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Abstract

Non-blocking synchronization (NBS) has significant advantages over blocking synchronization: The

same code can run on uniprocessors, asynchronous handlers, and on shared memory multiproces-

sors. NBS is deadlock-free, aids fault-tolerance, eliminates interference between synchronization

and the scheduler, and can increase total system throughput.

These advantages are becoming even more important with the increased use of parallelism and

multiprocessors, and as the cost of a delay increases relative to processor speed.

This thesis demonstrates that non-blocking synchronization is practical as the sole co-ordination

mechanism in systems by showing that careful design and implementation of operating system soft-

ware makes implementing efficient non-blocking synchronization far easier, by demonstrating that

DCAS (Double-Compare-and-Swap) is the necessary and sufficient primitive for implement-

ing NBS, and by demonstrating that efficient hardware DCAS is practical for RISC processors.

This thesis presents non-blocking implementations of common data-structures sufficient to im-

plement an operating system kernel. These out-perform all non-blocking implementations of the

same data-structures and are comparable to spin-locks under no contention. They exploit properties

of well-designed systems and depend on DCAS.

I present an ������� non-blocking implementation of CAS � with extensions that support multi-

objects, a contention-reduction technique based on DCAS that is fault-tolerant and OS-independent

yet performs as well as the best previously published techniques, and two implementations of dy-

namic, software transactional memory (STM) that support multi-object updates, and have �������
overhead cost (for � writes in an update) in the absence of preemption.

Finally, I demonstrate that the proposed OS implementation of DCAS is inefficient, and present

a design of an efficient, hardware, DCAS implementation that is specific to the R4000 processor;

however, the observations that make implementation practical are generally applicable. In short,

the incremental costs of adding binary atomic synchronization primitives are very low, given that

designers have already implemented unary atomic synchronization primitives.
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A Note on Notation

Several code examples throughout the text (e.g. Figure 3.3 on page 45) include numbered anno-

tations. I refer to these in the text using the following convention: (a:b) refers to the annotation

numbered “b” in Figure “a”.

Several places in the code multiple variables are required to be stored inside a single word. I

use angle brackets to denote a single machine word (that is, a word that can be read and written in a

single processor operation and can be an operand of CAS). Thus, <a,b,c> denotes a single word

containing a, b, and c.
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Chapter 1

Introduction

Over the past 20 years, the ‘mutual exclusion phenomenon’ has emerged as one of the best

paradigms of the difficulties associated with parallel or distributed programming. It must

be stressed at the outset that the implementation of a mutual exclusion mechanism is a very

real task faced by every designer of operating systems.

— Gerard Roucairol, 1986

1.1 Coordination Among Cooperating Tasks

When many agents, whether human or machine, try to cooperate using shared objects, some form

of coordination or synchronization is necessary. Coordination increases the cost of using shared

objects. Therefore, we generally first try to design the system as a whole to reduce the sharing, and

thus lessen the coordination needed.

In well-designed systems sharing is minimized, but not eliminated. The infrequent sharing

arises from several causes. First, there are true dependencies between parts of the task: particles

in a parallel simulation depend not only on the past state of this particle but on the state of other,

independent, particles. Second, resource limitations may force sharing: multiple applications on

a single computer communicating over a network all share access to a limited number of network

interfaces. Third, some communication between otherwise independent sub-tasks may be necessary

for, say, load-sharing.

When the infrequent sharing does arise, some form of synchronization is needed to ensure cor-

rect behavior of the system.

The simplest form of coordination is to take turns when using shared objects — each agent gets

1
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sole possession of the shared object(s) for the time needed to finish a job. In computer systems, the

analogue of “taking turns” is called “mutual exclusion”. If one agent has control of a shared object,

it has exclusive access to that object. Other agents requiring access block or spin until the first agent

is finished with it. In this simple form of coordination, the method we use to synchronize access to

the object is mutual exclusion.

TELNETMailer

NTP

FTP

Network interface
output queue

Figure 1.1: Multiple processes concurrently accessing a single shared output queue

An alternative to mutual exclusion is non-blocking synchronization (NBS). Rather than taking

turns and waiting, NBS is based on the notion of giving back the shared object if it is part of an

operation that takes too long. A synchronization algorithm is non-blocking if we can guarantee

that even if some agent using the shared object stalls, fails, or even dies, some other agent can use

that object after a finite amount of time. Non-blocking synchronization is defined more formally in

Section 2.1.2.

Despite the many advantages non-blocking synchronization has over mutual exclusion (also re-

ferred to as blocking synchronization), NBS has been dismissed as impractical in general (although

occasionally useful in specialized circumstances). NBS has been dismissed because it is unfamiliar,

often complex to implement, and in many common cases has performance that is significantly worse

than equivalent blocking algorithms.

This thesis is the first to identify properties of systems and missing hardware needed to make

non-blocking synchronization generally practical. I demonstrate that by adding a modest amount

of hardware support and exploiting properties already present in well-designed systems, NBS is

practical and is a desirable alternative to mutual exclusion.
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1.1.1 Problems with Mutual Exclusion

In some situations . . . the user is assumed to be a superprogrammer who

delights in writing programs that explicitly deal with concurrency.

— Jim Gray, 1993

Mutual exclusion is attractive because it seems straightforward. However, care must be taken

to avoid unexpected effects caused by multiple agents trying to acquire exclusive access to shared

resources.

Deadlock Mutual-exclusion can cause the whole system to come to a halt if circular dependencies

exist. In such a case, every job is stalled waiting for another job to complete. Suppose job
���

acquires resource � and tries to acquire resource � , but task
���

already has acquired � .
���

must wait for
� �

to release � . If however,
� �

is holding � while waiting for resource � ,
� �

now has an indirect dependence on � , and will be unable to proceed until after (at least)
�	�

acquires � and releases � . If � is held by job
��


, which is in turn waiting for � , we have a

circular dependency, since
� �

cannot proceed to acquire � and (eventually) release � , until

� is released. This situation is called deadlock, or deadly embrace. Care must be taken to

either avoid or recover from deadlock.

X

P2

P3

Z

Y

P1

Waiting for

Owns

Resource

Process

Figure 1.2: Three processes deadlock because of circular dependencies while waiting for resources.

Silberschatz and Peterson[90] quote a colorful example of deadlock from the Kansas State

Legislature, early in the 1900s: “When two trains approach each other at a crossing, both

shall come to a full stop and neither shall start up again until the other has gone.”
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Long Delays Mutual-exclusion can cause all jobs to experience long delays when one job happens

to be delayed while being the exclusive owner of a shared resource. If
� �

acquires exclusive

ownership of � , then all waiters are delayed when
� �

takes a long time to complete its task.

If the delay is due to the length of an intrinsic part of the computation, then it is unavoidable.

We may have been able to reorder the owners, but eventually this time must be spent.

However, some long delays may be avoidable. If
� �

takes a page fault while owning � , and
� �

is waiting and ready to go, then
� �

may not have had to wait if it had acquired � before
���

. If the average computation while the lock is held is on the order of a hundred instructions

then this single page fault might dominate the execution time of many processes. Even worse

is the ultimate long delay: failure. If
� �

fails while holding the lock for � , no other processes

may ever proceed to work on � without some form of recovery. Recovery is not always

possible, and
� �

may now effectively share
� �

’s fate and be permanently stalled.

Priority Inversion Mutual-exclusion can cause lower priority jobs to take precedence over higher

priority jobs. Assume
���

,
� �

, and
� 


are, respectively, low, medium, and high priority tasks.

If
���

and
� 


share a resource, and agree to synchronize by mutual exclusion, then if
���

is

ever running while
� �

holds the resource,
� �

will take precedence over
� 


, subverting the

scheduler’s priorities.

Priority inversion[57] almost cost U.S. taxpayers $265 million[89] in 1997. The computer on

the Pathfinder mission to Mars reset itself several times due to priority inversion
�
, jeopardiz-

ing the success of the mission.

1.1.2 Problems with non-blocking synchronization

Non-blocking synchronization is attractive because it avoids the problems listed above. Despite

these attractions, however, it has not been widely deployed to date. There are three main impedi-

ments to its use.

Conceptual Complexity Non-blocking synchronization may require subtle or complex algorithms.

Very few data structures have obvious non-blocking implementations. To date, each non-

blocking algorithm has constituted a publishable result. The algorithms that do exist were

�

A detailed account is available in a well-publicized email summary by Mike Jones of a talk [101] given by David
Wilner, CEO of vxWorks (the company that provided the real-time system used on Pathfinder), and also in followup email
by Glenn Reeves [83], the JPL project leader for Pathfinder software.
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hard to design; once designed they are difficult to verify as correct; once the algorithms are

believed to be correct, implementations are difficult to debug.

Performance Non-blocking algorithms must guarantee that an object is always in a state where

progress can be made — even if the current process dies. NBS can incur extra cost to support

that guarantee. When special-purpose non-blocking implementations of data structures exist,

they can usually out-perform equivalent locking implementations since they combine the syn-

chronization with modifications to the data. Unfortunately, few such algorithms exist. Certain

needed data-structures (such as priority queues) have no known efficient implementations us-

ing only conventional NBS approaches and current hardware support (c.f. [100, 46]). Most

non-blocking data-structures must be derived through universal transformations. Universal

transformations are mechanical translation protocols that take as input a sequential specifi-

cation or algorithm and outputs a provably equivalent non-blocking concurrent algorithm.

They are defined and discussed in Section 2.7. Universal transformations are easy to write,

understand, and reason about (and, by definition, provide non-blocking implementations for

all data structures), yet their performance is poor compared to spin-locks in the (common)

absence of preemption.

Further, care must be taken when using non-blocking algorithms to avoid performance degra-

dation due to contention. Naive non-blocking algorithms do not prevent multiple processes

from simultaneously accessing a single data structure; such contention can degrade memory

system performance. Solutions exist to reduce contention[39, 2], but they add to the com-

plexity of the non-blocking algorithms.

Unfamiliarity Non-blocking synchronization is relatively new. Even when complexity and perfor-

mance are comparable to locking implementations, programmers are apt to be most comfort-

able with techniques they have had most experience with.

NBS is sufficiently similar to other synchronization techniques that many people assume that

they understand the goals, properties, and methods of non-blocking synchronization. Un-

fortunately, some people incorrectly carry over beliefs that are true of these other, similar,

techniques, but are not true when applied to NBS. These beliefs may deter people from using

NBS, or may raise expectations so that disappointment is inevitable. (Appendix A briefly

corrects several common misconceptions. Although the appendix does not present any new

results, reading it first may clarify the rest of the thesis.)
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In simple cases, locks are easy to use. Although non-blocking algorithms out-perform block-

ing algorithms in the presence of delays, the common case has no delays and spin-locks perform

well. Locks are a mature technology; although many problems exist, a well-known body of work

has addressed these problems. Therefore, locks have seemed more attractive than NBS to some

implementors.

1.1.3 Advantages of NBS over blocking synchronization

There is one fundamental problem that stands out from all those involved

in controlling parallelism: mutual exclusion.

— Michel Raynal, 1986

There is consensus on one feasible solution [to concurrency control] —

locking. (Though there are many other solutions, one is hard enough. . . . )

— Jim Gray, 1993

The fundamental advantage of non-blocking synchronization over blocking synchronization is

that NBS provides isolation between processes accessing a shared object. Using NBS, if process
� �

accesses a critical resource � ,
� �

can still proceed and operate on � , so no artificial dependence

exists between
� �

and
� �

. Blocking synchronization not only links processes accessing a shared

object, but introduces new dependencies, such as order (to avoid deadlock), and priority (to avoid

priority inversion).

Although in general, the costs of NBS have been high enough to outweigh the benefits, there are

systems in which the cost of NBS was comparable to the cost of blocking synchronization. When

the costs of non-blocking synchronization are comparable, NBS is clearly preferable to blocking

synchronization. For example, Massalin and Pu [62, 63, 64] designed the Synthesis Kernel to use

only NBS for synchronization. Similarly, we chose to use NBS exclusively in the design and imple-

mentation of the Cache Kernel [24] operating system kernel and supporting libraries. This prefer-

ence arises because non-blocking synchronization (NBS) has significant advantages over blocking

synchronization.

� First, NBS allows synchronized code to be executed anywhere. Non-blocking synchroniza-

tion allows synchronized code to be executed in an interrupt or (asynchronous) signal han-

dler without danger of deadlock. For instance, an asynchronous RPC handler (as described

in [103]) can directly store a string into a synchronized data structure such as a hash table

even though it may be interrupting another thread updating the same table. With locking, the
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signal handler could deadlock with this other thread.

� Second, non-blocking synchronization minimizes interference between process scheduling

and synchronization. For example, the highest priority process can access a synchronized

data structure without being delayed or blocked by a lower priority process. In contrast, with

blocking synchronization, a low priority process holding a lock can delay a higher priority

process, effectively defeating the process scheduling. Blocking synchronization can also

cause one process to be delayed by another lock-holding process that has encountered a page

fault or a cache miss. The delay here can be hundreds of thousands of cycles in the case of

a page fault. This type of interference is particularly unacceptable in an OS like the Cache

Kernel where real-time threads are supported and page faults (for non-real-time threads) are

handled at the library level. Non-blocking synchronization also minimizes the formation of

convoys which arise because several processes are queued up waiting while a single process

holding a lock gets delayed.

� Third, non-blocking synchronization aids fault-tolerance. It provides greater insulation from

failures such as fail-stop process(or)s failing or aborting and leaving inconsistent data struc-

tures. It allows processes to be killed with impunity — even with no cleanup. Non-blocking

techniques allow only a small window of inconsistency (the window during which a data

structure is in an inconsistent state), namely during the execution of atomic primitives them-

selves, such as compare-and-swap. In contrast, with lock-based synchronization the window

of inconsistency may span the entire locked critical section. These larger critical sections and

complex locking protocols also introduce the danger of deadlock or failure to release locks

on certain code paths.

� Fourth, non-blocking synchronization can reduce interrupt latencies. Systems that synchro-

nize using NBS can avoid disabling interrupts for long periods of time. Instead, interrupts can

proceed, and the currently running operation will retry. It is important to note that interrupts

are not required to preempt the currently running operation. (Indeed, work by Mogul and

Ramakrishnan [72] notes that under high load it is important to schedule interrupt handlers

to avoid receiver livelock). Rather, NBS gives the system the ability to decide on the high-

est priority task dynamically. In contrast, disabling interrupts unilaterally gives the current

operation priority over interrupts.

� Fifth, non-blocking synchronization supports system maintainability. Independently designed
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modules can be composed without knowledge of their internal synchronization details. In

contrast, consider two independently designed and implemented concurrent databases that use

locking for synchronization. It is difficult to remove a relation atomically from one database

and insert it into the other. If each operation manages its own locks, then the compound

operation isn’t atomic — an outside observer may observe the state of both systems before

the insertion completes. This compound operation must then be aware of the internal locking

strategies of both databases, in order to acquire all the locks before the deletion and hold

ownership over them until after the insertion completes. An even more serious problem arises

if the choice of internal locks is dependent upon the arguments passed to each database [82].

In such cases, the compound operation must mimic the internal behavior of each database to

determine which locks to acquire! Worse, more complicated compound operations may result

in deadlock.

� Finally, there are additional minor advantages. NBS aids portability: the same synchronized

code can run in uniprocessors, asynchronous handlers, and on shared memory multiproces-

sors. It may even enhance portability across operating systems — Ryan [85] cites synchro-

nization as the main impediment hampering portable device drivers (simultaneously synchro-

nizing with interrupt handlers as well as with concurrent processes, and understanding differ-

ent kernel interrupt levels). Non-blocking synchronization increases total system throughput

by allowing other processes to proceed even if a single process modifying a shared data struc-

ture is delayed. It allows synchronization even where mutual-exclusion is forbidden due to

the need to solve the confinement problem
�
.

These advantages are becoming even more important as we see an increase in the use of par-

allelism and multi-processors, an increase in real-time programming, increased use of signals and

class-libraries, and as the cost of a delay (e.g. page-fault, cache miss, or descheduling) increases

relative to processor speed.

It is clear that there is often some cost to NBS. Objects must be kept in a state where they

are always preemptible. One should expect to pay a higher cost (in time or space or conceptual

complexity) to guarantee stronger properties. This thesis demonstrates practical non-blocking al-

gorithms. That is, loosely speaking, algorithms in which the cost of implementation of a given

�

The confinement problem[55] requires a system to confine a program during its execution so that it cannot com-
municate with anyone except its caller. Mutual-exclusion on a shared resource provides a mechanism that readers can
modulate as a signal to establish a covert channel back to the writer, even if the information flow is unidirectional. In a
non-blocking algorithm with unidirectional information flow, readers have no way of signalling the writer.
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property is justified by the benefits obtained by possessing that property.

1.2 Results

This thesis demonstrates that non-blocking synchronization (NBS) is practical as the sole coordi-

nation mechanism in well-designed systems that provide the necessary underlying primitives. In

support of this claim:

� I show that careful design and implementation of operating system software for efficiency, re-

liability, and modularity makes implementing simple, efficient non-blocking synchronization

far easier.

� I demonstrate that DCAS (Double-Compare-and-Swap ) is the necessary and sufficient

primitive for implementing efficient non-blocking synchronization.

� I demonstrate that an efficient, hardware, DCAS implementation is practical for contemporary

RISC processors that already support single CAS (Compare-and-Swap ) functionality.

1.3 Original contributions of this thesis

In support of these results, this thesis presents several original contributions.

This thesis identifies properties of systems that can be exploited to make the writing of NBS

algorithms easier and more efficient. It is possible for any system to reap the benefits of NBS

without paying disproportionate costs, by ensuring that the system possesses these properties.

Using these properties and DCAS functionality


, I designed non-blocking implementations of

several common data-structures. These algorithms perform better than all previously published

non-blocking implementations of the same data-structure and perform comparably to spin-locks

even under no contention. They are simpler than previous algorithms because they are shorter, and

certain race conditions are impossible and need not be addressed. These algorithms include a set

of performance critical data structures sufficient to implement an operating system kernel. Some of

these critical data structures have no known efficient non-blocking implementation using only unary

CAS.

�

Both the Cache Kernel and Synthesis were implemented on systems that provided a hardware implementation of
Double-Compare-and-Swap (or DCAS), a 2 address generalization of Compare-and-Swap (or CAS). DCAS is
formally defined in Figure 1.3
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int DCAS(int *addr1, int *addr2,
int old1, int old2,
int new1, int new2)

{
<begin atomic>
if ((*addr1 == old1) && (*addr2 == old2)) {
*addr1 = new1; *addr2 = new2;
return(TRUE);

} else {
return(FALSE);

}
<end atomic>
}

Figure 1.3: Pseudo-code definition of DCAS (Double-Compare-and-Swap)

As further evidence that DCAS is the necessary and sufficient primitive for non-blocking syn-

chronization I present several algorithms for CAS � built out of DCAS: An ������� non-blocking ver-

sion, and an � ����� ��� �������	��
��� � � multi-object version. An ������� � wait-free version can be syn-

thesized from my non-blocking CAS � and conventional wait-free techniques such as proposed by

Moir [74]. (� is the number of processes actively contending for a data structure, 
 is the total size

of memory, and � is the average granularity of our unit of contention reduction.) Algorithms for

CAS � that use only unary CAS are at least ������������� � .
I present a contention-reduction technique based on DCAS that performs as well as the best

previously published techniques, yet, unlike those, also offers fault tolerance, OS independence,

and fairness.

I present two implementations of dynamic, software transactional memory that support multi-

object updates, and have � ��� � overhead cost (for � writes in an update) in the absence of preemp-

tion. The version using roll-forward (so-called “helper” functions) is strictly non-blocking. The

version using roll-back, however, is only “effectively non-blocking”: if every process is infinitely

preempted before completing, then progress is only “guaranteed” probabilistically. To limit the

probability of failing to make progress to a given probability
�

, the algorithm must retry ������� � �
times. These retries still allow a relatively efficient universal transformation from any synchroniza-

tion using locks to an equivalent lock-free version.

I present a design proposal for an efficient, hardware, DCAS implementation that is specific to

the R4000 processor; however, the observations that make implementation practical are generally

applicable. In short, the incremental costs of adding binary atomic synchronization primitives are
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very low, given that designers have already implemented unary atomic synchronization primitives.

Finally, I show that an OS-based implementation of DCAS using the technique of Bershad [17]

is not a practical alternative to hardware support for DCAS, mostly due to memory contention on

shared (global) locks.



Chapter 2

Related Work

This chapter describes significant related work in context, attempting to provide historical back-

ground to the contributions of this thesis. Here, I focus mostly on describing what other researchers

have done. Detailed comparisons between their work and mine are left to the individual chapters in

which the relevant contributions of this dissertation are presented.

2.1 Background and Definitions

Atomic operations are indivisible. That is, while an atomic operation is executing, no other opera-

tions may see any intermediate state of any objects touched by the atomic operation. This kind of

atomicity is referred to as “atomicity under parallelism”, or coordination atomicity. Atomic opera-

tions are either committed (completed successfully) or not committed (they may eventually commit,

or they may already have aborted or failed). If an atomic operation aborts or fails no intermediate

state may be left — it is as if the operation had never been attempted. This is known as “atomicity

under expected errors”, or failure atomicity.

2.1.1 Correct algorithms and consistent states

The results of applying primitive atomic operations to a shared object are, by definition, correct.

When concurrent compound operations are applied to a shared object, a useful system should also

ensure that the resulting state is “correct”. The following definitions show that we must be careful

to choose a definition of “correctness” that matches our intuition.

The most basic form of correctness is internal consistency. An object is in an internally in-

consistent state � if there is a legal operation whose result, when the operation is applied to � , is

12
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undefined.

We are usually concerned with an even stronger level of consistency. More interesting con-

ditions of correctness are usually defined with respect to results of equivalent operations applied

sequentially to an unshared version of the object. Assume object � starts in some known state ��� .
Assume that a sequence � of � operations, ��� ���
	 ������ , are applied (possibly concurrently) to � .

The final state, ��� , of � is consistent w.r.t. � if ��� corresponds to the state � would be in if some

permutation of � were applied to � (starting from state ��� ) sequentially. That is, the result must

be equivalent to some result of applying these same operations (in any order) when none of them

overlap. If no operations overlap, then each operation only sees the results of previous operations

— not intermediate states. This isolation is a prerequisite to considering the compound operations

atomic. The sequential permutation of the � � ’s is the validating sequence, and this sequence, � , is

serializable.

If an algorithm ensures that every legal sequence of operations is serializable, then the algorithm

is serializable. Note that serializibility does not require that there be any correspondence between

the order of the concurrent operations, ��� , and their permuted order in the validating sequence.

Thus, serializable algorithms still may produce surprising results when we try to reason about them.

They might not correspond to our intuitive notion of correct behavior.

A slightly stronger consistency requirement is sequential consistency. Sequential consistency

imposes restrictions on the set of permutations acceptable as a validating sequence. The relative

order of ��� � (the set of � � that were invoked on processor
�

), for each processor, must be identical

to the order of the ��� in the validating sequence, but the relative order of operations on different

processors is unconstrained.

An even stronger consistency requirement is linearizability. Loosely speaking, linearizability

restricts the operations in the validation sequence to be in the same order (for non-overlapping op-

erations) as the real-time order of non-overlapping concurrent operations. (No restrictions are made

on the order of overlapping operations.) More precise treatments of linearizability are available in

[44] which defined the notion, and in “Distributed Computing”, by Attiya and Welch[13], pages

196–200. An alternate (but equivalent) formulation of linearizability is that each operation appears

to take effect instantaneously at a particular point between the operation’s invokation and response.

This point is called the point of linearization.

The distinctions between these consistency requirements are more apparent in a concrete exam-

ple. Consider a variable � , with an initial value of 20. Two processors simultaneously execute the

following operations:
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Timestep Processor 1 Processor 2

Operation Implementation Operation Implementation

0.0 � 	 � � ��� lw r0, x � 	 � ��� � lw r0, x

0.1 addi r0, 1 addi r0, 2

0.2 sw r0, x sw r0, x

1.0 � 	 � � � � lw r0, x � 	 � ����� lw r0, x

1.1 divi r0, 2 divi r0, 3

1.2 sw r0, x sw r0, x

Intuitively, the result should be 23/6. The additions should execute before the divisions. The

order of the additions is indeterminate, but addition is commutative, so we would expect � to go

from 20 to 23 and then to 23/6 (division is also commutative). In keeping with our intuition the only

result of these operations that satisfies linearizability is 23/6.

Sequential consistency relaxes the consistency requirement between processors. Under sequen-

tial consistency, the result of applying both operations of Processor 1 (yielding 21/2), before Pro-

cessor 2 even starts is acceptable. 21/2 + 2 = 25/2. 25/2 divided by 3 = 25/6. If Processor 1 executes

before Processor 2 (or vice versa) the result is 25/6. Therefore there are two sequentially consistent

results: 23/6 and 25/6.

Serializability relaxes the consistency requirements even further, as no order is imposed upon the

validation sequence. Therefore, any permutation of the 4 operations is consistent with serializability.

There are 13 distinct valid results under serializability: any multiple of 1/6 (except �
�
	 ) between ��
	

and �
�
 are consistent under serializability.

Finally, there are internally consistent results which are inconsistent under all definitions of

correctness. Assume the steps in the “Implementation” column are atomic, but the operations them-

selves are not, and so implementation steps of different operations may be interleaved. Consider

the case when both Processor 1 and Processor 2 complete all steps in the implementations through

timestep 1.1 and both are ready to execute 1.2. � contains 23, Processor 1’s r0 contains 23/2,

and Processor 2’s r0 contains 23/3. If Processor 2 executes 1.2 after Processor 1 does, then �
will contain 23/3, which is larger than any serializable result. � 	 � � ��� (or 23/2) will not raise

any errors under normal arithmetic operations, but it is not consistent with any validating sequence

starting with � 	 ��
and consisting of the 4 specified operations. Some form of synchronization is

needed to ensure that � always takes on values consistent with the specified operations under some

definition of correctness.
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2.1.2 Non-blocking synchronization: Definitions

A synchronization algorithm is interference-free if it does not contain any sections of code where

we grant exclusive access to one owner. Formally, an algorithm is interference-free over an object

(or component of an object), � , if we guarantee that at least one process may legally modify � after

waiting a finite time. Intuitively, this means that even if some process stalls or fails while logically

owning an object, other processes can eventually proceed to operate on that object.

However, one can imagine pathological failure cases for interference-free algorithms. Assume

that every time process
� �

performs some operation on � , process
� �

preempts
���

, undoes its work

and starts some of its own.
� �

will never make progress. Further assume that some other process,
� 


, similarly preempts
� �

, and so on up to some process
���

which is always preempted by
� �

,

creating a cycle. Such a system will be interference-free, and will do a lot of (useless) work, but

each process will undo the work of the previous (preempted) process, and nothing useful will ever

get accomplished.

We can describe a stronger property than interference freedom by incorporating some guarantee

that the modifications allowed by interference freedom are actually useful ones. An algorithm is

non-blocking (sometimes called lock-free) if it guarantees that at least one process can complete

a task, or make progress, within a finite time. Intuitively, “making progress” means performing

some useful work that will never be undone. The precise definition of progress is dependent on the

sequential specification of each particular object. For a simple banking example the legal operations

are Deposit and Withdrawl. Progress consists of a completed deposit or withdrawl with balance

updated. For a max object, for example, which recorded the largest argument passed to record

since the last call to reset, many processes can concurrently make progress since record(N)

can immediately return if max is already larger than � .

Finally, a non-blocking algorithm is wait-free if we guarantee that every process makes progress

within some finite time. Wait-freedom encapsulates a weak notion of fairness as well as progress.

We say that wait-freedom only weakly supports fairness, since it only guarantees that starvation

is impossible, it does not guarantee any notion of “fair share”. Non-blocking algorithms can use

exponential backoff to avoid starvation with high probability. Wait-freedom provides a deterministic

guarantee that starvation will be avoided. This guarantee comes at a cost. Herlihy [39] notes that

as a practical matter “the probabilistic guarantee against starvation provided by exponential backoff

appears preferable to the deterministic guarantee provided by [wait-freedom]”.

Similarly, in practice, algorithms obeying the strict definition of non-blocking (let alone wait-

free) are not always necessary — or rather the cost to obtain strictly non-blocking algorithms might
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class max {
int maxValue_; /* Largest value seen to date */
int initialized_ = 0; /* Have we seen *any* values yet? */

public:
max();

void reset(); /* clears state of object */
void record(int datum); /* records new data point */
int value(); /* Returns largest value seen

* since reset(); */
}

void max::record(int datum)
{

while (TRUE) {
int lastMax = maxValue_;
if (lastMax >= datum) { return(); }
else { CAS(&maxValue_,lastMax,datum); }

}
}

Figure 2.1: Specification of a max object, and implementation of record function.

not be justifiable. Slightly weaker properties are sufficient, and the overall behavior might be better.

It is useful to capture the notion that an algorithm is strictly non-blocking in all the interesting cases

(c.f. “swap-tolerant”
�

algorithms mentioned in [87]), or, alternatively, is non-blocking with very

high probability (for example the algorithm is non-blocking with probability 1). Unfortunately,

it is unrealistic to assume that the failure case (“bad luck”) occurs with low probability. Hard

won experience with systems has shown that some bad luck can pathologically recur. Instead of

simply assuming that failure cases have low probability, we consider an interference-free algorithm

to be effectively non-blocking if the algorithm is robust enough to still make progress with high

probability in spite of a pathologically recurring failure case (say, infinite preemptions). In terms

of the examples above, an algorithm is effectively non-blocking if it is both, say, swap-tolerant and

non-blocking with probability 1.

We can define this notion of “effectively non-blocking” a little more formally. Given a model,

an adversary, and a set of “pathological failures”, we define the probability that an algorithm fails

to make progress in time
�

as STALL � � � . (Hence STALL � � � is non-increasing as
�����

.)

First, we consider the algorithm under a slightly weakened adversary: we assume an adversary

�

“Swap-tolerant” algorithms (analogous to fault-tolerant) are algorithms that are tolerant (i.e. are non-blocking) in the
face of a finite number of process swaps and long delays, but are not tolerant of failures.
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with all the strengths of the original, but that can only cause a finite sequence of transactions to

pathologically fail. We consider only algorithms that are strictly non-blocking against this slightly

weakened adversary.

For such algorithms, we next examine the given model and the original stronger adversary. If
���

STALL � � � is � ��� � or better, even assuming an infinite sequence of pathological failures, then

the algorithm is effectively non-blocking under that model, adversary, and definition of pathological

failure.

