Sometimes it is desirable for the operating system to restart certain t

from some point of execution without affecting correctness—for example if the thread execu

are deadlocked. The presence of locks makes this difficult because the thread might be in a

section and may have modified shared memory.

SLE provides hardware support for buffering speculative updates within critical sections

exposes these values only at the time the critical section execution is committed. Thus, if a

in SLE mode is terminated, the speculative updates can be discarded and the execution

thought to restart from just before a lock acquisition. The concept of a lightweight restartable

ical section is quite powerful and a useful functionality for the operating system to exploit.

Restartable critical sections allow the underlying blocking synchronization primitive to

made non-blocking and we discuss this next.
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4.6.2  Non-blocking behavior

As discussed in Section 2.2.3, a synchronization technique is non-blocking if some th

will complete an operation in a finite number of steps, regardless of the relative execution s

of the processes [64]. The non-blocking condition guarantees the system as a whole

progress despite individual halting failures or delays. If TLR can be applied successfully to

execution, a non-blocking execution of the critical sections can be obtained because TLR g

tees a lock-free execution even in the presence of conflicts if sufficient buffering is available.

behavior is a direct result of the software wait on the lock variable being eliminated. If a proce

descheduled, a misspeculation is triggered and the lock is left in a free state with all specu

updates within the critical section discarded. Other threads scheduled may continue to ope

the protected data structure.

Non-blocking behavior is guaranteed only if the critical section can be executed compl

within a single operating system scheduling quantum. If the execution is longer than a qua

then the lock-based execution must be relied upon since the lock-free execution may neve

plete. This issue is an example of a resource limitation that can be addressed at the operati

tems level and is an area of future work. Another situation where non-blocking behavior is u

is when a page fault happens within a critical section. Without operating systems support, th

result in TLR falling back upon the explicit lock acquisition sequence. With some operating

tems support, a page fault could be triggered within the lock-free critical section and the exec

would need to appear as if the page fault occurred just prior to the start of the critical section

do not discuss this in detail and leave it as future work.

4.6.3  Wait-free behavior

The wait-free behavior follows from the non-blocking behavior discussed above but su

to a stronger guarantee of starvation freedom. The threat of resource limitations makes this

ditional behavior—conditional on the ability of the processor to buffer critical section d

accesses and buffer deferred incoming requests. As discussed earlier, a guarantee can

structed based on the size of the victim cache.
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4.6.4  Handling deadlocks in locking hierarchies

An interesting side effect of TLR is its ability to prevent certain types of deadlocks fr

being exposed. Specifically, deadlocks that occur due to an incorrect locking methodology.

sider Figure 4-16. Two threads, thread 1 and thread 2, acquire locks A and B in opposite

Note, this program will deadlock in most systems if these threads are executed concur

because thread 1 first acquires A and then will wait for B while thread 2 first acquires B and

will wait for A. A cyclic wait will occur. With TLR, since locks are not acquired, A and B wil

always be free and thus no cyclic wait will be present. This is an example where a deadlocke

gram will be executed correctly using TLR transparently. TLR can hence improve the robus

of a program and prevent such deadlocks from occurring. Again, this behavior is condition

sufficient resources being present to buffer the entire atomic region and the nesting being tr

TLR provides an opportunity to improve the reliability of multithreaded programs by preven

the negative effects of locks from being exposed because TLR can elide locks even in the pr

of conflicts. During debugging and testing, the ability to turn of TLR is necessary else finding

correcting such programming errors will be difficult.

Figure 4-16: Deadlock possibility in programs using incorrect locking hierarchy.Two threads
acquiring locks in reverse order will deadlock in most systems. With TLR, since locks are
acquired, lock A and lock B will always be free and thus no cyclic wait will be present. This p
gram will be executed correctly using TLR and no deadlock will occur.
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4.6.5  Masking data races

By treating un-timestamped requests as deferrable, a successful lock-free execut

achieved even in the presence of data races. Such a request is assumed to have the latest ti

in the system (and thus the lowest priority) and the un-timestamped request is atomically or

after the current critical section. Since a data response is not sent until after the critical sectio

requestor cannot consume the data and hence is ordered with the correct value. TLR, in ef

masking the data race and forces the data race to be ordered after the critical section com

Thus subtle undesirable data races may be prevented from being exposed in the system for

execution. The limitation of this is when the data race may have been explicitly added by the

grammer for performance reasons—TLR will prevent such a data race from occurring.

4.7  Related work

Since TLR builds upon SLE, TLR borrows the related work discussion for SLE fr

Section 3.13. In this section, we discuss TLR related work beyond SLE.

Lock-free and wait-free synchronization.Software only lock-free schemes have bee

shown to perform poorly as compared to lock-based schemes because of excessive data co

allow roll-back [5, 17].

Three lock-free mechanisms using hybrid software and hardware support are the load-lo

store-conditional instructions, transactional memory, and the oklahoma update.

Transactional Memory [66] used NACKs for performance reasons. To increase the prob

ity of a successful lock-free execution, a processor could refuse to service an incoming confl

request. However, transactional memory did not use NACKs for livelock avoidance; it use

exponential backoff mechanism implemented in software.

The Oklahoma Update [158] did not provide starvation freedom although it did provide

ness by relying on a two-phase commit process and sorting memory addresses in hardw

order their request and deferring requests appropriately. However the paper does not provi

performance evaluation.

Software lock-free mechanisms such as Software transactional memory [149] uses so

primitives to implement transactions but performs poorly with respect to its lock-based cou
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parts. Software-only proposals suffer from difficulty of use and a lack of generality and often

performance. Wait-free proposals have suffered from performance limitations in the absen

failures.

Database concurrency control and deadlock issues.Transactions are well understood an

well studied in database literature [56]. The use of timestamps for resolving conflicts and ord

transactions in database systems has been well studied [14, 144]. Holt [71] provides a good

work for reasoning about deadlocks in computer systems. Extensive work has been done i

mistic concurrency control (OCC) for database systems [90]. OCC was proposed as an alte

to locking in database management systems. OCC involves a read phase where obje

accessed (with possible updates to a private copy of these objects) followed by a serialized

tion phase to check for data conflicts (read/write conflicts with other transactions). This is follo

by the write phase if the validation is successful. TLR does not have a serialized validation

and exploits hardware techniques to provide transactional behavior. In spite of extensive res

OCC techniques have not been popular because of key limitations [124].

Lock-based synchronization.Lock-based synchronization has been extensively studied in

erature. These techniques attempt to optimize the lock and data transfer operations [10, 5

120, 141]. The techniques are not lock-free. These techniques suffer from locking overhea

serialization due to lock acquisitions.

Martínez and Torrellas introducedSpeculative Locks, allowing speculative threads to bypass

held lock and enter a critical section [117]. At any time the lock is always acquired by one th

which is non-speculative—also called the safe thread. Speculative threads could then b

non-speculative after a lock was released by the non-speculative thread if no data conflicts

detected by the speculative threads and the speculative threads had completed their critic

tions. In the presence of data conflicts, speculative threads always restart and retry the

sequence, competing for the lock and try to become safe threads by attempting to acquire th

A free lock is always written to and acquired explicitly by a thread.

In Speculative Synchronization[118], Speculative Locks is extended to include the SL

mechanism to be used in the absence of data conflicts. In the presence of data conflicts, rath

falling back on the underlying scheme as SLE does, it adapts by employing Speculative Loc

described above. In the presence of conflicts, threads attempt to become safe; in other wor
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compete for the lock. Similar to Speculative Locks, in the presence of resource limitations

speculative threads in Speculative Synchronization stall and wait to acquire the lock.

The above two schemes provide the same forward progress guarantees as SLE.

schemes are not lock-free, experience the limitations of locks, and do not provide the guar

provided by TLR.

Delaying responses to requests for lock variables for a short time and thus emulating

ware queued locks was proposed earlier [141]. TLR generalizes that notion by applying def

to data and to multiple cache blocks simultaneously.

Speculative execution and parallelization.Speculative execution for aggressive impleme

tation of memory consistency models was proposed by Gharachorloo et al. [45] and later ext

[48, 143]. Similarly, work has been done in speculative parallelization of programs [86, 1

While the buffering and speculative execution mechanisms they use are similar to ours, thes

posals do not provide lock-free execution of lock-based code and do not address critical s

serialization and thus are orthogonal to our scheme.

4.8  Chapter summary

We have proposed Transactional Lock Removal (TLR), a hardware mechanism to co

lock-based critical sections transparently and optimistically into lock-free optimistic transac

and a timestamp-based fair conflict resolution scheme to provide transactional semantics an

vation freedom, if the data accessed by the transaction can be locally cached and subject t

implementation specific constraints. TLR provides both serializability and failure atomicity.

have presented one deferral-based implementation of TLR that does not require changes

coherence protocol state transitions.

We summarize the contributions of our mechanism under three categories:

1. Programmability. TLR simplifies correct multithreaded code development. Reasoning ab

granularity of locks is not required because serialization decisions are made at run-time

on actual data conflicts and independent of locking granularity. Thus, a critical problem in

soning about writing multithreaded programs is solved. Cache blocks are the coherenc

and represent a fine granularity for sharing. TLR provide this granularity without program

involvement.
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2. Stability. Since locks are not written to and the “wait” on the lock variable is no longer requi

properties of lock-free and wait-free execution are achieved transparently. This transla

improved system wide performance, no convoying or priority-inversion dangers, and ro

execution in the presence of failing threads. TLR addresses the inherent limitations of the

ing construct while maintaining the well-understood critical section abstraction for the

grammer.

3. Performance. TLR enables high-performance multithreaded execution. Independent of

granularity, because serialization decisions are made only in the presence of data conflic

is not based on lock contention, performance of fine-granularity locking is achieved. Fu

since a queue of requestors is constructed in the hardware by using the coherence proto

data transfers are efficient and low overhead. Programmers can focus on writing correc

while hardware automatically extracts performance.

TLR is the first proposal to address the trade-off among all the above three aspects an

vide a robust solution to the synchronization problem. While TLR does tradeoff hardware for

properties, we believe the hardware cost is modest. Additionally, we address the inherent l

tions of the locking construct automatically while maintaining the well understood critical sec

abstraction for the programmer. Subject to resource constraints, our scheme is the first to tra

ently provide a wait-free execution of a lock-based critical sections.

Software developers can use TLR in several ways. The size of transactions can be archi

ally specified thus guaranteeing programmers a lock-free atomic execution of a sequence of

ory operations. Such functionality can help programmers write simpler high-perform

wait-free algorithms. Some of the hardware support, required for example in identifying cri

sections, can be reduced by using appropriate compiler support. Operating systems can exp

notion of transactional execution to provide strong guarantees and appropriate operating s

involvement can prevent software failures (that affect one thread) to interact negatively with

concurrent threads and allow other threads to continue execution.
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Chapter 5

Performance Evaluation Methodology

In this chapter we describe our performance evaluation methodology. We use simulation

niques for evaluating performance. Two components of the simulation environment are the si

tor and the benchmark binaries the simulator executes. We describe the simulator in Sect

and the compiling infrastructure for generating the binaries in Section 5.2. In Section 5.

describe our target system for simulations and the configuration parameters. Section 5.4 de

the benchmarks we use for our performance evaluation.

5.1  SimpleMP simulation environment

We use SimpleMP, an execution-driven simulator for executing multithreaded binaries.

simulator is partly derived from the Simplescalar 3.0 toolset [22] but is completely rewritten. S

pleMP models accurately an out-of-order processor and a detailed memory hierarchy in a

processor configuration. Values are copied and passed in the processor cores, physical re

and architectural registers. Data values are also stored throughout the memory hierarchy (

caches, write buffers, and network packets).