An example may motivate the notions of “pathological failure” and “effectively non-blocking

algorithms” more clearly. Consider an algorithm which is strictly non-blocking in the absence of

preemption, but may not make progress if a second process runs while the first is preempted. If the

string of preemptions is finite, then a non-preempted run will occur, and progress is guaranteed. If

there is a run during which no second process is available to run, then preemption is harmless, and,

again, progress is guaranteed. We might be tempted to say that because preemption is rare one of

these two cases will eventually occur, and the algorithm in question will progress. This is realistic,

and corresponds to the definition of the weakened adversary.

However, although the weakened adversary is realistic, we must consider that a parallel algo-

rithm may deterministically take a page fault near the start of every execution. In this example we

can make the algorithm effectively non-blocking by adding exponential backoff. Recall that an ef-

fectively non-blocking algorithm guarantees that even in the face of such pathological failure the

algorithm will make progress with probability 1.

Exponential backoff guarantees progress with probability 1, because after some point, no new

processes are added to the set of actively contending processes (the number of processes is bounded).

Doubling the waiting interval roughly halves the probability that any single process will wake up

to make an attempt during the time the “owning” transaction is preempted — even assuming every

process is preemted.

Of course, simply adding exponential backoff to an algorithm is not enough to make if effec-

tively non-blocking — unless the original algorithm was strictly non-blocking under the restricted

adversary.

There is a minimal cost necessary to implement any of the properties mentioned in this section,

from non-interference to wait-freedom. Each object, � , must always be preemptible. That is, we

know it is necessary that some other process may proceed should the currently executing process

fail. Therefore, we know that there is enough data stored outside the current process (i.e. accessible

in memory from � , and not explicitly in the registers or stack, or even implicitly in the PC, of any
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particular process) to transform � into a consistent state such that another process may operate upon

it.

2.2 Universality: are non-blocking objects always implementable?

An object is universal if it can be used as a building block to provide a wait-free implementation of

any other object.

Herlihy [38] showed the connection between universality and the consensus problem [79, 30].

He proved that any object with consensus number � is universal (in the sense that it can be used to

build a wait-free implementation of any object) in a system of at most � processors. Objects with

infinite consensus numbers are universal in all systems.

Herlihy [38] further demonstrated that if one assumed unbounded memory, then Compare-

-and-Swap (CAS) and the pair Load-linked/Store-Conditional (LL/SC) are both uni-

versal, and thus, that it is possible to implement non-blocking or wait-free algorithms for every data-

-structure given machines with either of those primitives. Plotkin [80] proved that an object called

a sticky bit was universal even with bounded memory. A sticky bit is an object that can take on one

of three values:
� �  � or � . If multiple processes try to write the value of a sticky bit concurrently,

only one of them succeeds. The sticky bit returns “failure” if the process was trying to write a value

that disagrees with the value already written in the sticky bit, otherwise it returns success. Plotkin’s

result is important, since it shows that even a fixed width CAS (as long as it can hold at least three

values) has infinite consensus number, and is universal in all systems.

Given that universal synchronization primitives exist on a particular platform, every data-struc-

ture can be implemented in a non-blocking or wait-free manner.

int CAS(T *location, T oldValue, T newValue)
{
<begin atomic>
if (*location == oldValue) {
*location = newValue;
return(TRUE);

} else {
return(FALSE);

}
<end atomic>
}

Figure 2.2: Pseudo-code definition of CAS (Compare-and-Swap)



2.3. IMPLEMENTING UNIVERSAL PRIMITIVES 19

CAS was introduced in the IBM 370 architecture [45], and LL/SC was introduced on the S-

1 [51]. In recent years hardware designers have provided at least one universal primitive on almost

all processor architectures, usually either CAS or LL/SC. (CAS is defined in Figure 2.2. The instruc-

tion pair Load-linked/Store-Conditional(LL/SC) is defined at the start of Chapter 5.)

LL/SC is available on MIPS [36], ALPHA [92], and PowerPC [76] processors, among others.

Pentium, SPARC [96] (as of v9), and others, support CAS directly.

2.3 Implementing Universal Primitives

Prior to Herlihy’s work, very few modern processors supported any universal synchronization prim-

itives. The RISC revolution strove for minimal instruction sets [37], and atomic test-and-set

was sufficient to implement locks. RISC designers eschewed the CAS and LL/SC instructions in

favor of the simpler, but non-universal, primitives.

Bershad proposed a relatively efficient software mechanism for implementing such missing

simple primitives [16] on multiprocessors. It extended earlier work by Bershad et al. [18] on

restartable atomic sequences, which only implemented atomic sequences on uniprocessors.

Both [18] and [16] are based on the observation that the operating system is aware of any “long

delay” that may happen to a process. The OS can then restart an atomic action that experiences a

delay before the operation completes. In the multiprocessor case, the sequence is protected by a

lock. Waiting processors spin on the lock before performing the operation. The lock-hold time is

bounded, because the critical section is short and the OS releases the lock if the process is delayed.

The operation is atomic with respect to processes on the same processor since the OS will restart

the sequence if preempted. The operation is atomic with respect to processes on other processors

because it is protected by a lock. Thus, despite the lack of hardware implementation of universal

non-blocking primitives on most processors, work could go forward using the technique of Bershad.

Despite the current ubiquity of universal primitives, Bershad’s work is still important to this the-

sis because I propose a hardware implementation of DCAS. Bershad’s software techniques provide

an alternative to my hardware proposal. I discuss his technique in detail in Section 5.5.
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2.4 Other Non-blocking primitives

Several proposals for adding hardware support for richer non-blocking synchronization primitives

exist. They fall into two camps: the minimalist approach and the maximalist approach. The min-

imalists propose modest extensions to existing universal primitives that can be used to implement

non-blocking transactions using software protocols. The maximalists propose systems which would

completely support non-blocking transactions in hardware.

Why is there a need for richer primitives if LL/SC and CAS are universal? Based on work by

Attiya and Dagan [12], software implementations would not necessarily scale. Attiya and Dagan

prove that an ����� � binary LL/SC cannot be implemented using only CAS or LL/SC. They show

that the maximal independence set problem
�

has an ����� � solution assuming an � ��� � binary univer-

sal primitive (e.g. binary LL/SC or DCAS), and depend upon a proof by Linial [60] that the lower

bound for a solution using only unary CAS or LL/SC must be sensitive to the number of processes

in the system. Thus, no � ��� � implementation of binary operators out of unary primitives exist,

and therefore software support for higher arity primitives based only on hardware single CAS has

potential scalability problems.

2.4.1 Minor modifications to CAS and LL/SC

Most processors provide at most single Compare-and-Swap (CAS) functionality to support non-

blocking synchronization. Many processors provide a double width version of CAS— such instruc-

tions do not support two independent words, they merely allow CAS (or LL/SC) to operate on wider

words (e.g. 64 bits).

A few older processors provided an independent multi-word atomic instruction. The IBM

370 architecture supported an extension to CAS — an instruction called CDS (Compare and

Double Swap). CDS atomically stores new1 in *addr1 and new2 in *addr2 if-and-only-if

addr1 contains old. Motorola supported full Double-Compare-and-Swap functionality

with the CAS2 [75] instruction in the 680x0 family of microprocessors. (DCAS is described in

Figure 1.3 on page 10)

Both CDS and CAS2 are complex, expensive, instructions. Equivalent functionality is not yet

present in any modern RISC processor.

Anderson et al. [6] proposes Conditional-Compare-and-Swap (CCAS, see Figure 2.3).

�

The maximal independence set problem is defined on a ring of processors. A solution returns a maximum sized
subset of the processors such that every processor in that subset has no neighbors in the set.
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boolean CCAS(Word *addr1, Word *addr2,
Word oldval1, Word oldval2,
Word newval)

{
boolean retval = FALSE;
<begin atomic>
if ((*addr1 == oldval1) &&

(*addr2 == oldval2)) {
*addr1 = newval;
retval = TRUE;

}
<end atomic>
return(retval);

}

Figure 2.3: Pseudo-code definition of CCAS

boolean C-Lock(Word *addr1, Word oldval,
Word *addr2, Word newval);

{
boolean retval = FALSE;
<begin atomic>
if (*addr1 == oldval) {
*addr2 = newval;
retval = TRUE;

}
<end atomic>
return(retval);

}

Figure 2.4: Pseudo-code definition of
C-Lock

James [48] proposes Conditional Lock (C-Lock, see Figure 2.4). These each modify one

location, but need to deal with two addresses. CCAS differs from CAS in that it atomically checks

two locations before performing the single write. Like CAS, C-Lock checks only one location,

but unlike CAS, it writes a different location if the checked location is unchanged. Both CCAS and

C-Lock are motivated by the desire to better support universal constructions; they do not neces-

sarily improve direct implementations of specific data structures. CCAS is useful in hard real-time

environments where, if certain conditions are met, CCAS can be implemented in software. C-Lock

is a weaker version of DCAS, designed to avoid the complexity introduced by implementing starva-

tion avoidance in hardware.

2.4.2 Richer variants of real hardware primitives

Many non-blocking algorithms (e.g. [47, 87]) assume systems that support richer primitives than

the hardware allows. In some cases software implementations support the extended primitives.

A common “unrealistic” assumption is support for an arbitrary number of outstanding, overlap-

ping, LL/SC pairs. Real implementations of LL/SC support at most one LL/SC at a time on each

processor. Moir [73] showed that the richer version of LL/SC can be constructed on any system

that supports either LL/SC or CAS. This implementation is achieved by storing a version number

in every location (thus all memory locations contain both data and a version number). On systems

that support double-width CAS or LL/SC two words of memory are used to represent each word of

data. On systems that support only single width CAS, version numbers use fewer bits and full width

data cannot be stored atomically in a single word. Every LL returns both the data and the version

number. SC is implemented as an LL that verifies the version number or aborts, followed by an SC
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that stores both the requested data and increments the version number. These extended LL/SC pairs

do not immediately support CAS � in general, or DCAS in particular (even overlapping LL/SCs can-

not guarantee that a first LL will only succeed if the second will be successful). However, several

algorithms implementing CAS � from the extended LL/SC exist (e.g. [47, 74]).

Similarly, some researchers assume CAS and LL/SC can operate on words of arbitrary width

(e.g. [47]). Anderson and Moir [3] showed that single-word CAS or LL/SC are sufficient to im-

plement relatively efficient ( � ��� � worst-case time for a � -word variable) atomic operations on

arbitrarily wide words.

Both of these software implementations require a substantial amount of space per word (ranging

from � �������	� � bits per word, to � � � � bits per word, where � is the number of processes actively

contending at a given moment and
�

is the maximum number of processes in the system).

2.4.3 Hardware Transactional Memory

2.4.3.1 Transactional Memory

Herlihy and Moss’ Transactional Memory [43] proposes hardware support for multiple-address

atomic memory operations. It supports arbitrary read-modify-write operations with arity limited

only by the size of a processor’s cache.

The basic insight behind Transactional Memory is the observation that the ownership protocol

already required to keep caches coherent is sufficient to detect transaction conflicts. By piggyback-

ing the transactional protocol on top of the cache line ownership protocol, atomic transactions can

be supported with no extra bus traffic. Commit and abort then become purely local operations.

Implementation of Transactional Memory requires significant enhancements to the processor

and cache. Transactional memory requires six new instructions and a second primary cache. This

transactional cache is fully associative, and contains space to buffer two copies (the original and

modified values) of each cache-line.

Within a transaction, transactional loads and stores are treated normally, except that stores are

contingent upon commit. Until then, new values are written to the “modified” field of the line in

the transactional cache. Commit simply verifies that the processor still owns all the cache lines

read or written in this transaction. If so, it copies the modified values out of the transactional cache

to regular memory. Otherwise it aborts, clearing the transactional cache.

Attempting to acquire ownership of a cache line already owned by another transaction results in

an abort. (Such attempts normally happen in the course of a store.) Slow/delayed transactions are
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aborted, locally, by timer interrupts or quantum expirations. Thus, only undelayed transactions that

conflict with no one are able to commit. The commit operation executes atomically with respect

to interrupts, so once a slow transaction begins the commit operation, it can safely proceed, and

commit is guaranteed to complete successfully.

Herlihy and Moss simulated a transactional memory implementation and reported results that

out-performed locking implementations for all data structures they tested under all circumstances.

2.4.3.2 Oklahoma update

Stone et al. [93] independently proposed the Oklahoma Update, which exploits the existing own-

ership protocol in cache coherency protocols in a fashion similar to Transactional Memory. The

Oklahoma Update adds a set of special reservation registers to the processor. Each special reserva-

tion register consists of 5 fields: address, data, valid, write-privilege, and updated.

Transactional loads behave like normal loads; in addition, they also locally update a specified

reservation register. Transactional stores are purely local; they only update the reservation register

and do not affect the cache or memory. At commit time, the Oklahoma Update goes through two

phases (patterned after two-phase locking protocols). The precommit phase sorts the addresses in

ascending order, checks to make sure they are all valid, and tries to acquire write privileges for any

reservation that does not yet have write privilege. (Acquiring exclusive access in ascending order

avoids the possibility of deadlock.) If any reservation is invalid (uninitialized, or this processor was

informed by the normal cache coherence protocol that some other processor changed the value), or

if write-privilege was not granted, then commit fails. On success, the commit phase atomically

updates all modified shared variables by copying the data field into the primary cache. On failure,

the modified variables are reset and the operation must be retried to complete. During commit all

external ownership requests are deferred. During precommit phase, all external ownership requests

for addresses lower than the currently active address are deferred until after commit.

Stone et al. do not deal with loss of cache ownership resulting from a cache line being evicted

due to conflict misses and does not report any (simulated) performance figures. The Oklahoma

Update does not guarantee consistency between operations that share sets of read-only locations;

the burden is on the programmer to make sure that overlapping transactions always share one written

location. On the other hand, the hardware cost in terms of instructions and cache space is lower than

Transactional Memory.

The complexity of both Transactional Memory and Oklahoma Update is significant, and to date,

neither has been considered for real implementation, due to their cost and complexity. The cost is
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not just due to attempting to support atomic operations over many locations, but also because of

the structure of their solutions. Transactional Memory requires a second, fully associative, primary

cache, and adds several new instructions. Oklahoma Update adds only a moderate number of new

instructions, but sorts addresses and implements exponential backoff in hardware, and does not

isolate the performance of transactions from each other due to the deferred ownership requests

during the commit phase.

2.4.4 Constructions of higher arity operators out of Universal Primitives: CAS �

Israeli and Rappaport [47] demonstrate a non-blocking implementation of CAS � ( � -way atomic

Compare-and-Swap) and � -way LL/SC for
�

processors out of single LL/SC. They augment

each word of memory with 2 fields: value and proc. value holds the current value of the word.

proc specifies whether the word is currently involved in any CAS � operation. Each process records

its operation in a
�

element table (
�

is an upper bound on the number of processes in the system).

CAS � proceeds in 2 passes. First, each location (in ascending order) is checked to see whether

it contains the required old value. If so, and if the CAS � hasn’t been aborted, and if the location

is not yet locked by another CAS � , then the location is locked by this process. If the location is

already locked by another CAS � , the current process helps the other owner finish, thereby freeing

this location for other CAS � s. This two-phase locking approach is the basis for almost all other

CAS � implementations.

The CAS � implemented by Israeli et al.[47] was the first disjoint-access parallel implementa-

tion. Disjoint-access parallel implementations allow two or more transactions to proceed in parallel,

without interference, if they access disjoint sets of addresses. Their CAS � was not wait-free, how-

ever, and had worst-case time complexity � ��� �


� , required at least an extra

�
bits for every word

in memory, and required overlapping LL/SC pairs that operated atomically on words
�

bits wide.

Anderson and Moir [4] improved upon the helping mechanism of [47] to implement a wait-free

CAS � , rather than merely non-blocking. They require only realistic sized words, and impose no

worst-case performance penalty for the wait-free property — the � ��� �


� worst-case time is still

the same. Unfortunately, they also still require a prohibitively large amount of space.

Shavit and Touitou[87] demonstrated that the recursive helping used to free locations locked

by competing transactions incurred a large overhead in practice. They enhanced performance by

only performing non-redundant helping. In such a scheme a transaction
�

helps only enough other

transactions that a subsequent attempt at
�

would succeed. If the transaction finds it needs to

recursively help, it aborts the transaction instead.
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Finally Moir [74] proposed a more efficient non-blocking version of CAS � based on his earlier

wait-free implementation in [4]. The efficiency gains are realized by relaxing the wait-free prop-

erty (observing that wait-free algorithms can be constructed out of primitives that are merely non-

blocking), by incorporating the non-redundant helping of [87], and by introducing optimizations

such as allowing failing CAS � s to abort early. The most significant gains were made by relaxing the

wait-free property — this removed an � � � � loop from every read. The Moir MWCAS still requires

extra space per word in the shared memory, however.

All of the implementations of CAS � exhibit ingenuity (or complexity, depending upon your

point of view) and high space overhead. Only Moir’s has worst-case time better than � ��� � � .

2.5 Non-blocking algorithms/Data-Structures

The most effective use of non-blocking synchronization has been the direct implementation of data-

-structure-specific algorithms. Michael and Scott [69] reviewed a number of such implementations

for several common data structures. They concluded that where direct non-blocking implementa-

tions exist, they generally out-perform locking implementations in all cases. Locking implemen-

tations out-perform universal non-blocking constructions when processes do not experience long

delays such as page-faults, context switches, or failures. Universal constructions out-perform locks

in the presence of long delays and, of course, the non-blocking constructions enjoy the advantages

not related to performance, such as fault tolerance and freedom from deadlock.

Many specific non-blocking algorithms have been published. I concentrate on a representative

sample.

2.5.1 Stacks and Queues

Treiber [84] proposed a straightforward, non-blocking, linked-list implementation of LIFO stacks. It

performs as well or better than all published list-based stack implementations. There is a description

of the algorithm in Section D.2.1, and a detailed discussion of its performance in Section 4.6.3. The

stack top pointer is double-width and includes a version number to avoid race conditions in the pop

operation. Every modification of top also atomically increments the version number. (Chesson [28]

designed an optimized version of list-based stacks that function correctly with no version numbers,

assuming that a single reader (Pop) exists.)

As part of the Synthesis Kernel [64], Massalin et al. also implemented non-blocking stacks

— the more powerful CAS2 instruction is capable of supporting non-blocking array-based stacks.
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Push(elem)
{
retry:

old_SP = SP;
new_SP = old_SP-1;
old_val = *new_SP;
if (CAS2(old_SP,old_val,

new_SP,elem,
&SP, new_SP)

== FAIL)
{ goto retry; }

}

entry *Pop()
{
retry:
old_SP = SP;
new_SP = old_SP+1;
elem = *old_SP;
if (CAS(old_SP,new_SP,&SP)

== FAIL)
{ goto retry; }

return(elem);
}

Figure 2.5: Implementation of a LIFO stack used in Synthesis.

Synthesis’ array-based stacks were implemented using the code in Figure 2.5.

Synthesis used CAS2 for Push, but tried to be clever and use only unary CAS for Pop (CAS is

measurably cheaper than CAS2). Unfortunately, there is a race condition in the Synthesis code.

Consider a process performing a Pop. If the process goes blocked after reading elem from

*old SP, but before performing the CAS in Pop, and another process performs
�
Pops followed

by
�
Pushs, then the wrong elem will be returned when the original Pop resumes. elem will be

returned twice, and the current value of *old SP will never be returned. (If there is only a single

distinguished process that always does the Pops, then this race condition cannot occur).

This problem is not insurmountable. I present a new, correct, implementation in Section D.2.2,

using DCAS for both Push and Pop.

Michael and Scott [70] present an implementation of a list-based FIFO queue. Their approach

uses a double-width CAS (not DCAS) to include a version number in each pointer. They relax the

requirement that the tail pointer in the structure always point to the last element of the queue, but

require all routines to update tail before using it.

This implementation is non-blocking, allows enqueues and dequeues to proceed concurrently,

and out-performs all locking and non-blocking FIFO queue implementations in the literature. (My

DCAS based algorithm in Section D.2.3 moderately outperforms it, though, by avoiding the use of

version numbers and by avoiding the need to repair the tail pointer.)

Chesson [28] and Muir [77] independently came up with a slightly different algorithm. They

avoid version numbers, but are vulnerable to process failure at a critical juncture. The result is an al-

gorithm that performs comparably to Michael and Scott, but is not fault-tolerant. Massalin et al. [63]

use DCAS to implement array-based circular FIFO queues, avoiding allocation costs. They present
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4 algorithms, optimized for (1) single producer/single consumer, (2) single producer/multiple con-

sumers, (3) multiple producers/single consumer, (4) fully general queues.

2.5.2 List-based priority queues

Priority queues are critical data structures for operating systems and many applications. Prior to

our work on the Cache Kernel [34], no fully general, efficient, non-blocking priority queue was

available.

One sequential implementation of a priority queue is a sorted linked list. However, non-blocking

deletion of nodes in the interior of the list is problematic. Assume we want to delete node � � , whose

predecessor is � � . Deletion must set � � � next to point to � � � next. However, there is always

the possibility that � � will itself be deleted from the list. Herlihy[41] proposed a general technique

for dealing with such problems. Reference counts are kept for each pointer referencing an entry in

a list. Any attempt at deletion of an object with a non-zero reference count results in failure, and the

deletion must be retried. (The reference count and pointer can be updated by DCAS).

Massalin and Pu [64] used CAS2 to implement link-based priority run queues in Synthesis. To

avoid the overhead of managing reference counts, they simply marked nodes for deletion but left

them in the list. Subsequent passes only delete marked nodes if they are safe. A node is safe if it is

not marked for deletion, and it is reachable from the head of the list. Deletion at the head is trivially

safe. Deletion in the middle is safe if the deleter is holding an unmarked node and pointing to a

marked node. However, we need some guarantee that the unmarked node will not be deleted during

the operation (after you decide to delete but before you delete the next node). Herlihy’s reference

count is one method of ensuring the safety of the node, but is expensive. Massalin exploited a

property of Synthesis run queues — namely that only one thread can visit a node at a given time. In

such a system, a single binary marker is sufficient (it is also simpler than a counter, since it need not

be read before update — it must be unmarked to allow entrance). A marked node is busy, and the

traverser simply skips over it. Once you ensure the safety of a node, you can delete using CAS2 by

making sure that the next pointers of both the safe predecessor and the deleted node do not change

during the operation.

The reference count approach is inefficient, since it requires CAS or DCAS for each element in

the list. The Massalin and Pu optimization is useful but still expensive, and is only applicable in

limited cases, such as the scheduler’s run queues in Synthesis.

Valois [100] designed another implementation of a list-based non-blocking priority queue. He

used only CAS(arguing that DCAS was not generally available), and supported concurrent updates
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(both deletions and insertions). In contrast, Herlihy’s general technique only allows one operation

to succeed at a time.

Valois required every “normal” entry in the list to be flanked by auxiliary nodes consisting only

of a next pointer (they contained no value). Insertions insert both a normal node and an auxiliary

node, between an auxiliary node and a normal node, maintaining this invariant. Note that adjacent

pairs, or even chains, of auxiliary nodes are permitted. Deletion occurs in two steps. First, the

normal node is deleted. Second, chains of consecutive auxiliary nodes are trimmed to single nodes.

The auxiliary nodes are required for correct behavior using only CAS. All operations on the list

are performed using a cursor. The cursor contains three pointers. pre aux points at the preceding

auxiliary node. pre cell points at a preceding “normal” node. target points at the node of

interest. (Reference counts to each of these nodes are incremented before installing these pointers

into the cursor. Reference counts to a node, � , are also incremented if any other node has a pointer

to � ). If the state of any of these three nodes changes, an operation is aborted and retried. If the

state has not changed, then no conflict occurred. Auxiliary nodes with non-zero reference counts

are never deleted — therefore, transitively, no auxiliary nodes later in the list can be deleted either.

Normal nodes that are deleted contain back-pointers to the pre cell, guaranteeing that a chain

can be followed to a valid node inside the list (perhaps all the way to the head). Once pointing to

a node in the list, next pointers can be followed to find a currently valid predecessor to any other

node still in the list.

Unfortunately, this algorithm is very expensive. Further, a process experiencing a long delay or

failure can cause memory to grow without bound (since no auxiliary nodes can be deleted once an

auxiliary node has a non-zero reference count). Even worse, these auxiliary nodes remain in the list,

causing the cost of list traversal to increase as time goes by. Finally, the algorithm is very complex.

The published work has typos, and later researchers [68] discovered race conditions. The algorithm

is hard to describe and understand.

2.5.3 Other data-structures

Non-blocking implementations of sets [58] and wait-free implementations of Union-Find [8] have

been known for some time. More recently, Shavit [88] published a non-blocking algorithm for a

diffracting tree (an algorithm for a concurrent counter), and a wait-free implementations of Quick-

sort [78]. The heap-based priority queue implementation of Israeli and Rappaport [46] is particularly

interesting because it depends on an ����� � binary atomic primitive (LL/SC2), because it implements

a priority queue, and because it illustrates a clever technique for designing non-blocking algorithms
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for specific data structures. (The technique is described in Section D.8.1 in Appendix D).

2.6 Applications of NBS

2.6.1 Lock-Free Operating Systems

To date, two purely non-blocking operating systems have been designed and implemented: Syn-

thesis V.1 and the Cache Kernel. Each chose non-blocking synchronization from different motives,

and used slightly different approaches, but both had one thing in common: they were implemented

on the same processor. This is not coincidental. The 680x0 family of micro-processors are the only

processors to support DCAS functionality in hardware.

2.6.1.1 Synthesis

All synchronization in Massalin and Pu’s lock-free (non-blocking) Synthesis V.1 multi-processor

kernel [63, 64, 62] was non-blocking. The main motivation for the use of non-blocking synchro-

nization in the Synthesis kernel was reducing synchronization overhead and reducing latency for

critical tasks.

Synthesis ran on dual-68030 workstations, and was thus able to take advantage of the CAS2

instruction. The designers of Synthesis considered using Herlihy’s universal construction to imple-

ment non-blocking implementations of needed data structures. However, the relatively high average

case CPU cost and memory overhead (even when there was no contention) made it impractical for a

low-overhead system such as Synthesis. Fortunately, the presence of CAS2 made it possible to im-

plement specially designed non-blocking objects directly for Synthesis. Synthesis designers began

with a small set of non-blocking data-structures (“quajects”): shared counters, stacks, queues, and

lists. They tried to implement all shared data objects using variations on one of these types.

Massalin and Pu report that every object of interest needed by Synthesis was directly imple-

mentable using CAS2. The resulting system achieved very high performance. Thus, they concluded

that a non-blocking multi-processor OS was both practical and efficient.

2.6.1.2 Cache Kernel

The Cache Kernel [24] was also a purely non-blocking system. The Cache Kernel chose non-

blocking synchronization from slightly different motives [34]:
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� The Cache Kernel was “signal centric”. The basic form of IPC was through signals, and

real work was done in signal handlers. NBS was needed to avoid deadlock, and to avoid the

overhead of disabling and enabling signals. NBS allowed signal handlers to safely access

shared data structures.

� The Cache Kernel supported real-time user threads, and kernel events, such as page faults,

were handled at the library level. Therefore, long delays introduced by lock-holding processes

were unacceptable.

� The Cache Kernel implemented most operating system mechanisms at the class library level.

NBS allows the class library level to be tolerant of user threads being terminated (fail-stopped)

in the middle of performing some system library function such as scheduling or handling a

page fault.

In contrast with Synthesis, which used a pre-packaged set of non-blocking “quajects”, the Cache

Kernel designed data structures as needed, and then tried to apply one of several general techniques

to make the data structures non-blocking. The techniques are described in Appendix D. The result-

ing non-blocking objects (such as our linked-list priority queues) are general, where possible. Rather

than exploit data-structure-specific properties, the Cache Kernel designers depended on properties

that might generally be found in well-designed systems. This approach was motivated by the desire

to use the same non-blocking objects in user class libraries, as well as in the kernel.

In common with Synthesis, the Cache Kernel synchronized every shared object in a non-block-

ing fashion. All algorithms were direct implementations that performed well — we never had to

resort to expensive, universal constructions.

2.6.2 Real-time

NBS seems to be gaining acceptance in the real-time community in contrast with the more cau-

tious appraisal in the general purpose operating systems community. This is partly because the

advantages of non-blocking algorithms are more valuable in real-time systems, but also because

non-blocking algorithms are easier to implement in hard real-time systems. The ease of implemen-

tation arises from two causes. First, primitives are more “powerful” in real-time systems; that is,

weaker primitives are universal, and universal primitives can be used to construct more efficient

algorithms. Second, real-time systems have strong properties that can be exploited by non-blocking

algorithms.
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For example, Ramamurthy et al. [81] show that by exploiting strong properties present in real-

time operating systems, weaker primitives than CAS or LL/SC can be universal. In particular,

they show that reads and writes are universal for hard real-time applications on uniprocessors.

Reads and writes are usually cheaper than strong synchronization primitives, so the result of [81]

potentially allows cheaper non-blocking implementations of data structures.

Their work was extended by Anderson et al. [6], exploiting the observation that on hard real-

time systems with no preemption, any operation executed by a higher priority process is atomic

with respect to lower priority processes on the same processor. In [6] they prove both that CCAS is

implementable in software using only CAS given the strict priorities of a hard real-time system, and

that CCAS supports an optimal implementation of CAS � on real-time systems.

2.7 Universal Transformations

2.7.1 Herlihy’s original protocol

Despite the proof that CAS and LL/SC are universal, relatively few data structures have known,

efficient, non-blocking implementations. A major impediment to the use of NBS is the ease of rea-

soning about the algorithms, or their “conceptual complexity”. “A practical methodology should

permit a programmer to design, say, a correct lock-free priority queue, without ending up with

a publishable result”[39]. The “practical methodology” proposed by Herlihy and others to over-

come the conceptual complexity of non-blocking algorithms is the use of universal constructions

or universal transformations (e.g. [41, 14, 54, 4, 3, 87]). A universal construction is a mechanical

translation protocol that takes as input a sequential specification or algorithm (a specification of the

desired behavior in the absence of concurrency), transforms it, and outputs a provably equivalent

non-blocking or wait-free concurrent algorithm. Since sequential algorithms are well understood

and (relatively) easy to reason about, the conceptual burden on the programmer is lightened.

Herlihy [39] proposed the first general technique to make any algorithm or data-structure non-

blocking. Each object is referenced through an extra level of indirection, � � . Before applying

an operation on orig = � � , the entire data structure is copied and the modification is applied to

the copy. After the modification is complete, the program updates � � using CAS, only if � � ==

orig. The cost of copying the entire object renders this technique obviously impractical for large

objects.

Herlihy proposed a new transformation, the Large Object Protocol. This protocol takes a data-

structure made up of blocks connected by pointers. Only blocks which are modified, or contain
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Figure 2.6: Herlihy’s Large Object Protocol, a tree before modification.

pointers to modified blocks, need be copied. A parallel structure is constructed with pointers to

both modified and unmodified blocks. When the root is updated by CAS, the new structure contains

new copies of each modified block.

This approach still has several problems. First, the copying costs are still significant, since the

entire path of blocks from the root to each modification must be copied. Second, without some form

of contention reduction, contending processes degrade performance. Third, the burden of decom-

posing the object into blocks falls on the programmer. Herlihy accepts this, asserting “Whenever

possible, correctness should be the responsibility of the system, and performance the responsibility

of the programmer.” A poor decomposition simply results in bad performance, and not in an incor-

rect program. However, it is not simply that the burden is on the programmer — the fourth problem

is that for some data-structures no decomposition performs well. For example, it is hard to see any

reasonable decomposition for a priority queue implemented as a linked list. Any attempt to insert

or delete an entry near the end of the list will result in the entire list being copied. A final issue

with the Large Object Protocol is the complexity and expense of the storage management of the old

blocks.



2.7. UNIVERSAL TRANSFORMATIONS 33

3

5 4 6

1 8 4 90

1 5 3 6

4

6

3

C:

A:

B:

Root

Figure 2.7: Herlihy’s Large Object Protocol, tree
after modification, but before atomic update.
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2.7.2 Transformations based on universal primitives

Subsequent approaches are more sophisticated than simply copying the data structure. They reduce

the amount of copying, increase the level of parallelism, and lessen contention that arises due to mul-

tiple processes hammering on the same data-structure. Nevertheless, they still exhibit poor average

case performance compared to spin-locks (when there’s no preemption or delays) and compared to

custom non-blocking implementations in all cases. They have not been successful as a “practical

methodology” — their high cost compared to spinlocks has rendered NBS implementations based

on universal constructions impractical.

Many of these subsequent approaches are modifications of Herlihy’s general copying methodol-

ogy. These proposals range from Herlihy’s original approach of copying [39] a single block covering

the entire data structure, through breaking the data structure into several smaller blocks[39, 4, 74],

to individual words[14, 47, 87, 1]. Correspondingly, the number of locations updated atomically

range from a single “root”[39], through a small number of roots[4, 74], to using CAS � to atomically

update each of � individual words[14, 47, 87, 1]. Even approaches that copy blocks of more than

one word use CAS � whenever there are multiple roots. Section 2.4.4 described implementations of

CAS � , often introduced as part of a universal construction.
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CAS � works on static transactions — transactions where all of the locations and values are

known in advance. Most universal constructions use a technique similar to, or derived from,

Barnes [14], who was the first to support dynamic transactions by the caching method. The caching

method implements dynamic transactions by running the transaction on shadow copies, recording

all reads and writes, and then re-running the reads and writes as a static transaction using CAS � to

replace all the original values with the new values atomically.

Many universal constructions resolve conflicts between transactions trying to update the same

location by “helping” or “co-operating”, a technique first introduced by Herlihy[41] to support

wait-free transactions. Each transaction registers the operation it intends to perform. If it stalls,

other transactions can complete its operation. As noted in their implementation of CAS � , Shavit

and Touitou [87] demonstrated that performance of any helping algorithm is hurt by long chains

of redundant helping, and can be improved by avoiding any recursive helping. Afek et al. [1]

showed that performance can be further improved by explicitly inspecting the graph of waiters and

constructing a helping schedule to minimize contention and avoiding unnecessary aborts.

Inspired by Herlihy and Moss’s Transactional Memory, Shavit et al. [87] coined the term Soft-

ware Transactional Memory (STM). Since their work, the term has been used almost interchange-

ably with universal construction, with a subtle connotational difference: STM algorithms are viewed

as being executed dynamically, while universal constructions imply some amount of preprocessing.

The two implementations are functionally equivalent.

The best of the current proposed STM implementations is by Moir [74]. Unwittingly, he rein-

vented an old operating systems idea of using “shadow pages” to implement atomic transactions.

The Juniper/XDFS file system [71, 95] allowed any process to group together an arbitrary col-

lection of modifications as a single atomic action. Juniper made the updates atomic by simply

changing the pointers to the modified data pages in the B-tree that mapped from file addresses to

disk addresses. (In Juniper, the modifications were first stored in the log, and the atomic action was

committed by atomically transferring the pointers to the pages from the log to the relevant files).

According to Lampson [56], this technique was used first in the Cal system. The Cal system dates

from Sturgis’ Phd thesis [94] in 1974, so this rediscovered idea is almost a quarter-century old.

The basic outline of Moir’s proposal is very similar. He implements an STM algorithm using

local copies. He divides memory into blocks, references each block indirectly through a block

table, operates on local copies of each block, and at commit time tries to use a version of CAS � (he

uses the terminology MWCAS, for “Multi-Word CAS”) to store pointers to all the modified blocks

atomically back into the block table assuming no one has modified the originals in the meantime.
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Blocks in Moir’s approach are equivalent to pages, and the block table is a page table.

Moir’s approach differs from the classical approach in his use of copying, (although efficient

implementations of Copy On Write may eliminate the cost of copying). A more substantial dif-

ference is in the pointer switching operation. Early implementations of atomic transactions were

optimistic, but not non-blocking, because the commit was done under control of a lock. Moir uses

a non-blocking CAS � so the entire transaction is non-blocking. Unfortunately, the implementation

of CAS � involves costs proportional to the size of the shared memory (fortunately, in this case it is

“only” a small multiple of the size of the page tables).

2.7.3 Operating System Support

The universal constructions discussed in the previous section depend mainly on universal primitives.

An alternative approach is to depend on OS support.

Johnson et al. [52] extended the basic optimistic implementation technique of restartable atomic

sequences to support long and complex atomic operations, called interruptible critical sections

(ICS). They include several enhancements including making performance predictable enough for

use in real-time systems and moving the bulk of the sequence-specific work out of the kernel and

into user code. Like restartable atomic sequences, the work on interruptible critical sections is only

applicable on uniprocessors. Incidentally, although this work was not widely distributed in the NBS

community, [52] appears to be the first published work on non-redundant helping (without naming

it such); credit is usually given to Shavit and Touitou [87].

Allemany and Felten [2] extend Bershad’s work on non-blocking primitives [17] to improve

the performance of Herlihy’s protocol. Their SOLO protocol uses OS-managed advisory locks to

reduce contention on shared, non-blocking, data structures. The OS releases the lock when the

lock-owner experiences a long delay. The program manages the advisory locks by incrementing a

counter of active threads on entrance to a critical section, and decrementing on exit. Processes must

wait until the count of active threads is below some threshold (generally 1) before being allowed to

proceed. The OS decrements the counter while an active thread is switched out — delayed processes

do not excessively delay other processes, because the decrement by the OS allows other processes

to proceed.

Allemany and Felten also propose an alternative protocol, “SOLO with logging”, that allows

the current owner to operate directly on the shared object. Each transaction maintains a log with

enough information to undo the modifications when the owner is preempted. The currently active

process copies the data structure from a stalled owner, uses the log to undo all changes on the copy,
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and then atomically installs the copy in place of the original. (When the stalled owner eventually

proceeds it modifies a now-uninstalled copy).

The SOLO protocol incurs the cost of copying. The “SOLO with logging” protocol is not strictly

non-blocking — if each transaction is preempted just before completing, the new owner may spend

time undoing the work of the first transaction, until it, too, is preempted just before completing.

Lamarca [54] proposed a modification to the SOLO protocols. Rather than having contending

processes copy the object and undo the modifications, Lamarca proposes that the new process “help”

the stalled owner finish. To avoid the cost of logging each change, Lamarca’s SOLO-cooperative

protocol uses the techniques of process migration to transport the stalled owner’s computation to the

waiter’s process. When the owner’s transaction is complete, the computation is migrated back. Such

a scheme depends upon OS support for process migration and is expensive relative to a so-called

“long delay”. It seems unreasonable to introduce process migration to recover from a page fault,

when it seems that the cost of process migration must surely involve at least one page fault. While

the cost might be justified if the stalled process has actually failed, it is difficult to actually migrate

a failed process (especially if the failure was due to OS failure on that node!).

The universal constructions discussed in this section support fully dynamic transactions. They

have low overhead compared with constructions based on universal primitives. However, they are

dependent on OS support, are not fully fault-tolerant, and don’t support multi-object updates. Fur-

ther drawbacks of schemes which depend upon OS and scheduler support are discussed in Sec-

tion B.2.

2.8 Conclusion

There are published non-blocking algorithms for simple data structures that perform better than

equivalent locking implementations even under the common case of no contention. Unfortunately

these often are, literally, publishable results (i.e. complex enough to justify publishing a paper).

Equally unfortunately, several critical data structures have no known efficient non-blocking im-

plementations using only CAS or LL/SC. CAS and LL/SC are the only currently available non-

blocking primitives on production hardware.

Non-blocking synchronization has been successful in real-time systems. This work depends,

though, on properties of hard real-time systems that do not generally hold true in non-real-time

systems. Further, these properties cannot be easily adopted in non-real-time systems, and therefore

the work is not generalizable.
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There is a large body of literature on universal transformations. It is easy to use universal

transformations to create a non-blocking implementation of any data structure. Unfortunately, the

average performance of such implementations is significantly worse than an equivalent locking

implementation, rendering universal transformations impractical.

Previous work on non-blocking algorithms seems to pose a quandary for the programmer: either

give up performance or give up comprehensibility. There is evidence, however, that this tradeoff is

neither fundamental nor unavoidable.

Both the Cache Kernel and Synthesis multiprocessor operating system kernels exclusively used

non-blocking synchronization for all their coordination needs. In both systems the implementers

never needed to resort to universal transformations — all shared data structures were amenable to

direct non-blocking implementations. Further, the direct implementations of non-blocking data-

structures performed competitively (or better than) equivalent locking implementations and were

not overly complex to understand, yet provided all the advantages of non-blocking synchronization.

One common element between the Synthesis and the Cache Kernel work was the availability of

hardware DCAS. In addition to the Cache Kernel and Synthesis work reported, several papers pro-

posed relatively efficient direct implementations of data structures which also depended upon DCAS

functionality. No constant time implementation of DCAS exists based only on unary primitives.

Unfortunately, DCAS is no longer supported on modern processors.

There have been a range of proposals for augmented universal primitives in both software and

hardware. The minimalist proposals focus on support for particular universal constructions (e.g.

CCAS and C-Lock), but do not support the range of direct implementations made possible by

DCAS. The maximalist proposals aim to support non-blocking transactions almost entirely in hard-

ware — but have been too complex to be treated seriously by hardware manufacturers.



Chapter 3

Universal Constructions

3.1 Introduction

Few data structures have straightforward and efficient non-blocking implementations using only

unary CAS and currently available techniques. By “efficient” I mean that in the common case of

no contention the cost is comparable to using locks, and that performance scales well under high

contention. Thus far, any non-blocking implementation of a data structure has been considered a

publishable result. Several important data structures (such as priority queues) still have no known

practical non-blocking implementations.

The conceptual complexity of non-blocking algorithms can be overcome by using universal

translation protocols (e.g. [39, 2, 99, 14, 54, 52, 4, 3, 87, 74, 1, 49, 50]) to convert mechanically from

a well-understood sequential specification to a provably equivalent non-blocking algorithm
�
. Such

protocols exist and can provide non-blocking implementations of any data-structure. Unfortunately,

as noted by many (e.g. [39, 54, 87, 69]), the average performance of algorithms generated by

applying these universal protocols is unacceptable compared to equivalent locking implementations.

Binary universal primitives, or universal primitives with arity 2, are universal primitives that

operate on two independent locations. Two examples of binary primitives are DCAS and LLP/SCP

(described in Chapter 5). In this chapter I show that binary universal primitives can ease the ap-

parent tradeoff between conceptual complexity and performance. Given an � ��� � binary, universal,

�

Universal translation protocols are also called “universal constructions” and “universal transformations”. More re-
cently, the term “software transactional memory” has been used to refer to run-time systems that support begin-transaction
and commit-transaction operations, and treat all reads and writes nested within the begin and commit as a single, non-
blocking, atomic transaction.

38



3.1. INTRODUCTION 39

synchronization operator:

1. I prove that CAS � on
�

processors can be implemented with worst case throughput of ������� ���
(that is, in the worst case, some CAS � completes successfully in � ����� time regardless of the

number of processes), and � ����� � space
�

(where ��� �
is the number of processes actively

contending at a given time).

2. I demonstrate two implementations of dynamic Software Transactional Memory [87, 74, 1,

43] (STM) that dynamically performs � reads and � writes, with � ��� � overhead (as op-

posed to � � ��� � � � ����� ��� � � � � [74]),

3. I show a fault-tolerant contention-reduction protocol that requires no special-purpose operat-

ing system support or program counter modification, and

4. I show how to modify these algorithms to support atomic multi-object updates (increasing

the time and space complexity by ����� � per object), be disjoint-access-parallel [47] and/or

wait-free.

In each of these cases, a common structure emerges: unary primitives (e.g. CAS1 or LL/SC)

are inefficient in either space or time or are not fault-tolerant — binary primitives are necessary to

achieve each goal. Additionally, � ��� � primitives of arity 
 , 
 � � , only provide marginal gains:

for example, they may reduce the cost of the universal protocols by a constant factor, but cannot

reduce the complexity of CAS � below � ����� — binary primitives are therefore sufficient to achieve

each goal. The results of this chapter are part of the argument that binary primitives (e.g. CAS2 or

LL/SC2) are the best operations to implement and provide as primitives of the underlying system.

(Chapter 5 demonstrates that � ��� � binary primitives are realistic.)

I have found, in practice, that binary universal primitives ease the apparent tradeoff between

conceptual complexity and performance in two ways. First, binary primitives support direct and

efficient algorithms for many custom data structures. Thus we need depend on expensive univer-

sal techniques less frequently than with unary CAS. Second, as this chapter demonstrates, binary

primitives improve the performance of universal constructions under a number of metrics, increas-

ing the likelihood that a universal transformation will yield acceptable performance for any given

application.

Direct, non-blocking, implementations of data structures are of critical importance if non-

blocking algorithms are to be used in practice. In [34] and elsewhere in this thesis, I make the

�

The version that is only effectively non-blocking needs only �����
	 space.
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empirical argument that, in practice, for real systems, DCAS is powerful enough to efficiently imple-

ment non-blocking versions of all performance critical synchronized data-structures. In Appendix D

I present data-structure-specific algorithms using DCAS. Some of these algorithms perform as well

or better than any previously published synchronization algorithms (both blocking and non-blocking

algorithms) for the same structures. In the average (and common) case, all perform comparably to

locking implementations. Section D.1 argues briefly that the power of DCAS to improve these

specific, simple, data-structures is at least as important as any general algorithmic advantages that

DCAS might hold over CAS.

Performance improvements for a small set of common data structures, no matter how important,

are not the whole story. The second advantage offered by binary primitives is the improved perfor-

mance of universal constructions. Consequently, when one must resort to universal constructions,

the performance is asymptotically optimal. That is, the asymptotic worst-case time complexity

of the universal constructions instantiated with a particular algorithm is equivalent to the asymp-

totic worst-case time complexity of the original sequential algorithm. This is optimal because

Jayanti [50] proves that an oblivious universal construction cannot improve over the worst-case

time complexity of the original algorithm. Oblivious constructions are universal constructions that

do not exploit the semantics of the particular sequential specification with which it is instantiated.

3.2 Universal Algorithms for non-blocking updates

Appendix B introduces a taxonomy that characterizes all universal constructions. There I argue (i)

that algorithms that update-in-place are preferable to those that operate on local copies, (ii) that

checking for transaction conflicts is preferable to depending upon active OS support, and (iii) that

in the case of conflict, roll-back is a more attractive option than roll-forward.

However, by far the most common approach to universal constructions operates on local copies

and uses roll-forward. The basic local copy construction allows a transaction to operate on local

copies of parts of the shared data structure. Modifications are made to the local copies. At the

end of the transaction all pointers to the original copies are replaced with pointers to the modified

versions in a single atomic CAS � .

CAS � is an � location generalization of CAS and DCAS. Given � locations, � oldvals,

and � newvals, CAS � checks whether each location contains the correct oldval. If so, it

stores the appropriate newval in every location, and returns TRUE. If not, it has no effect and

returns FALSE. The entire operation is atomic, so no intermediate state can be made visible.
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First, I demonstrate a more efficient DCAS-based version of CAS � . In addition to the improved

time cost, my version of CAS � has lower space requirements, which allows us to use smaller block

sizes for equivalent space overhead, thereby significantly reducing copying costs.

Evaluating the implementation of CAS � out of Double-Compare-and-Swap is interesting

for another reason, given that we are interested in determining the best universal primitives (i.e.

what arity primitives) to provide. Clearly, if we can efficiently implement CAS � given a particular

primitive CAS � , then we do not need to provide a primitive implementation of CAS � for ����� .

An alternative to the copying approach to universal constructions is to perform the updates

directly on memory without resorting to local copies, and have contending processes help finish

your update. This is equivalent to STM with roll-forward.

All published non-copying implementations of STM (with either roll-forward or roll-back),

rely on active operating system support. The general approach is to “protect” a data-structure by

using a lock, and to depend upon the operating system to prevent or recover from long delays by

a lock holder. The precise definition of “protect” varies between proposals, from simply reducing

contention to depending upon the lock to protect the integrity of the data structure.

My second algorithm is a DCAS-based implementation of STM with roll-forward. DCAS en-

ables a purely application level approach (portable, assuming DCAS functionality is supported) that

provides the same or better contention reduction and fault-tolerance properties as such schemes,

yet it does not depend on the operating system support. The DCAS based approach is fault-tolerant

across operating system failures on individual nodes, as long as the memory system survives. Soft-

ware failures are reported to be ten times more likely than hardware failure[33], so this distinction

is relevant.

The final algorithm I present is STM with roll-back. As a practical matter, roll-back is preferable

to roll-forward, but such algorithms cannot be strictly non-blocking. Here too, as with the roll-

forward algorithm, DCAS enables a purely application level approach.

All three algorithms described in this chapter share much code. I present them as parameterized

specializations of a single body of code. For clarity of exposition, I first present preliminary versions

(with limited functionality) of each protocol and then, gradually, add in features one at a time. I show

how the protocols naturally support fault-tolerant contention-reduction and disjoint-access-parallel

implementations of multi-object transactions.
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Log *trans_alloc(void *helper(),
void *hint)

{
log = newLog();
log->helperCount = 1;
log->helper = helper;
log->hint = hint;
return(log);

}

void trans_init(Log *log)
{
log->state.undo = FALSE;
log->state.finish = FALSE;
log->state.idx = 0;

0: log->id = <my_machine_id,my_pid>
0: log->orig_id = log->id;

}

int trans_begin(Log **laddr,Log *log)
{
if (log == NULL) { return(FALSE); }

1: int *cnt = &(log->helperCount);
do {

if (*laddr != log)
{ return(FALSE);}

} while (!DCAS(cnt, laddr,
*cnt, log,
(*cnt)+1, log));

return(TRUE);
}

void trans_cleanup(Log *log)
{
Word state = log->state;
int i, fin = state.finish;
int idx = state.idx;
int undo = state.undo;
if (undo) {

for (i=log->state.idx-1;i>=0;i--) {
loc = log->locs[i];
old = log->oldvals[i];
DCAS(&(log->state), loc,

2: <i, fin,1>, *loc,
<i-1,fin,1>, old);

}
idx = -1;

}
3: DCAS(log->domain, &(log->state),

log, <idx,fin,undo>,
NULL, <-1, fin,undo>);

}

/* Return log to local cache,
* iff helperCount == 0 */

void trans_conclude(log)
{
atomic_decr(&(log->helperCount));
if (log->helperCount == 0)

4: { deleteLog(log); }
}

Figure 3.1: Basic code used to manage logs.
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3.2.1 The basic non-blocking protocol using DCAS

3.2.1.1 Implementing CAS � from Double-Compare-and-Swap

A lock does not physically prevent another thread from accessing a data structure — we conven-

tionally associate a particular lock with a particular data structure and agree not to reference the

data structure without first acquiring that lock. We can similarly define an owner over a domain. We

conventionally agree not to perform a CAS � over words in a given domain unless we are the current

owner of that domain. A domain can be any collection of shared memory locations — a domain

can be a block of memory addresses, a specific object, all data structures of a given type, the entire

shared memory, or any other association with as fine a granularity as you care to choose. The only

requirement is that the software knows how to map (either explicitly or implicitly) from a memory

location to its unique domain (and therefore that domains be non-overlapping)


.

Figures 3.1 through 3.3 display the basic algorithm used to implement CAS � . CAS � is non-

blocking, and atomic with respect to other CAS � ’s over a given domain. I begin by considering a

single domain, but I address multiple domains in Section 3.2.3.

The approach is straightforward. At the start of the CAS � we copy the arguments into a privately

owned log in shared memory. A particular activation of CAS � becomes the current owner of the

domain by atomically testing whether the domain has no owner, and if so, storing a pointer to the log

in the domain. The arguments (locs, oldvals, newvals) are each ordered arrays of equal

size, representing � CAS’s. The � th CAS is CAS(locs[i], oldvals[i], newvals[i]);

As CAS � performs each individual CAS it records the state of the computation in the log. The state

can be completely described by an index into the array of arguments, and a single bit specifying

whether all the CAS’s have been successful so far. If an individual CAS fails because *loc !=

oldval, then by the definition of CAS � , CAS � must return a value of FALSE, and make sure that

no locations are changed. CAS � marks state.undo in the log, and proceeds, in reverse, undoing

the previous CAS’s. The flag marking failure and the index that tells what CAS the CAS � is up to

are stored in a single word. Thus, each time CAS � performs a CAS, it can simultaneously check

and update the state using DCAS. Now, if a second CAS � starts while a first is still in progress, the

second detects the first log in the domain, and the second can proceed (after helping finish the first

CAS � ), rather than just waiting. Once the second CAS � helps, the first detects interference when its

�

Domains must be non-overlapping at any given instant in time. However, this does not preclude a descriptor moving
from one domain to another over time. This is similar to the well understood structure in blocking synchronization where
a different lock protects a particular page frame while it is on a free list, another lock while it is used as a file buffer, and
yet another lock when it is used as part of the address space of a process.
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next DCAS fails because the state word was modified. Logs are never reused until all participating

processes release it, so the state word unconditionally detects failure (the log cannot be recycled by

another transaction, so the state word can never contain a pointer to an object stored at the same

location as this log).

int trans_open(Log **domain, Log *log)
{ /* Keep trying to acquire domain. */
while (!(log->state.undo ||

log->state.finish ||
trans_start(domain, log))) {

Log *owner = *domain;
1: if (trans_begin(domain, owner)) {

void *helper() = owner->helper;
void *hint = owner->hint;
if (helper == NULL) { /* Abort */
trans_abort(owner, FALSE);
trans_cleanup(owner);

} else { /* Help */
*helper(domain, owner, hint);

}
trans_conclude(owner);

}
}
return(*domain == log);

}

int trans_start(Log **domain, Log *log)
{ idx = log->state.idx;
log->domain = domain;

2: return((*domain == NULL) &&
DCAS(&(log->state), domain,

<idx,0,0>, NULL,
<idx,0,0>, log));

}

int trans_commit(Log *log, int force)
{
Word state = log->state;
if (!state.finish &&

(force || !state.undo) &&
3: CAS(&(log->state),

state,
state|FINISH))

{ state = log->state; }
trans_cleanup(log);
return(state.finish);

}

void trans_abort(Log *log, int byOwner)
{ int flags = (byOwner?(UNDO|FINISH)

:UNDO);
do {
state = log->state;
} while

4: (!state.finish &&
!CAS(&(log->state),

state,
state|flags));

}

Figure 3.2: Basic code supporting atomic transactions using DCAS.

Note that when CAS � returns “FALSE” here, it is still progress, because we refer to the return

value computed by the CAS � procedure, and not to whether the operation succeeded or failed to

complete. Given the helping, every operation is guaranteed to complete, in the order of acquiring

ownership of the domain, even if the initiating process is delayed or destroyed.

3.2.1.2 Transformation from locks to NBS: software transactional memory

A more useful abstraction, if it is implementable, is that of transactional memory [43, 87, 74].

Transactional memory provides the illusion of a large contiguous array of memory, containing all

the data to be accessed by transactions. All reads and writes to the transactional memory between

the beginning and the end of the transaction are considered to be part of a single atomic transaction,

and either all the writes succeed, or they all fail. Transactions are atomic, execute in parallel if they
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int CASn (Log **domain, int n,
void** locs, void** oldvals,
void** newvals)

{
int retval;
Log *log = trans_alloc(NULL,CASnInternal,NULL);
trans_init(log);
log->count = n;
log->locs = locs; /* copy these into */
log->oldvals = oldvals; /* shared memory */
log->newvals = newvals; /* if needed */

1: trans_open(domain, log);
CASnInternal(domain, log, TRUE); /* Do it */
retval = !(log->state.undo);
trans_conclude(log);
return(retval);

}

void CASnInternal(Log **laddr, Log *log, void *hint)
{
do {

Word state = log->state;
int i = state.idx;
if (state.undo) {

trans_cleanup(log); break;
2: } else if ((i >= 0) && (i < n)) {
3: if (!DCAS(&(log->state), locs [i],

state, oldvals[i],
<i+1,0,0>, newvals[i])) {

if (state.idx == i) /* not helped */
4: { trans_abort(log, TRUE); }

}
} else { break; } /* CASn must be complete */

}
5: trans_commit(log, TRUE);

}

Figure 3.3: Code for preliminary CAS � implementation using DCAS.
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acquireLock(d);
...

d->a = foo;
...
...
d->b = bar;
...
d->c = baz;
...

releaseLock(d);

Log *log = trans_alloc(NULL,NULL);
do {

trans_init(log);
if (!trans_open(&(d->log), log))

{ continue; }
...
if (!trans_write(log, &(d->a), foo)) { continue; }
...
if (!trans_write(log, &(d->b), bar)) { continue; }
...
if (!trans_write(log, &(d->c), baz)) { continue; }
...

} while (!trans_commit(log, FALSE));
trans_conclude(log); /* return log to local cache */

Figure 3.4: Transforming code updating data structure d using locks to a non-blocking update.

do not conflict, and if they do, the conflicts are detected and resolved automatically.

Programmers are free to write arbitrary code — in particular they need not collect all memory

locations to save for the final CAS � , nor do they need to cache local copies of modified locations.

Transactional memory also supports early aborts, so that transactions that conflict and may need to

abort and retry, can retry before investing many resources in the doomed transaction.

DCAS allows an efficient implementation of dynamic transactional memory, which has no costs

associated with unused memory locations. Thus, unlike previous implementations, our implemen-

tation of STM can use all of shared memory for transactions with no extra overhead.

With the support in place for CAS � , extending the implementation to support STM is straight-

forward. Once again we map addresses to non-overlapping domains. Each domain conventionally

controls access to the set of addresses mapped to it. Again, I first consider a world consisting of one

domain. (Later, I address a case where we use individual data structures as domains over their com-

ponents. At that point the code works equally well if we chose address ranges (including having each

word be its own domain) or any other mapping.) Each transaction is bracketed by trans init

and trans conclude, which associate a given log with this transaction. Within a transaction,

each time you access a new domain, trans open associates the domain with your transaction.

The location of each write, and the previous value, are recorded in the log, so that the write can be

undone if we need to abort or retry. At the end of each attempt, trans commit is called by the

owner. If successful, the transaction is commited and we exit. If unsuccessful trans cleanup

is called, which undoes any writes done by this transaction. If the owner aborted the transaction,

then we exit after cleanup, otherwise we retry.

If transaction
� �

tries to acquire ownership of a domain which is already owned by another
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transaction
� �

, then
� �

can either help
� �

(in the case of STM with roll-forward) or undo
� �

(in the

case of roll-back) and proceed itself. When
� �

tries to proceed it detects the state change and breaks

out to the commit. In CAS � � � is able to help
� �

, and finish the transaction before acquiring

ownership. We can now see that CAS � was simply a special case of a transaction with a helper

function. We improved performance in two ways. First, by folding trans-write into the helper

function (CASnInternal). Second, by realizing that oldvals already held the old values for

modified locations so we did not need to update the log at all. These optimizations are not possible

for STM in general, where we have no idea of old (or new) values in advance.

The code for trans write is shown in Figure 3.5 and the transformation from conventional

code using locks to STM is illustrated in Figure 3.4. At (3.5:1) DCAS is used only to ensure that no

new writes occur once a transaction is marked undo. This allows each transaction to detect an abort

with no race conditions. There is no need for the OS to stop a transaction that has been aborted —

the DCAS protecting each write ensures that no illegal writes occur.

int trans_write(Log *log, Word *loc, Word val)
{
int index = log->state.idx;
Word OldVal = *loc;
log->locs[index] = loc;
log->oldvals[index] = OldVal;

1: return(DCAS(&(log->state), loc,
<index,0,0>, OldVal,
<index+1,0,0> val));

}

Figure 3.5: Routine implementing software transactional memory.

Theorem 18 in Appendix C.1 proves that the implementation of CAS � in Figure 3.3 is non-

blocking. It also proves that the STM with roll-forward implementation presented so far, is non-

blocking, assuming that the original sequential specification always executes in a finite number of

steps.

The basic outline of the proof demonstrates that once a log is installed in a domain its transaction

is guaranteed to complete in a finite number of steps. state.idx can only be modified a finite

number of times; each loop is guaranteed to terminate after a finite number of iterations (usually 1);

and most functions are called at most once by each process for each transaction.

The only subtle parts of the proof consist in showing (a) that logs cannot be reallocated while

any references to them exist (Lemma 7), and that (b) a transaction can assume that a log is still
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installed in a domain as long as log->state.idx is non-negative, without reading *domain

(Lemma 8). This allows us to use DCAS to simultaneously update a memory location, increment

the index in the log, and be guaranteed that the transaction has not been aborted.

3.2.1.3 Description of the code

The algorithm in Figures 3.1 through 3.3 depends on auxiliary routines to manage the logs and

acquire ownership of domains. These routines are also used by the STM algorithms, so they are

more general than strictly needed by CAS � .