To model coherency and memory consistency events accurately in a multiprocessor s

tion, the processors must operate (read and write) on data in caches and write buffers (

sim-outorderin Simplescalar where the caches only store tags and the actual data is acc

directly from memory). The processor model in SimpleMP accesses data from these b

directly instead of from a flat memory space, thus allowing accurate modeling of coherenc

memory consistency. Contention is modeled at all levels in the memory system. A page ta

implemented to translate virtual addresses to physical addresses. Coherency is maintaine

physical addresses.
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To ensure correct simulation, a functional checker simulator executes in parallel with

detailed simulatoronly for checking correctness. The functional simulator works in its own private

memory and register space, and is robust enough to validate aggressive TSO implementatio

functional simulator has functional write buffers. When a memory consistency event is consi

completed by the timing simulator, the functional simulator is asked to drain its functional w

buffer entry. No values are exchanged between the functional and timing simulators. The in

tion of the two simulators is shown in Figure 5-1.

Random perturbations are introduced in various segments of the simulator to ensure the

lation does not have an artifact of the way the simulator is written. For example, the main sim

tor loop goes through all processors in sequence in a cycle and executes the processor co

event queues. The order in which the processors are sequenced through is selected at r

Undesirable artifacts may arise if this is not done. For example, if the simulation order is first

cessor 1, then processor 2, and so on every cycle, the first processor will generate a miss fi

have access to system resources first and will provide biased behavior resulting in load imb

issues since one processor unfairly gets priority in memory operations and may, for example

ceed in acquiring locks first. As a result, one processor starves the other processors. Such b

may actually be true in real systems if clock skew forces one processor to always be fas

Figure 5-1: Simulation methodology.The timing and functional simulators have their own reg-
ister and memory space. They only communicate via a memory consistency checker to che
memory consistency violations. The detailed timing simulator informs the functional simula
when to execute based on the memory consistency model implemented by the timing simu
Hence, this is a validation sequence and not a verification sequence since the timing and f
tional simulators cannot be totally decoupled in a multiprocessor environment.

Detailed timing FunctionalValidation
Error?

simulator simulator

Memory consistency

checker
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reaching the memory system and thus obtain resources before others. Since this is a syste

cific issue, we reduce the probability of such biases from occurring and introduce randomn

the order in which processor obtain resources. Similarly, small perturbations (on the order of

cycles) are introduced throughout the memory system including the data network, network

trollers, and coherence input queues. The ordering requirements, if any, of each network are

tained.

5.2  Compiling infrastructure

We use the PISA instruction set architecture [22] and thegcc compiler developed for that

architecture. We wrote linker scripts to generate thread-safe binaries using the simplescala

piler. Simplescalarlibc libraries are not thread safe and we annotate segments in the bina

link-time to distinguish between system code and application code. Application cod

thread-safe. In addition, the simulator supports bothFORKand SPROCmodels for parallel

computation. The PARMACS macros are used for compiling the parallel versions of the app

tions. All benchmarks are compiled with the -O3 option and all synchronization code is inli

The compile infrastructure is shown in Figure 5-2. Only user-level instructions are modeled. A

gle process is assigned to each processor.

5.3  Target system and configuration

The processor configuration is common for all simulations and we discuss it first. We

discuss the chip multiprocessor (CMP), symmetric multiprocessor (SMP), and distrib

shared-memory (DSM) configurations.

Processor configuration.Each processor is an aggressive out-of-order processor implemen

total store ordering as its memory consistency model. The implementation of the memory c

tency model is similar to that proposed by Gharachorloo et al. [45] where loads are aggres

issued and the load/store queue is snooped to check for any memory consistency violation

processor configuration is shown in Table 5-1.
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Chip multiprocessor (CMP) configuration. This system configuration has a single lev

cache (consisting of L1 caches) hierarchy with each L1 cache kept coherent using a broadca

work implementing a coherence protocol similar to the Sun Gigaplane. The data network

point-to-point high-bandwidth direct network modeled after the Sun Gigaplane-XB. The leve

cache and memory are off-chip. Figure 5-3 shows the CMP target system and Table 5-2 lis

CMP system parameters. SLE and TLR are evaluated for this configuration.

Symmetric multiprocessor (SMP) configuration.We add an additional level of cache

(consisting of L2 caches) to the CMP configuration. Coherence is maintained across th

caches. Similar to the chip multiprocessor configuration, the broadcast network is high-band

libparmacs.a

C source with annotations

m4

Simplescalar
gas

Simplescalar
gld

annotated Simplescalar

object files

SimpleMP executable

libm.a

Simplescalar
gcc

C source

libc.a

linker script

assembly

libparmacs.a

Alpha
assembler

Alpha
linker libm.a

Alpha
compiler

libc.a

Figure 5-2: Compile infrastructure.SimpleMP can simulate Alpha and PISA instructions.

results
simulator

host C compiler simulator
source
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and low-latency and the data network is a point-to-point direct network modeled after the

Gigaplane-XB. Figure 5-4 shows the SMP target system and Table 5-3 lists the system param

We evaluate SLE for this configuration.

Distributed shared-memory (DSM) configuration.The DSM configuration consists of two

levels of caches and an SGI Origin 2000-type MESI protocol implemented among the L2 ca

The directory is full-mapped and stored with memory in DRAM. Silent evictions of clean ca

blocks is supported. The SGI Origin 2000 uses two virtual channels for routing and relies

complex high-level deadlock detector to resolve deadlock that may arise because of thre

coherence transactions over two virtual channels, and resolves deadlocks by falling back on

Table 5-1: Processor configuration

Processor Clock 1 GHz (1 ns cycle time).

Fetch 16 entry instruction fetch queue.

Branch prediction 8K entry combining predictor, 8K entry 4-way BTB, 64
entry return address stack, 3-cycle branch mispredict
redirect penalty.

Issue/execute/commit out-of-order issue/execute 8 instructions per cycle,
in-order commit of 8 instructions per cycle.

Reorder buffer

Load/store queue

128 entries.

64 entries.

Functional units pipelined, 8 alus, 2 multipliers, 4 floating point units, 3
memory ports.

Write-buffer 64 entry, non-merging, each entry 64-byte wide.

Load issue policy issue loads to memory system as soon as address known

Memory consistency total store ordering (TSO).

Silent store-pair pre-

dictora

a. Used for SLE and TLR configurations in all experiments.

64 entry silent store-pair predictor table, indexed by the
store-conditional PC. support for up to 8 store-pair eli-
sions at any time.

Read-modify-write

sequence predictorb

b. Used for all experiments in Section 6.3.2 only.

128 entry PC indexed predictor for collapsing read-mod-
ify-write sequences within critical sections into a single
request.
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Figure 5-3: Chip multiprocessor (CMP).The L1 caches on the chip are kept coherent using
broadcast network as shown. Data transfer occurs through a high-bandwidth point-to-point
work. The L2 cache and memory are off-chip as shown.

L1 cache

Processor

Logical broadcast network (coherence traffic)

Point-to-point data network (data traffic)

L2 cache

Memory

Cache controller

Table 5-2: Memory system configuration: Chip multiprocessor

L1 caches Data cache
parameters

128KByte, 4-way associative, write-back, 1-cycle
access, 16 pending misses. Block size: 64 bytes.

Instruction cache
parameters

64KByte, 2-way associative, 1-cycle access, 16 pend-
ing misses. Block size: 64 bytes.

Protocol Sun Gigaplane-type MOESI protocol between all L1s.

Queue occupancy 1-cycle minimum in all queues in the system.

Network configuration Snoop network Split transaction. Address bus: broadcast network,
snoop latency: 20 cycles, 120 outstanding transactions.

Data network Point-to-point, pipelined, transfer latency: 20 cycles.

L2 cache 4MByte, 6-way, 10-cycle access.

Page 4Kbyte size.
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Figure 5-4: Symmetric multiprocessor (SMP).The L2 caches are kept coherent using a broad
cast network as shown. Data transfer occurs through a high-bandwidth point-to-point netw
The queues between the L1 and L2 are also shown. Inclusion is maintained in the local hi
chy.

L2 cache

Logical broadcast network (coherence traffic)

Point-to-point data network (data traffic)

Memory

Cache controller

L1 cache

Processor

Table 5-3: Memory system configuration: Symmetric multiprocessor

L1 caches Data cache
parameters

128KByte, 4-way associative, write-back, 1-cycle
access, 16 pending misses. Block size: 64 bytes.

Instruction cache
parameters

64KByte, 2-way associative, 1-cycle access, 16 pend-
ing misses. Block size: 64 bytes.

Protocol MSI protocol.

Queue occupancy 1 cycle minimum in all queues in the system.

L2 unified caches Parameters 4MByte, 4-way, 12 cycle access, 16 pending misses.

Protocol Sun Gigaplane-type MOESI protocol between all L2s.

Network configuration Snoop network Split transaction. Address bus: broadcast network,
snoop latency: 30 cycles, 120 outstanding transactions.

Data network Point-to-point, pipelined, 70 cycles transfer latency.
Memory access: 70 cycles for 64 bytes.

Page 4KByte size.



165

o vir-

istrib-

rs. We

ance.

om the

for
strict request-response sequence. To avoid the inefficiencies introduced by the use of only tw

tual channels, our implementation employes three virtual channels. Figure 5-5 shows the d

uted shared-memory multiprocessor target system and Table 5-4 lists the system paramete

evaluate SLE for this configuration.

5.4  Benchmarks

Many microbenchmarks and benchmarks exist for evaluating synchronization perform

We select three microbenchmarks and seven benchmarks. The benchmarks are taken fr

SPLASH/SPLASH2 suites [150, 169].

Figure 5-5: Distributed shared-memory system (DSM).The directory and memory controller
are integrated as shown. The interconnection network consists of three virtual channels
request, response, and interventions. The network is modeled as a point-to-point network.

DirectoryMemory
controller

Network
interface

L2 cache

Cache controller

L1 cache

Processor

Interconnection network
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5.4.1  Microbenchmarks

We use three microbenchmarks—multiple -counter , single-counter , and dou-

bly-linked list —specifically selected to evaluate three different behaviors of critical sec

data access representing points in the spectrum of data and lock contention. While these

comprehensive, they are selected to provide insight into the behavior of SLE and TLR. Themul-

tiple-counter microbenchmark represents high, easily exploitable concurrency; thesin-

gle-counter microbenchmark represents a case where no concurrency is exploitable an

of data conflicts (and lock contention) is high. Thedoubly-linked list is a complex

microbenchmark with difficult-to-exploit dynamic concurrency and high lock contention. T

details of these microbenchmarks are described below.

1. multiple-counter . This microbenchmark represents an example of a coarse granul

lock and no data conflicts among critical sections. Themultiple-counter microbench-

mark consists ofn counters protected by a single lock. Each processor uniquely updates

Table 5-4: Memory system configuration: DSM multiprocessor

L1 caches Data cache parame-
ters

128KByte, 4-way associative, write-back, 1-cycle
access, 16 pending misses. Block size of 64 bytes.

Instruction cache
parameters

64KByte, 2-way associative, 1-cycle access, 16 pend-
ing misses. Block size: 64 bytes.

Protocol MSI protocol

Queue occupancy 1 cycle minimum in all queues in the system

L2 unified caches Parameters 4MByte, 4-way, 12 cycle access, 16 pending misses

Coherence protocol SGI Origin 2000 type MESI protocol, full mapped
directory, 70 cycle access (overlapped with memory
access).

Network configuration Parameters point-to-point network with three virtual channels

Latencies processor to local directory (70 ns), directory and
remote route (50 ns).

Some uncontended latencies: read miss to local mem-
ory: ~130 ns, read miss to remote memory: ~230 ns,
read miss to remote dirty cache: ~360 ns

Page 4KByte size, round-robin allocation across nodes.
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one ofn counters 224/n times. While a single lock protects the counters, there is no depende

across the various critical sections for the data itself and hence no conflicts.

2. single-counter . This microbenchmark represents an example of a fine granularity l

and high data conflicts. Thesingle-counter microbenchmark corresponds to critical se

tions operating on a single cache block. One counter is protected by a lock andn processors

increment the counter 216/n times. No inherent exploitable concurrency exists as all process

operate upon the same data (and cache block).