Every transaction is preceded by a call to trans alloc, which allocates a log for this trans-

action, and ends with trans conclude, which manages deallocation of the log.

trans alloc is called once for each transaction, regardless of how many attempts it takes to

complete the transaction. trans alloc allocates a log from a per-processor pool with a reference

count of 1, stores a helper function and a hint (usually a pointer to extra state needed by the helper

function) and returns the new log to the caller.

trans conclude decrements the reference count. If the reference count reaches 0, then

trans conclude returns the log to the per-processor pool. It is called by any process that con-

cludes using the log.

trans init is called each time a process (re)tries to begin a transaction. trans init resets

the state variables (finish, undo, and idx). For CAS � , or any algorithm that employs helping,

trans init is only called once. In such algorithms as soon as the first attempt is complete, either

the originator has been successful, or some other process has “helped” the originator’s transaction

to complete. There is no second attempt.

trans begin begins operating on log for some transaction. The operation might be “help-

ing” the owner complete, or it might abort the transaction, or inspect the log and simply wait.

In any of these cases, we must guarantee that log is not re-used for another transaction until

the caller of trans begin finishes. trans begin atomically increments the reference count

on the log that is currently stored as the owner of domain. trans begin guarantees that at

the moment the reference count is incremented, log was the current owner of domain. Every

successful trans begin must be matched by a call to trans conclude on the same log

because trans begin increments the reference count on log. If log was uninstalled, then

trans begin returns FALSE without incrementing the reference count.

trans cleanup checks whether undo is set. If so, it atomically restores all locations to their

original values. In any case, it uninstalls log from domain but does not decrement the reference
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count. (Although the log is no longer attached to the domain, callers may still need to look at the

result of an operation — so log cannot yet be reused.)

trans start atomically sets log as owner of domain if and only if domain has no current

owner and log is associated with a transaction that has not yet begun. It returns TRUE for success

and FALSE for failure.

trans open loops trying to install log as owner of domain by calling trans start.

It continues looping until it succeeds or log->state reports that this transaction completed or

was aborted. trans open returns TRUE if it succeeds, and FALSE if the operation/transaction

associated with log finishes or aborts. If trans open finds that domain is currently owned by

a different log, then (bracketed by calls to trans begin and trans conclude) it either calls

a helper function to finish the transaction for the owner, or, if no helper function exists, it aborts the

owner. The goal is to free domain from any owner, so that trans open may proceed on behalf

of its caller.

trans abort terminates a transaction associated with log regardless of whether it has com-

pleted or not. When called by the original owner of the transaction then the transaction is not retried.

If called by a contending process, undo is set, but not finish, so the transaction starts all over

again.

trans commit returns TRUE if the transaction has committed successfully. If the transaction

has not been previously aborted or finished (i.e undo has not been set), trans commit first tries

to set finish. If called with force == TRUE, then commit tries to set finish regardless of

whether undo was set or not. force is used by CAS � because we overload undo for CAS � to

also report a legitimate (i.e. successful) return value of “FALSE”.

CASn calls trans init passing CASnInternal as the helper function, so any process

encountering this domain can complete the pending transaction. CASn copies its arguments into

the log returned by trans init. It then calls trans open on the domain. trans open

does not return until this log is registered as the owner of this domain (which may involve help-

ing other transactions finish). It then calls CASnInternal to do the work, and (after calling

trans conclude) returns whether the CAS � was successful or not.

CASnInternal is the helper function which does the actual work. It loops, extracting index

from log->state, checks to make sure index is within bounds, and performs a single CAS

with the appropriate arguments. If any CAS fails, then CASnInternal sets state->undo.

If CASnInternal detects state->undo, then it calls trans cleanup and breaks from the

loop. The last thing it does is call trans commitwith force == TRUE. It returns the value of
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trans commit.

3.2.2 Refinements to the preliminary versions: contention reduction

It is well known [17, 39, 2, 54] that the performance of naive non-blocking algorithms can be

hurt due to “useless parallelism”. First, if � processes simultaneously try to operate on a single

data structure, ��� � of the processes will waste processor cycles and accomplish nothing — all

modifications will be undone at the end when each transaction detects that some other process

succeeded. Second, the work is not only wasted, but the cache and bus interference due to the ��� �
failing processes will also increase the execution time of the one process that ultimately succeeds.

This performance degradation due to contention has been confirmed by measurement [39, 2].

A good way to reduce contention is to treat ownership of a domain by a transaction as an

advisory lock (as in [17, 2, 54]) and only allow other processes to acquire ownership (by undoing or

helping) if the original owner is already subject to a long delay (preemption, failure, etc.). Advisory

locks reduce contention for both the CAS � and STM with roll-forward algorithms. For STM with

roll-back advisory locks serve another, additional, purpose. They not only reduce contention, but

are necessary to make STM with roll-back effectively non-blocking.

In the initial algorithm I presented, STM with roll-back is not non-blocking. The non-blocking

proof of the other algorithms depended upon the existence of helper functions. We can always care-

fully write a helper function for any given algorithm or data structure. However, the point of STM

was to avoid requiring programmers to write complicated algorithms and, instead, to automatically

convert arbitrary sequential code to an equivalent non-blocking algorithm. If we are to update in

place, and not depend upon OS assistance, then the only way to avoid forcing programmers to write

helper functions is by using roll-back.

In Section B.3 I point out that roll-back can never be strictly non-blocking, since two competing

transactions can continually abort each other, forcing partially completed transactions to be undone,

and then no progress is made. I defined the weaker property of effectively non-blocking for algo-

rithms that used roll-back. However, without the contention reduction code, STM with roll-back is

not effectively non-blocking either. It is not strictly non-blocking even under a weakened adversary,

and neither is it non-blocking with probability 1 in all cases.

The contention reduction code has the property that once a transaction acquires ownership of

a domain it is guaranteed to finish without being aborted, unless it suffers a long delay and is

preempted. The guarantee of no aborts while running ensures progress under the weaker adversary.

The abort of, or transfer of ownership from, preempted processes during contention ensures that the
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int trans_open(Log **domain, Log *log)
{ /* Keep trying to acquire domain. */
ID myId = <my_machine_id,my_pid>;
Log *owner = (Log *)NULL;
while (!(log->state.undo ||

log->state.finish ||
trans_start(domain, log) ||

1: !(owner = *domain))) {
ID id = owner->id;
Machine machine = id.machine_id;

2: if ((machine != my_machine_id) &&
3: (currentProcess(machine)==id.pid)) {
4: { backoffIfNeeded(); }

} else {
5: if (DCAS(domain, &(owner->id),

owner, id,
owner, myId) &&

trans_begin(domain, owner)) {
void *helper() = owner->helper;
void *hint = owner->hint;

6: if (*domain == owner) {
if (helper == NULL) { /* Abort */
trans_abort(owner, FALSE);
trans_cleanup(owner);

} else { /* Help */
*helper(domain, owner, hint);

}
}
trans_conclude(owner);

}
}

}
return(*domain == log);

}

Figure 3.6: Enhanced trans open to support contention reduction.
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algorithm is interference-free. The combination is an effectively non-blocking algorithm.

3.2.2.1 Description of the modifications

The implementation consists of a small change to trans open and trans begin, and a simple

(but lengthy) change to trans conclude, as shown in Figures 3.6 and 3.7. Two other minor

independent changes also help, as described in the annotations on lines 3.1:2 and 3.3:3.

When trans open encounters a domain which already has an owner, it checks whether that

owner is the currently running process on the owner’s machine
�

. If it is the current process, then

the new transaction waits and backs off, because it is reasonable to assume that the original owner

is making progress. If the owner is not currently running, then it must be suffering a “long delay”,

and the new transaction takes over ownership, and proceeds. For STM, or any universal update

with roll-back, “proceeding” means aborting the first transaction, forcing a retry. For CAS � or

any universal update with roll-forward, “proceeding” means the new transaction “helps” the first

transaction finish.

trans begin now checks whether the caller’s process ID is listed as the current process ID

of log. If not, then the caller has been preempted between acquiring ownership of the log and

executing the body of trans begin. Some other process has already taken over. It is safe to

check the log->ID even though the increment hasn’t occured yet because of TSM. The increment

of the reference count is guarded, through DCAS, by log->ID == myID, so we are guaranteed

that the reference count is only incremented by a process that is the current owner of the log.

Finally, trans conclude is changed to give priority to the current owner of the log over

waiters when it attempts to decrement the reference count.

The changes to trans begin and trans conclude ensure that the worst case throughput

to complete transactions is independent of the number of contending processes. This is achieved by

limiting access to the reference count on the log. atomic decr must be executed once for each

process that increments helperCount. One might imagine this would be ��� � � , because in the

worst case, all � actively contending processes might try to decrement the reference count at the

same time. However, trans begin is called in trans open only if the current owner has been

descheduled already and another process has not yet taken over ownership. The transaction is only

delayed once for each preemption because only one process can succeed at taking over ownership.

�

We can directly use the OS supported approach of Allemany and Felten instead, where the OS on the owner’s node is
required to release the lock if the owner is preempted. However, as I describe in Section 4.6.4, this reduces fault tolerance,
introduces complexity, has worse performance, and only works on systems which provide the needed OS hooks.
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The other processes just give up (since the (new) owner is not NULL, and it is the current process

on its own machine). Therefore precisely one process succeeds at the increment in ����� � , and � � �
processes fail to increment in � ��� � . The behavior of the decrements is slightly more complicated,

and is described more fully in the proof in Appendix C.2.

trans begin is called at most once for each preemption. Preemptions occur (roughly) in-

dependent of the number of contending processes, because preemption is a local decision made by

the local scheduler, either due to quantum expiration or I/O or the process yielding the processor to

wait for some other computation. If we assume that a process executes at least one statement after

each preemption (else no algorithm is non-blocking), then the number of preemptions is bounded.

There are a fixed number of statements executed by this transaction (we are only concerned with

statements by current owners), and preemptions do not add loops. So the number of preemptions

is very roughly bounded by ����� � ��� .
The changes to trans open reduce contention by the non-owning processes. Waiters spin on

a local cache line that is only invalidated when there is a change of state that one of the waiters must

act on. Thus, the local spinning produces minimal bus or memory traffic. The check for NULL at

(3.2:2) ensures that trans start can fail without invalidating the owner’s cache line. The various

tests in Figure 3.6 in annotations 2 through 4 are all read-only. Only after the owner is preempted

do the waiters attempt any modification and engage in the protocol for acquiring (stealing, actually)

ownership.

backoffIfNeeded at (3.6:4) chooses a uniformly distributed wait-time from an exponen-

tially growing interval. The test of current process at (3.6:3) in conjunction with the advisory

locking assures that this algorithm is not unfair to longer running computations. Without this code,

transactions that run longer than a quantum run the risk of starvation due to many shorter running

transactions.

Theorem 24 in Appendix C.2 proves that with the contention reduction code in place, the im-

plementation of CAS � in Figure 3.3 has worst-case time � ����� .
The proof consists of showing that CASnInternal succeeds in ������� steps, and that the in-

crement and decrement of the reference count each take � ��� � . The fact that atomic increment and

decrement complete in ����� � is non-obvious, and depends upon our use of DCAS. Increment only

succeeds for the process currently owning the log; therefore, failing on increment implies that it is

safe to immediately return without looping. A process does not have the luxury of giving up on a

failing decrement (or else there will be storage leaks in the management of the logs). However, the

current owner is given priority. All other waiters defer — they must wait for the owner in any case.
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int trans_begin(Log **laddr, Log *log)
{
if (log == NULL) { return(FALSE); }
int *cnt = &(log->helperCount);
do {

1: if (log->id != myId){ return(FALSE);}
} while (!DCAS(cnt, &(log->id),

*cnt, myId,
(*cnt)+1, myId));

return(TRUE);
}

/* Return log to local cache,
* iff helperCount == 0 */
void trans_conclude(log)
{
int *cnt = &(log->helperCount);

*: state = log->state;
2: if (!(DCAS(cnt, &(log->id),
*: *cnt, myId,
*: (*cnt)-1, NULL))) {

/* If we entered here it means we were
* delayed at some point and no longer
* own the log. */

*: do {
*: id = log->id;
*: state = log->state;
3: if (!id ||
*: currentProcess(id.machine_id) == id.pid)
*: { id = NULL; }
*: } while (!(DCAS(cnt, &(log->id),
*: *cnt, id,
*: (*cnt)-1,id) ||
*: (!(state.finish | state.undo) &&
4: DCAS(cnt, &(log->state),
*: *cnt, state,
*: (*cnt)-1, state))));
*: }

if (log->helperCount == 0)
{ deleteLog(log); }

}

Figure 3.7: Enhanced trans conclude and trans begin to support contention reduction.
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The owner exits in ����� � steps. One waiter (we don’t care which!) can exit immediately afterwards

and can then immediately acquire ownership of the domain and proceed. There may be a process

that is delayed ��� � � steps while decrementing the reference count, but the delays only occur while

another process is free to make progress.

3.2.2.2 STM with roll-back is effectively non-blocking

With contention reduction in place, even a strong adversary who is able to inspect the state of the

dynamic computation, force preemptions after each instruction, and schedule processes can only

hinder progress probabilistically 
 . Given a maximum bound � on the number of processes (as is

true in all real systems), once we reach the point that all � processes are actively contending on this

domain, no new processes begin contending. The exponential backoff means that, after � processes

are already contending, each time we fail the odds of there being a competing process ready to run

are halved. In order for the adversary to successfully prevent a transaction
� � � from completing,

at least one other waiting process must awaken from a backoff during the execution of
� � � . For a

given backoff interval
�

(the minimum interval of all � processes) the probability
�

of at least 1

out of the � � � processes waking up during the execution time � (including the time stalled due to

preemption) of
� � � , is ����� �

�
� ������ ���

�
� . As

�
gets larger this is approximately ��� � � � � �	� � � .

Doubling
�

then halves the probability of a process being available during preemption to abort
� � � .

Intuitively, this means that even in the face of infinite failures/preemptions there is only an

infinitesmal probability of the algorithm running infinitely long with no progress. (With only a

finite number of preemptions the algorithm is strictly non-blocking). In the face of infinitely

recurring preemptions our algorithm will fail to make progress with probability
�

in ������� � � steps

— meaning if we are willing to wait twice as long, the probability of no progress will halve.

3.2.2.3 How do we know whether a process is currently running?

The stated algorithm assumes the existence of an oracle that tells us whether a given process (the

process currently owning a log, and hence owning the corresponding domains) is currently running.

In practice, how would such an oracle be implemented?

Allemany and Felten [2] propose using active operating system support. When a given process



The adversary cannot schedule a process if it is not runnable. Nor can it delay all runnable processes on the machine

(or all algorithms trivially fail to be non-blocking).
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becomes the owner of a data structure it acquires a lock on that data structure. It registers both the

lock and its own process ID with the operating system. If the operating system ever preempts the

process, the OS simultaneously releases the lock. Thus, waiters on the lock can know that if a lock

is held the process is running. If a data structure is free, the owning process is not currently running.

This approach is adequate for our needs. However, it is not ideal for several reasons. First, if the

operating system on the owner’s node fails, the lock is never freed. Second, the operating system

must treat any asynchronous handler as a context switch, or else not allow synchronization between

main line code and a signal handler.

An alternative is to have the waiter rather than the owner make the determination. The owner

simply stores its process ID and its machine ID in the log. On every process switch, the OS writes

currentProcess to an array indexed by machineId.

A waiter can now determine whether the owner is currentProcess by a two stage test. First, the

waiter compares the stored machine ID with the current machine ID. If they are equal, the waiter

proceeds because it has clearly preempted the owner. If they are running on separate machines,

the waiter simply compares processID to currentProcess[machineID]. (I assume that

machine failures are detected by timeouts, and currentProcess[deadMachine] would be

cleared appropriately.)

A third approach is possible. Assume a system that has loosely synchronized clocks. Each

process writes its start time into the log when it acquires ownership and clears the field when it

relinquishes ownership. In the event that the owner is delayed, processes can detect that the times-

tamp is older than
�

update, and assume the process is no longer current. If the timestamp is more

recent, the waiter backs off rather than acquires ownership. This avoids some (but possibly not all)

cases of aborting running transactions. It also only probabilistically detects the long delays due to

preemptions. This improves the probability of making progress, but is not sufficient to make the

algorithm effectively non-blocking, because there is some possibility of making no progress even if

there are only a finite number of preemptions due to misinterpreting a long running transaction as a

stalled transaction and continually aborting it.

Section 4.6.4 discusses the measured performance of these three alternatives.

3.2.2.4 Why use both exponential backoff and currentProcess?

We use two different mechanisms to reduce contention: the currentProcess oracle and expo-

nential backoff. The currentProcess oracle ensures that the algorithm is strictly non-blocking

in the case of a finite number of preemptions. Exponential backoff allows the system to make
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progress (probabilistically) even if every statement gets preempted (more practically, it allows trans-

actions that are longer than a scheduling quantum to make progress even under heavy contention.)

Both are required to make STM with roll-back effectively non-blocking. Neither is necessary to

make CAS � or STM with roll-forward strictly non-blocking.

The combination of the two techniques can also aid performance and fairness. The contention-

reduction algorithm depends on currentProcess to avoid unfairness to longer running transac-

tions. (In conventional systems that use only exponential backoff to reduce contention the odds of

preempting a long-running transaction are higher than the odds of preempting a short one.) It also

improves average throughput (currentProcess avoids waste where we might abort a trans-

action that is still making progress). The contention-reduction algorithm depends on backoff

to reduce memory contention and synchronization contention. Using only currentProcess

all competing processes will spin on the owner field, and possibly introduce contention over

helperCount.

3.2.2.5 Summary of STM with contention-reduction

The STM algorithm, as augmented with the contention reduction code, implements an � ����� CAS � ,

allows STM to execute with ����� � overhead, and ensures that STM with roll-back is effectively

non-blocking.

However, the discussion so far has ignored transactions over multiple objects. The code, as

written, does not immediately support multi-object updates. If we treat the entire shared memory as

a single domain then we can support atomic updates that modify any combination of data structures.

However, this comes at the cost of creating a bottleneck — only one update can occur anywhere in

memory at a given time. Updates to two totally unrelated data structures conflict and only one

can proceed. If we treat memory as a set of disjoint domains then updates to two or more disjoint

domains proceed in parallel.

However, we have not shown how to implement atomic transactions that access multiple do-

mains, some of which may conflict. We would like to support multi-object updates — atomic trans-

actions that access disjoint sets of objects should proceed in parallel without interference. Atomi-

cally moving an entry from one list to another is an example of a multi-object update.
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int trans_open(Log **domain, Log *log)
{ /* Keep trying to acquire domain. */
ID myId = <my_machine_id,my_pid>;
Log *owner = (Log *)NULL;
while (!(log->state.undo ||

log->state.finish ||
trans_start(domain, log) ||
!(owner = *domain))) {

ID id = owner->id;
Machine machine = id.machine_id;

*: int o_p = owner->precedence;
*: int p = log->precedence;
1: if (o_p == 0) { setPrecedence(log); }

if ((machine != my_machine_id) &&
(currentProcess(machine)==id.pid) &&

*: ((o_p == 0) || (p <= o_p))) {
backoffIfNeeded();

} else {
if (DCAS(domain, &(owner->id),

owner, id,
owner, myId) &&

trans_begin(domain, owner)) {
void *helper() = owner->helper;
void *hint = owner->hint;
if (*domain == owner) {

*: if ((o_p < p) || /* one != 0 */
2: (myId != log->orig_id)) {
3: trans_abort(owner, FALSE);
*: }

if (helper == NULL) { /* Abort */
trans_abort(owner, FALSE);
trans_cleanup(owner);

} else { /* Help */
*helper(domain, owner, hint);

}
}
trans_conclude(owner);

}
}

}
return(*domain == log);

}

int trans_start(Log **domain,
Log *log)

*:{ if (*domain == log)
{ return(TRUE); }

*: int idx = log->dstate.idx;
4: log->domains[idx+1] = domain;
*: CAS(&(log->dstate),

<idx,0,0>,
<idx+1,0,0>);

idx = log->state.idx;
return

((*domain == NULL) &&
DCAS(&(log->state), domain,

<idx,0,0>, NULL,
<idx,0,0>, log));

}

Figure 3.8: Routines implementing software transactional memory. The lines with “*”s or numbers
are new additions supporting multi-objects. (This code is continued in the following figure).
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Log *trans_init(void *helper(),
void *hint)

{
log->state.undo = FALSE;
log->state.finish = FALSE;
log->state.idx = 0;
log->id = <my_machine_id,my_pid>
log->orig_id = log->id;

*: log->dstate = 0;
return(log);

}

trans_cleanup(Log *log)
{
Word state = log->state;
int i, fin = state.finish;
int idx = state.idx, undo = state.undo;
if (undo) {

for (i=log->state.idx-1;i>=0;i--) {
loc = log->locs[i];
old = log->oldvals[i];
DCAS(&(log->state), loc,

<i, fin,1>, *loc,
<i-1,fin,1>, old);

}
idx = -1;

}
i = log->dstate.idx;

*: DCAS(&(log->state), &(log->dstate),
*: <idx, fin, undo>, <i, 0, 0>,
*: <-1, fin, undo>, <i, 0, 1>);
*: for (i=log->dstate.idx;i>=0;i--) {
5: DCAS(log->domains[i], &(log->dstate),
*: log, <i,0,1>,
*: NULL, <i-1,0,1>);
*: }

}

Figure 3.9: Multi-object enhancements (continued) to routines implementing software transactional
memory.

3.2.3 Multi-object (multi-domain) updates

The transaction mechanism can be extended to support atomic multi-object transactions — the code

in Figures 3.8 through 3.10 implement multi-object updates. Once again, the approach is straight-

forward. We associate a single log with all the domains accessed by a transaction. Each log is

extended to have an array in which we store “owned” domains. In order to complete successfully, a

transaction must retain ownership over any domain it acquired until the end of the entire transaction,

at which point it may relinquish all owned domains. If ownership of a single domain is lost during

a transaction, the entire transaction must be restarted. (Strictly speaking, you need only restart from

the point it acquired ownership of that domain. Practically, though, it is painful to reset the PC

(tricks with exception handlers may be plausible, but are not explored in this thesis.)).

Briefly, atomicity of multi-object transactions is ensured by having a single log shared between

all objects in the transaction. Transactions over disjoint domains do not directly interact, let alone

interfere with each other, unless a transaction tries to access a domain already owned by another

transaction. When a potential circularity arises, each transaction is assigned an integer precedence

number, which is used to arbitrate between multiple transactions competing for a domain. When
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void CASnInternal(Log **laddr, Log *log, void *hint)
{
do {

Word state = log->state;
int i = state.idx;
if (state.undo) {

trans_cleanup(log); break;
} else if ((i >= 0) && (i < n)) {

1: if (!(trans_open(addr2domain(locs[i]),
*: log) &&

DCAS(&(log->state), locs [i],
state, oldvals[i],
<i+1,0,0>, newvals[i]))) {

if (state.idx == i) /* not helped */
{ trans_abort(log, TRUE); }

}
} else { break; }

}
trans_commit(log, TRUE);

}

Figure 3.10: Code changes for multi-object CAS � .

interference occurs on any domain � , the preemptor has access to the owner’s entire original trans-

action through the owner’s log stored in � . The preemptor can use the log to either help or abort

the owner. If the log’s transaction is complete (either committed or aborted), other transactions can

unilaterally remove the log from each domain it owns.

Appendix C.3 shows in more detail that multi-object updates are still non-blocking, are deadlock

and livelock-free, and are linearizable.

The key observation used in Section C.3 is that the explicit use of precedence in trans open

in Figure 3.8 allows us to avoid cycles and guarantee progress (even with the policy of aborting some

transactions that conflict on a domain). Additionally, as a simple performance optimization, I avoid

needless aborts by waiting, rather than aborting, if circular dependencies are impossible. In my

STM algorithm, domains are data structures, and therefore long chains of conflicting transactions

are highly unlikely – unless real dependencies exist between the data structures, in which case it

will be difficult to extract parallelism. Applying sophisticated optimizations that explicitly inspect

the contention graph, such as Afek’s [1], are possible, but are unlikely to result in useful benefits.

However, I have not measured this tradeoff in any real systems.
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3.2.4 Some notes on asymptotic performance

As noted, the CAS � operation is non-blocking since progress (return of some CAS � , whether it

modifies values or just returns FALSE) is guaranteed to be made (independent of the number, � , of

processes) in at most every
� � steps. This is easiest to see in Figure 3.3. Once a transaction has

begun, the current process proceeds without interference unless it is locally preempted. The ����� �
leader election occurs in parallel with installing the new owner in the log (note that the new owner

helps finish the original CAS � , it does not originate a new transaction — changes to my id do not

cause an abort). The number of local preemptions is itself bounded (under the assumption that any

reasonable scheduler allows the application code to execute at least one non-OS operation between

preemptions). The worst case can occur only if we assume that the local scheduler preempts the

current process after executing only one local step, and there is always a process waiting to run. Even

so, the number of transfers of ownership is itself at most
� � . (Bounding the number of preemptions

does not similarly help algorithms which have loops that depend upon the number of processes).

For the same reason, sequential work (total number of steps when only one process is running)

is ������� . Similarly, the worst case time to perform � CAS � ’s is � ��� ��� , independent of � , and the

worst-case work (sum of total steps for all processes) for � processes performing a sequence of �

CAS � ’s is ������� � � , because each of the � processes can simultaneously attempt to acquire ownership

of a stalled transaction, although only one succeeds.

As written, CAS � requires ������� � space, where � is the number of processes actively involved

in simultaneous CAS � ’s, because each process must keep all � arguments available to potential

helpers. (The space per transaction is still � ����� ). In implementations that are only effectively non-

blocking, we can also use only ������� space for an arbitrary number of parallel transactions, because

we can defer storing the arguments until after a transaction acquires ownership of the first domain.

This deferral is not possible for strictly non-blocking implementations. The arguments must be

accessible before acquiring ownership, else if every transaction is preempted just after acquiring

ownership of the first domain but before copying its arguments, then no progress is made, as no

helping is possible. The only additional space overhead is the domain, which is constant overhead

and independent of the number, 
 , of words of memory, or the number, � , of actively contending

processes.

Without preemption and cleanup, the STM algorithm’s synchronization cost is ����� � , for �
writes. Note that two processes accessing different domains/data-structures do not contend, and

therefore can execute concurrently. Further, as noted in the text, the algorithm supports dynamic ac-

cess to these multi-objects. If two transactions access disjoint sets of objects, there is no contention
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and both proceed in parallel. If they conflict, the dynamic assignment of bounded precedence num-

bers guarantees that the transaction with the highest precedence always makes progress. By defer-

ring assignment of precedence until conflict, and treating transactions with no precedence specially,

we are able to simply delay the lower precedence transaction rather than aborting it, unless there is

a possibility of circular conflicts.

Multi-object transactions complicate worst-case performance slightly. They improve concur-

rency — note that by introducing domains of average size
�

, we have potentially reduced conflicts

between transactions by a factor of
�

. (If the entire memory were a single domain, all transactions

would conflict. By using domains of average size
�

and supporting multi-objects, transactions

that access disjoint blocks of size
�

can proceed in parallel without interfering with each other.)

However, multi-object transactions can hurt worst-case time. If � processes now transitively con-

flict, the last word of each CAS � can conflict with the first word of another. If this relationship is

completely circular, then we do not make progress until we have gone through all � steps of every

other active transaction, aborting � � � transactions, and only completing 2. Appendix C.3 describes

the approach used to limit recursive helping. Fortunately, the code that limits recursive helping to

one level, also limits the worst case behavior of CAS � . Assume the worst case — which is when

each word is in a different domain
	
. If we limit recursive helping to one level then each of the �

words can trigger at most one helper. If each helper will not recurse, they will each update at most

� words (assuming all transactions update roughly � words), for a total cost of � ���
�
� . [87, 74]

report, empirically, that a similar approach to non-redundant helping improved the performance of

their algorithms, but do not describe the performance improvement in any detail.

3.2.5 Extra enhancements to the basic algorithms

The final versions of the basic algorithms presented in the preceding sections are non-blocking,

support multi-objects, and provide a contention reduction mechanism that stabilizes performance

under high load. There is some interest in the literature in enhancing non-blocking algorithms

to have some additional, stricter, properties. Two common properties are “true disjoint-access-

parallelism” [47] and wait-freedom. Both these properties have questionable utility when carried to

the extreme. However, if required, the algorithms presented here can be extended to support both

�
A slightly more accurate description of this case notes that if there are

�����
domains in a memory of size

�
, then

the � words can be in at most
�����

domains. Similarly, if the transaction addresses only � domains, and ��� �����
,

then the � words can be in at most � domains ( � is almost always only 1 or 2). Finally, if there are only 	 transactions
actively contending at a given time, then this transaction clearly can help at most 	 others (	 is usually small, because
contention is low). Therefore, a better estimate of the cost is ������
��� ����������	�� ����� 	 	 , where � and 	 are very small.
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disjoint-access-parallelism and wait-freedom.

3.2.5.1 Disjoint-Access Parallelism

Disjoint-access-parallel algorithms allow two operations that access disjoint locations to proceed

in parallel without interference. The multi-object algorithms presented here are disjoint-access-

parallel to the granularity of domains — operations that access disjoint domains can proceed in

parallel.

We can use the granularity of the domains to trade-off parallelism against overhead. By re-

ducing the size of domains we increase the potential parallelism and the space and time overhead.

By enlarging the average domain size, we reduce the parallelism and correspondingly reduce the

overhead. If we define each word in memory to be a separate domain, then the algorithm is disjoint-

access-parallel in the conventional sense of the term. At the other extreme, where all of memory is

a single domain, no operations proceed in parallel.

Limiting the interference between transactions is a laudable goal, but it is not always preferable

to try to increase parallelism, even if there were no overhead: increasing potential parallelism does

not necessarily increase actual concurrency. There are already other limits to concurrency. Writes

to the same cache lines are serialized regardless of the application because the writing processor

must own the cache line at the time of writing. Contention reduction protocols serialize access to

larger data structures.

There are also memory contention costs incurred by parallelism beyond serialization. There

is a substantial cost to a cache miss (communication cost, plus the cost of stalling the pipeline

and executing cache-miss-handling code). This cost (call it � instruction times) can be hundreds

or thousands of times the cost of a single instruction. Two processes executing in parallel only

gain by parallel execution if the parallelism on average causes fewer than ��� � cache misses per

instruction. For fine granularity transactions, � is apt to be greater than the average run-time of a

single transaction. Therefore, avoiding memory contention with the currently running transaction

on the competing processor is not sufficient. To justify the parallelism we would need to avoid

contending with future transactions running on the other processor. This implies some knowledge of

future transactions. If transactions run on processors oblivious to the transaction’s memory reference

pattern, then there is no way that we can make any predictions about future contention, and therefore

no way to evaluate whether parallelism is justified.