3. doubly-linked list . This microbenchmark represents an example of a fine granula

lock and a dynamically varying data conflict rate. Thedoubly-linked list microbench-

mark consists of a doubly-linked list withHead and Tail pointers protected by one lock

Each processor dequeues an item by removing the item pointed to byHead, and then enqueues

it by adding it toTail . A processor that removes the last item sets bothHead andTail to

NULL, and a processor that inserts an item into an empty list sets bothHead andTail to point

to the new item. The benchmark finishes when 216/n enqueue and dequeue operations ha

completed. A non-empty queue can support concurrent enqueue and dequeue operations

the queue is non-empty, each process modifiesHead or Tail , but not both, so enqueuers ca

execute without interference from dequeuers, and vice versa. Processors must modif

pointers for an empty queue. This concurrency is difficult to exploit in any simple way u

locks, since an enqueuer does not know if it must lock the tail pointer until after it has loc

the head pointer, and vice-versa for dequeuers [66, 149]. The critical sections are non-

involving pointer manipulations and multiple cache block accesses. Figure 5-6 shows

code for theenqueue () anddequeue () functions.

In the microbenchmarks, processors execute critical sections in a loop for a fixed numb

iterations. Special care was taken in designing these microbenchmarks. We use a metho

similar to that used by Kumar et al. [89]. To ensure fairness, we introduce delay after a lock re

operations. After releasing the lock, the processor waits a minimum random interval before

ceeding to ensure another processor has an opportunity to acquire the lock before a suc

local lock reacquire, thus reducing unfairness. The wait outside the critical section has to be

than the inter-processor lock transfer time to ensure that the local processor will not succe

reacquiring the lock.
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5.4.2  Benchmarks

The benchmarks we use areocean-cont , cholesky , mp3d, barnes , radiosity ,

water-nsq , and raytrace . Barnes , cholesky , andmp3d are drawn from theSPLASH

[150] and ocean-cont , radiosity , water-nsq and raytrace are drawn from the

SPLASH2suites [169]. All benchmark data structures are padded appropriately to eliminate

sharing. The benchmarks were run to completion. We use modified versions ofbarnes and

mp3d from Alain Kägi’s experiments [80]. The modifications are described below. Table 5-5

the various benchmarks used, and their input sets. These specific benchmarks have been

because they represent noticeable synchronization delays and employ lock-based synchron

These benchmarks have been optimized for sharing and thus have little communication in

cases. We are interested in determining the robustness and potential of our proposal even fo

well tuned benchmarks. We briefly describe these benchmarks below. Detailed description

benchmarks can be found elsewhere [150, 169].

void enqueue(entry *new)
{

entry *tail;
new->prev = NULL;
new->next = NULL;

LOCK (lock)
tail = Tail;
new->next = tail;
if (tail == NULL)

Head = new;
else

tail->prev = new;
Tail = new;
UNLOCK (lock)

}

entry *dequeue()
{

entry *head;

LOCK (lock)
head = Head;
if (head != NULL)

{
prev = head->prev;
if (prev != NULL)

prev->next = NULL;
else

Tail = NULL;
Head = prev;

}
UNLOCK (lock)
return head;

}

Figure 5-6: Doubly-linked list microbenchmark code.The left side shows the enqueue func-
tion and the right side shows the dequeue function.
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Barnes. Barnes simulates the evolution of a system of bodies under the influence of grav

tional forces. Every body is modeled as a point mass and exerts forces on all other bodies

system. For each discrete time step (an iteration),barnes computes new positions of the bodie

in the system. To avoid computing all O(N2) interactions among the bodies,barnes approxi-

mates the force exerted by a sufficiently distant cluster of bodies by the force resulting from

cluster’s center of mass thus reducing the number of computed interactions to O(NlogN) or O(N)

depending on the distribution of bodies in the system.Barnes is based on a hierarchical octre

representation of space in three dimensions. The root of this tree represents a space cell con

all bodies in the system. The tree is built by adding particles to the initially empty root cell

subdividing a cell into its eight children as soon as it contains more than a single body. Leaf n

in the tree represent the actual bodies while the other nodes, the cells, represent a portion

three-dimensional space holding the cells’ children. A cell bisects the parent cell in all t

Table 5-5: Benchmarks

Application Suite Type of simulation Input data set Nesting

Barnesa

a. In this version ofbarnes , locks are stored directly in the cells instead of in a separate
array as in the original version. The benefit of this new layout is primarily to remove
unnecessary contention introduced by the fixed size lock array [80].

SPLASH N-Body 4K bodies yes

Choleskyb

b. tk14.0 input set used for experiments in Section 6.3.1 and tk15.0 input set used for exper-
iments in Section 6.3.2.

SPLASH Matrix factorization tk14.0/tk15.0 no

Mp3dc

c. Locking version ofmp3d used [80].

SPLASH Rarefied field flow 24,000 mols, 25 iter. no

Radiosity SPLASH2 3-D rendering room yes

Water-nsq SPLASH2 Water molecules 512 mols, 3 iter. no

Ocean-contd

d. Array storage is increased from 128 elements to 131 elements in each dimension to create
arrays of prime size, thus reducing cache conflicts among elements in the arrays [93].

SPLASH2 Hydrodynamics 128x128, 2 days no

Raytracee

e. Used only for experiments in Section 6.3.2.

SPLASH2 Image rendering car no
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dimensions. When computing the forces exerted by other bodies,barnes walks down the tree in

breadth-first-search fashion and stops whenever it reaches a leaf or the considered node’s c

mass is sufficiently far away, whichever comes first.

Nearly all ofbarnes ’ execution time is spent in two phases. The first phase loads bodie

the tree and the second phase computes the interactions. Each process is responsible for a

of the bodies in the system. In the tree-building phase, each process loads its bodies in the

using locks to ensure atomic updates of the cell nodes. In the interaction computation phase

process computes the forces exerted by other bodies for each body that they own. This pha

not require mutual exclusion because a process updates only the bodies it owns.

The original version ofbarnes stores the locks associated with the cells in a separate ar

We instead store the locks in the cells directly. The benefits of this new layout is primari

remove some unnecessary contention introduced by the fixed size lock array used in the o

version. In the original version, since the number of elements in the array is less than the nu

of bodies in a typical simulation input, multiple bodies will map to the same lock in the array

ating artificial contention. The new version does not suffer from artificial contention.

Cholesky. Cholesky performs Cholesky factorization of a sparse positive definite mat

This program focuses on the most time-consuming components of factorization. The three s

Cholesky factorization are: ordering, symbolic factorization, and numerical factorization. The

gram assumes an ordered input matrix. The second step accounts for a small fraction of the

factorization runtime and thus is performed on a single process. The third step, numerical f

ization, determines the actual numerical values of the non-zero entries in L (corresponding

LU matrix). This is typically the most time-consuming phase and is parallelized in the prog

Locks are used to protect task queues and matrix columns.

Mp3d. Mp3d is a Monte Carlo simulation of rarefied fluid flow simulating the hypersonic flo

of particles at extremely low densities.Mp3d simulates the trajectories of particles through a

active space and adjusts the velocities of the particles based on collisions with the boun

(such as the wind tunnel walls) and other particles. After the system reaches steady state, sta

analysis of the trajectory data produces an estimated flow field for the studied configuration

algorithm implemented inmp3d reduces the N2 problem of finding collision partners to order N

by representing the active space as an array of three-dimensional unit-sized cells. Only pa
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present in the same cell at the same time are eligible for collision consideration. If the applic

finds an eligible pair, it uses a probabilistic test to decide whether a collision actually occurs

Work is allocated to each process through a static assignment of the simulated particles

simulated step consists of a move phase and a collision phase for each particle that the p

owns. The move phase computes the particle’s new position based both on its current positi

velocity, and its interaction with boundaries. The collision phase determines if the particle

moved collides with another particle, and if so, adjusts the velocities of both particles. Data

ing occurs during collisions and through accesses to the unit-sized space cells. During a co

a process may have to update the position and velocity of a particle owned by another pr

Also, each space cell maintains a count of the particle population currently present in tha

Therefore, each time a process moves a particle, it may have to update the population co

some space cells if that particle passes from one cell to another. These data accesses to p

and space cells may lead to race conditions that optional locks will eliminate at some perform

cost. Locks associated with each space cell may be used to eliminate race conditions while a

ing particles and space cells. Since processes update particle information owned by othe

cesses only during a collision and a collision can only occur if two particles are present in the

cell, the space cell locks ensure mutual exclusion for both particle and space cell access

studymp3d compiled with these locks.

Radiosity. Radiosity computes the equilibrium distribution of light in a scene using t

iterative hierarchical diffuse radiosity method. A scene is initially modeled as a number of l

input polygons. Light transport interactions are computed among these polygons, and polygo

hierarchically subdivided into patches as necessary to improve accuracy. The main data stru

represent patches, interactions, interaction lists, the quadtree structures, and a BSP tree

facilitates efficient visibility computation between pairs of polygons. The structure of computa

and the access patterns to the data structures are highly irregular. Parallelism is managed

tributed task queues, one per process, with task stealing for load balancing. Locks are used

tect access to task queues, interaction lists, and other shared structures.

Water-nsq. Water-nsq is an N-body molecular dynamics application for evaluatin

forces and potentials that occur over time in a system of water molecules. The forces and

tials are computing using an O(N2) algorithm, and a predictor-corrector method is used to integr
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the motion of water molecules over time. For a user-specified number of time-steps, this pro

estimates the forces each molecule exerts on all others according to the Newtonian equat

motion. Water-nsq avoids computing all N2 interactions by eliminating from consideration

molecules outside of a sphere centered at the examined molecule and of a radius correspon

half of the box length.

After initialization and one-time computations, each time-step consists of five phases: c

lating the predicted values of atomic variables; computing intra-molecular forces for all at

computing the inter-molecular forces; calculating the corrected values of variables from the

dicted values and computed forces; and computing the total kinetic energy of the system. Th

task (computing the inter-molecular forces) accounts for the most of the execution time: its

complexity is O(N2) while all the other tasks have a time complexity of O(N).

Water-nsq exploits mostly the parallelism available within a phase; it exploits t

inter-phase parallelism to a limited extent to avoid some synchronization between phase

exploit locality,water-nsq both assigns statically to each process an even fraction of the m

cules and stores the molecules assigned to the same process next to each other. Commu

among processes occurs during the second (intra-molecular computation) and third (inter-m

lar computation) phases. Communication in the second phase consists only of adding scalar

global sum; locks ensure that the processes correctly update that sum. Communication also

in the inter-molecular computation, where processes read positions of the interacting mole

compute the forces, and update the forces of both molecules. A lock per molecule ensures t

micity of the force updates.

Ocean-cont. Ocean-cont simulates eddy and boundary currents in an ocean basin.

simulation is performed over multiple time-steps until the eddies and mean ocean flow at

mutual balance. The work done every time-step involves setting up and solving a set of spati

tial differential equations. The continuous functions are transformed into discrete counterpa

second order finite-differencing and the resulting difference equations set up and solve

two-dimensional fixed-size grids representing horizontal cross-sections of the ocean basin

grids are represented conceptually as 4-D arrays with all subgrids allocated contiguousl

locally in the nodes that own them. A red-black Gauss-Seidel multigrid equation solver is u

The memory access behavior ofocean-cont is regular and input independent. Grid tasks a
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permanently assigned to processes and each task performs the computational steps on the

of the grids that it owns, regularly communicating with other processes. Communication am

processes involves barrier synchronization to preserve dependences between certain compu

near-neighbor communication while computing the Jacobians and Laplacians, and update

counter by all processes for every SOR iteration to determine convergence.

The program uses two locks. The first lock ensures that each process updates a glob

correctly in order to compute a matrix integral. The second lock helps determine when the

iterations have converged. In both cases the algorithm uses a simple lock rather than a tree o

to perform the reduction.

In our experiments, the array storage is increased slightly (from 128 elements to 131 ele

in each dimension) to create arrays of prime size, thus reducing cache conflicts among elem

the arrays [93].

Raytrace. Raytrace renders a three-dimensional scene using ray tracing. A hierarch

uniform grid is used to represent the scene. A ray is traced through each pixel in the image

and reflects in unpredictable ways off the objects it strikes. Each contact generates multiple

and the recursion results in a ray tree per pixel. The image plane is partitioned among proce

contiguous blocks of pixel groups, and distributed tasks queues are used with task stealin

memory access patterns of the application are highly unpredictable. The program provide

cient access to the scene description through a hierarchical uniform grid to traverse the rea

scene data quickly, round-robin distribution of the scene data across the nodes in the system

ance load on the network and the memory modules, and replication of data in the caches.

The program uses locks to protect access to a counter and to ensure correct operation

tributed task queues. The counter is used to assign a unique identifier to each newly spawn

and the critical section to access it consists only of fetching the counter, adding one to it, and

ing it back to memory. Contention to that lock is very high. A set of locks protect the task qu

(one queue per process and one lock per queue). Contention to these locks is typically fairl

unless the number of participating processes approaches the number of rays created.
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5.4.3  Synchronization primitives

In this section, we discuss the two synchronization primitives we use in our experiments

test&test&set locks, discussed below in Section 5.4.3.1 form our base synchronization prim

and is also used for SLE and TLR. We compare TLR to MCS software queued locks and w

cuss MCS locks below in Section 5.4.3.2.

5.4.3.1  Test&test&set locks

Test&test&set [145] is an extension of test&set [7]. Test&test&set performs a read of the

before attempting a test&set operation. Waiting requesters spin on shared, read-only copies

lock and wait for the holder to release the lock. When the lock holder issues the releas

read-only copies are invalidated. The holder, having obtained a writable copy of the lock, rel

it. Subsequently, all waiting requesters issue a request to load a read-only copy of the loc

finding it released, all attempt a test&set. Only one of the requestors succeeds in the test&s

The contention when the lock is freed can be substantial because all requesters atte

acquire the lock at that point and then all attempt to upgrade the lock to a writable state.

5.4.3.2  MCS locks

The MCS scheme [120, 121] inserts requesters for a held lock into a software queue

time of the request. Atomic operations such as swap and compare&swap are used to update

correctly. With queue-based locking, arbitration for the eventual recipient of the lock is there

performed in advance, first-come, first-served.

Maintaining the requester queue in software results in large overhead, especially unde

tentionless conditions. When a lock is released, however, communication occurs only betwe

releaser and the requester at the head of the queue. Network traffic is thus reduced to a c

number of network traversals per synchronization access. In addition, each processor wait

the lock spins locally on distinct memory addresses (instead of a single address as

test&test&set), which further reduces the load on the network. Each processor in the queue

tains a pointer to the address on which the next processor in the queue spins. When the

lock holder leaves the critical section, it clears the value pointed to by the address that it main
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Chapter 6

Performance Evaluation

Speculative Lock Elision (SLE) and Transactional Lock Removal (TLR) provide impro

programmability and stability of multithreaded programs. In this chapter, we study the impa

both SLE and TLR on the execution time of programs.

We begin the chapter by qualitatively understanding the sources of performanc

Section 6.1. We consider different critical section behaviors, namely varying data conflict and

contention, and provide intuition behind why one would expect improved performance. We

discuss conditions under which performance may be degraded. In Section 6.2 we use micro

marks to quantitatively study SLE and TLR and in Section 6.3 we evaluate SLE and TLR u

benchmarks chosen from theSPLASHand SPLASH2suite. The experimental methodology, sys

tem configuration, microbenchmarks, and benchmarks were discussed in Chapter 5. In the

sion below, we refer to the base system without SLE or TLR as BASE. The base system an

together form BASE+SLE, or SLE for short; and the base system and SLE and TLR together

BASE+SLE+TLR, or TLR for short. We also compare TLR to MCS locks in Section 6.3.2.

6.1  Qualitatively understanding performance

Lock contention occurs when a thread attempts to acquire a lock owned by some other t

Data conflicts occur when multiple threads access protected data when executing in a loc

mode and at least one thread is writing the protected data. Lock contention prevents data co

from being exposed. Lock contention determines performance of the base system without S

TLR. Data conflicts, on the other hand, determine performance in a system with SLE or TLR

Four cases for lock contention and data conflicts are:

1. No lock contention and no data conflicts
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2. No lock contention and data conflicts

3. Lock contention and no data conflicts

4. Lock contention and data conflicts

Since lock contention masks data conflicts, we do not consider case 2 above. This case

when a protected data structure is either accessed from outside a critical section, or the data

ture is protected by different locks. These cases are examples of data races in a program. S

intent of locks is to prevent data races, we do not consider programs that have data races

cussion in this section. Both SLE and TLR however maintain the semantics of the program

pendent of whether a data race exists and always provide a correct execution in the prese

data races. Handling data races under TLR correctly was discussed in Chapter 4.

6.1.1  No lock contention

In this case, multiple threads, though executing concurrently, do not request the same

Thus, if the lock is not held by another thread, the data protected by the lock is not being acc

by another thread. SLE and TLR behave identically because of the absence of any data co

Performance benefits may accrue because of the following reasons:

1. Reduced observed remote memory latencies. Since the lock variable is kept in shared sta

locally, all accesses to the lock variable result in a cache hit and do not experience a

latency miss. The benefit arises if the reorder buffer of the processor is unable to comp

tolerate a remote miss to another processors cache. The benefit is reduced for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

2. Reduced memory traffic.Lock acquire and release operations often result in memory sys

traffic, even in the absence of contention. By eliding lock operations when possible,

induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-ow

ship requests in the memory system is eliminated. The benefit is not present for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

Since the lock is not contended, SLE and TLR do not achieve any concurrent execution

fits over BASE.
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6.1.2  Lock contention and no data conflicts

In this case, lock contention is present but the various threads access non-conflicting da

This commonly occurs when coarse-grain locks are used or due to conditional control flows w

the critical section. In the absence of data conflicts, SLE and TLR both behave identically be

TLR is never invoked in the absence of data conflicts. This case provides maximum benefi

SLE and TLR over BASE because the locks are truly unnecessary for correctness of the dy

execution of the program. In addition to reduced memory latencies, and reduced memory t

this case also benefits from concurrent critical section execution and completion—BASE unn

sarily serializes execution of concurrent threads. Reasons for performance benefits due t

(and TLR) include:

1. Concurrent critical sections.This occurs as a result of coarse-grain locking but sometimes m

also occur due to varying control-flow within a critical section resulting in non-conflicting d

sets being accessed by the multiple threads.

2. Reduced observed remote memory latencies.Since the lock variable is kept in shared sta

locally, all accesses to the lock variable result in a cache hit and do not experience a

latency miss. The benefit arises if the reorder buffer of the processor is unable to comp

tolerate a remote miss to another processors cache. The benefit is reduced for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

3. Reduced memory traffic.Lock acquire and release operations often result in memory sys

traffic, even in the absence of contention. By eliding lock operations when possible,

induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-ow

ship requests in the memory system is eliminated. The benefit is not present for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

6.1.3  Lock contention and data conflicts

The final case we consider is when lock contention occurs and the threads access co

data sets in a conflicting manner and occurs mostly with fine-grain lock use. With data con

TLR behaves differently from SLE because while SLE may need to fall back on the BASE me

nisms, TLR provides explicit support for achieving a successful lock-free execution even i
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presence of data conflicts. BASE behavior is still limited by lock contention1 and behaves similar

to the earlier case in Section 6.1.2 of lock contention and no data conflicts. Since SLE and

behave differently, we discuss the two separately.

6.1.3.1  SLE

In the presence of conflicts, SLE forces a restart due to misspeculation. The restart p

itself is not expected to result in a performance loss because the thread would otherwise

merely spun waiting on a location (often the lock location for test&test&set-based locks). H

ever, the restart results in memory requests being reissued to the memory system and may r

increased coherence protocol interference thus degrading performance. This observation

new and even holds true for BASE where if, under lock contention, multiple threads issue req

into the critical section speculatively, the interference in the memory system increases and u

essary latencies are added to the critical path of access to the data block by the thread own

lock. This is also referred to as wasted parallelism where while the multiple threads appear

doing work, they are interfering with the thread holding the lock because the data block is re

edly stolen away from the lock owner by competing threads.

Under SLE, if all threads restart, the additional requests and memory traffic may result in

formance loss for SLE over the BASE. However, if not all threads restart, then performance

be gained.

1. Performance loss if all threads restart.In the presence of data conflicts, while traffic due to th

lock variable may be reduced, additional latencies introduced due to coherence protocol

ference may degrade performance if all threads restart. This is because when multiple p

sors compete for a cache block simultaneously, the coherence permissions for the block tr

and the block moves around the system from processor to processor. If the processor re

the additional latency due to the movement of the cache block and the traffic introduced

degrade performance.

2. Performance gains possible if at least one thread succeeds in elision.Often, threads may be

separated sufficiently apart in time such that one thread succeeds even in the presence

1. In the presence of lock contention, the conflicting threads rather than interfere with the thread owni
lock, wait for the lock to be released by spinning locally on a location.
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conflicts. This may happen because even though for two threads conflicting on data, on

thread observes the conflict and restarts and the other thread proceeds and completes its

section without restarting. The benefits also occur because on a restart, a smaller num

threads compete for the data, and the traffic due to lock operations is reduced.

6.1.3.2  TLR

In the presence of data conflicts, TLR presents benefits over SLE. TLR uses an explici

currency control mechanism using timestamps for fairness, and request deferrals to provide

alizable lock-free execution in the presence of data conflicts and for reducing the negative im

of coherence protocol interference. The coherence protocol is used to construct a chain of co

ing processors and thus enabling coordinated and efficient data transfer. TLR, as described

thesis, does not change the coherence protocol state transitions but coordinates data transfe

the coherence protocol and timestamps. The order in which processors executeconflictingcritical

sections is determined by timestamps—calledtimestamp-order. The order in which data blocks

move around the system is determined by the coherence protocol order—the order in

requests were received by the coherence protocol—calledcoherence-order. This was studied in

detail in Chapter 4. TLR allows non-conflicting threads to complete in parallel and without

serialization while conflicting threads are ordered based on timestamps.

Performance gains occur when either the timestamp order is similar to the coherence or

when the cost of misspeculation (due to a mismatch between timestamp-order and c

ence-order) is lesser than the cost of actually acquiring and releasing locks.

Reasons for performance benefit/loss include:

1. Reduced observed remote memory latencies.Since the lock variable is kept in shared sta

locally, all accesses to the lock variable result in a cache hit and do not experience a

latency miss. The benefit arises if the reorder buffer of the processor is unable to comp

tolerate a remote miss to another processors cache. The benefit is reduced for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

2. Reduced memory traffic.Lock acquire and release operations often result in memory sys

traffic, even in the absence of contention. By eliding lock operations when possible,

induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-ow
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ship requests in the memory system is eliminated. The benefit is not present for loca

acquires where the lock being acquired is already cached locally in an exclusive state.

3. No locking overhead in presence of data conflicts. With TLR, no locks are requested even in th

presence of data conflicts (SLE by itself would not provide much benefit in the presence o

conflicts). Thus, memory traffic and observed memory latencies are reduced.

4. Coordinated data transfer. Since data is requested directly and the coherence protocol is

to construct chains for fast data transfer, the latency is optimized. Additionally, hardwa

used to coordinate the transfer thus minimizing latency.

5. Coherence-order/timestamp-order mismatch.Since the coherence protocol is unchanged, t

order of the processor requests in the chain may be different from the order of timestamp

thus priority) of the processors in the chains. A performance degradation may occur if the

chains are out of order often enough that the delays in transferring data hurt performance

is the primary determiner for performance under TLR. As we will see, a sub-optimal orde

(due to a mismatch between coherence-order and timestamp-order) results in sub-optim

formance while an optimal ordering gives optimal performance.