Fortunately, programmers and system designers are already roughly aware of the cost of mem-

ory contention, and most algorithms are already constructed in a way that enhances locality. In



64 CHAPTER 3. UNIVERSAL CONSTRUCTIONS

particular, programmers try to avoid hotspots — they detect memory locations that are sources of

memory contention and recode algorithms to reduce or eliminate them. The programmer often has

a good notion of locality that is larger than a single cache line. The programmer designs the algo-

rithm to run with a certain set of cache lines remaining at one processor for long enough to amortize

the cost of the cache-miss and transfer. It is not clear that every transaction will access all of these

cache lines, but over a period of time a set of transactions on this processor will access the set of

cache lines with high probability, while transactions running on other processors will (with high

probability) not access any of them.

These observations have two implications. First, there is no benefit to paying a cost for disjoint-

access parallelism within a set of cache lines that is inherently serialized. Any effort spent on

allowing parallel access to a subset of these cache lines is wasted. Second, this set of cache lines

is algorithm specific. If we a priori divide up memory into units of granularity for disjoint-access

parallelism, we can, at best, only probabilistically match the algorithm’s unit of concurrency.

domains allow the programmer to specify the unit of concurrency. Programmers using con-

tention reduction techniques presumably take memory contention into account when deciding upon

the appropriate granularity. Decomposition of memory into domains is tightly coupled with the

decision to decompose memory into separate units for the purpose of contention reduction.

Although I argue for relatively large domains in practice (i.e. each data-structure or collection

is its own domain), I should emphasize that, assuming support for operations that are atomic over

multiple domains (i.e. multi-object atomic operations), then the finer the granularity of domains,

the more concurrency is supported by our algorithms. In particular, assuming the concurrency is

justified, if one chooses single word domains then the algorithms presented here are strictly disjoint-

access-parallel.

The important thing to note is that CAS1 algorithms cannot flexibly take advantage of reduced

concurrency: they either pay in space per word, or by copying chunks of size
�

. While increasing
�

reduces the space cost for unused locations in memory, it increases the cost in time (due to

copying larger blocks). CAS2 (DCAS) allows increasing the domain size without any copying (thus

reducing the space overhead).

3.2.5.2 Wait freedom

The versions of CAS � and STM presented here are not wait-free: there is no guarantee that a given

process will ever exit the while loop in trans open.

In practical terms this is not terrible. There are several reasons it is better to have the OS
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or scheduler deal with starvation and fairness than to address these problems by using wait-free

algorithms. How do we know that all participants should have equal share? We do not — it is the

job of the system scheduler to match system resources to the user-specified priority for each task.

Consider a process with a very low relative process priority. We do not want such a process to get

a turn if higher priority processes are waiting. If the low priority process is not getting a fair share,

then the scheduler eventually raises its priority. It is a mistake to reimplement this same policy in

every data-structure (it is even worse to implement a different policy!). The key property we want

is non-interference, so that synchronization does not interfere with the scheduler. Non-blocking

algorithms already provide the non-interference properties we need.

However, suppose we wanted to implement wait-freedom directly in our algorithms rather than

depending upon the underlying system to avoid starvation. The wait-free algorithm of Moir in [74]

can be adapted to our algorithm. His algorithm requires a “conditionally wait-free” CAS � — that

it can be terminated if the algorithm has been “helped” or aborted at a higher level. Our imple-

mentation of CAS � is already conditionally wait-free. The client must set log->state.undo

or log->state.finish to TRUE when it wants the transaction to terminate (which can be

achieved by calling trans abort). trans open checks for this each time through the loop.

Following Moir, wait-freedom is implemented by means of two arrays. An Announce array is

� elements long and contains the operation and arguments for each of � processes. When process
� �

wishes to perform an operation it posts the operation and argument in Announce[i]. If it detects

a conflict with a process
���

that already owns a domain � ,
� � requests help from

���
by inserting a

request for help into Help[i,j]. Help is a 2-dimensional ��� � element array. Each
���

slowly

cycles through the � th column of Help. It inspects one entry before each transaction attempt of

its own. After � transactions
���

is guaranteed to have checked whether all other processes need

help. If it finds a transaction that needs help, it helps that other process before attempting its own

transaction. The actual transaction attempt follows the protocol described in this chapter, rather than

the copying approach of Moir.

3.3 Related Work

This chapter presents efficient non-blocking, multi-object, implementations of dynamic transaction-

al-memory, implemented in software with no dependence on special operating system support. Al-

most all previous work in this area lacks at least one of these properties. The one exception is Moir’s
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work [74] which is more expensive than ours in space and time (a consequence of operating on lo-

cal copies rather than updating in place). My approach differs in two ways from previous work.

First, I use a O(1) binary synchronization primitive. Second, I allow the programmer to control

concurrency in the input to the non-blocking transformation.

Herlihy [39] described the first universal transformation from arbitrary sequential code to a

non-blocking version. He atomically replaced a pointer to an object with a pointer to a modified

copy only if the original was unchanged during the modification. Like our algorithms, this is also

asymptotically optimal — the cost of the local update is equivalent to the sequential cost of the

algorithm, and the cost of a single copy is constant (that is, it is independent of the number of

competing processes). This asymptotic performance comes at the cost of a very high constant factor:

the entire data structure must be copied. It also has a significant worst-case space requirement:

it may need enough space to hold � copies of the entire data structure. An equally significant

problem is that the algorithm does not support multi-object updates (except by treating all possible

concurrently accessed objects as one big single object).

Most earlier algorithms are designed for static transactions; to support dynamic transactions they

use the caching approach originally proposed by Barnes [14]. Our algorithm requires no caching,

but directly executes a step of the universal construction with each tentative write.

Anderson et al. [4] and Israeli et al. [47] use CAS � to implement disjoint-access-parallel multi-

object updates, by essentially using Herlihy’s approach and copying each object (or parts of each

object using the large-object-protocol), updating these local copies, and using CAS � on the roots

of each object to make the update atomic. They support only static transactions, are expensive in

space and time (the CAS � has costs that are a function of the number of processes (In [47] the

cost is actually proportional to
� 


, where
�

is the maximum number of processes in the system)

and requires multiple words to implement each word of the special memory in which you can store

pointers to the roots of objects). In contrast, my algorithms support dynamic transactions, have cost

independent of the number of processes, and have very low space overhead.

These efforts depended only on universal primitives. Significant performance improvements can

be realized by using special operating system support to detect long delays. Examples of such ap-

proaches are Allemany and Felten’s SOLO+Logging protocol [2] and Lamarca’s SOLO-cooperative

protocol (both described more fully in Section 2.7.3). Both Lamarca and Allemany report signif-

icant improvements due to contention reduction by using advisory locks . However, both depend

on special OS features (e.g. scheduler activations and process migration) that might not always

be present, are potentially unsafe, and that do not scale well. Section B.2 describes the problems
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with such OS dependence. The algorithms are not always robust if the process holding the lock is

terminated (or if the operating system is restarted on the node upon which the lock-owner is run-

ning). Further, this OS based approach might not be practical inside the kernel, nor economical in a

system which synchronizes with a large number of asynchronous handlers (signals must be treated

like context switches). Finally, neither scheme supported disjoint-access-parallel updates (even at

the granularity of objects) of multiple objects.

The algorithms presented in this thesis achieve the same (or better) results without dependence

on special OS support. Rather than depend upon the OS to clear the advisory lock, the advisory

lock is freed by the waiters, using exponential backoff, assuming only the ability to determine

(heuristically, if an oracle is unavailable) the current-process on a given machine. Direct-updates

in place can be safely done by performing each write in parallel with DCAS checking the current

state of the transaction. In comparison, the strictly non-blocking approach (SOLO) of Allemany and

Felten requires as much copying as Herlihy’s approach — OS support merely reduces contention.

In the effectively non-blocking approach (SOLO with Logging), an undo log must be constructed,

with cost comparable to our logging cost.

The work by Moir is the most promising work to date. He provides an implementation of CAS �
over at most

�
contending processes. His CAS � works over a memory of 
 words, but requires

a lock word of size ����� � for each word in memory. (A further restriction is that the operands to

CAS � cannot use the full word of memory, because some space must be reserved for a tag). To

support transactions, he divides memory into 
 ��� � word blocks (pages). Like Barnes’ approach,

he copies each block accessed to a local copy (up to a maximum of
�

blocks), and operates on

the local copy (so reads and writes cost ��������� � � � � ). At the end of the transaction the pointers

to the blocks in the shared memory (shared page table) are atomically replaced by pointers to the

local modified copy using the CAS � operation defined out of CAS1. The cost of Moir’s STM

(that is, the cost of STM over the basic cost of the transaction without any synchronization) is

roughly ��� � � � � � ����� � � � � , compared to � ��� � for our STM algorithm. The space requirement

is ���
�
� � � � � � compared to ����� � � for our algorithm. Any attempt to reduce the space cost of

Moir’s algorithm by reducing � (to get
� ��� � ), will increase the size of block table. The size

of the table of block pointers is 
��� words, so reducing � increases the size of this table. (Also,
�

probably increases for smaller � , because it is likely that the expected number of writes hitting

the same block will decrease.) Further, there is an additional space cost of � �
�
� ����� � � for Moir’s

algorithm, for a total of � �
�
� ��� � ����� � � � � � � � . This cost arises because the simulated CAS �

must operate on 
��� words, and requires a proc field per word.
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The space advantage of my algorithm over Moir’s is compelling. The significant difference in

constant factor in run-time is, too. There is also the (minor) advantage that my algorithm will work

where copying the data is not an option (e.g. data-structures inside an OS that are tied to a specific

location because of device constraints). However, these advantages are more indicative of the fact

that I assume an � ��� � CAS2 while Moir assumes only an ����� � CAS1.

It is fair to ask whether the advantage of my algorithm over Moir’s is due to a better algorithm

or to better primitives. We can compare the algorithms more directly by looking at both in systems

with identical underlying primitives.

In systems that do support � ��� � CAS2, we can replace Moir’s MWCAS with a more efficient

implementation built out of CAS2. The space requirement is no longer proportional to the size of the

entire transactional memory. However, even so, Moir’s algorithm is not competitive. It is optimized

for the case of an inefficient CAS � , minimizing its use, and thus does not gain much when � ��� �
DCAS provides a better CAS � . The original analysis holds, with Moir’s requiring significantly more

space and time due to copying blocks.

On systems that do not support an � ��� � CAS2 operation, we can consider implementing our

STM algorithm using Moir’s implementation of CAS � to provide an inefficient CAS2. We require

� ��
 ����� � � � � space for this emulation, since we need to apply CAS2 to the entire transactional

memory, not just 
��� locations. This overhead can be larger than Moir’s when � � � � � ��� �
����� � � � � 
 ��� � � ��
 ����� � � � � � � � . Since ����� � � � bits probably fit in 1 word, and since � may

be close to
�

, we can say, roughly, that our CAS1 algorithm uses more space than Moir’s when
� � � � 
 . In practice, experience shows that in real systems contention on shared objects is

low, hence � would not need to be very large. For small � , our algorithm uses more space than

Moir’s. The space cost of DCAS emulation eats up the savings in avoiding copying blocks. DCAS is

expensive in Moir’s emulation. We use � ��� � DCAS’s vs. one CAS � in Moir’s algorithm. The � in

the CAS � is � � � � , but, in practice,
�

is almost always smaller than � .

In conclusion, it seems as if the advantages of my STM algorithm over Moir’s are due to primi-

tives rather than algorithms: each algorithm is tuned to a different model of the underlying system.

The performance advantages of my algorithm over Moir’s is evidence that CAS2 enables practical

NBS while CAS1 still has prohibitive costs.

One substantial distinction between the algorithm I present and previous algorithms lies in the

input to the transformation.

The idea of universal constructions was originally raised to simplify the design and implemen-

tation of non-blocking algorithms. As such, the input to the transformation need only be code that
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programmers understand and can reason about. However, all universal constructions proposed in

the literature are limited to input of sequential specifications, presumably because these are more

amenable to proof.

Programmers are experienced in dividing programs into concurrent and non-concurrent sections

through the use of critical sections or locked objects. Introducing concurrency into transactions may

improve performance. If the underlying implementation merely uses the mutual exclusion to denote

(lack of) concurrency, and doesn’t suffer from deadlock or priority inversion, then the right starting

point for universal constructions seems to be algorithms that denote concurrency, not merely a

sequential specification.

Note that my transformation accepts a strict superset of inputs acceptable to conventional uni-

versal transformations, and is thus legitimately comparable. If one chose, one could restrict inputs

to purely sequential specifications.

The multi-object universal construction I proposed in this chapter is an example of a universal

construction that allows concurrency. Programmers can write programs that can fork and proceed

in parallel as long as they don’t simultaneously access a single shared domain. In the (guaranteed)

absence of deadlock and priority-inversion, the input is “well understood” in the same sense that a

sequential specification is well understood. This allows programmers to exploit concurrency in non-

blocking implementations of complex objects. In keeping with Herlihy’s dictum, the programmer

is responsible for performance, but the system maintains correctness.

Jayanti [50] showed that oblivious universal constructions get at best serial performance. (
�

processes take ��� � � to complete, and can gain no advantage from concurrency.) To exploit con-

currency for a particular class of algorithms, Chandra, Jayanti, and Tan [22] proposed a specific

semi-universal transformation for closed objects � that had polylog time worst-case performance

(i.e. it performed better than � � � � ). The construction combined pending operations in a tree-like

fashion; the tree was spread over several processors. Composition of independent operations can

proceed in parallel on different branches of the tree.

However, it seems unreasonable to require new transformations for each class of algorithms.

This restriction holds for all previous universal constructions, since they are limited to sequential

specifications as input. Thus each class of algorithms wishing to exploit concurrency must have

its own semi-universal transformation. In contrast, in my construction, the concurrent tree used

�
An object is “closed” if functional composition is closed. This allows operations to be combined without knowing

the state of the object. For example, the two operations +5 and +7 on an object � , can be combined to a single +12
operation with no knowledge of the current value of � .
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by Chandra et al. to combine closed operations can be expressed as the input to our universal

construction. One must still reason about the correctness of the input, but the non-blocking property

is guaranteed by my construction. No new semi-universal transformations need be written for any

other algorithms, either.

3.4 Conclusions

This chapter shows how the availability of hardware ����� � DCAS can significantly improve universal

constructions of non-blocking objects compared to the best available constructions on systems only

supporting unary CAS. In particular, I identify weaknesses with CAS-only algorithms with respect

to fault-tolerance, worst-case running time, and space overhead. I demonstrate that DCAS-based

algorithms can overcome these problems.

Non-blocking algorithms require some indication of transaction state per unit of concurrency.

For CAS-only algorithms, the block size (unit of concurrency) must either be a single machine word

or else a copying technique must be used. Thus, there is either space overhead per word of shared

memory, or else unmodified words must be copied (and space is needed to store the copies of each

modified block). In contrast, in this chapter I prove that for a universal construction based on DCAS

a single state word can be checked in parallel with many independent one word checks. Thus, space

overhead can be ����� � , where � is the number of concurrently accessed objects (typically 1 per

transaction) rather than � ��
 � , where 
 is the size of shared memory.

Algorithms depending only on unary CAS may depend upon OS support to protect the integrity

of a data structure. This avoids the space and time overhead incurred by either copying or using

extra space per word of memory. I present an algorithm using DCAS that tests a single state word

in parallel which each modification. The overhead is comparable to the OS-based algorithms, but

DCAS algorithms do not need to either copy objects or depend upon OS support. This makes DCAS

algorithms more portable, robust in the face of OS failure on a node, and applicable even in cases

where synchronization is needed between interrupt/signal handlers and main-line code.

DCAS also improves worst-case time compared to CAS-only algorithms. In this chapter I show

that by coupling leader election with CAS, DCAS can determine which contending process proceeds

in � ��� � and can make progress independent of the number, � , of contending processes. In the

worst-case, CAS-only algorithms may have to loop ��� � � times in the critical path.

The best universal constructions implemented only from CAS are either inefficient in time or

space, or depend upon fragile special-purpose OS support. Similar constructions, implemented
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from ����� � DCAS and supporting the same properties, need not depend on special OS support, can

survive OS failure, have substantially lower space requirements, and have worst-case time overhead

that is on the order of the number of words updated. Direct implementations are always at least as

efficient as algorithms derived from universal constructions — in systems that provide only CAS,

universal constructions are needed more frequently than in systems which provide DCAS.



Chapter 4

The Synergy Between Good System

Structure and NBS

4.1 Introduction

NBS has clear advantages over blocking synchronization. However, NBS has not been widely de-

ployed to date because it seems to present the programmer with a choice of either poor performance

or incredible complexity.

Somewhat surprisingly, we did not have this experience in designing the Cache Kernel [24, 34],

a multiprocessor operating system kernel. The designers of the Synthesis V.1 operating system [64]

did not experience such problems, either. Every data structure of interest in these systems was

synchronized using NBS with good performance. Further, the code was not overly complicated.

Why?

There is synergism between non-blocking synchronization and good operating system structure.

NBS is often only practical by exploiting properties present in well-designed systems. Conversely,

blocking synchronization (as opposed to non-blocking synchronization) can constrain system struc-

ture and adversely impact modularity, reliability, and scalability of a system. A central contention

of this dissertation is that non-blocking synchronization is the best synchronization mechanism for

scalable, reliable systems.

I have identified four properties of the Cache Kernel that are sufficient to design and implement

simple and efficient non-blocking data structures. By isolating these particular properties, I make

it possible for any system to gain similar benefits from NBS by ensuring that the system possesses

these properties. In systems that exploit these properties most shared data structures are amenable

72



4.1. INTRODUCTION 73

to direct non-blocking implementations, rather than requiring universal transformations. The algo-

rithms perform better than the best previously published non-blocking algorithms. The algorithms

are also “simpler” by standard metrics such as lines of code, cyclomatic complexity [65], and com-

parison complexity. More importantly, I demonstrate that non-blocking algorithms that depend

upon these properties are simpler because there are issues that they need not address which (a) must

be addressed in non-blocking algorithms that cannot depend on these properties, and (b) addressing

these issues adds complexity and cost to code.

The Cache Kernel exploited three main techniques to design and implement efficient non-

blocking algorithms. These techniques were already being used, independent of NBS, for mod-

ularity, performance and reliability in the Cache Kernel. The main techniques we depended upon

were type-stable memory management (TSM), contention-minimizing data-structures (CMDS), and

minimizing the window of inconsistency. The last two properties are likely to be found in most well

designed systems. They are not peculiar to the Cache Kernel. TSM is not widely deployed, although

stronger properties (which provide equivalent benefits to NBS) can be found in other real systems.

TSM can provide many benefits for non-blocking algorithms as well as systems in general.

We also exploited the availability of atomic DCAS (Double-Compare-and-Swap). DCAS

is defined in Figure 1.3. That is, DCAS atomically updates locations addr1 and addr2 to val-

ues new1 and new2 respectively if addr1 holds value old1 and addr2 holds old2 when the

operation is invoked. This chapter assumes the existence of efficient DCAS. However, as noted,

hardware support for DCAS is only available on the 680x0 family of processors. Chapter 5 presents

a hardware implementation of DCAS and compares that to software and OS-based implementations.

The rest of this introduction discusses the coupling between synchronization and system struc-

ture. The next section (4.2) describes type-stable memory management, which facilitates imple-

menting non-blocking synchronization as well as providing several independent benefits to the soft-

ware structure. Section 4.3 describes the contention-minimizing data structures which have benefits

in performance and reliability for lock-based as well as non-blocking synchronization. Section 4.4

describes our approach to minimizing the window of inconsistency and the systems benefits of do-

ing so. Section 4.5 describes the non-blocking synchronization implementation in further detail

with comparison to a blocking implementation. The non-blocking data structure used inside one

particular operating system, the Cache Kernel, is described in Section 4.5.3. Section 4.6 describes

the performance of our implementation using simulation to show its behavior under high contention.

Section 4.7 describes how our effort relates to previous and current work in this area.
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4.1.1 Synchronization and system structure

There is a coupling between system structure and the synchronization mechanisms used by the sys-

tem. The term “system structure” is used loosely in many contexts. In this dissertation, system

structure refers to the organization and timing of software modules, threads of control, and commu-

nication paths in the system. (This encompasses the decomposition of the system into components,

the organization and mapping of the system’s software components to processes, processors, and

address spaces, and the implementation of inter-component communication and synchronization).

Synchronization and overall system structure interact in three basic ways.

1. The synchronization mechanism imposes constraints on the system design. The cost of syn-

chronization can determine the granularity of system modularity and concurrency. The man-

ner in which the synchronization mechanism solves problems can affect the choice of data

structures. The semantics and limitations of the synchronization mechanism can constrain the

structure and semantics of the system as a whole.

For example:

� expensive synchronization costs force a system to use coarse-grained concurrency, re-

ducing available parallelism.

� Blocking synchronization can force a system to refrain from performing any useful work

in signal handlers, possibly increasing latency.

� Situations that are difficult to synchronize (e.g. multi-object updates using NBS) can

cause a system redesign or a re-specification.

2. Specific features of the system may be exploited in order to avoid, simplify, or improve the

performance of the synchronization. For example, systems with low contention (or a small

number of processors) may not need exponential backoff or queuelocks. Simple spin-locks

might suffice. Real-time systems which enforce strict priorities and take no page-faults can

depend on the scheduler’s priority system to make certain operations atomic with almost no

extra cost (e.g. [6, 7]).

3. Finally, one must evaluate a synchronization algorithm in the context of the entire system.

In particular, it is the incremental cost of a synchronization method in a particular system that

is relevant, and not its absolute cost. Consider an algorithm which, in isolation, is deemed

too expensive because it requires logging all modifications to memory. If, in the system of
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interest, logging is already required in any case for recovery, then the incremental cost of

logging is zero, and we would not consider the need for logging to be a black mark against

this algorithm.

Conversely, if a method of synchronization lacks some property, it is only relevant if the

property is needed in systems we are concerned about. For example, if a synchronization

algorithm does not allow concurrent insertions into a priority queue, we may consider this

a flaw. However, in a system where concurrent insertions are not needed or used, such a

restriction is not a drawback.

In particular, NBS helps system structure in several ways. First, NBS provides run-time isola-

tion between synchronization and scheduling: this allows a separation between policy (scheduling)

and mechanism (blocking, wakeup, and synchronization). Second, NBS provides some design-time

isolation between independent components of the system: modules can be composed without the

need of exposing internal locking strategies. Third, NBS removes constraints on system decom-

position and modularity: synchronized routines can be called anywhere, increasing the amount of

shared code and increasing flexibility (e.g. adding functionality to asynchronous handlers).

NBS can exploit the structure of well-designed systems if the programmer can depend upon

the properties and techniques described in the next several sections. Each section describes one

property, explains how it aids NBS algorithms, and explains why it is beneficial to systems in

general. If a property provides benefits to systems independent of NBS, then higher implementation

costs are justifiable and there is increased likelihood that systems possess that property.

4.2 Type-Stable Memory Management (TSM)

Type-stable memory management (TSM) refers to the management of memory allocation and recla-

mation so that an allocated portion of memory, a descriptor, does not change type. TSM is a

guarantee that an object � of type
�

remains type
�

as long as a pointer to � exists. It does not

guarantee that � will not be freed. TSM is a fancy name for an extension of an old idea: the notion

of static allocation. For example, the process descriptors in many operating systems are statically

allocated at system initialization and are thus type-stable for the lifetime of the system execution.

A system supports type stable memory management for type
�

by making sure that in spite of allo-

cation and reclamation, objects of type
�

do not change type within some time bound ���������	��
 of last

use. (Type stability follows trivially in some systems if ��������	��
 	 	 � : this is just static allocation.)
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Our notion of TSM incorporates three basic extensions to a conventional implementation of

allocation.

� First, as in static allocation, a descriptor remains a valid instance of the type even when it is

not active, i.e. on the free list.

� Second, TSM allows multiple memory allocation pools for the same type. Support for mul-

tiple pools was originally a performance optimization. For example, there can be a pool of

thread descriptors per cluster of processors on a large-scale multiprocessor to minimize con-

tention between clusters. NBS additionally uses multiple allocation pools to enforce a slightly

stricter notion of “type”, as described in Section 4.2.1.1.

� Finally, in contrast to static allocation (but in common with garbage collection), the type of a

portion of memory can change over time, but only as long as it is type-stable over some time

� ������	��
 . More specifically, a descriptor has to be inactive for at least ���������	��
 before it can be

reallocated as a different type
�
. However, for simplicity, we assume an infinite ���������	��
 for this

discussion.

Many (if not most) work on NBS in the literature simply assumes TSM (c.f. Herlihy [40, 41]).

The algorithms, as presented, are incorrect unless the system supports type-stability properties at

least as strong as TSM.

4.2.1 NBS benefits from type-stable memory management

TSM simplifies the implementation of non-blocking synchronization algorithms. A pointer of type

T1 * to a descriptor can never point to a descriptor of another type. Type changes can only result

from the target area of memory being freed and reallocated as type T2; with TSM this cannot happen

because the descriptor of type T1 is type-stable. Without TSM a pointer may point to a descriptor

that has been deleted and reallocated as a different type. This type error can cause a random bit-field

to be interpreted as a pointer, and cause the search to infinitely loop, perform incorrectly, raise an

exception due to unaligned access, or read a device register. TSM is a simpler and more efficient

�

An example of a TSM implementation is a collection of descriptors that are stored in a set of page frames which
are allocated and released over time. When more descriptors are required, additional page frames can be allocated from
the general pool and when the number of descriptors falls, the descriptors may be consolidated into a smaller number of
pages and the excessive page frames returned to the general pool. However, the release of page frames to the general pool
must be delayed sufficiently to ensure the type-stability property. This delay provides a useful hysteresis to the movement
of pages between this descriptor collection and the general page pool.
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way of ensuring this type safety than other techniques we are aware of that prevent reallocation

(such as automatic garbage collection mechanisms or reference counts), or that detect potential

reallocation (such as per-list-element version numbers) or that make reads “safe” (such as using

DCAS to check the list’s version number concurrently with each pointer dereference). In addition

to the direct computational overhead added by those approaches, they convert all reads into writes,

and do not support concurrent read-only operations.

Consider, for example, the code shown in Figure 4.1 to do a non-blocking deletion from a linked

list
�
.

/* Delete elt */
do {

backoffIfNeeded();
version = list->version;

for(p=list->head;(p->next!=elt);p=p->next){
if (p == NULL) { /* Not found */

if (version != list->version)
{ break; } /* Changed, retry */

return (NULL); /* Really not found */
}

}
} while(version != list->version ||

!DCAS(&(list->version), &(p->next),
version, elt,
version+1, elt->next))

Figure 4.1: Deletion from the middle of list, protected by DCAS and version number.

The delete operation searches down a linked list of descriptors to find the desired element or

detect the end of the list. If the element is found, the element is atomically deleted from the list

by the DCAS operation. The DCAS succeeds only if the list has not been modified since the delete

operation started, as determined by the version field.

The code only needs to check for conflicts once it reaches the desired element or the end of the

list. The descriptors are TSM so each link pointer p is guaranteed to point to a descriptor of this

type. Without TSM some protection is needed to avoid the errors mentioned above. Either each

dereference must use a complicated DCAS protocol, or each pointer must include a version number

that is managed on each modification and checked on each dereference, or storage management

must be tightly coupled to this algorithm to guarantee that no descriptors are freed and reallocated

�

The list is initialized with a dummy node at the head, thus deletion of the first element works correctly.
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while any process is inspecting the list. Any of these options significantly increases complexity and

decreases performance.

There are some non-blocking data structures not aided by type-stability. If all pointers are static

(from the header of the object, for example), then the object is type-stable even if the system isn’t

TSM, in the sense that the pointers are always “safe” to dereference. Alternatively, if the entire state

of the data-structure is encoded in � words and the system supports an atomic CAS � , � � � , then

type-stability is not needed. In practice, such data structures are extremely rare.

4.2.1.1 The meaning of “type” in type-stability

Type-stability is sufficient to provide read-safety, but some care must be taken to understand when

two objects have different types with respect to TSM. Sometimes simply ensuring that an object’s

type remain stable may not be sufficient to aid NBS.

For example, consider a descriptor, � , containing a next field. List termination must be con-

sistently denoted in every list which may contain � . If � is sometimes stored in a collection where

list termination is denoted by a null pointer, and sometimes stored in a list where termination

is denoted by a pointer to some other distinguished object (e.g. the header of the list, or the first

element), then pointers to � are not sufficiently type-stable to aid NBS. An algorithm that was

redirected from a list with NULL termination to a list terminated by a pointer to the head of the

list may result in an infinite loop. One must either conventionally agree on termination conventions

for all collections in which � is stored, or segregate descriptors’ allocation pools based on usage

semantics in addition to type.

The latter approach is straightforward. Two collections, both containing objects of type � ,

require separate allocation pools if an algorithm used in one collection would raise a type error or

fail to halt if a pointer from one collection happened to point to an element currently in the other

collection. In essence, our notion of an object’s “type” for TSM may need to be specialized slightly

beyond the basic definition of class in C++ — we may need to have multiple managers for a given

type, corresponding to client’s usage.

There are stronger stability properties than TSM — consider systems with automatic garbage

collection. A GC guarantees that an object is never freed or reallocated as long as a pointer to

it exists. This not only guarantees type-safety for the lifetime of the pointer, but also guarantees

the stability of object identity. Such stronger properties may provide occasional optimizations for

non-blocking algorithms (Section 4.6.3 shows how list-based stacks can be implemented in garbage

collected systems using only unary CAS, while in systems with no stability properties either DCAS



4.2. TYPE-STABLE MEMORY MANAGEMENT (TSM) 79

or per-pointer version numbers are required.) However, TSM is sufficient to allow algorithms to

depend upon reads being safe. TSM is (by definition) the weakest property that keeps algorithms

safe from type errors.

4.2.2 Further benefits of TSM

Besides the benefits to non-blocking synchronization, TSM has several important advantages in

the construction of modular, reliable, high-performance operating systems. First, TSM is efficient

because a type-specific memory allocator can normally allocate an instance of the type faster than a

general-purpose allocator can. For example, allocation of a new thread from a free list of (fixed-size)

thread descriptors is a simple dequeue operation whereas a general-purpose allocator like malloc

may have to do a search and subdivision of its memory resources. The class-specific new and

delete operators of C++ support a clean source code representation of TSM. This allocation can

be made even more efficient with many types because a free (or inactive) descriptor is already an

instance of this type, and so may require less initialization on allocation than a random portion of

memory.

Second, TSM aids reliability because it is easier to audit the memory allocation, locating all

the descriptors of a given type and ensuring that pointers that are supposed to point to descriptors

of a given type actually do so. With fixed-size descriptors, TSM also avoids fragmentation of

memory that arises with general-purpose allocators. Fragmentation can cause failure as well as

poor performance. Relatedly, TSM makes it easier to regulate the impact of one type of descriptor

on the overall system resources. For example, with a collection of descriptors that are allocated

dynamically using the page frame approach described above, the number of pages dedicated to

this type can be controlled to avoid exhausting the memory available for other uses, both from

overallocation and from fragmentation of memory.