Resource constraints and performance degradation.When a resource constraint is

encountered and speculation can not continue, the elided store is allowed to be exposed

memory system, thus essentially performing a lock acquire operation without actually requir

restart. The speculative work is not wasted and is committed if the write successfully compl

Cost of maintaining fairness.TLR enforces fairness by providing starvation freedom. If th

benchmark would benefit from unfairness, then TLR would perform worse than BASE. An ex

ple is if a processor executes a critical section multiple times in succession before allowin

other processor to execute the critical section and this results in better performance than if a

cessors took turns in a fair manner (for example, in a first-come first-served manner). In this

TLR would pay the price for enforcing fairness. We discuss this more later in the chapter.
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6.2  Microbenchmark evaluation

Figure 6-1 shows results formultiple-counters . The BASE scheme degrades perfo

mance as more threads are run concurrently because of severe contention for the lock while

test&test&set locks. MCS, as expected is scalable under high contention and experiences

software overhead independent of the number of threads competing for the lock.

(BASE+SLE) and TLR (BASE+SLE+TLR) behave identically because there are no data con

Both schemes outperform BASE and MCS because in the absence of any data conflicts, bo

and TLR experience no locking overhead or serialization, and true concurrency in the applic

is exploited. As is seen by the log-scale graph on the right side in Figure 6-1, perfect scalab

achieved using SLE and TLR.

Figure 6-2 shows results forsingle-counter . As is the case with themulti-

ple-counter , BASE performance degrades with increasing threads because of severe co

Figure 6-1: Multiple-counter microbenchmark results.The left graph has a linear x-axis and
the right graph has a log scale x-axis. The y-axis represents parallel cycle time in millions.

benchmark performs 224 /n increments of a unique local counter for an n-processor system.
expected, SLE and TLR suffer from no locking overhead and as shown by the right graph, r
sent perfect scalability with increasing processor counts The SLE and TLR plots cannot be
tinguished because they perform identically.
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tion for the lock. SLE behaves similar to BASE because SLE detects frequent data conflicts,

off speculation, and falls back to the BASE scheme. MCS again is scalable but experiences

software overhead. We show two cases for TLR: TLR and TLR-strict-ts. Under TLR, as discussed

in Section 4.4.5, timestamp order can be selectively relaxed if there is no danger of deadlo

case that occurs when only one cache block is contended for. TLR-strict-ts corresponds

implementation where timestamp order is always enforced, independent of whether dea

could occur or not. As can be seen, both TLR and TLR-strict-ts outperform BASE, SLE,

MCS. MCS performs a constant factor worse than TLR because MCS has the additional so

overhead of lock acquisitions and queue maintenance while TLR uses the existing coherenc

tocol to construct an ordered queue in hardware. The performance gap between TLR

TLR-strict-ts exists because sometimes the order in which requests reach the coherenc

(coherence-order) is different from the order of the respective timestamps (timestamp o

Figure 6-2: Single-counter microbenchmark results.The left graph has a linear x-axis whereas
the right graph has a log scale x-axis. The y-axis represents parallel cycle time in millions.

benchmark performs 216/n increments of a shared counter for an n-processor system. BASE
SLE perform similar because SLE experiences frequent data conflicts and falls back on the B
scheme. Two schemes for TLR are shown. TLR-strict-ts corresponds to the case where time
order is enforced even if deadlock dangers did not exist and fairness was not compromised
Section 4.4.5). Performance gap between TLR and TLR-strict-ts exists because the mis
between timestamp order and coherence order results in a sub-optimal performance.
achieves scalable performance but experiences a fixed software overhead.
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resulting in misspeculation if the timestamp order is strictly enforced. This mismatch of prot

order and timestamp order results in a sub-optimal2 ordering and additional latencies (se

Section 4.4.4 for a detailed discussion).

When timestamps can be selectively relaxed, as is the case for TLR in Figure 6-2, idea

behavior can be achieved. The average number of cycles between any two releases in the sy

on the order of 30 cycles (broadcast latencies 20 cycles and data transfer latency is 20 cycles

essentially is as close as one can get to the ideal behavior for a single cache block benc

because in this case, the timestamp order can be considered identical to coherence order. T

execution suffers no misspeculation and no processor ever restarts in that execution.

The considerable performance gap between TLR and TLR-strict-ts suggests future wo

minimize the effects of coherence-order and timestamp-order mismatch.

Figure 6-3 shows results fordoubly-linked list . Performance of BASE degrades sim

ilar to the other microbenchmarks because of severe lock contention. SLE does not perform

either (and performs similar to BASE) because determining when to apply speculation is dif

due to the dynamic concurrency of the benchmark. More often than not, SLE falls back to the

case of lock acquisitions using BASE because of detected data conflicts. Any concurrency

exploits is offset by locking overhead when SLE needs to acquire the lock. MCS is scalabl

experiences a fixed software overhead. TLR performs well and can exploit enqueue/dequeu

currency. Thedoubly-linked list microbenchmark consists of two critical sections pr

tected by the same lock and the data accesses within these critical sections is in reverse

Thus, in a sense, this microbenchmark represents an extreme case for TLR. In this microb

mark, multiple cache blocks are contended for (thehead pointer,tail pointer, and the data ele-

ment) and multiple chains are formed for these blocks. Two main effects occur for TLR: on

hand, performance gains occur due to exploited concurrency, and on the other hand, sub-o

performance is achieved due to a mismatch of timestamp-order and coherence-order. Sinc

two effects do not occur evenly, the plot is not flat as for the other microbenchmarks. Neverth

TLR still outperforms the BASE, SLE, and MCS schemes.

2. We use the term sub-optimal to imply the performance is not as good as it could be. The perform
may still be better than BASE or MCS and thus using a term such asperformance degradationwould be
inaccurate and misleading.
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In summary, TLR outperforms both BASE and MCS for the microbenchmarks we use.

exploits dynamic concurrency while both BASE and MCS are limited by synchronization pe

mance. MCS performs a constant factor worse than TLR while BASE performance degrades

substantially with increasing contention. Poor behavior of BASE under lock contention oc

because of repeated access to the lock variable by multiple processors racing for the lock an

thus introducing a large amount of traffic into the network. MCS is scalable because proce

form an orderly queue of lock requestors in software rather than repeatedly compete for th

variable and data.

We now briefly look at the effect of unfairness of the primitive on performance. As discus

in Chapter 5, we have designed our microbenchmarks to ensure fairness. A random and min

delay is added after a lock release so that a remote processor can succeed in acquiring t

before the previous lock holder reacquires the lock. In an experiment, we set this delay to

other words, the processor releasing the lock does not wait before reattempting to acquire th

TLR is fair but does not strictly enforce first-come first-served order. In other words, the us

Figure 6-3: Doubly-linked list microbenchmark results.. The left graph has a linear x-axis
whereas the right graph has a log scale x-axis. The y-axis represents parallel cycle time in

lions. The benchmark performs 216/n enqueue/dequeue pairs in an n processor system. SLE ex
riences frequent conflicts and turns off speculation thus behaving similar to the BASE sch
MCS performs with a fixed software overhead and TLR outperforms both BASE and MCS.
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timestamps ensures all processors get to execute their critical sections within a bound and k

with each other. The results are shown for the single counter example in Figure 6-4. BASE

forms better than TLR because in BASE, a processor performs a series of successive loc

acquires and releases before another processor can acquire the lock. This is not the inten

microbenchmark since the microbenchmark is intended to study the performance of synchro

multiple processors when multiple processors compete for the lock; not the synchronizatio

formance for a single processor.

6.3  Benchmark performance

We now study the performance of SLE and TLR using some benchmarks chosen from

SPLASHand SPLASH2suites. The system configuration was discussed in Section 5.3 and

benchmarks and their input sets were discussed in Section 5.4. We first evaluate SLE perfor

and then separately evaluate TLR.

Figure 6-4: Impact of unfairness on microbenchmark performance.We use the sin-
gle-counter microbenchmark. MCS enforces strict first-come first-served ordering and thus
a fixed overhead. TLR and TLR-strict-ts provide a sense of fairness—while it is not first-c
first-served, it is based on timestamp resolution for conflicting requests. Thus, all proces
keep up with each other over time even though the ordering is not strictly first-come first-ser
BASE greatly benefits from the unfairness in the benchmark because a processor can ac
the lock multiple times (in 10s) before another processor is able to intervene and acquire
lock.
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6.3.1  SLE performance

For SLE, we chose a restart threshold of 1. This means, on a conflict-induced misspecu

execution was restarted and SLE retried once more. If a subsequent conflict occurred, the lo

acquired. Support for up to 8 silent store-pair elisions is assumed (Section 3.10) implying th

to 8 properly nested locks can be elided. The experiments in this section did not suffer from

resource induced misspeculation. In other words, the critical section data fit in the local cache

archy.

SLE is evaluated for three different system configurations: CMP (chip multiprocessor),

(symmetric multiprocessor), and DSM (distributed shared-memory multiprocessor). We pr

results for two thread configurations for each: 8 threads and 16 threads. The SMP configu

has larger latencies than the CMP configuration and the DSM configuration uses a different c

ence protocol.

In all figures in this section, the y-axis is normalized parallel execution time—cycles take

execute the parallel portion of the benchmark. The first bar of each pair corresponds to the

case and the second bar of each pair corresponds to SLE (BASE+SLE). Each bar is divide

two parts: contributions due to lock variable accesses (loads and stores of the test, test&s

release) and the remaining contributions. The lock portion only includes memory referenc

lock variables and does not necessarily include the total time spent in the synchronization

rithm itself (e.g., the branch instructions in the test&test&set algorithm are not counted in the

portion).

The stall accounting for the bars is performed at instruction commit—the instruction

stalls commit is charged the stall. The breakup is approximate since accounting for stall cycle

to individual operations is difficult and often inaccurate in out-of-order processors. In additio

lock acquire operation involves an atomic read-modify-write instruction. This instruction ca

retire from the reorder buffer until it has been ordered by the memory system. In other words

an operation acts like a memory fence3 and remains at the head of the reorder buffer until a

writes in the write buffer prior to the lock acquire are also drained and exposed to the memor

tem. Thus, the lock portion also accounts for the time it takes to flush the write buffer while a

3. This behavior will occur independent of the memory consistency model implemented (includin
release consistent systems). Any load operations past the lock acquire can still freely be issued b
we support an aggressive implementation of total store ordering [45].
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acquire is pending stalled at the head of the reorder buffer. For some benchmarks, the no

portion for the optimized case is larger than the non-lock portion for the base case. This is be

sometimes removing locks puts other memory operations on the critical path. Speculative

issued for data within critical sections that were earlier overlapped with the lock acquire oper

are now exposed and stall the processor. A normalized execution time implies a lower bar is

Figure 6-5 and Figure 6-6 show performance of SLE for a 8- and 16-way chip multiproce

configuration. As expected, the locking overhead is higher for a 16-way configuration than

8-way configuration.

While ocean-cont has contention, the contribution of synchronization operations to p

formance loss is small and thus the performance improvement is slight.

Water-nsq has low contention. The bars forwater-nsq indicate performance can be

improved by eliding lock operations (about 3% for 8 threads and 10% for 16 threads). How

once SLE is applied, the net performance gains remain small. This is a result of the inaccur

our stall accounting methodology. We use the retire stage to determine stalls. The memory

tions within the critical section, that were earlier overlapped with the lock latencies, get exp

Figure 6-5: SLE performance for an 8-way CMP.The y-axis is normalized parallel execution
time.The first bar of each pair corresponds to the base case. The second bar of each pair co
sponds to the SLE case. The fractions on top of the bar-pairs are normalized execution ti
for the SLE case. All normalizations are with respect to the base case.
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and account for the stalls. These operations result in cache misses and stall the processor co

lock latencies earlier were merely hiding other latencies that were also on the critical path.

Radiosity , barnes , andcholesky (tk14.O input was used for the experiments in th

section) have lock contention and even with SLE, a substantial lock contribution remains. T

because these benchmarks also have true sharing within critical sections resulting in data co

Data conflicts under SLE result in a misspeculation and after a certain number of restarts, th

cution falls back on the lock-based mechanism. With SLE,Barnes experiences a slight perfor-

mance loss (< 1%) for a 16 thread configuration.