TSM also minimizes the complexity of implementing the caching model [24] of descriptors in

the operating system kernel. In this approach, the number of descriptors of a given type is limited

but an allocation never fails. Instead, as in a memory cache, a descriptor is made available by its

dirty data being written back to the higher-level system management and then reused to satisfy the

new allocation request. This mechanism relies on limiting the number of descriptors, being able

to locate an allocated descriptor to reclaim, and being able to determine the dependencies on these

descriptors. TSM simplifies the code in each of these cases.
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4.2.3 Implementing Type Stable Memory Management (TSM)

TSM also allows a modular implementation. From an object-oriented programming standpoint,

there can be a base class descriptor manager class that is specialized to each type of descriptor. For

example, there is a CacheKernelObjMan class in our operating system kernel that provides the

basic TSM allocation mechanism, which is specialized by C++ derivation to implement Thread,

AddressSpace, Kernel and MemMap types as well as several other types.

It is realistic to assume system support for TSM for two reasons.

First, there are already systems with type-stable memory management. Any system that uses

type specific static allocation is type-stable. Objects of type
�

are allocated from, and returned to, a

type-specific free list: � ������	��
 is infinite in these systems. Operating system kernels which use static

allocation, or applications which use program termination to free memory, are also examples of such

systems. Another class of examples is the type-stability of objects in a garbage collected system.

Garbage collection imposes stricter stability semantics on objects than in type-stable memory —

an object not only never changes type while a pointer points to it, but the object also maintains its

identity (the object cannot be freed and reallocated).

Second, the cost of implementing type-stability is low. It is possible to implement type-stability

on a per-type basis, so the total burden need not be large. Unlike garbage collection, type stability

can be implemented locally (pages can be returned to the general pool without checking tables

of remote pointers), and the cost is a function of the number of frame activations, rather than the

number of references (Appendix E describes implementations of TSM in more detail.)

4.3 Data Structures that Minimize Contention

In addition to TSM, the second feature we exploited to provide for efficient non-blocking synchro-

nization was contention minimizing data structures (CMDS). Data structures in the Cache Kernel

were designed and implemented to minimize both logical and physical contention. By logical con-

tention, we mean contention for access to data structures that need to be controlled to maintain the

consistency and semantics of these data structures. By physical contention, we mean the contention

for access to shared memory that needs to be controlled to maintain the consistency and semantics

of the memory system


.

�

Physical contention is separate from logical contention because one can have logical contention without physical
contention as well as vice versa, or so called false sharing. For example, if two shared variables reside in the same cache
line unit, then there can be physical contention without logical contention. Two processors may attempt to update the
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4.3.1 NBS benefits from contention minimizing data structures

Minimizing logical contention with non-blocking synchronization minimizes the overhead of con-

flicting operations failing and being retried. It also avoids the complication of complex backoff

mechanisms as part of the retry. Finally, and perhaps most importantly, systems designed to min-

imize contention naturally lead to systems that have relatively few types of shared data structures.

In our experience, these data structures are typically amenable to an efficient direct non-blocking

implementations.

Minimizing logical contention benefits both blocking and non-blocking synchronization. How-

ever, the cost of logical contention can be much higher for NBS. For non-blocking algorithms (in

the absence of contention reduction algorithms) conflicting operations normally proceed in parallel

(exhibiting what is called “useless parallelism”). If
�

processes proceed in parallel,
�
� � of the

processors waste their CPU cycles on conflicting operations that are destined to fail. Worse, the

memory contention and bus traffic slow down even the one process that is destined to succeed. In

contrast, with blocking synchronization, if
�

processes proceed in parallel,
�
� � of the proces-

sors spin harmlessly (wasting only their own cycles) on a local cached copy of the lock. Thus,

eliminating logical contention confers larger gains on NBS than on blocking algorithms.

To avoid problems with useless parallelism, NBS algorithms implement contention reduction

techniques (such as exponential backoff or advisory locks or “helping”) around each operation. In

the common case of no contention, the cost and complexity of setting up such algorithms have mea-

surable effect on throughput (c.f. examples later in this chapter). In systems designed to minimize

worst-case logical contention, it is possible to completely avoid the contention reduction techniques.

While TSM improves the non-blocking implementation of a given data structure, CMDS aids

NBS by reducing the set of relevant data structure types. More particularly, in a system designed

with shared objects that have low contention and small scale, the set of shared objects requiring

synchronization are relatively simple. We have found that these shared objects are amenable to

direct NBS implementations using DCAS. Massalin et al. [64] reports similar conclusions.

4.3.2 Further benefits of CMDS

The spatial locality of data access achieved by these techniques provides significant benefit for syn-

chronization, whether non-blocking or conventional locks. This spatial locality also minimizes the

consistency overhead when the system is running across multiple processors, with each processor

variables simultaneously, with each processor updating a separate variable.
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caching portions of this shared data. In general, our experience independent of NBS (e.g. [25])

suggests that it is better to (re)structure the data structures to reduce contention rather than attempt

to improve the behavior of synchronization techniques under high contention. Low-contention al-

gorithms are simpler and thus easier to get right, and faster as long as contention is actually low.

Contention minimization is widespread, even on systems not supporting NBS. Gupta et al. [98]

report low contention on OS data structures and Michael et al. [67] report low contention on shared

application data structures.

4.3.3 Implementing contention minimizing data structures (CMDS)

Most of our techniques for contention minimization are well-known. One method of contention

minimization is replicating the functionality of a shared data structures for each processor, rather

than using a single shared object. In particular, there are per-processor ready and delay queues

in the Cache Kernel, so contention on these structures is limited to signal/interrupt handlers and

management operations to load balance, etc. being executed by a separate processor.

Some data structures cannot be easily made per-processor without complete replication. Even

so, useful contention minimizing techniques apply. Per-processor “caches” for such data structures

allow a significant number of references to be purely local, reducing contention on the shared object.

For example, the Cache Kernel uses a per-processor signal-delivery cache to reduce access to the

shared signal mapping table[24]. This per-processor “cache” approach is similar to that provided

by a per-processor TLB for address translation. The TLB reduces access to the real virtual address

space mapping structure, which is necessarily shared among threads in the address space.

Contention on a data structure is also reduced in some cases by structuring it as a multi-level

hierarchy. For example, a large list that is searched frequently may be revised to be a hash table

with a version number or lock per bucket. Then, searches and updates are localized to a single

bucket portion of the list, reducing the conflict with other operations, assuming they hash to different

buckets. The upper levels of the hierarchy are read-only or read-mostly: descriptors are only added

at the leaves.

Physical contention is also reduced by using cache-aligned descriptors. TSM with its restricted

allocation of descriptors can also reduce the number of pages referenced as part of scan and search

operations, reducing the TLB miss rate, another source of physical contention. Finally, in this vein,

commonly updated fields are placed contiguously and aligned to hopefully place them in the same

cache line, thereby making the updates more efficient.
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4.4 Minimizing the Window of Inconsistency

The Cache Kernel was also structured to minimize the window in which a data structure was incon-

sistent. (This is sometimes referred to as the “window of vulnerability” (e.g. [39])). This provides

temporal locality to a critical section.

4.4.1 NBS benefits from minimizing the window of inconsistency

Techniques that minimize the window of inconsistency allow efficient non-blocking synchroniza-

tion. A typical locking implementation of a data structure may involve a number of writes inside

a critical section. If no care is given to reducing the window of inconsistency, these writes may

be spread throughout the critical section. Designing or restructuring code to minimize the window

of inconsistency has two effects. First, all modifications are co-located (usually near the end of

the update). Second, updates are grouped into distinct consistent updates. For example, system

accounting information is often updated alongside a modification to a data structure, inside a single

critical section. The data structure is not necessarily inconsistent after the modification and before

the accounting information is updated. An implementation that is careful about minimizing the

window of inconsistency groups these two sets of writes separately.

Non-blocking implementations can take advantage of this constrained structure. In particular, a

non-blocking update typically consists of one of the direct-implementation techniques described in

section D.2 (e.g. a DCAS operation that updates the version number plus one other location, with the

version number ensuring that the data structure has not been changed by another concurrent update).

That is, the window of inconsistency is reduced to the execution of a single DCAS operation. Re-

ducing the granularity of the consistent updates increases the likelihood that direct implementation

using a single DCAS is possible.

Reducing the window of inconsistency is beneficial even when the consistent update consists

of more than 2 locations. By grouping all modifications in one place, static, rather than dynamic,

transactions can be used. Much complexity in the universal transformations described in Chapter 3

can be eliminated if the entire set of addresses being updated were known at the start of the transac-

tion. (For example, in Section 3.2.3, address sorting can be used rather than the entire precedence

mechanism presented there.)
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4.4.2 Further benefits of minimizing the window of inconsistency

These techniques to reduce the window of inconsistency have other benefits as well. In particular,

the reduced window of inconsistency reduces the probability of a failure, such as a thread termi-

nation, corrupting the system data structures. They also reduce the complexity of getting critical

section code right because it is shorter with fewer separate control paths through it and therefore

easier to test. Some of this structuring would be beneficial, if not required, for an implementation

using lock-based synchronization because it reduces lock hold time, thereby further reducing con-

tention. In fact, such approaches are already common: techniques such as optimistic locking [53]

and field calls [32] are simply approaches that structure the code to minimize the window of vulner-

ability.

4.4.3 Reducing the window of inconsistency

Again, we use familiar techniques. The basic pattern is to read all the values, compute the new

values to be written, and then write these new values all at once after verifying that the values read

have not changed. Generally, a structure is inconsistent from the time of the first write to the point

that the last write completes. Therefore, removing the computation from this phase minimizes the

window of inconsistency. To minimize the cost of verifying that the read values have not changed,

we often use a version number that covers the data structure and is updated whenever the data

structure changes. The use of a version number also avoids keeping track of the actual location read

as part of the operation.

The window of inconsistency is also minimized by structuring to minimize physical contention

as part of data structure access.

Physical contention increases the time for a processor to perform an operation because it in-

creases the effective memory access time.

4.4.4 Increased robustness through relaxed consistency requirements

Another way of reducing the window of inconsistency is by redefining “consistency”. In our expe-

rience, we have found that system robustness is sometimes enhanced by relaxing the consistency

requirements of a data structure. (At this point we have no hard data to support this subjective feel-

ing.) For example, if we require a descriptor to always belong to exactly one collection (e.g. a list)

then we must forbid the system from going through states where the descriptor temporarily belongs

to no collection, or belongs to multiple collections. The alternative is to relax this requirement and
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allow the descriptor to belong to any subset of the legal collections. This requires us to recode all

clients to deal with the slightly wider variety of states. In practice we have found this recoding to

be insignificant and the result aids system robustness and recovery.

This relaxation of consistency requirements has often been motivated by initial difficulties in

maintaining a consistent state while performing non-blocking updates. We have found that such

difficulty is often (but not always) a clue pointing to a fragile design. Some specific examples are

mentioned in Section 4.5.3 and in Section D.5.2.

4.5 Non-Blocking Synchronization Implementation

Non-blocking algorithms are relatively simple to implement and verify in systems that possess the

properties described above including efficient DCAS support. Algorithms may depend upon read-

safety and low contention for reads, writes, and memory accesses.

Non-blocking algorithms can be implemented in one of three basic ways:

Direct implementation if the entire state of an update can be encoded in two words then an op-

eration can be made atomic by reading the initial state, performing a computation, and then

performing the update in a single DCAS.

Universal transformations Any data-structure, even if too complex to yield to direct implemen-

tation, can have a non-blocking implementation. Universal transformations mechanically

produce non-blocking implementations based on a sequential specification. The drawback is

poor average case performance.

Special-purpose techniques Some data structures that are not amenable to direct implementation

still have efficient implementations. Applying data-structure specific tricks yields algorithms

that are far more efficient than universal transformations.

DCAS, TSM, and other properties of the Cache Kernel enable a straightforward approach to

implementing universal transformations of sequential implementations of data-structures to non-

blocking concurrent implementations. The approach is described in Chapter 3.

However, to date, we have not needed to employ either universal constructions or the so-called

helper techniques in the Cache Kernel and therefore cannot comment on their actual practicality

or utility. Moreover, as I note in Appendix D, it seems questionable from the standpoints of both

reliability and performance to have threads from separate address spaces sharing fine-grained access
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to complex data structures. These data structures are also more difficult to program and to maintain

and often provide marginal performance benefits in practice, particularly when synchronization

overhead and memory contention is taken into account. Their asymptotic performance benefits are

often not realized at the scale of typical operating system data structures.

Synchronization of more complex data structures than we have encountered can also be handled

by a server module. This approach is less forbidding than a universal transformation. Each oper-

ation allocates, initializes and enqueues a “message” for a server process that serially executes the

requested operations. Read-only operations can still proceed as before, relying on a version number

incremented by the server process. Moreover, the server process can run at high priority, and include

code to back out of an operation on a page fault and therefore not really block the operation any

more than if the operation was executed directly by the requesting process. The server process can

also be carefully protected against failure so the data structure is protected against fail-stop behavior

of a random application thread, which may be destroyed by the application.

This approach was proposed by Pu and Massalin [64]. For example, a general-purpose memory

page allocator can be synchronized in this manner, relying on TSM memory pool to minimize the

access to the general allocator. (Access can be further minimized by per-processor pools.) To date,

we have not needed to resort to server modules for synchronization.

Appendix D describes techniques that can be used to implement non-blocking versions of se-

quential implementations of data-structures. Each technique is illustrated by detailed non-blocking

algorithms for specific data-structures. These algorithms depend on DCAS, TSM, and CMDS to

implement efficient non-blocking synchronization.

The next section describes the common case of direct non-blocking implementations in some-

what more detail. (An even fuller description is available in Appendix D.2).

4.5.1 Direct Implementation of common data structures

Most performance critical shared data structures are collections of fixed-size descriptors. Several

collections are queues for service. In the Cache Kernel, for example, thread descriptors are queued

in the ready queue and a delay queue of their associated processor. Other collections are lookup

or search structures such as a hash table with linked list buckets. For example, the Cache Kernel

organizes page descriptors into a lookup structure per address space, supporting virtual-to-physical

mapping for the address space.
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4.5.1.1 The Base Approach: updates consisting of a single write

The non-blocking synchronization for these structures follows a common base structure. There is a

version number per list or container. The DCAS primitive is used to atomically perform a write to a

descriptor in a list and increment the version number, checking that the previous value of both has

not been changed by a conflicting access to the list. Figure 4.1 illustrated this structure for deleting

a descriptor from a list, where the single write to the descriptor was to change the link field of the

predecessor descriptor. Inserting a new descriptor � (stored in the argument entry in the figure)

entails initializing � , locating the descriptor in the linked list after which to insert � , writing the

� ’s link field to point to the next descriptor, and then performing the DCAS to write the link field

of this prior descriptor to � and to increment the version, checking both locations for contention as

part of the update.

En/dequeuing a descriptor to or from a TSM free list is a degenerate case of deletion because

the enqueue or dequeue always takes place from the head: the list acts as a LIFO stack. It is possible

to optimize this case and use a single CAS to enqueue and a DCAS to dequeue, without a version

number. However, with efficient DCAS support, it is attractive to use DCAS with a version number

upon enqueue to allow the version number to count the number of allocations that take place. (As

another special case, an operation requiring at most two locations for the reads and writes can

be updated directly using DCAS. We have used this approach with array-based stacks and FIFO

queues.)

4.5.1.2 Enhancements to the base approach: multiple writes and multiple containers

Some operations that involve multiple writes to the same descriptor can be performed by creating

a duplicate of this descriptor, performing the modifications and then atomically replacing the old

descriptor by the new descriptor if the list has not changed since the duplicate descriptor was created.

This approach is a variant of Herlihy’s general methodology [41]. However, we use DCAS to ensure

atomicity with respect to the entire data structure (the scope of the version number) even though we

are only copying a single descriptor
�

. As a variant of this approach, the code can duplicate just a

portion of the descriptor, update it and use DCAS to insert it in place of the original while updating

�

The basic Herlihy approach involves copying the entire data structure, modifying the copy, and then atomically
replacing the old copy with the new copy using CAS, and retrying the entire copy and modifying if there is a conflict.
Herlihy’s Large Object protocol, duplicates only part of the data structure, but requires transitively copying (all the way
to the root) all parts of the object that point to modified locations. Our approach reduces the allocation and copy cost to a
single descriptor rather than almost the entire data structure, but requires DCAS.
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a version number.

As a further optimization, some data structures allow a descriptor to be removed, modified and

then reinserted as long as the deletion and the reinsertion are each done atomically. This optimiza-

tion saves the cost of allocating and freeing a new descriptor compared to the previous approach.

This approach requires that other operations can tolerate the inconsistency of this descriptor not

being in the list for some period of time. If a thread fails before completing the insertion, we rely

on a TSM-based audit to reclaim the partially initialized descriptor after it is unclaimed for � ������	��


time. Note that just having a search mechanism retry a search when it fails in conjunction with this

approach can lead to deadlock. For example, if a signal handler that attempts to access descriptor

� , retrying until successful, is called on the stack of a thread that has removed � to perform an

update, the signal handler effectively deadlocks with the thread.

A descriptor that is supposed to be on multiple lists simultaneously complicates these proce-

dures. The techniques described in Chapter 3 can easily handle descriptors on multiple lists, how-

ever those techniques impose a performance penalty that is more expensive than equivalent locking

implementations in the common case of no contention. So far, we have found it feasible to program

so that a descriptor can be in a subset of the lists, and inserted or deleted in each list atomically as

separate operations. In particular, all the data structures that allow a descriptor to be absent from

a list allow the descriptor to be inserted incrementally. This eliminates the need for relying on the

more expensive universal constructions.

4.5.2 Comparison to blocking synchronization and CAS-based non-blocking syn-

chronization

Much of the structuring we have described would be needed, or at least beneficial, even if the soft-

ware used blocking synchronization. For instance, TSM has a strong set of benefits as well as

contributing to the other techniques for minimizing contention and reducing the window of incon-

sistency.

We have found that the programming complexity of non-blocking synchronization is similar

to conventional blocking synchronization. This differs from the experience of programmers using

CAS-only systems. In CAS-only systems programmers must rely on universal constructions in order

to reduce the conceptual complexity of the algorithm. These approaches generally perform badly.

Non-blocking data-structure specific algorithms have good performance, but, using CAS, are dif-

ficult to design and complex to understand. DCAS enables many non-blocking algorithms with ex-

cellent performance (see Appendix D for examples). DCAS plays a significant part in the complexity
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Synchronization Avg. Complexity Total Complexity
Method Functions Cyclomatic Comparison Cyclomatic Comparison
Spin-lock 3 1.33 7.67 4 23
DCAS 3 2.00 11.00 6 33
CAS 20 2.70 8.50 54 170

Table 4.1: Some Standard Complexity Metrics for implementations of linked-list priority queues

reduction for these data-structure-specific algorithms. Using the crude metric of lines of code, a CAS

implementation (Valois [100]) of concurrent insertion/deletion from a linked list requires 110 lines,

while the corresponding DCAS implementation requires 38 (a non-concurrent DCAS implementa-

tion takes 25). The CAS-only implementation of a FIFO queue described in [70] requires 37 lines,

our DCAS version only 24. Figures 4.2 and 4.1 show that the DCAS implementation of linked lists

has complexity 
 39 compared to 224 for the Valois implementation. My DCAS FIFO queue has

complexity of 30, which is a slight improvement over the complexity of Michael and Scott’s CAS-

only implementation which has complexity of 38. The DCAS versions are correspondingly simpler

to understand and to informally verify as correct. In many cases, using DCAS, the translation from

a well-understood blocking implementation to a non-blocking one is straightforward. In the simple

case described in Figure 4.1, the initial read of the version number replaces acquiring the lock and

the DCAS replaces releasing the lock.

Synchronization Total Complexity
Method Functions Cyclomatic Comparison Total
Spin-lock 3 6 17 23
DCAS 3 5 25 30
CAS 3 12 26 38

Table 4.2: Cyclomatic and Comparison Complexity Metrics for implementations of FIFO queues

In fact, version numbers are analogous to locks in many ways. A version number has a scope

over some shared data structure and controls contention on that data structure just like a lock. The

scope of the version number should be chosen so that the degree of concurrency is balanced by the

synchronization costs. (The degree of concurrency is usually bounded by memory contention con-

cerns in any case). Deciding the scope of a version number is similar to deciding on the granularity



Complexity is measured by summing comparison complexity (also known as “predicate complexity”) and cyclomatic

complexity for all of the routines in initialization, insertion, and deletion. Comparison complexity and cyclomatic com-
plexity are standard metrics used by software practitioners. I am skeptical of their value as precise quantitative measures,
but believe that they are useful as a general indication of complexity of software.
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of locking: the finer the granularity the more concurrency but the higher the costs incurred. How-

ever, a version number is only modified if the data structure is modified whereas a lock is always

changed. Given the frequency of read-only operations and the costs of writeback of dirty cache

lines, using read-only synchronization for read-only operations is attractive. Finally, version num-

bers count the number of times that a data structure is modified over time, a useful and sometimes

necessary statistic.

Finally, the overall system complexity using blocking synchronization appears to be higher,

given the code required to get around the problems it introduces compared to non-blocking syn-

chronization. In particular, special coding is required for signal handlers to avoid deadlock. Special

mechanisms in the thread scheduler are required to avoid the priority inversion that locks can pro-

duce. Special cleanup-code is required to achieve reliable operation when a thread can be terminated

at a random time, increasing code complexity. For example, some operations may have to be im-

plemented in a separate server process.

A primary concern with non-blocking synchronization is excessive retries because of contending

operations. However, our structuring has reduced the probability of contention and the contention

reduction techniques of Chapter 3 as well as the conditional load mechanism described in section

5.4.5, can be used to achieve behavior similar to lock-based synchronization.

4.5.3 Use of NBS in the Cache Kernel

Chapter 1 details the advantages that non-blocking synchronization (NBS) holds, in general, over

blocking synchronization. There is a particularly strong synergy between non-blocking synchro-

nization and the design and implementation of the Cache Kernel [24] for performance, modularity

and reliability. First, signals are the only kernel-supported form of notification, allowing a sim-

ple, efficient kernel implementation compared to more complex kernel message primitives, such

as those used in V [23]. Class libraries implement higher-level communication like RPC in terms

of signals and shared memory regions [103]. Non-blocking synchronization allows efficient library

implementation without the overhead of disabling and enabling signals as part of access and without

needing to carefully restrict the code executed by signal handlers.

Second, we simplified the kernel and allowed specialization of these facilities using the C++

inheritance mechanism by implementing most operating system mechanisms at the class library

level, particularly the object-oriented RPC system [103]. Non-blocking synchronization allows the

class library level to be tolerant of user threads being terminated (fail-stopped) in the middle of

performing some system library function such as (re)scheduling or handling a page fault.
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Finally, the isolation of synchronization from scheduling and thread deletion provided by non-

blocking synchronization and the modularity of separate class libraries and user-level implementa-

tion of services leads to a more modular and reliable system design than seems feasible by using

conventional approaches.

This synergy between non-blocking synchronization and good system design and implementa-

tion carries forward in the more detailed aspects of the Cache Kernel implementation.

Overall, the major Cache Kernel [24] data structures are synchronized in a straightforward man-

ner using the techniques described in this chapter. Threads are in two linked lists: the ready queue

and the delay queue. Descriptor free lists are operated as stacks, making allocation and dealloca-

tion simple and inexpensive. The virtual to physical page maps are stored in a tree of depth 3 with

widths of 128, 128, and 64 respectively. Although the 128 immediate descendants of the root are

never deleted, sub-trees below them can be unloaded. Modifications to a map on level 3 are there-

fore synchronized using DCAS with its parent’s version number to make sure that the entire subtree

has not been modified (e.g. unloaded) in conflict with this update. The Cache Kernel maintains

a “dependency map”[24] that records dependencies between objects, including physical to virtual

mappings. It is implemented as a fixed-size hash table with linked lists in each bucket. The Cache

Kernel maintains a signal mapping data structure which maps addresses to receivers. (This struc-

ture supports “memory-based messaging” [27], a technique that allows address-valued signals to be

delivered to processes that register their interest in the signal.) There is a signal delivery cache per

processor as an optimization for signal delivery to active threads. As noted in Section 4.3.3, this

“cache” allows a significant number of signals to be delivered by a processor without accessing the

shared signal mapping data structure, which cannot be made per-processor without replicating the

entire structure. The signal mapping cache structure is also a direct mapped hash table with linked

lists in each bucket. The majority of uses of single CAS are for audit and counters.

The Cache Kernel does have updates that are implemented by atomically removing a descriptor

from a container, modifying it and (atomically) reinserting it. Other clients of the container tolerate

the inconsistency of a descriptor being missing during the update. We considered duplicating the

descriptor, modifying the copy, and atomically replacing the old descriptor, but generally opted to

save the cost of allocating and freeing a new descriptor. An example of clients tolerating such an

inconsistency is in the Cache Kernel signal delivery mechanism. Signal delivery relies on a list of

threads to which a signal should be delivered. Threads may be removed from the list (or specially

marked to be skipped) during an update. A thread fails to get the signal if it is not in the list

at the time a signal is generated. However, we defined signal delivery to be best-effort because
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there are (other) reasons for signal drop so having signal delivery fail to a thread during an update

is not a violation of the signal delivery semantics. Programming the higher-level software with

best-effort signal delivery has required incorporating timeout and retry mechanisms but these are

required for distributed operation in any case and do not add significant overhead [103]. These

techniques, analogous to techniques used in the transport-layer in network protocols, also make the

Cache Kernel more resilient to faults.

Every shared data structure has a non-blocking implementation. None depend upon universal

transformations or a server module. In our code to date, the only case of queuing messages for a

server module arises with device I/O. This structure avoids waiting for the device I/O to complete

and is not motivated by synchronization issues.

4.6 Performance

I first describe the performance on the ParaDiGM experimental multiprocessor. I then describe

results from simulation indicating the performance of our approach under high contention. Finally,

I describe some aspects of overall system performance.

4.6.1 Experimental Implementation

The operating system kernel and class libraries run on the ParaDiGM architecture [26]. The basic

configuration consists of 4-processor Motorola 68040-based multiprocessors running with 25 MHz

clocks. The 68040 processor has a DCAS instruction, namely CAS2. This software also runs with

no change except for a software implementation of DCAS, on a uniprocessor 66 MHz PowerPC 603.

We have not implemented it on a multiprocessor PowerPC-based system to date.

As of 1997, kernel synchronization used DCAS in 27% of the critical sections and otherwise

CAS. However, the DCAS uses are performance-critical, e.g. insert and deletion for key queues

such as the ready queue and delay queue. The only case of blocking synchronization is on machine

startup, to allow Processor 0 to complete initialization before the other processors start execution.

The overhead for non-blocking synchronization is minimal in extra instructions. For example,

deletion from a priority queue imposes a synchronization overhead of 4 instructions compared to

no synchronization whatsoever, including instructions to access the version number, test for DCAS

success and retry the operation if necessary. This instruction overhead is comparable to that required

for locked synchronization, given that lock access can fail thus requiring test for success and retry.
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The Motorola 68040’s CAS2 [75] is slow, apparently because of inefficient handling of the

on-chip cache so synchronization takes about 3.5 microseconds in processor time. In comparison,

spin locks take on average 2.1 � secs and queuelocks [9, 66] take about 3.4 � secs. In contrast,

the extended instructions we propose in Section 5.2 would provide performance comparable to any

locking implementation. In particular, it requires 16 extra instructions (including the required no-

ops) plus an implicit SYNC in an R4000-like processor (an explicit SYNC on the R10000). A careful

implementation would allow all instructions other than the SYNC to execute at normal memory

speed. The performance would then be comparable to the roughly 24 instruction times required by

the R4000 lock/unlock sequence. Figure 4.3 compares the overhead in terms of instruction times.

Operation Instruction
Times

DCAS using CAS2 on 68040 114
DCAS using LLP/SCP 26
SGI R3000 lock/unlock 70
R4000 lock/unlock 24

Table 4.3: Approximate instruction times of extra overhead to synchronize deletion from a priority
queue. This overhead does not include the backoff computation. MIPS times are in cycles. 68040
times are based on worst-case number of cycles used by CAS2 instruction.

4.6.2 Simulation-Based Evaluation

The actual contention for the kernel data structures in our current implementation is low and I do

not have the ability to create high contention at this time.

To understand how our system behaves under heavy load, we have simulated insertion/deletion

into a singly linked list under loads far heavier than would ever be encountered in the Cache Kernel.

(Further simulation and performance tests of various implementations of stacks are described later

in this section.)

Our simulation was run on the Proteus simulator [21], simulating 16 processors, a 2K-byte cache

with 2 8-byte lines per set, a shared bus, and using the Goodman cache-coherence protocol. All

times are reported in cycles from start of test until the last processor finishes executing. Memory

latency is modeled at 10 times the cost of a cache reference. The cost of a DCAS is modeled at 17

extra cycles above the costs of the necessary memory references. The additional cost of a CAS over

an unsynchronized instruction referencing shared memory is 9 cycles.

Four algorithms were simulated:
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1. DCAS/Cload: Our DCAS algorithm with contention controlled by advisory locking, as im-

plemented on Paradigm and described in Section 5.4.5. The Cload instruction is a load

instruction that succeeds only if the location being loaded does not have an advisory lock set

on it, setting the advisory lock when it does succeed.

2. DCAS/A&F: DCAS algorithm with contention controlled by OS intervention as proposed by

Allemany and Felten [2] and described in Section 2.7.3.

3. CAS: An implementation using only CAS and supporting a much higher degree of concur-

rency based on a technique by Valois [100]
	
.

4. SpinLock: Spin-lock with exponential back-off as a base case.

Each test performed a total of 10,000 insertions and deletions, divided evenly between all processes.

We varied the number of processors from 1 to 16 and the number of processes per processor from 1

to 3. We also controlled the rate of access to the list by each process by doing local “work” between

the insertion and deletion. The work varied from 20 to 2000 cycles.

We were careful to implement contention reduction algorithms for all algorithms. First, con-

tention-reduction is implemented in practice on any real system with high contention. Second, we

wanted to isolate the algorithmic costs themselves. The contention reduction techniques we used

only allowed a single process access to the data structure at a time, allowing other processes access

only if the first were stalled. The only exception was Valois’, which counts increased concurrency

as a feature. For Valois’ algorithm we used exponential backoff to reduce contention after a failed

CAS.

These simulations indicate that the Cache Kernel DCAS algorithms perform as well or better

than CAS or spin locks.