Mp3dhas largely uncontended locks. While SLE helpsmp3dquite noticeably, a large portion

of the lock contribution still remains.Mp3d performs frequent lock operations by locking a ce

and operating on it. More than a million lock acquires are performed for the run and the lock

largely migratory in nature. Thus, often a lock when requested is present in a remote cach

eliminating lock acquire and release operations, substantial memory traffic is removed (in the

of upgrades and read requests to remote caches). Every cell has a lock and thus the cache f

is large. Two reasons for the remaining lock contributions are: 1) the 128Kbyte data cache c

hold all locks in shared state and these locks are frequently evicted. Thus, the processor cor

Figure 6-6: SLE performance for a 16-way CMP.The y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair
responds to the SLE case. The fractions on top of the bar-pairs are normalized execution ti
for the SLE case. All normalizations are with respect to the base case.
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riences long latency misses to memory for locks that, with a larger cache, otherwise would

been only a local cache hierarchy hit. 2)mp3d performs frequent writes and thus the lock acqui

stalls the head of the reorder buffer while the write buffer gets flushed. While loads still issue

the pending lock acquire, the reorder buffer cannot completely hide the latency and load

dependent instructions may follow.

6.3.1.1  Varying system configurations

We now evaluate SLE performance with two different system configurations—an SMP

figuration and a DSM configuration.

Figure 6-7 and Figure 6-8 present performance for an SMP configuration. The SMP con

ration uses the same processor model as the CMP configuration and the same coherence p

However, the SMP configuration has a large level-two cache and longer coherence and data

cies. The performance trends are similar to the CMP configuration. The gains are slightly h

for the SMP version because the increased latencies in the system result in lock operations c

uting to a larger portion of execution time. The performance to be gained in the event of a suc

ful SLE execution is higher.

The benchmark where the trend with the SMP configuration is markedly different from

CMP configuration ismp3d. This is because now a large 4MB level two cache backs the level

caches and thus most locks that are elided remain locally cached in a shared state over the

tion of the program and the out-of-order processor core does not experience long latency mi

memory or remote caches.
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Figure 6-7: SLE performance for an 8-way SMP.The y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair
responds to the SLE case.The fractions on top of the bar-pairs are normalized execution ti
for the SLE case. All normalizations are with respect to the base case.
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Figure 6-8: SLE performance for an 16-way SMP.The y-axis is normalized parallel execu-
tion time. The first bar of each pair corresponds to the base case. The second bar of each
corresponds to the SLE case. The fractions on top of the bar-pairs are normalized execu
times for the SLE case. All normalizations are with respect to the base case.
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The distribute shared memory configuration (DSM) we use implements a very diffe

coherence protocol from the CMP and SMP configurations. The DSM protocol is based o

SGI Origin 2000 protocol and is a NACK-based protocol whereas the CMP and SMP protoco

based on the Sun Gigaplane protocol and are non-NACK protocols.

Since the DSM configuration uses a NACK-based protocol, the performance impact of

operations in a distributed shared-memory multiprocessor can be severe especially under c

tion. Thus, while the performance potential for SLE is high, the danger of performance deg

tion exists because the cost of misspeculation is also now higher—longer latencies result b

of coherence protocol interference.

Figure 6-9 and Figure 6-10 show performance for the 8 and 16 thread configuration

DSM. Ocean-cont greatly benefits from SLE for a 16 thread DSM configuration because l

contention now contributed substantially to performance loss for this configuration. Whileradi-

osity andcholesky benefit from SLE, substantial lock contribution still remains because

data conflicts.Barnes experiences a performance loss for a 16 thread configuration becaus

cost of misspeculations are higher.Mp3d behaves similar to the SMP configuration because, sim

lar to the SMP configuration, the level-two cache can accommodate the working set of the l

Figure 6-9: SLE performance for a 8-way DSM.The y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair
responds to the SLE case. The fractions on top of the bar-pairs are normalized execution ti
for the SLE case. All normalizations are with respect to the base case.
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6.3.1.2  Restart thresholds

We look at SLE sensitivity to the restart threshold. The only benchmarks that were sen

to the restart threshold areradiosity , barnes , andcholesky . These are the benchmark

that also suffer from lock contention and data conflicts.

For the CMP configuration, when we increases the restart threshold to 10,barnes , radi-

osity , andcholesky suffer from performance degradation (~5 to 10% performance loss

processors repeatedly execute, misspeculate and restart thus consuming system resource

ducing coherence protocol interference. The SMP configuration is also sensitive to the r

threshold and follow similar trends. The DSM configuration is more sensitive to the restart th

old than the CMP or SMP configurations. A performance loss of up to 15% is observed a

barnes , radiosity , andcholesky , when the restart threshold is kept at 10.

In summary, SLE performance is quite sensitive to the restart threshold and we conserva

use a threshold of 1 to mitigate performance loss due to coherence protocol interference. Ex

tial backoff in reissuing requests and Transactional Memory-type techniques may be emplo

reduce the effects of protocol interference.

Figure 6-10: SLE performance for a 16-way DSM.The y-axis is normalized parallel execu-
tion time. The first bar of each pair corresponds to the base case. The second bar of each
corresponds to the SLE case. The fractions on top of the bar-pairs are normalized execu
times for the SLE case. All normalizations are with respect to the base case.
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6.3.2  TLR performance

Substantial lock overhead remains forradiosity , barnes , andcholesky for SLE. In

this section, we discuss the effectiveness of TLR in removing the remaining lock overhead

add raytrace as an additional benchmark for evaluating TLR.Raytrace has a highly con-

tended lock (and high data conflicts) andraytrace would not benefit from SLE. Since TLR tar-

gets conflicts, we also compare TLR performance to that of software queue-based MCS lock

did not compare SLE performance in the earlier section to MCS because SLE, in the prese

data conflicts, would fall back on the base locking mechanism implemented using test&test

Thus, the performance comparison would end up being between MCS locks and test&tes

locks and prior work has shown MCS locks outperform test&test&set locks under contention

We evaluate four configurations—1) BASE: base system, 2) BASE+SLE: base system

SLE optimization, 3) BASE+SLE+TLR: base system with SLE and TLR optimizations, and

MCS: system with MCS locks [120]. For convenience we will refer to these four schemes in

as BASE, SLE, TLR, and MCS respectively. BASE, SLE, and TLR use the same benchmark

cutable employing the test&test&set lock.

We focus discussion in this section on a 16 thread configuration for TLR and its perform

is shown in Figure 6-11. The y-axis is normalized execution time. All bars are normalize

BASE. Each benchmark has three bars: the first bar is BASE. The second bar is SLE and th

bar is TLR. Each bar is divided into two parts: contributions due to lock variable accesses (

and stores) and the remaining contributions. The lock portion only includes memory referen

lock variables and does not necessarily include the total time spent in the synchronization

rithm itself (e.g., the branch instructions in the test&test&set algorithm are not counted here

The stall accounting for the bars is similar to that used for SLE earlier and is performe

instruction commit—the instruction that stalls commit is charged the stall. The breakup is ap

imate since accounting for stall cycles due to individual operations is difficult and often inacc

in out-of-order processors. In addition, a lock acquire operation involves an atomic read-

ify-write instruction. This instruction cannot retire from the reorder buffer until it has been orde

by the memory system. In other words, such an operation acts like a memory fence4 and remains at

4. This behavior will occur independent of the memory consistency model implemented (includin
release consistent systems). Any load operations past the lock acquire can still freely be issued b
we support an aggressive implementation of total store ordering [45].
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the head of the reorder buffer until any writes in the write buffer prior to the lock acquire are

drained and exposed to the memory system. Thus, the lock portion also accounts for the

takes to flush the write buffer while a lock acquire is pending stalled at the head of the re

buffer. For some benchmarks, the non-lock portion for the optimized case is larger tha

non-lock portion for the base case. This is because sometimes removing locks puts other m

operations on the critical path. Speculative loads issued for data within critical sections that

earlier overlapped with the lock acquire operation are now exposed and stall the processor.

malized execution time implies a lower bar is better.

All experiments employ the instruction-based predictor for collapsing read-modify-w

sequences in critical sections into a single write operation thus reducing latencies within c

sections (Section 4.4.3). This results in a highly optimized base system execution and the p

mance numbers for TLR are thus conservative. Later, we discuss the effect this predictor h

the base system and present performance numbers to give an idea of how much better TLR

do against a more conventional base case. The speedup for techniqueX over techniqueY is the

ratio of the benchmark parallel cycle count with techniqueY to that of the benchmark paralle

cycle count with techniqueX. A speedup value greater than 1 is better.

Ocean-cont and water-nsq do not show much performance benefits. Whi

ocean-cont has lock contention and opportunities for concurrent critical section execution

performance impact on our target system is not much because lock accesses do not con

much to performance loss.Water-nsq has frequent uncontended lock acquires. While the b

for BASE show potential for performance, removing locks does not result in a corresponding

formance gain because the data cache misses within the critical section, that were earlie

lapped with lock access misses, are now exposed and account for the stalls. For, TLR speed

BASE for water-nsq is 1.01 and forocean-cont is 1.02. MCS performs the same as BAS

for ocean-cont , and has a speedup of 0.96 (i.e., actually a performance loss) over BASE

water-nsq . The performance loss for MCS forwater-nsq is due to the software overhead fo

uncontended locks.

For radiosity , speedup of TLR over BASE is 1.47 and nearly all locking overhead dis

pears. Speedup of MCS over BASE is 1.35. The task queue critical section was most contend

in radiosity  and accounted for most conflict-induced restarts under TLR.
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For raytrace , the speedup of TLR over BASE is 1.17. MCS performance is similar

TLR. For raytrace (car input) on our system, lock contribution to execution time is 16%

much less than those reported earlier on systems with larger latencies, slower memory syste

different cache coherence protocols [81, 89].

For barnes TLR speedup over BASE is 1.16. However, MCS speedup over BASE is 1

MCS performs 4% better than TLR—the only application where MCS performs better than T

Barnes is based on a hierarchical octree representation of space in three dimensions an

node in the tree has its own lock. The root of this tree represents a space cell containing all

in the system. The tree is built by adding particles to the initially empty root cell and subdividi

cell into its eight children as soon as it contains more than single body. Most locking occurs i

tree building phase. Each process loads its bodies in the octree using locks to ensure

updates of the cell nodes. These locks tend to be contended and have data conflicts resu

Figure 6-11: TLR performance for a 16-way CMP.The y-axis is normalized execution time.
All bars are normalized to the performance of BASE. Benchmarks are on the x-axis. E
benchmark has three bars: first bar is BASE, second bar is BASE+SLE and third bar
BASE+SLE+TLR. Each bar is divided into two parts: contributions due to lock variables (loa
and store instructions) and the remaining contributions. The number in parentheses below
benchmark name is the parallel execution cycle count, in millions, for the BASE shown as
first of three bars for each benchmark.
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TLR restarting frequently. TLR’s restarts are due to sub-optimal ordering discussed earl

Section 4.5. MCS constructs an ordered software queue and thus performs better than TLR

Cholesky , with the tk15.0 input set, is the only benchmark that cannot fit one critic

section’s data within the local cache. About 3.7% of dynamic critical section executions result

resource limitations for local buffering (write buffer limitations). This occurs at three functi

(ScatterUpdate , CompleteSuperNode , and ModifyColumn) where a column in the

matrix is locked and the algorithm then writes to the column entries resulting in buffer limitat

(80% due to write buffer and 20% due to cache). TLR nevertheless achieves a speedup of 1.0

BASE. MCS performs slightly worse than BASE (0.97).

Mp3d has frequent lock accesses but these locks are largely uncontended. The 128K

cache is unable to hold all locks and hence the processor suffers miss latency to locks. With

significant lock contribution still remains. TLR achieves a speedup of 1.40 over BASE. BASE

forms better than MCS (speedup over MCS: 1.47) because MCS pays a software overhea

for uncontended locks. This overhead adds up significantly if locking is frequent. TLR out

forms MCS by achieving a speedup of 2.06 because TLR pays no software overhead.

The performance gap between MCS and TLR forbarnes and the TLR restarts in the appli-

cations suggests more optimizations are possible for TLR where coherence protocol suppo

be used. A similar gap (between TLR and an ideal TLR execution) was also observed in Figu

in Section 6.2.