Figure 4.2 shows the performance with 1 process per processor, and minimal work between

updates. The basic cost of 10,000 updates is shown at
� 	 � , where all accesses are serialized

and there is no synchronization contention or bus contention. At
� 	 � , cache contention due

to collisions is small, the hit rate in the cache was over 99% in all algorithms. At more than one

processor, even assuming no synchronization contention and no bus contention, completion time is

significantly larger because the objects must migrate from the cache of one processor to another.

�
It was necessary to derive our own version of the algorithm, as the algorithm presented in [100] is not strictly correct.

This is the natural result of the complicated contortions necessary when using only CAS. In contrast, the DCAS algorithm
is relatively straightforward.
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Figure 4.2: Performance of several synchronization algorithms with local work = 20 and the number
of processes per processor = 1

In our tests, bus contention remained low due to the contention-reduction protocols I used. When

processes/processor = 1 no processes are preempted. In this case the difference between the non-

concurrent algorithms is simply the (small) bus contention and the fixed overhead, because we are

not modeling page faults � . All degrade comparably, although DCAS/A&F suffers slightly from bus-

contention on the count of active threads. The Valois algorithm using CAS exploits concurrency

as the number of processors increase but the overhead is large relative to the simpler algorithms.

The bus and memory contention are so much greater that the concurrency does not gain enough to

offset the loss due to overhead. Further, synchronization contention causes the deletion of auxiliary

nodes to fail, so the number of nodes traversed increases with a larger number of processes
�

. Our

DCAS algorithm performs substantially better than CAS, even granting that the Valois CAS algorithm

allows more concurrency.

Figure 4.3 displays the results from reducing the rate of access and interleaving list accesses in

parallel with the local work. Insertion/delete pairs appear to take 400 cycles with no cache inter-

�
Page faults improve the performance of our DCAS algorithms compared to both locks and CAS. My algorithm out-

performs the others even without page-faults, thus modeling page-faults is superfluous.
�

The Valois simulation in Michael and Scott [69] reports better asymptotic behavior than we do. The difference
appears because the authors are only simulating a FIFO queue. In the FIFO queue algorithm — where insertion always
occurs at the tail and deletion at the head — auxiliary nodes are not traversed in general and thus don’t affect completion
time. In fully general lists auxiliary nodes increase the execution time and memory traffic.
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Figure 4.3: Performance of several synchronization algorithms with local work = 2000 and the
number of processes per processor = 1

ference so adding 2000 cycles of “local work” lets even the non-concurrent algorithms use about 4

or 5 processors concurrently to do useful work in parallel. Beyond that number of processors, the

accesses to the list are serialized, and completion time is dominated by the time to do 10,000 inser-

tion/deletion pairs. DCASwith either form of contention control performs comparably to spin-locks

in the case of no delays and performance is significantly better than the CAS-only algorithm.

Figure 4.4 shows the results when 3 processes run on each processor. In this scenario, processes

can be preempted — possibly while holding a lock. As is expected, spin-locks are non-competitive

once delays are introduced. In contrast, the non-blocking algorithms are only slightly affected by

the preemption compared to the non-preempting runs using the same number of processors. The

completion time of CAS is still larger than for DCAS-based algorithms. While the average time of

the CAS-based algorithm was mostly unaffected, the variance increased significantly in the case of

preemption. Table 4.4 compares the variance between these two experiments.

The increase in variance is not due to delays introduced by one process waiting for another (this

is a non-blocking algorithm). Rather, the increase is due to reference counts held by preempted

processes occasionally delaying the deletion of nodes — when a process resumes after a delay, it

can spend time releasing hundreds of nodes to the free list. Further, when a preempted process holds

a reference count to a node, the increased length of the chain of auxiliary nodes increases the time
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of all list accesses, slowing down the processes that are still running.
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Figure 4.4: Performance of several synchronization algorithms with local work = 2000 and the
number of processes per processor = 3

Overall, DCAS performs comparably to, or better than, spin locks and CAS algorithms. More-

over, the code is considerably simpler than the CAS algorithm of Valois.

In these simulations, the number of processors accessing a single data structure is far higher

than would occur under real loads and the rate of access to the shared data structure is far higher

than one would expect on a real system. As previously noted, contention levels such as these are

indicative of a poorly designed system and would have caused us to redesign this data structure.

However, they do indicate that our techniques handle stress well.

This experiment, which measured completion time, is different than the experiments later in this

chapter and in Chapter 5, where we measure throughput. When we allow multiprogramming and

preemption, the Valois algorithm performs very badly. If a process is preempted while traversing the

list, the reference counts prevent any auxiliary nodes from being deleted. (In a simple experiment

where I terminated a process while it held a reference count, the list continued to grow without

bound). This increases the cost to do insertions and deletions in the middle of the list. In the

throughput experiments, throughput dropped over time (the longer I ran a test, the lower the average

throughput became for Valois), and several processes experienced starvation. In the completion

time experiments reported here, as processors completed their alloted insertions and deletions they
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N Processors 1 Process/Processor 3 Processes/Processor
1 574.0E9 500.1E9
2 117.4E9 279.3E9
3 101.3E9 145.3E9
4 68.0E9 80.8E9
5 67.6E9 11013.2E9
6 69.9E9 80.8E9
7 85.1E9 3775.6E9
8 82.7E9 2099.6E9
9 102.0E9 11171.8E9

10 97.1E9 114.4E9
11 107.5E9 159.9E9
12 141.6E9 40541.5E9
13 145.6E9 76209.6E9
14 157.7E9 256.5E9
15 179.7E9 307.9E9
16 205.8E9 14461.2E9

Table 4.4: Variance of Valois algorithm, for work=2000, comparing 1 process per processor (no
preemption) vs. three processes per processor (preemption).

stopped contending, allowing auxiliary nodes to be deleted, and gradually allowing the entire task

to finish.

4.6.3 Measurements of optimized data structures

DCAS supports non-blocking implementations of common data structures that out-perform all lock-

ing and CAS-based algorithms. I report on representative measurements of two simulated imple-

mentations of stacks using DCAS (one list-based and one array-based) to support this claim. The

DCAS stack algorithms are described in the Appendix in sections D.2.1 and D.2.2. I compared them

against several stack implementations:

� A linked-list implementation of stacks, protected by a spin-lock.

� An array-based implementation of stacks, protected by a spin-lock

� A CAS-based algorithm by Treiber[84], which is non-blocking and represents the stack as

a linked-list. (My implementation is based on the version of Treiber’s algorithm used by

Michael and Scott [69]),
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Figure 4.5: Performance of stacks with 1 process per processor

The test environment was designed to be as friendly as possible to the spin-lock implemen-

tations. Non-blocking algorithms have significantly better worst-case performance than locking

algorithms in the face of long delays. We concentrated instead on the common case when the lock

holding process does not experience long delays. Thus, we did not simulate page faults, and had

only one process involved in the test running on each processor. (Some tests utilized other back-

ground processes, but none ever used more than one process per processor directly accessing the

stacks.)

Each process performed a random number � � � � � � � , of pushes, then looped 10 times

to simulate a simple computation, and then popped off � values. I used the Proteus simulator to

simulate a 32 processor multiprocessor, using the same parameters as described in Section 4.6.2.

All stack implementations used identical exponential backoff algorithms to implement contention

reduction.

The list-based arrays allocated stack-entries from a local free pool; entries migrated from proces-

sor to processor because our test allowed each process to pop off entries pushed by other processes.

The free pool itself was implemented as a stack.

Array-based stacks used only fixed storage, and therefore did not need to access the free pool.

The computation of the random number, the backoff algorithm, the 10-cycle loop between the

pushes and pops, and (where applicable) the allocation and deallocation of stack entries were all
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purely local. Therefore, as the number of processors increased this part of the computation could be

overlapped. Individual pushes and pops can only succeed if the stack were in identical state when

the operation tried to complete. Generally this would imply that the process had exclusive access

to the stack for the entire duration of the operation. Therefore, we would expect to see concurrency

increase with the number of processors until the time spent by � processors performing pushes and

pops equaled the time spent for 1 processor doing all the overlappable computations. The data in

Figure 4.5 is consistent with such a model. All the algorithms (except for array-based stacks using

spin-locks, which has no local allocation cost) show increased throughput with the initial increase

in the number of processors, eventually settling down as the time is dominated by the sequential

access to the stack itself.

One might also expect array-based stacks to perform better than list-based stacks. They do

not require allocation and deallocation of stack entries and so incur roughly half the overhead.

Measurements show that they do out-perform list-based stacks for both non-blocking and blocking

implementations for a small number of processors. Surprisingly, this did not continue to hold true

for non-blocking implementations as the number of processors increased. Cache-miss costs begin

to dominate the performance of the non-blocking implementations for a reasonable number of pro-

cessors. In my tests, the array-based stacks typically caused cache-misses on references to both the

stack pointer and the top element in the array. These misses occured for both push and pop opera-

tions. List-based stacks caused fewer cache misses. First, they allocate the stack entry from a private

per-processor free-pool. All push and pop operations wrote a new value into stack->top. This

write ensured that stack->topwas not in the cache of the next processor that acquired the stack.

However, in the push operation, the write of entry->next almost always hits in the cache be-

cause no other process has touched it since it was last popped. In the pop operation, the write of

top->next to NULL misses in the cache if the immediately preceding operation was a push by

a different processor. However, if the previous push was local, no miss is incurred. If the previous

operation was a pop, then it did not touch the current stack entry which therefore has a chance

being present in the cache.

This pattern does not repeat itself for the lock-based stack implementations. There, the syn-

chronization costs of the lock-based lists continued to be more significant than the cost of the cache

misses. Consequently, the array-based stacks continued to outperform the list-based stacks even as

the number of processors increased.

Both the CAS and DCAS non-blocking implementations out-perform the equivalent locking im-

plementations in all circumstances. For common algorithms (locking and Treiber) [69] reported
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Figure 4.6: Performance of stacks with 1 process per processor, and one background computation

results consistent with ours. That research did not, however, look at algorithms which used DCAS.

The DCAS implementation of list-based stacks out-performs the CAS implementation because

DCAS enables a more efficient implementation of pop. When � and � are the top two elements of

the stack, CAS must protect against a contending process popping � , then pushing
�

, followed by

a push of � . A naive implementation of popwould notice that � was the top of the stack. It would

incorrectly assume that � was still the top of the stack, as opposed to correctly notice that � was

the top of the stack again. A simple pop at this point would effectively pop both � and
�

, leaving

� as the new top of stack. Treiber encodes version numbers in the pointers between each stack

element to detect this problem. My DCAS implementation only needs to straightforwardly check

both stack->top and top->next before popping, requiring no extra space and no version

number computations. It should be noted that this performance advantage is less significant than

the advantage of DCAS linked lists mentioned in the previous section. There, multiple CAS’s were

needed to complete a single update, and therefore performance degraded as the number of processes

increased. In contrast, the performance gap in the CAS stack implementation is not exacerbated by

a larger number of processes (because the CAS update is still done as a single atomic operation on

a double-word)). For stacks implemented as linked lists, DCAS only out-performs CAS by roughly

a constant amount as the number of processes increase.

The case of array-based stacks differs markedly. If the number of contending processes is small,
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Figure 4.7: Performance of stacks with 1 process per processor, and 2 background computations

then array-based stacks out-perform list-based stacks. In systems where we know contention for a

stack is typically low, (which is the common case), we would prefer to use an array-based stack.

Unfortunately, no efficient CAS-based implementation of stacks exists at all — so on machines

without DCAS support, non-blocking array-based stacks are not an option. The non-blocking DCAS

based stack out-performs spin-locks in both average and worst-case time.

4.6.4 Contention Reduction

The results in Section 4.6.2 are one indication of how hardware advisory locking performs compared

to operating system support in the style of Allemany and Felten. In the normal case, the lock-

holder experiences no delays and the waiters detect immediately when the advisory lock is released.

However, when a process is preempted, the waiters cannot immediately detect that. When the

waiter has backed off beyond a certain maximum threshold, it uses a normal Load rather than a

Cload and no longer waits for the lock-holder. Beyond a moderately large number of processes,

the occasional occurrence of this (bounded) delay enables DCAS/A&F to outperform the cache-

based advisory locking. However, the expected behavior of the Cache Kernel is for the waiters to

be on the same processor as the lock-holder (either signal handlers or local context switch). In this

case, the advisory lock does not prevent the waiter from making progress. Therefore, there is no

advantage to the operating system notification and the lower overhead of advisory locking makes it
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preferable.

On the other hand, if extremely high contention (relative to the maximum backoff threshold)

may occur, the Cload approach is unattractive since it does not degrade gracefully. Cload delays

but does not prevent contention under very high load, because the Cload algorithm misinterprets

the lengthy wait for a locked cache line as an undetected long delay. After waiting for the maximum

backoff interval it uses a regular load to acquire the locked cache line. This defeats the purpose of

advisory locking.

The measurements in Section 4.6.2 only indirectly measure the relative performance of the

contention reduction algorithms.

I directly compare the costs of several contention reduction algorithms to understand their rela-

tive strengths. The algorithms I investigate are (a) simple exponential backoff, (b) hardware (using

the Cload instruction in conjunction with cache-based advisory locking), (c) the SOLO protocol

of Allemany and Felten [2], (d) the “current process oracle” approach from Section 3.2.2, and (e)

the approach described there that replaces the oracle with a timestamp-based heuristic. As a base

case, I compare the performance of these contention reduction techniques against an algorithm with

no contention reduction: thus each experiment is run using 6 different techniques.

Note that the DCAS-based software contention-reduction protocols proposed in Chapter 3 has

the same fault-tolerant properties as hardware advisory locking, with only somewhat higher costs

in the case of no contention. It also has the same performance characteristics under high load as

the Allemany and Felten approach. If the software implementation has comparable performance,

then it is to be preferred over hardware solutions. Finally, the approach that generally worked best

(exponential backoff with an entry-timestamp used to distinguish between long delays due to a

stalled computation and long-delays due to many owners), was not strictly non-blocking.

I use each contention reduction algorithm to protect a single DCAS operation. Each process uses

the DCAS to continually update the same fixed pair of memory locations. Each process alternates

between a local computation (simulated by an empty loop) and updates to shared data. Each pro-

cess performs an equal number of “short transactions” and “long transactions” to the shared data

structure. For the results reported here, the gap between transactions is 10 iterations of a loop. The

time spent in a short transaction after reading the current state and before attempting to update that

state with DCAS is another 10 cycles. The time spent in the long transactions is 20 iterations; double

the time spent in short transactions. Note that these times are short relative to the cost of contention

reduction, to synchronization, and to the update.

I use an exponential backoff algorithm with hysteresis. Any process that successfully acquires
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Figure 4.8: Throughput comparison of contention reduction techniques. Number of trans-
action pairs per 100k cycles.
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ownership of some resource after backing off and waiting, records the time of its last interval in-

side the resource. If another process subsequently tries to acquire ownership, and fails, the new

process must use exponential backoff. The first interval it uses for backoff is one half the inter-

val recorded in the resource (the actual wait time is chosen uniformly from the closed interval

[1..(savedBackoffInterval/2)]).

Each of the other contention reduction techniques is also coupled with exponential backoff. This

avoids a mad rush to acquire the resource when it is released by the previous owner.

The timestamp heuristic uses a simple implementation. Instead of recording a process ID with

each owned resource, the process stores a timestamp to signify ownership. If no timestamp is stored

in the owner field, then the resource is unowned. Contention reduction is implemented by checking

whether ((currentTime - stallTime) > timestamp). If so, the waiter assumes the

owner is experiencing a long delay, and steals ownership.

I used savedBackoffInterval as stallTime. Note that savedBackoffInterval

is not an approximation of the average duration of ownership, but rather the product of the owner-

ship duration times the average number of active waiters. In practice stallTime should not be

smaller than the granularity of clock synchronization, so there may need to be a minimum value of

stallTime.

I first compare the contention reduction algorithms using only one process per processor. Thus,

there are no long delays because the processes are never preempted. The y-axis of Figure 4.8 shows

the throughput of each algorithm, counting the number of successful pairs of transactions (one

short, one long) per 100,000 clock cycles. I also show the impact of each algorithm on the rest

of the machine. Figure 4.9 shows the average number of cycles per 100,000 bus cycles that each

processor spent waiting to acquire the bus. Figure 4.10 shows the cache hit rate as the number of

processors increases.

Several observations can be drawn from these graphs.

� For short transactions, it is questionable whether fancy contention reduction algorithms are

worthwhile. The lower overhead of simple exponential backoff allows it to perform as well

or better than the more complex approaches. (As we shall see, other issues (such as fairness)

may render exponential backoff less than ideal.)

� On the other hand, implementing no contention reduction whatsoever seems unwise: Al-

though throughput under low contention is not seriously degraded, bus contention increases

significantly. Further, the incremental cost of a simple contention reduction scheme is low, it
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Figure 4.11: Average number of retries for each
contention reduction technique. This graph rep-
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Figure 4.12: Average number of retries for each
contention reduction technique. This graph rep-
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Figure 4.13: Average number of failing DCAS’s
(which means the work was wasted). Compari-
son between different contention reduction tech-
niques. This data is for short transactions.
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provides protection in the (unusual) event of high contention, and the performance degrada-

tion due to high contention can be severe.

� Cload (hardware advisory locking) performed very well for a very small number of proces-

sors, but eventually the long lock-wait time under contention made Cload perform as poorly

as no contention reduction at all. Waiters detect long lock-wait times but cannot detect that

the cache line was locked by many processors each for a short period of time. Hence, under

high contention waiters eventually steal locked cache lines.

This was not the only problem with Cload. Cload tended to perform inconsistently. There

is some evidence to suggest that some of its erratic behavior was caused by locked cache lines

being evicted from the local cache due to conflict misses (not coherency misses). Further in-

vestigation is necessary to verify whether this is the real explanation for Cload’s inconsistent

performance.

� The timestamp heuristic performed better than I expected. The overhead was comparable to

simple exponential backoff, yet timestamps were more accurate in reducing contention. In

particular, when the number of processes increases, timestamps allow waiters to distinguish

between different cause of long waits. A single process may be stalled while owning a data

structure, or many processes may each own a data structure briefly. Timestamps allow waiters

to avoid interfering or aborting when progress is being made.

Figures 4.11 through 4.14 display measurements which allow us to asses fairness between long

and short transactions. The first two graphs show the number of retries per successful transaction.

The � -axis counts the average number of times a process looped before executing a successful

DCAS. Not all retries involved attempts; the contention reduction algorithm may suggest skipping

the attempt because the data structure is already owned. Figure 4.15 gives a pseudo-code framework

defining retries and aborts. The first two graphs report retries/successes. The second

two graphs report aborts/attempts.

Exponential backoff penalizes the longer transactions, even though the absolute difference be-

tween short and long transactions is negligible. The average number of retries for short transactions

is approximately 1. The average number of retries for long transactions is over 10! In addition to

the unfairness, the number of retries represent wasted processor cycles. 30% of short transactions

are aborted. 90% of long transactions are aborted. Each attempt involves bus communication and

cache interference.
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while (workToDo())
{
do {
skip = 1;
retries++;
backoffIfNeeded();
if (reduce_contention()) {
continue;

}
skip = 0;
attempts++;

} while ((skip==1) ||
(updateSuccessful?()))

successes++;
}
aborts = attempts - successes;

Figure 4.15: Pseudo-code explanation of “retries” and “aborts”.
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Figure 4.18: Comparison of cache hit ratios for
several contention reduction techniques in the pres-
ence of background computations.

In contrast, Allemany and Felten’s approach and the current process oracle have essentially no

aborts. The advisory lock protects the data structure, so most processes attempting to access it

have exclusive access to it. Aborts are only possible if a process is preempted while holding the

lock. Cload can be aborted when the max threshold is reached, but this is relatively infrequent.

Timestamps are more prone to aborts, but they are still 2 to 3 times less likely to be aborted than

exponential backoff.

The number of retries is determined by the backoff algorithm, which should be identical for all

approaches. The variation in number of retries between the different approaches is due to differences

in performance due to bus contention and cache misses — the quicker each retry, the more chances

to retry it had, but the cumulative wait time remained very similar.

Figures 4.16 through 4.29 show the results of the same tests when run with 1 or 2 background

processes per processor. One would expect the behavior to be similar to the earlier graphs, with

performance comparable to performance in the original graphs at points equivalent to ��� � and

� ��� , respectively. (The simulated algorithms are all non-blocking, therefore performance should

be roughly impervious to the long delays, but should reflect the fact that only half (or 1/3) the pro-

cessors are actively engaged in the shared computation.) This seems to be the case for most of the

algorithms. Exponential backoff, Allemany and Felten, and the current process oracle seem to be

unaffected by the long delays and do show the predicted flattening of performance.

However, the performance of Cload suffers disproportionately. Partly this is due to the factors

listed above, which are exacerbated in systems where other processes are running. However these
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Figure 4.19: Throughput comparison of contention reduction techniques. Number of trans-
action pairs per 100k cycles.
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Figure 4.20: Bus contention.
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factors do not seem sufficient to fully explain the measured performance. Further investigation is

needed to understand this behavior better.
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Figure 4.22: Average number of retries for each
contention reduction technique. This graph rep-
resents the performance of the short transactions.
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Figure 4.23: Average number of retries for each
contention reduction technique. This graph rep-
resents the performance of the long transactions.
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Figure 4.24: Average number of failing DCAS’s.
Comparison between different contention reduc-
tion techniques. This data is for short transac-
tions.
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Figure 4.25: Average number of failing DCAS’s.
Comparison between different contention reduc-
tion techniques. This data is for long transac-
tions.

One might also expect timestamps to behave in unpredictable fashion. Unlike Allemany and

Felten and unlike the current process oracle, timestamps are just a heuristic method of detecting

long delays. However, long delays are infrequent, and the heuristic is actually quite reasonable.

Timestamps perform about as well in the face of background processes as they do in the original case

of one process per processor. Furthermore, their overhead is comparable to exponential backoff,

and significantly less than advisory locks (whether using a current process oracle or the technique

of Allemany and Felten). They exhibit slight unfairness with respect to longer transactions, but this

unfairness is on the order of 50% longer wait times, as compared to the factor of 10 exhibited by

pure exponential backoff.
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The main problem with timestamps as a method of contention reduction is that they are not

strictly non-blocking. Further experiments are required to understand their behavior when transac-

tion times have high variance. Given that long delays are rare, it seems reasonable to investigate

increasing the threshold for stealing ownership to some multiple of savedBackoffInterval (e.g.

((currentTime - K*savedBackoffInterval) > timestamp)).
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Figure 4.26: Average number of retries for each
contention reduction technique. This graph rep-
resents the performance of the short transactions.
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Figure 4.27: Average number of retries for each
contention reduction technique. This graph rep-
resents the performance of the long transactions.
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Figure 4.28: Average number of failing DCAS’s.
Comparison between different contention reduc-
tion techniques. This data is for short transac-
tions.
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Figure 4.29: Average number of failing DCAS’s.
Comparison between different contention reduc-
tion techniques. This data is for long transac-
tions.

One final note seems pertinent on the relative performance of the contention reduction schemes.

The effect of aborts versus retries appears to be negligible. This is somewhat surprising. One of the

arguments [2] in favor of advisory locks over retry (with exponential backoff) was that the advisory

locks reduced aborts. Aborts (failing CAS operations) were believed to cause more contention than

simply retrying because a lock was held. An aborted transaction performed the transaction and failed

on the commit. This increases bus traffic and increases the likelihood that another transaction will
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take a cache miss on accesses to shared memory. A retried transaction halts before even attempting

the transaction, and so introduces less bus traffic and doesn’t contend for shared memory (except

perhaps for the words implementing the advisory lock).

However, in my tests aborts did not seem to have a significant adverse impact compared to

retries. This is because in most tests the bus was not close to saturation, so the very slight increase

in bus traffic only marginally increases bus wait times. Cache misses are more relevant. However the

relevant contention is for a single cache line (else there’s little increase in cache misses on remote

processors). At a given level of contention for a single cache line, all contending processes are

equally likely to access those memory locations, and the successful process almost always missed

in the cache regardless of whether contending processes retried or aborted — the cache miss was

due to the last successful transaction, which was usually on a different processor.

It is unclear whether aborts are ever a significant performance issue for specific real applica-

tions. It is clear that if they are a concern, it is only for a particular set of applications. For those

applications, we need to be careful before reducing the number of aborts, or choosing a contention

reduction algorithm that does not eliminate aborts.

The heuristic methods (exponential backoff, timestamp, and Cload(when the cache-line is

evicted)) all experienced aborts. If a real application actually experienced a performance loss due to

the aborts, then the number of aborts (relative to the number of retries) must be reduced. To reduce

the number of aborts, a more conservative approach must be taken before re-attempting to perform

an update. However, attempting a longer wait-period for exponential backoff unacceptably increases

latency even in the case of no long delays. In contrast, the timestamp and Cload algorithms

can increase the threshold at which they steal ownership without reducing the rate of retries — if

ownership is relinquished then there is no latency penalty in the common case of no preemption (the

waiters proceed as soon as they detect ownership is relinquished).

4.6.5 Overall System Performance

We do not have the ideal measurements to show the benefit of non-blocking synchronization for

overall system performance. (There is no blocking version of the entire system, as that would

have entailed many other design changes). However, in other work [103], system performance has

been shown to benefit considerably from the ability to execute code in signal handlers as exploited

extensively by the Cache Kernel object-oriented remote procedure call system. This system allows

restricted procedures, namely those that do not block, to be executed directly as part of the signal

handler invocation that handles a new call. With this optimization, many performance-critical RPCs
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can be invoked directly in the signal handler without the overhead of allocating and dispatching

a separate thread to execute the RPC. Our measurements, reported in the cited paper, indicate a

significant savings from this optimization, particularly for short-execution calls that are common to

operating system services and simulations.

4.7 Related Work

Previous work has explored lock-free operating systems implementations and general techniques for

non-blocking and wait-free concurrent data structures. Very little work has explored optimizations

and simplifications to NBS algorithms by methodically exploiting properties of systems. Some

work, however, has exploited algorithm-specific details to optimize specific NBS implementations.

4.7.1 Lock-Free Operating Systems

Massalin and Pu [64] describe the lock-free (non-blocking) implementation of the Synthesis V.1

multiprocessor kernel, using just CAS and DCAS, as we did. Their work supports our contention

that DCAS is sufficient for the practical implementation of large systems using non-blocking syn-

chronization. In particular, although they initially prototyped non-blocking implementations of par-

ticular data structures using a “universal” construction (implementing the object as a server process,

and enqueuing operations and dequeuing results), they report that, ultimately, DCAS was sufficient

to design custom non-blocking implementations of all their data-structures. No server processes

were needed in their final release. This confirms our experience that, given DCAS, universal con-

structions are not needed for shared data structures.

However, the Synthesis work focused on using a small number of predesigned wait-free and

lock-free data structures (“qua-jects”) inside their operating system kernel. One reason their work

has not been further emulated is their exploitation of application-specific optimizations to implement

data structures. One example is their implementation of a linked list with insertion and deletion

from the middle of the list: it is efficient only because the usage within the Synthesis kernel is

highly constrained and a single bit suffices where a reference count is normally needed. The precise

properties needed by the application to support this are unclear. In contrast, our implementation of

linked lists is general, and is usable by arbitrary application code, assuming they support and that

DCAS is available.
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4.7.2 General Methodologies for Implementing Concurrent Data Objects

Barnes [14], Turek [99], Valois [100], Israeli and Rappaport [46, 47], and others provide techniques

for increasing the concurrency with non-blocking synchronization. However, these concurrent up-

dates have noticeable algorithmic cost and often increase memory contention. These costs appear

to outweigh the actual benefits, because of the low rates of contention in our system. Studies such

as [98, 67], which also reported a low level of contention on kernel and application data structures,

respectively, suggest that low contention might be the norm in more systems than just in the Cache

Kernel.

4.7.3 Exploiting system properties to support NBS

Anderson et. al. [81, 5, 7] have investigated non-blocking synchronization in real-time systems.

Like our work, they simplify and optimize non-blocking algorithms by exploiting properties of

real-time systems. In contrast to our work, the properties they exploit are more narrowly applicable

to systems with real-time properties. Some of these properties and assumptions are unrealistic in

general systems. For example, they depend upon a strict priority order — that is, a lower priority

process never runs while a higher priority process is computing. This eliminates multi-programming

across page faults. In their real-time systems (which have no page faults) such restrictions are not a

problem. In general, however, such restrictions limit the utility of their work.

In a similar vein, Johnson [52] exploits the serial nature of uniprocessor systems to implement

efficient non-blocking algorithms suitable for real-time and embedded systems. His interruptible

critical sections are a form of universal construction requiring no special primitives, minimal op-

erating system support, and relatively efficient performance. However, it is not generalizable to

multiprocessor systems where multiple processes may execute concurrently.

My work tries only to utilize properties of systems that have general utility and benefits inde-

pendent of non-blocking synchronization.

Blumofe [11] and Chesson [28], among others, exploit client-specific properties in order to

implement non-blocking data structures. Blumofe’s work takes advantage of the fact that in the

work-stealing algorithm, only a single processor enqueues or dequeues at the bottom of a deque, and

that other processors only pop from the top of the deque, never push. This effectively eliminates

the need for most synchronization, and allows a non-blocking implementation of a deque using

only CAS. Similarly, Chesson exploits the fact that many queues are multi-writer/single-reader to

implement efficient non-blocking implementations using only single CAS.
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While their work is interesting in overcoming the limitations of systems that support only CAS,

they depend upon properties which are somewhat less generally applicable than the techniques

upon which we depend. Further, DCAS and TSM enable non-blocking implementations of their

data structures in the fully general case, imposing no limitations on clients.

4.8 Conclusions

This chapter showed how careful design and implementation of operating system software for ef-

ficiency, reliability and modularity makes implementing simple, efficient non-blocking synchro-

nization far easier. In particular, I identify type-stable memory management (TSM), contention-

minimizing data structuring and minimal inconsistency window structuring as important for all these

reasons. These techniques are beneficial even with blocking synchronization and yet, together with

efficient DCAS, significantly reduce the complexity and improve the performance of non-blocking

synchronization.

In this chapter (along with supporting algorithms in Appendix D) I demonstrated how each

of these features simplifies or improves NBS algorithms. I showed a number of techniques for

implementing non-blocking synchronization using TSM, version numbers and DCAS. (Appendix

D more fully describes these techniques, as well as others.) In contrast to single CAS without

TSM, these techniques are simple to write, read, and understand, and perform well. Our experience

suggests that good DCAS support is sufficient for a practical non-blocking OS and run-time system

implementation, and that single CAS is not sufficient. In fact, lack of efficient DCAS support in

systems is a potential impediment to using our techniques.