6.3.2.1  TLR data conflict characteristics

Table 6-1 shows data conflict characteristics for a TLR execution for a 16 processor sy

The rows correspond to the number of dynamic critical section executions that either had no

flict, a conflict, or a resource constraint. This may not correspond strictly to the number of

Table 6-1: TLR-execution data conflict characteristics for 16 threads

ocean-cont water-nsq raytrace radiosity barnes cholesky mp3d

no-conflict 62.4% 42.4% 91.9% 70.7% 79.2% 74.8% 91.6%

conflict 37.6% 57.6% 8.1% 29.3% 20.8% 21.5% 8.4%

resource 0% 0% 0% 0% 0% 3.7% 0%
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acquires in the system because for nested critical sections are counted as a single instance

do not include restart counts. For example, for raytrace 87,742 dynamic critical sections d

have any detected conflict-induced restarts and 7,754 had detected conflict-induced restarts

given system. A conflict that is masked due to timestamp order induced deferral is counted

the no-conflict category. The accounting is performed only once per dynamic execution—rep

restarts are not counted here.

6.3.2.2  Impact of TLR on network traffic

Figure 6-12 shows the network traffic for various configurations. The y-axis is normal

message count. The first bar is the BASE. The second bar corresponds to MCS and is norm

to BASE. The third bar is TLR and is also normalized to BASE. The lower portion of the bar is
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Figure 6-12: Impact of TLR on network traffic.The y-axis is normalized message count. Th
first bar is the BASE. The second bar corresponds to MCS and is normalized to BASE. The
bar is TLR and is also normalized to BASE. The lower portion of the bar is the coherence tra
contribution (read for shared and exclusives, upgrades, write-backs, and instruction fetch
and the upper portion is the data traffic. The numbers below the benchmarks are the total n
ber of messages, in millions, sent in the network for BASE. For TLR, two additional catego
exist: marker messages and probe messages. These are not shown because their numbe
very small: ocean: 0.09% 0.05%, water: 0.6% ~0%, raytrace: 0.4% 0.2%, radiosity: 0.24
0.06%, barnes: 1.66% 0.40%, cholesky: 0.6% 0.01%, and mp3d: 0.3% and 0.03%. TLR in
duces minimal probe and marker messages as compared to the total number of messages
system.
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coherence traffic contribution (read for shared and exclusives, upgrades, write-backs, and in

tion fetches) and the upper portion is the data traffic. The numbers below the benchmarks a

total number of messages, in millions, sent in the network for BASE. For TLR, two additional

egories exist: marker messages and probe messages. These are not shown because their

are very small: ocean: 0.09% 0.05%, water: 0.6% ~0%, raytrace: 0.4% 0.2%, radiosity: 0

0.06%, barnes: 1.66% 0.40%, cholesky: 0.6% 0.01%, and mp3d: 0.3% and 0.03%. TLR intro

minimal probe and marker messages as compared to the total number of messages in the s

6.3.2.3  Coarse-grain vs. fine-grain experiment

With mp3d, a noticeable locking overhead remained and we investigated it further. We

jectured replacing the per-cell fine-grain locks inmp3d by one single coarse-grain lock shoul

provide better performance because the data foot-print reduces and the memory system b

should improve substantially. We replaced the individual cell locks inmp3d with a single lock.

This is bad for BASE (and MCS) because now the benchmark has severe lock contentio

expected, TLR with one lock for all cells inmp3d outperforms BASE with fine-grain per-cel

locks by 58% (speedup 2.40) and outperforms TLR with fine-grain per-cell locks by 41% (spe

1.70). Thus, using coarse-grain locks can improve performance significantly over fine-grain 

6.3.2.4  Read-modify-write prediction effects

The performance we report for the BASE case uses the instruction-based predictor fo

lapsing read-modify-write sequences within predicted critical sections into a single write op

tion. We give speedups of BASE with the predictor (the results in Figure 6-11) with respe

BASE without the predictor (BASE-no-opt: a more conventional base case). The speedup is

lated as the ratio of the parallel cycle count for BASE and parallel cycle count for BASE-no-op

speedup value greater than 1 is better. The speedups are—ocean-cont: 1.00, water-nsq :

1.04,raytrace : 1.28,radiosity: 1.05,barnes : 1.04,cholesky : 1.33, andmp3d: 1.13.

With the optimization, the time spent waiting for lock operations increases because critical se

data latencies are reduced. Thus, our speedups in Figure 6-11 would be much larger if we as

a more conventional base case without the predictor. For all benchmarks, a 128 entry PC-in

predictor was sufficient (onlyradiosity used more than 30 entries—using just under 100) a
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most of the remaining benchmarks used less than 20 entries). The above results suggest sup

such a predictor even in systems without TLR.

6.4  Chapter summary

We have demonstrated with a set of microbenchmarks and applications that SLE and

have the potential to outperform common locking algorithms transparently. We now summ

the results for microbenchmarks and benchmarks.

6.4.1  Microbenchmark summary

In the absence of data conflicts, SLE can remove all dependence on locks and locking

head as was demonstrated by themultiple-counter microbenchmark. TLR behaves identi

cal to SLE as demonstrated by themultiple-counter microbenchmark.

In the presence of data conflicts, TLR can remove locking overhead and perform coordi

and low latency data transfer among conflicting processors as was demonstrated by thesin-

gle-counter microbenchmark. For thesingle-counter and doubly-linked list

microbenchmarks, SLE degrades to BASE performance because speculation is not perfo

SLE performs a little poorer than BASE because the cost of misspeculation cannot be reco

TLR consistently outperforms BASE.

TLR can extract and exploit dynamic concurrency in programs—situations where data

flict varies along an execution. For example, in thedoubly-linked list TLR identified

dynamically circumstances whereenqueue () and dequeue () operations could occur concur

rently.

TLR performance is sensitive to the ordering of the chains constructed for deadlock-free

currency control. This was observed in thesingle-counter microbenchmark. Selectively

relaxing timestamp order gave consistently better and stable performance as compared to

stamp-enforced ordering. This suggests to future work for further improving performance of T

Except for situations where using unfair primitives gets better performance than when

fair algorithms, TLR outperforms test&test&set without requiring any changes to the softwar

TLR consistently outperforms MCS for all microbenchmarks. MCS experiences a fixed

ware overhead independent of the concurrency possible in the benchmark. TLR does not



200

flicting

tive to

l sec-

care-

ndle

write

l

TLR

forms

rms

dered

der and

his

a

Only

acing

tively.

l sec-

up of
software overhead and performs coordinated and efficient data transfer between any con

processors.

6.4.2  Benchmark summary

We now discuss performance for the benchmarks we use. SLE performance is sensi

true data sharing. If frequent data conflicts occur, SLE should not be applied to those critica

tions else performance loss may occur.

SLE performance is sensitive to restart threshold. Inbarnes andradiosity performance

loss of up to 15% was observed for some configurations if the restart threshold is not chosen

fully.

For critical sections in our benchmarks, local buffering resources were sufficient to ha

critical section data accesses for all but one configuration. The only configuration where the

buffer was not sufficiently large wascholesky for the input set tk15.0 where about 3.7% critica

sections experienced limited resources.

Using TLR removes sensitivity of performance on the restart threshold. This is because

provides a lock-free execution even in the presence of high data conflicts. TLR never per

worse than BASE or SLE for the applications and system configurations chosen.

TLR performs better than MCS for all benchmarks exceptbarnes . In the presence of con-

tention, TLR performs better than MCS while in the absence of contention, TLR outperfo

MCS. MCS performs better than TLR for one benchmark because MCS constructs an or

queue of requestors while TLR undergoes restarts due to a mismatch between coherence-or

timestamp-order.

TLR with coarse-grain locks can outperform the BASE system with fine-grain locks. T

was seen formp3d where replacing all cell locks by a single lock resulted in TLR achieving

speedup of 2.4 over BASE and 1.7 over TLR with fine-grain locks.

If the locks can be cached locally, the overhead of locking can be nearly eliminated.

mp3d was an example where a small cache size resulted in frequent evictions. Repl

fine-grain locks by coarse-grain locks (as described above) addresses this issue quite effec

The read-modify-write sequence predictor for collapsing such sequences within critica

tions is quite effective even without TLR with large performance gains being obtained (speed

1.00 up to 1.33).
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TLR adds minimal extra messages (probes and marker messages) for concurrency con

can be seen from Figure 6-12. Further, the total number of messages in the system with T

consistently lesser than systems without TLR and MCS-based systems.
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Chapter 7

Conclusion

This dissertation provides the first solution that bridges the long-standing gap between

ing correct and stable multithreaded code and writing high-performance multithreaded cod

first summarize the contributions of the thesis in Section 7.1 and discuss some future re

directions in Section 7.2.

7.1  Contributions

This thesis makes two core contributions—Speculative Lock Elision and Transactional

Removal—as a step towards achieving transparent high-performance lock-free and reliable

tion of multithreaded programs.

7.1.1  Speculative Lock Elision

Speculative Lock Elision (SLE) is a microarchitectural technique to remove unnecessary

alization from a dynamic instruction stream. The key idea behind SLE involves using the c

coherence protocol to obtain appropriate permissions on the necessary cache blocks, acces

modifying data speculatively if needed, and then providing the appearance of instantly comm

the critical section by making updates visible to other processors at a single commit point.

Three key features of SLE are:

1. Enables highly concurrent multithreaded execution. Multiple threads can concurrently execut

critical sections guarded by the same lock. Correctness is determined without acquirin

modifying) the lock. No write permissions are required on the lock variable in the event

successful speculation.
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2. Simplifies correct multithreaded code development. Programmers can use conservative sy

chronization to write correct multithreaded programs without significant performance imp

If the synchronization is not required for a correct execution, the execution will behave as

synchronization were not present.

3. Can be implemented easily. SLE can be implemented entirely in the microarchitecture, witho

instruction set support and without system-level modifications (e.g., no coherence pro

changes are required) and is transparent to programmers. Existing synchronization instru

are identified dynamically. Programmers do not have to learn a new programming method

and can continue to use well understood synchronization routines. The technique can be

porated into modern processor designs, independent of the system and the cache cohere

tocol.

SLE is a step towards enabling high-performance multithreaded programming. SLE pe

programmers to use frequent and conservative synchronization to writecorrectmultithreaded code

easily; SLE automatically and dynamically removes unnecessary instances of synchroniza

the absence of data conflicts.

7.1.2  Transactional Lock Removal

Transactional Lock Removal (TLR) is a hardware mechanism to convert lock-based cr

sections transparently and optimistically into lock-free optimistic transactions and a t

stamp-based fair conflict resolution scheme to provide transactional semantics and starvatio

dom, if the data accessed by the transaction can be locally cached and subject to

implementation specific constraints.

While SLE provides benefits in the absence of data conflicts, TLR provides benefits ev

the presence of conflicts. TLR provides both serializability and failure atomicity. TLR trans

ently and cleanly addresses the trade-off among programmability, performance, and stabili

cussed earlier in Section 1.2. We have presented one deferral-based implementation of TL

does not require changes to the coherence protocol state transitions.

Three contributions of TLR are:

1. Programmability. TLR simplifies correct multithreaded code development. Reasoning ab

granularity of locks is not required because serialization decisions are made at run time
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on actual data conflicts and independent of lock granularity. Cache blocks are the cohe

unit and represent a fine granularity for sharing. TLR provides this granularity without

grammer involvement.

2. Stability.Since locks are not written to and the “wait” on the lock variable is no longer requi

properties of lock-free and wait-free execution are achieved transparently. This transla

improved system wide performance, no convoying or priority-inversion dangers, and ro

execution in the presence of failing threads. TLR addresses the inherent limitations of the

ing construct while maintaining the well-understood critical section abstraction for the

grammer.

3. Performance. TLR enables high-performance multithreaded execution. Independent of

granularity, because serialization decisions are made only in the presence of data conflic

is not based on lock contention, performance of fine-granularity locking is achieved. Fu

since a queue of requestors is constructed in the hardware by using the coherence proto

data transfers are efficient and low overhead. Programmers can focus on writing correc

while hardware automatically extracts performance.

TLR is the first proposal to address the trade-off among all the above three aspects an

vide a robust solution to the synchronization problem. While TLR does trade off hardware

these properties, we believe the hardware cost is modest. Subject to resource constrain

scheme is the first to transparently provide a wait-free execution of a lock-based critical sec

We showed hardware with TLR outperforms hardware without TLR and performs better

MCS locks for a range of microbenchmarks and benchmarks representing both high and low

conflict conditions. Importantly, TLR provides sustained high performance even for fine-g

sharing by providing efficient and coordinated data transfer among conflicting threads. Fu

TLR provides better load balancing because of the use of timestamps for fairness.

7.2  Future directions

We have introduced the concepts of SLE and TLR and given an implementation of each

techniques. In this section we discuss future research directions. We first discuss directio

improving the core mechanisms of SLE and TLR themselves. Then we discuss the ways ope
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systems can be involved to improve the TLR guarantees and ways to exploit the programm

benefits of TLR.

7.2.1  SLE mechanisms

SLE performance is sensitive to the restart threshold. While the experiments in this t

have used a static restart threshold, dynamically selecting such a threshold may provide bett

formance characteristics. Future work remains in selecting dynamic restart thresholds dep

upon the application phase.

Further work remains in confidence predictors for deciding which locks to apply SLE to

data-conflict-induced restarts repeatedly occur for a given lock, applying SLE in those situa

may degrade performance. Sophisticated mechanisms for determining when to apply SLE

be investigated.

7.2.2  TLR mechanisms

TLR removes sensitivity of performance to the restart threshold because TLR provid

lock-free execution even in the presence of data conflicts. The design space for TLR is larg

this dissertation has investigated only part of the design space—namely the us

wound-wait-type algorithms using request deferrals. While this design often provides high pe

mance, sometimes performance was sub-optimal.1 An example is where MCS performs bette

than TLR for the benchmarkbarnes . Further, thesingle-counter microbenchmark empha-

sized the performance difference that may arise if coherence-order is different from

stamp-order.

Future work remains in studying new mechanisms for keeping the queues due to c

ence-order and timestamp-order matched. Section 4.4.4 discussed in detail the performanc

actions of timestamp-ordered queues and coherence-ordered queues. Performanc

sub-optimal when these queues were out of order with respect to each other.

Selectively relaxing timestamp-order for performance was discussed in Section 4.4.5

modified TLR algorithms were briefly discussed in Section 4.4.2.3 where a wounded proc

1. Performance is often still better than without TLR even though it may not be optimal.
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may potentially continue executing in TLR mode for a while under certain conditions. These

niques present potential for performance improvement of TLR and should be investigated fu

The wait-die mechanism should be investigated along with hybrid mechanisms

wound-wait and wait-die. Selective use of NACKs may also help performance in certain im

mentations.

7.2.3  Stability and programmability interactions

While TLR provides the mechanisms for providing a wait-free execution of a critical sec

subject to certain implementation-specific constraints (see Section 4.6), the conditional a

must be investigated in more detail. Often this aspect is a function of the specific microarchite

and system. Events such as certain interrupts2 and the scheduling quantum may make it difficult o

impossible to guarantee TLR. While a misspeculation can always be triggered and the

acquired thus guaranteeing correct execution even under these conditions, transactional pro

may not be maintained. While these limitations can be specified to the programmer so that th

grammer can write programs while taking these into consideration, operating system suppo

be used to improve upon these guarantees.

Subject to resource constraints, TLR can provide a wait-free execution of a synchroniz

primitive such as critical sections. Wait freedom is a more broadly applicable property than m

for critical sections and is a function of the actual program itself. Critical sections are only

aspect but a key aspect because they make reasoning about correctness of sharing easy.

step is to investigate how programmers can exploit the understanding of conditional wait-free

cution and write algorithms and programs accordingly. TLR provides the programmer w

high-performance implementation of conditional wait-free synchronization and the perform

limitations of wait-free algorithms can potentially be addressed. It would be useful for the h

ware to inform the program whether TLR was not successful for a given instance to maintain

tain properties so that the program can proceed to a more heavy-weight slow algorithm that

the guarantees without TLR. This way, in the common case TLR provides guarantees with

performance and in the uncommon case (such as resource-induced failures and other une

2. Interrupts that can be delayed for a finite time do not pose a problem.
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conditions) the more heavy-weight algorithm can be invoked to achieve the TLR guarante

wait freedom and starvation freedom.

Reducing hardware requirements by adding some support in software should also be in

gated. These include adding hints in software for identifying transactions. These hints nee

always be correct because TLR does not rely on them for correctness.
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Appendix A

Correctness Constructions

Here we show that a successful SLE and TLR execution is serializable—the execution c

sponds to some legal serial execution. We define a legal execution as some serial executi

show that SLE (and thus TLR) will only commit serializable executions. Any non-serializable

cutions will be detected and rejected.

A.1  Maintaining serializability

Let CS = {CS1,...,CSn} be a set of critical section executions1 in the system. Further let CSRi

= {CSri1,..., CSrip} be the set of read operations in critical section CSi and CSWi =

{CSwi1,...,CSwiq} be the set of write operations in critical section CSi. Assume all operations,

CSRi and CSWi, for a given critical section CSi are ordered as per program order requiremen

Let R = {r1,...,rj} be normal individual read operations and W = {w1,...,wk} be normal individual

write operations interleaved in some order and belonging to regions outside critical sections

non-speculating critical sections).

If conflicting accesses occur, then the execution for these accesses is serialized by the

ence protocol—only one cache can have a writable copy of a cache block at any given time.

ulatively modified (and uncommitted) data by a thread in a critical section is never expos

other threads. Further these values are only exposed at commit time. Since write serializa

maintained by our scheme, all values updated are exposed at the same time—the key is th

one processor can retire a store into the cache for a given address at any one time.

1. These can be any sequence of memory operations identified to be critical sections. We do not spec
tected access to these operations via the use of any lock—no restrictions are placed on it.
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All CS are serializable. As discussed in Section 2.3.1.1, three conflict situations must

avoided to guarantee a serializable execution. Assume both CSi and CSj have committed and CSi

committed before CSj. The three situations are:

1. Write-read conflict. Occurs if CSi reads something CSj wrote. This can never occur becaus

uncommitted modified data is never exposed to other threads. Under SLE and TLR, this c

tion would be detected and CSj would restart.

2. Read-write conflict. Occurs if CSi overwrites what CSj read and then CSj reads it again. This

cannot occur because when CSi performs a conflicting write with CSj, CSj would misspeculate

and restart and thus would re-execute the transaction. Thus the read-again problem w

occur.

3. Write-write conflict. Occurs if CSi overwrites what CSj wrote. This cannot occur because a co

flict would have been detected earlier and one of the critical sections would have re-exec

Thus, if CSi commits before CSj and they have accessed conflicting data sets, then all de

dence arcs flow from CSi to CSj—there cannot be a cycle.

Each individual memory operation from R and W can be viewed as a critical section of

size. Thus, they are a degenerate case of CSi and the same conflict resolution schemes can

applied as above to guarantee a serializable execution.

Further, the implementation must guarantee that for a critical section CSi, all dependences

from memory operations {R, W}pre-csprior to CSi to {CSRi, CSWi} are maintained and all depen-

dences from {CSRi, CSWi} to {R,W} post-csoperations after CSi are maintained as per the underly

ing memory consistency model.

In other words,

{R,W} pre-cs→po {CSRi, CSWi} →po {R,W}post-cs

where→po is the program order chain

Thus, {CSRi, CSWi} is ordered atomically—it is serializable with respect to all other thre

executions, and it is ordered with respect to operations before and after {CSRi, CSWi}.

Assume LRi is a read (say, of the lock variable) and LWi1 and LWi2 are writes (say of the lock

variable). Thus the ordering above can be represented as:
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{{R,W} pre-cs→poLRi →poLW i1} →po {CSRi, CSWi} →po {LW i2 →po{R,W} post-cs}

We know {CSRi, CSWi} is serializable by SLE. Since CSRi and CSWi are read and write

operations, we can rewrite the above as follows:

{R,W} pre-cs→po {LR i →p o  LW i1 →po {CSRi, CSWi} →po LW i2 } →po{R,W} post-cs

Since {CSRi, CSWi} is serializable, we can rewrite the above again as follows:

{R,W} pre-cs→po {LR i →po {LW i1 →po CSRi, CSWi →po LW i2 }} →po{R,W} post-cs

Since LWi1 immediately precedes {CSRi, CSWi}, and {CSRi, CSWi} immediately precedes

LWi2, conceptually the region of serializable execution now includes the outmost curly br

shown above. The above program ordering chain is maintained as per the single thread. Noti,

LWi1, and LWi2 are merely notations but no difference exists between them and Ri and Wi.

As seen from the outside of this thread, the entire sequence{ LRi →po {LW i1 →po CSRi, CSWi

→po LW i2 } } is ordered either before any other{CSRj, CSWj} or {R} or {W} because it is serializ-

able. We also know that LWi1 and LWi2 are cancelling stores—LWi2 undoes the effects of LWi1

thus leaving the architectural state unchanged. We also know that CSWi does not contain LWi.

Thus, to guarantee serializability, LWi1 and LWi2 can be removed from the operations set (for co

flict detection) because they are restoring values. Alternatively, one way to view it is the sequ

shown is executed, all addresses are pre-requested. Then the operations are performed and

new values checked for the old values. If the two values are the same, then the new value ne

be written to the old value. This is also the case with LWi1 and LWi2. Since the operations ({CSRi,

CSWi}) between these two stores are indivisible (atomic), all operations from other processo

either ordered before or after the sequence.

SLE guarantees that any committed execution is serializable. Thus, the lock variable

(i.e., LRi) is also part of the CSRi set for tracking any writes to it and detecting such conflicts. Th

is for serializability with respect to other threads. It is however not added to the CSWi set because

the write is never exposed to other threads in speculative mode. Since the two elided stor

silent, the architectural state prior to and after the execution remains the same.

TLR builds off SLE and use SLE to commit executions. Therefore, the correctness cons

tions for SLE also hold for TLR. The TLR proposal in this thesis is based on the wound-wait a

rithm by Rosenkrantz et al. [144] and they showed wound-wait to be deadlock-free.
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A.2  SLE and program order

This section revisits the above section and informally shows how program order is maint

with SLE. Figure A-1 shows the program order sequence for an instruction sequence. Block

and 4 constitute the atomic region we are interested in. 2a and 2b correspond to the first st

wish to elide. Note, the operation is conceptually split in two parts: 2a and 2b. We assum

implicit read before the store is elided to ensure temporal silence. The single processor pr

order shown is maintained. Block 1 precedes blocks 2, 3, and 4 in the figure. Thus, all oper

of 1 are assumed to have completed before 2, 3, and 4 are executed. Similarly, Blocks 2, 3,

are assumed to have completed before block 5 executes. Note, the notion of completion do

imply serialization in physical time but merely the appearance.

READ/WRITE
...

READ/WRITE

READ X

WRITE X

READ/WRITE...
READ/WRITE

READ/WRITE
...

READ/WRITE

WRITE X

READ/WRITE
...

READ/WRITE

READ X

WRITE X

READ/WRITE...
READ/WRITE

WRITE X

READ/WRITE
...

READ/WRITE

1

2a

2b

3

4

5

1

2a

2b

3

4

5

Figure A-1: Program order for memory operations from a single processor.Memory opera-
tions are shown. The dashed box including blocks 2a, 2b, 3 and 4 signifies the atomicity o
region The dotted box around 2a and 2b signifies conceptually a read/write operation on the
address X. One legal ordering is shown on the right side.
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In the program ordering shown, the atomic block comprising of 2, 3, and 4 is assumed to

semantics of a memory barrier in keeping with most atomic read-modify-write operations.

will be true for strong models such as sequential consistency and total store ordering. Howev

weaker models such as release consistency, the presence of fence operations is used to

ordering. Thus, an alternate ordering chain may be to relax even the block 1 to block 2 ord

unless the atomic block has a fence instruction in which case the ordering must be maintain
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