Fortunately, the hardware implementation I propose in the next chapter indicates that it is

feasible to implement efficient DCAS functionality in a modern processor with minimal additional

complexity and full compatibility with the load-store architecture.

Our Cache Kernel experience demonstrates that non-blocking synchronization (NBS) is practi-

cal as the sole coordination mechanism in a well-designed system, provided that programmers can

safely exploit properties of that system. I have identified several important properties useful for NBS

implementation. By explicitly identifying these properties, system designers can be careful not to

violate them, and programmers can then safely write NBS code depending on these properties being

true.
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Non-blocking synchronization significantly reduces the complexity and improves the perfor-

mance of software in the signal-centric design of the Cache Kernel and its associated libraries, es-

pecially with the large amount of conventional operating system functionality that is implemented

at the library, rather than kernel, level.

Our experience suggests that there is a powerful synergy between non-blocking synchronization

and several good structuring techniques for the design and implementation of an operating system

and supporting run-time libraries.



Chapter 5

A Hardware Implementation of DCAS

Functionality

5.1 Introduction

Most current hardware and operating systems do not provide adequate support to make non-blocking

synchronization practical. In particular, the single Compare-and-Swap (CAS) (or, equivalently,

load-linked/store-conditional (LL/SC)) provided on many current processors, al-

though universal, is not sufficient because commonly needed data-structures, such as linked-lists,

priority queues, and hash tables [34] cannot be efficiently implemented non-blocking with CAS

alone
�
.

Double-Compare-and-Swap (DCAS) functionality (a 2 location version of CAS, see Fig-

ure 5.1) is sufficient to implement non-blocking versions of all needed data-structures in real sys-

tems. Moreover, experience with two OS’s, the Cache Kernel [24, 34] and the Synthesis kernel [64],

further support its sufficiency in practice.

In this chapter, I argue that a simple architectural extension to support double CAS is in fact

the ideal approach to supporting software synchronization, based on the benefits of non-blocking

synchronization, the necessity and sufficiency of DCAS, and the cost-benefits of hardware support

over software-only provision of DCAS functionality. I demonstrate that DCAS functionality can be

�

“Efficient” is defined as in Chapter 3. Universality, in this context, means only that non-blocking algorithms for all
data structures are possible using only CAS, not that they are practical or efficient. The practical insufficiency of universal
primitives is not a new phenomenon: although a Turing machine is universal (in a slightly different sense of universal), it
is clearly not a practically efficient design for a real computer.

118
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int DCAS(int *addr1, int *addr2,
int old1, int old2,
int new1, int new2)

{
<begin atomic>
if ((*addr1 == old1) && (*addr2 == old2)) {
*addr1 = new1; *addr2 = new2;
return(TRUE);

} else {
return(FALSE);

}
<end atomic>
}

Figure 5.1: Pseudo-code definition of DCAS (Double-Compare-and-Swap )

provided as a simple extension of current modern processor instruction sets, relying on operating

system and application support for starvation avoidance. I argue that this extension is simple to

implement, builds on conventional processor cache coherency mechanisms, and provides significant

advantages over the best known software-only approaches. I also argue that this implementation is

significantly simpler than more extensive hardware extensions for non-blocking synchronization

that others have proposed. Consequently, the architectural support for DCAS I propose makes the

benefits of non-blocking synchronization available to real software systems and applications with

the minimal cost and maximal benefit.

The next section describes extensions to an instruction set supporting Load-linked/Store-

-Conditional. Section 5.3 describes the implementation of these extensions, using the MIPS

R4000 processor as a specific example implementation. Section 5.4 discusses issues that affected

choices among alternative designs. Section 5.5 compares this approach to a software-only imple-

mentation and Section 5.6 compares my design to other proposed hardware extensions.

5.2 Extensions to LL/SC Instructions

DCAS can be implemented on processors that support load-linked/-store-conditional

by adding two new instructions:

1. LLP (load-linked-pipelined): load and link to a second address after an LL. This load is

linked to the following SCP.
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LLbit
A single bit of state to specify synchronization instructions. Set
by LL, cleared by ERET and Invalidate and read by SCP and
SC.

SCPlast
Register containing the vaddr of the last SCP instruction, or all 1’s.
Set by SCP only if LLbit is set. Set to all 1’s during the WB stage
of every instruction other than SCP.

LLaddr
System Control Processor (CP0) register 17. Contains the physical
address read by the most recent LL instruction. For diagnostic
purposes only.

LLaddr2
Contains the physical address read by the most recent LLP instruc-
tion. For diagnostic purposes only.

SCP-Buffer
Stores the contents of rt (DATA) of the last SCP instruction, pend-
ing a successful SC. Set by SCP only if LLbit is set.

Table 5.1: State used by processor and primary cache controller in implementation of LLP/SCP

vAddr � ((offset
�

 �
� 	

—— offset
�

���� � ) + GPR[base]

(pAddr,uncached) � AddressTranslation(vAddr, DATA)
mem � LoadMemory(uncached,WORD,pAddr,vAddr,DATA)
GPR[rt] � mem
LLbit � 1
LLaddr � paddr
SyncOperation()

Figure 5.2: High level language description of LL rt,offset(base).

2. SCP (store-conditional-pipelined): Store to the specified location provided that no modifica-

tions have been made to either of the memory cells designated by either of the most recent

LL and LLP instructions and these cache lines have not been invalidated in the cache of the

processor performing the SCP.

If an LLP/SCP sequence nested within an LL/SC pair fails, the outer LL/SC pair fails too.

The R4000 “links” the LOAD specified by the Load Linked instruction (LL) to the STORE

issued by the subsequent SC instruction. Each processor maintains a single link bit, LLbit, to

conditionally issue the STORE in the SC instruction. The LLbit is set to 1 by the LL instruction,

and the address is stored in LLAddr. If the LLbit is cleared to 0 before the execution of SC, the
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SC fails and no STORE is issued.

vAddr � ((offset
�

 �
� 	

—— offset
�

���� � ) + GPR[base]

(pAddr,uncached) � AddressTranslation(vAddr, DATA)
mem � LoadMemory(uncached,WORD,pAddr,vAddr,DATA)
GPR[rt] � mem
LLaddr2 � paddr
SyncOperation()

Figure 5.3: High level language description of LLP rt,offset(base).

The LLP’s load similarly establishes a “link” with the subsequent SCP instruction, recording

the address passed to LLP in LLAddr2. It does not change the LLbit. The SCP STORE is a

no-op if the LLbit is clear when this instruction is executed. If the LLbit is set, the STORE is

buffered until after the enclosing SC completes its STORE.

vAddr � ((offset
�

 �
� 	

—— offset
�

���� � ) + GPR[base]

(pAddr,uncached) � AddressTranslation(vAddr, DATA)
data � GPR[rt]
if LLbit then

SCP-Buffer � data
SCPlast � vaddr

endif

Figure 5.4: High level language description of SCP rt,offset(base).

The LLbit can be cleared, causing SC to fail, in the following circumstances.

If the physical addresses translated from (T0) or (T1) are modified then the LLbit is cleared
�
.

The LLbit is also cleared when an external request changes the state of the cache line. If an ERET



is executed (locally), then the LLbit is cleared, and the SC fails. Additionally, any instruction

other than SC that follows an SCP clears the LLbit, and causes the next SC to fail (unless reset by

another LL).

�

Following the example of the R4000, we leave the following case unspecified. If T0 or T1 are not modified, we
sidestep the question of whether SC will necessarily succeed. This leaves open the simplification of clearing the LLbit
(described in the R4000 manual) on any write or cache-miss, causing a “spurious” failure.

�

ERET, or “Exception Return”, is the R4000 instruction used to return from an interrupt, exception, or error trap.
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In the absence of LLP/SCP, the semantics of LL and SC remain unchanged from the current

R4000 ISA definitions.

vAddr � ((offset
�

 �
� 	

—— offset
�

���� � ) + GPR[base]

(pAddr,uncached) � AddressTranslation(vAddr, DATA)
data � GPR[rt]
if LLbit then

CACHE(Freeze,offset(base)) StoreMemory(uncached,WORD,pAddr,vAddr,DATA)
if (SCPlast != -1) then

StoreMemory(uncached,WORD,LLaddr2,SCPlast,SCP-Buffer)
endif

endif
GPR[rt] �

 
 �
——LLbit

SyncOperation()

Figure 5.5: High level language description of SC rt,offset(base). When SCPlast is not set,
the behavior is unmodified from the current R4000 implementation.

5.2.1 Implementing DCAS out of LLP/SCP

Double-Compare-and-Swap is then implemented by the instruction sequence shown in Fig-

ure 5.6 (using R4000 instructions in addition to the LL/SC(P) instructions). The LL and LLP

instructions in lines 1 and 2 “link” the loads with the respective stores issued by the following

SC and SCP instructions. Lines 3 and 4 verify that (T0) and (T1) contain V0 and V1, respec-

tively. The SCP and SC in lines 5 and 6 are conditional. They will not issue the stores unless

(T0) and (T1) have been unchanged since lines 1 and 2. This guarantees that the results of CAS

in lines 3 and 4 are still valid at line 6, or else the SC fails. Further, the store issued by a suc-

cessful SCP is buffered pending a successful SC. Thus, SC in line 6 writes U1 and U0 to (T1) and

(T0) atomically with the comparison to V0 and V1. (Given data structures that are protected by

a version number, the DCAS is actually a Compare-And-Double-Swap (CDS) — the second

value cannot have changed if the version number is unchanged. In these cases a minor optimization

is possible and line 4 can be deleted.)

A distinct LLP instruction is necessary because LL must set the LLbit and LLP cannot touch

the LLbit. We cannot simply nest two LLs. If we were to do so, it would be impossible to dis-

tinguish the proper behavior of the second LL. For example, consider (in a system with no distinct
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/*
* If (T0) == V0, and (T1) == V1, then
* atomically store U0 and U1 in T0 and T1
*/
DCAS(T0, T1, V0, V1, U0, U1)

;; Get contents of addresses in registers.
1 LL T3, (T1)
2 LLP T2, (T0)

;; Compare to V0 and V1. If unequal, fail.
3 BNE T2, V0, FAIL
4 BNE T3, V1, FAIL

;; If equal, and unchanged since LOAD, store
;; new values

5 SCP U0, (T0)
6 SC U1, (T1)

;; Success of SC and SCP is stored in U1
7 BLEZ U1, FAIL

...
FAIL:

Figure 5.6: DCAS implementation using LL/SC and LLP/SCP. Success or failure of SC (and thus of the
DCAS operation) is returned in U1 or whatever general register holds the argument to SC. 1 denotes success,
0 failure. If the next instruction tries to read U1, the hardware interlocks (as it already does for LL/SC) if the
result of SC is not already in U1.

LLP) the behavior of a failed Compare-and-Swap (LL, BNE ... FAIL) followed immedi-

ately by a succesful Compare-and-Swap (LL, SC) versus the case of a single Double-Com-

pare-and-Swap in Figure 5.7. Both issue two LLs to the processor with no intervening SCs.

However, in the first case both LLs (at lines 1 and 3) must set the LLbit, while in the second case

the second LL (at line 2) should not change the state of the LLbit.

LL/SC is available on MIPS, ALPHA, and PowerPC processors, among others. Some machines

(e.g. Pentium, SPARC v9, 680x0) support CAS directly. The 68040 supported DCAS directly by

the CAS2 instruction. It seems feasible to extend Compare-and-Swap to Double-Compare-

-and-Swap using the principles described in Section 5.4, as long as the tight coupling between

processor and cache controller is present. In this thesis I concentrate solely on LL/SC.

5.3 R4000 Multi-processor Implementation

The implementation of the LLP/SCP instructions is described as an extension of the MIPS R4000

processor. This implementation could be adapted to other processors with some minor changes.
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1 LL T3, (T1)
2 BNE T3, V0, FAIL

...
FAIL:

...
3 LL T2, (T0)
4 BNE T2, V1, FAIL2
5 SC U1, (T0)
6 BLEZ U1, FAIL2

...
FAIL2:

1 LL T3, (T1)
2 LL T2, (T0)
3 BNE T2, V0, FAIL
4 BNE T3, V1, FAIL
5 SCP U0, (T0)
6 SC U1, (T1)
7 BLEZ U1, FAIL

...
FAIL:

Figure 5.7: Example showing why a distinct LLP is needed in addition to LL. These two sequences
assume LLP doesn’t exist. They are indistinguishable at the point the second LL is executed, but
the later instructions show that the two LL’s should behave very differently.

Familiarity with the R4000 ISA is assumed.

Implementing LLP/SCP has two requirements: (a) First, the SC and SCP either both succeed or

both fail, and (b) if successful, the words written by the SC and the SCP appear to be simultaneously

updated to any processor reading them.

5.3.1 Atomically Storing Two Values

Atomicity is ensured in two ways, depending on the tight coupling between cache controllers and

processors that is becoming more common.

First, the store of the successful SCP is deferred until the second store (the SC) has also suc-

ceeded. The processor buffers the first store in a special processor register: SCP-Buffer.

Second, the processor does not relinquish ownership of the cache lines in question between

executing the SC and SCP, until both updates have finished. The processor will not commit these

updates unless it held ownership of the cache lines from the time of the LL(P) until the SC instruc-

tion. “Ownership” has different meanings in different cache coherency protocols. We require the

processor to “own” the cache lines in the following senses:

� Other processors must request the value of the cache line from this processor in order to obtain

the value.

� This processor must be notified if it has lost possession of the cache lines (causing the SC to

fail).

� It must be possible to defer responding to a read or ownership request for the duration of one

SC (strictly speaking, for the duration of the MEM pipeline stage, not the entire instruction),
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without losing ownership of either cache line. (An alternative is to respond with the old value

of the cache line, and abort the LL/SC LLP/SCP: flush our change and return. This alternative,

although workable, seems more complicated.)

The atomicity is protected by the cache controller: no processor (including the processor per-

forming the LL/SC) can see an intermediate result of the SC/SCP. The processor guarantees this by

executing the following sequence of steps
�

(see Figure 5.8): It always either completely succeeds,

or completely fails.

0 1 2 3Time:

External Request, (read
or ownership) or cache
doesn’t own cache line

Instruction:

LL bit set

LL bit clear

SCP

SCP

Buffered

SC
(return success)

SC

Cache Locked
External requests deferred

Buffered
SCP written

External
requests,
if any,
serviced

(return failure)

No-OpNo-Op

Non-SC

Figure 5.8: Behavior of Cache Controller during SCP and SC

1. The processor only performs the store specified by the SCP if the LLBit has not been reset.

Once the processor determines that the SCP is executed successfully, it signals the cache that

this is an SCP write that is to be deferred pending a successful SC.

The cache then stores a copy of the entire cache line in SCP Buffer. (The cache must also

maintain its current (pre-SCP) state and contents of the cache line in case the SC fails.) The

cache-controller issues an INVALIDATE and begins to acquire ownership of the cache line.

If there is a coherency conflict before the cache fully acquires ownership, the buffered “store”

does not have to be nullified — clearing the LLbit is sufficient.

�

For simplicity, I describe these steps as if the R4000 had an unpipelined datapath. In the few places where the
extension to a pipelined datapath is not obvious, I comment briefly.
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If a read or ownership request for either of the cache lines arrives now, it is serviced, and the

LLbit is cleared.

2. If the next operation is not an SC the SCP has failed and the LLBit is cleared. (In practice,

this occurs during the ID stage of the pipeline, so the LLBitwill be cleared before the MEM

stage of the SCP.)

If the next operation is an SC and the LLbit is still set, the processor/cache-controller is

committed to completing the SC/SCP. At the commit point the processor has ownership of

the SCP line (else LLbit would have been cleared). The cache must no longer respond to

any coherency requests, but must wait until it processes the deferred SCP buffer.

The cache performs the store specified by the SC instruction. If the cache line is shared, then

an invalidate (or an update, depending on the coherency protocol) must be sent 
 .

The processor is already committed to a successful SC. The success/failure notification mech-

anism of the SC instruction still behaves exactly as in the R4000 specification — it has not

been changed. The processor begins loading of the processor’s register with the result (suc-

cess) of the SC. It begins concurrently with the write of the SC since the cache controller has

already committed to performing both writes.

3. The cache line buffered in the SCP buffer is updated. An Invalidate was already sent for

this line, else the SC could not complete. When this update is complete, the cache can now

respond to any READ or ownership requests.

The cache controller does not respond to any read/ownership requests between the two inval-

idates, so it is impossible for any other processor or cache to see an inconsistent state. In other

words, no processor sees any part of the transaction unless both SC and SCP succeed. (This also

ensures that the reversed order of the writes does not violate total store order, since the reordering

is undetectable.)

The actions above are intended to take place in the first level (primary) cache. Doing these

actions in the secondary cache controller (for an off-chip secondary cache) seems too expensive —

to do so requires the SCP cache line be flushed to the secondary cache on every SCP issue.



This cache line invalidation is only an issue if the cache line is shared. If LL assumes exclusive ownership then this

is not an issue. There are performance arguments for and against exclusive ownership; we simply follow the existing
protocol on any given architecture.
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If, however, there are compelling reasons, then SCP/SC atomicity can be moved off-chip to

the secondary cache controller. In this case the processor must take additional actions. It must

notify the secondary cache controller of the (successful) execution of SCP and SC. On the R4000,

it can utilize the reserved bits of SysCmd to do this. Further, as noted above, it must flush and

invalidate the primary cache line referenced by the SCP instruction (LLAddr2). This is critical,

because the primary cache must not be left with an incorrect version of the SCP cache line if the

SC fails. Flushing LLAddr2 complicates handling both LLAddr and LLAddr2 in the same cache

line. This case must be specially handled by the processor and the primary cache controller, and not

flushed out to the secondary cache.

5.3.2 Detecting Failure

Failure detection is provided by having LL and LLP each record, in an internal processor register, the

cache line referred to by their respective arguments. If the processor notices a loss of ownership or an

invalidation of these lines, it clears the LLbit. Given the cache coherence protocol, the processor

chip is already informed of such an occurence because all cache coherency traffic involving these

cache lines must be visible to the processor. For example, the processor must invalidate the primary

cache if some other processor acquires ownership of the cache line.

If either cache line has been evicted from either cache due to collision, the architecture must

ensure that the processor still sees all the coherency traffic related to that line. We discuss this issue

next, (section 5.3.3), where we discuss changes to the System Interface.

5.3.3 Changes to the System Interface: Cache collisions

In the interval between the LL/P and the SC/P the processor is required to see all coherency traffic

related to both cache lines referred to by the operands of SCP and SC. This normally happens

automatically since the cache lines reside in the primary cache, and this coherency traffic is visible

to the processor.

However, in a direct-mapped cache, one or both of the cache lines referred to by SCP and SC

might be flushed from the cache due to collisions.

The R4000 must already deal with the situation when the LL or SC instruction maps to the same

cache line as its operand. Even when there are separate instruction and data caches in the processor,

a collision in the secondary cache will flush the entry from the primary cache because the R4000

caches preserve the (multilevel) inclusion property [37]. That is, the smaller faster caches must be
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strict subsets of the larger, slower caches.

If the cache line pointed to by LLAddr or LLAddr2 is evicted, it is a system event that is

externally visible on the System Interface, and the external agent (which monitors external cache

traffic on the R4000) is informed. A link address retained bit is set in SysCmd during the processor

read, so that although the processor is replacing the flushed cache line, the processor still sees any

coherence traffic that targets this cache line. If an external snoop or intervention request is directed

at the cache line stored in the link address retained register, and the LLbit is still set, then the cache

controller must return an indication that the cache line is present in the cache in the shared state,

even though it is actually not.

Our design is identical to that defined in the R4000, except that two link address retained regis-

ters are required, two cache lines must be managed, and there are more circumstances where such

collisions can occur. The processor must manage up to four cache lines (one for the SC, one for the

SCP, and one for each of the two addresses). Any pair may now conflict.

It should be noted that deadlock does not arise because of collision, despite the fact that external

cache requests are locked out during the two writes. The cache is not locked until the processor

knows that both writes will succeed.

A different processor implementation (such as the R10000) that maintains separate primary

instruction and data caches, and uses a 2-way set associative L2 cache, may eschew the use of link

address retained registers. In such a processor it is still possible to eliminate pathological failure

of the Double-Compare-and-Swap code in Figure 5.6 without requiring link address retained

registers. Other changes are required, though. First, the processor must relax the inclusion property

for the I-cache, and, second, the SC and SCP instructions must be in the same cache line
	
. Although

the sequence may fail once due to a collision between the instruction and the data, the next time

around we will succeed because the instruction is in the primary I-cache. The instruction sequence

will not pathologically fail � . This approach is more feasible than requiring 3-way (or, more likely,

4-way) caches.

It is important to remember that our concern here is to eliminate failures caused by collisions

between the operands themselves or between the instructions and one of the operands. Such a

pathological failure will never succeed. We do not worry about collisions with other cache-lines

causing the SC to fail — presumably the SC will succeed when it is retried. The specification of

�
The assembler can automatically insert a NOP to ensure this alignment, if necessary.�
Writing arbitrary code using LL/SC is tricky — we recommend using only conventional code sequences. As such it

seems reasonable to optimize the architecture for (a) particular code sequence(s).
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SC and SCP are conservative, they are allowed to spuriously fail (For example, leaving open the

possibility of an implementation that fails on any cache-miss between the LL and the SC).

5.4 Issues that affect the design

5.4.1 Cache-line issues and higher arity CAS �

We exploit the well known
�

fact that transaction conflicts can be detected with almost no overhead

on top of the coherency protocol. This is true regardless of the arity of the CAS � primitive we wish

to implement. However, this indirectly introduces other factors which determine the overhead of

implementing a specific CAS � , possibly introducing a steep cost for ��� � .
If we are to detect transaction conflicts through ownership conflicts, it is essential that every

cache line we care about is currently in the cache, or at least participating in the coherency protocol.

To implement CAS � , for a given � , we need to monitor as many as � cache-lines
�
. Given the pos-

sibility of cache line conflicts, this either requires adding a special fully-associative “transactional

cache” (equivalent to � link-address-retained registers), or else having at least an � -way cache.

For architectures, such as the R4000, which obey the inclusion property it is insufficient to only

have an � -way cache on the processor. All the caches down to memory must be � -way, else a cache

conflict in a secondary cache might evict a cache line from the primary processor cache. Our DCAS

design just squeaks by – two-way caches are not uncommon. However, implementing CAS3 or

higher is no longer a case of making only a small addition to the architecture. Requiring 4-way

caches is a visible burden (in addition to the implementation cost of the associative cache itself,

higher associativity may increase the cost of a cache hit, which may directly effect the CPU’s clock

cycle), and raises the bar for anyone wishing to argue in favor of hardware implementation of CAS � ,

for ��� � .
Since two-way caches are relatively common, and DCAS is sufficient, it will be hard to justify

implementing higher arity primitives.

�

For example, Herlihy and Moss [43] remark that “any [cache] protocol that is capable of detecting ownership conflicts
can also detect transaction conflict at no extra cost.”�

Although we manage � lines, ����� lines have the potential of conflicting, since we must include at least one extra
cache-line for the instructions.
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5.4.2 Deadlock, livelock, and starvation

Given that our instruction set extension requires atomic access to two distinct cache lines, some form

of deadlock avoidance is required. This must be implemented at the instruction level, as software

approaches to deadlock avoidance cannot work if individual instructions deadlock. Fortunately, all

that we require to allow software mechanisms to deal with deadlock is to make sure that instructions

abort in potential deadlock situations, rather than hang.

It is easy to verify that our implementation never deadlocks. The only case of a processor with-

holding resources from another processor is during the atomic write phase following a successful

SC. During that brief period it will not respond to external coherency requests. However, before

it commits to issuing the writes it must guarantee that it already has all the resources it requires

(ownership of both cache lines). Therefore it can proceed, will not wait for any other processor, and

will respond to external requests within finite time.

There is, however, still a concern relating to livelock. A simple example arises if process
� �

uses DCAS on locations A1, A2, and process
� �

simultaneously uses DCAS on locations A2, A1 —

both SCs may fail indefinitely as each successfuly SCP causes a cache-line invalidation in the other

processor.

We restrict the semantics of DCAS to do only what is strictly necessary. Thus, instead of guar-

anteeing a successful write given a successful SCP (conditional on a successful SC, of course), we

only guarantee a write following an SC. Until the processor reaches the SC instruction, the cost of

acquiring exclusive ownership of the cache-line of the argument to SCP can be totally wasted.

The minimalist design of simply aborting at any potential deadlock sacrificed a guarantee of

progress in order to achieve deadlock-freedom. Many systems guarantee that a processor will com-

plete at least one write if it acquires exclusive access to a cache line. Such guarantees help avoid

livelock and starvation by ensuring that some progress is made by the system even during high con-

tention. However, such guarantees are neither needed nor completely effective for instructions such

as SC or SCP.

First, the semantics of SC allow for spurious failure, so the meaning of the “guarantee” is slightly

weaker than for normal writes. In the case of Store, the system must eventually complete the write

in order to make progress. SC may fail and yet the system is still progressing (the instruction can

return).

Second, in the case of SC, livelock and starvation-freedom are also problems at the software

level — trying to implement instruction-level solutions is misguided. Even if we hypothesized a
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livelock-free implementation
� � of SCP/SC at the instruction level this does not prevent starvation

at the system level. Livelock only occurs if the software loops in both processes in a roughly syn-

chronized manner. (As noted, there is no concept of livelock at the instruction level because the

processor returns failure and goes on). If process
� �

and
� �

both loop, inserting and deleting ele-

ments from a single shared list, then nothing prevents process
� �

from succeeding each time through

the loop causing process
� �

to fail each time. If contention that can cause starvation is a possibility,

then the software algorithm must address it (say, by using contention-reduction techniques such as

exponential backoff or advisory locking) in any case.

Third, any solution that prevents starvation also, by definition, avoids livelock. Given that we

must assume looping at the software level for a problem to exist, and given that once we assume

software looping the hardware cannot prevent starvation, and given that any (software) solution

that prevents starvation also prevents livelock, implementing livelock or starvation avoidance in

hardware is unnecessary.

In summary, the best guarantee about progress one can make for SC is weaker than for Store.

Avoiding starvation and livelock at the instruction level is not sufficient to avoid starvation at a

higher level. Given that this must be addressed in software whenever it is an issue, an expensive

hardware solution is unnecessary, provides little or no benefit and need not be implemented.

A guarantee of progress in the case of single SC is similarly unjustified. The difference there,

however, is that the cost of providing a “guarantee” of progress is lower for CAS than for DCAS.

DCAS, or SCP/SC, both issue two writes, while CAS or a single SC only issues a single write. Thus,

for CAS, the cost of guaranteeing progress is cheaper, and does not make deadlock avoidance any

harder.

5.4.3 Performance concerns

One final issue is performance. As long as the cost of DCAS is not more than twice the cost of

CAS, DCAS clearly provides performance advantages. In fact, for many algorithms (a linked list,

for example), there are overall performance benefits of DCAS over CAS even if DCAS costs many

times CAS. The benefits are realized at a higher level, in reduced complexity of algorithms. The

hardware implementation uses information from the cache controller to stop relevant memory traf-

fic, removing the complexity of preventing other processors from seeing intermediate steps. The

���

A simple implementation would delay acquiring the cache lines for both SCP and SC until the SC was success-
ful, and then trying to upgrade both cache-lines to exclusive ownership. If the cache-lines are upgraded in some fixed
processor-independent order (e.g. lowest address first), then the implementation is livelock free.
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hardware implementation also eliminates the (smaller) cost of undoing intermediate writes in the

case of preemption between the two CAS’s. Finally, a hardware implementation piggy-backed on

the coherency protocol pushes the synchronization down to per-cache-line ownership. This elimi-

nates the cost of locking (other than what is already needed within the coherency protocol to ensure

correct cache line ownership) and avoids the need for coarser granularity locks that are potential

hot-spots in the system.

Although we have no measurements of a real hardware implementation (and no proof-of-concept

hardware implementation), it is unlikely that SCP will cost more than SC. More broadly, it is un-

likely that Double-Compare-and-Swap functionality will cost twice as much as Compare-

-and-Swap functionality. DCAS requires the same number of memory operations as two sequen-

tial CAS’s, and only slightly more logic. On the other hand, some mechanism can be shared. For

example, if a SYNC
� �

or a pipeline flush is required, only one would be required for the SC/SCP

pair. In the worst case, where an implementation can share no mechanism, the aggregate cost of

DCAS should be, at worst, twice the cost of CAS. All of our simulations conservatively assume that

a DCAS costs roughly twice a CAS.

An interesting question related to performance is whether LL should only acquire ownership

for read, or whether it should acquire exclusive ownership immediately. The argument in favor of

immediate exclusive ownership is that it overlaps the latency of acquiring exclusive ownership with

the instructions that execute between the LL and SC. It also requires one fewer bus transaction than

first acquiring the cache-line in shared mode and then upgrading to exclusive. The argument against

exclusive ownership is that in the case that the code branches and does not perform the SC (or in

cases where the SCwould fail) deferring exclusive ownership saves an expensive memory operation

and does not impact other processes that have a copy of this cache-line.

This is equivalent to asking whether Compare-and-Compare-And-Swap is a useful opti-

mization over Compare-and-Swap. Compare-and-Compare-And-Swap, or Compare-and-

-Double-Compare-And-Swap, does a non-atomic test of each location for equality with old1

and old2 respectively, in order to avoid the expensive CAS or DCAS. This is analogous to test-

-and-test-and-set, commonly used to implement spin-locks.

Note, that given a hardware LL that acquires exclusive ownership, one can simulate the weaker

LL by doing a normal Load instead, followed by the instructions that are to be protected by LL and

SC. If the SC will be avoided, then the code avoids the LL too, thus providing the same behavior as

� �

An R4000 SYNC forces all prior reads and writes to complete before any subsequent ones start. LL and SC each
implicitly perform a SYNC. The R10000, however, decouples SYNC from LL and SC.
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an LL which only acquires cache lines in shared mode.

Exclusive LL can, if needed, be approximated in a system whose hardware only supports non-

exclusive LL by a simple trick. The code must reserve a dummy location in the same cache line as

the operand of LL. Immediately prior to issuing the LL, the code performs a write to the dummy

location, acquiring exclusive ownership of the cache-line. Unfortunately, this only approximates

exclusive LL (since exclusive ownership may be lost before the LL) and is more expensive (extra

memory operations and bus transactions).

From the hardware point of view, then, the real question is whether there are compelling reasons

to implement LL with exclusive ownership at all. From the software point of view, the question is

whether to code and use a compare-and-compare-and-swap optimization given a hardware

CAS or exclusive LL.

There are several reasons one might suspect that choosing non-exclusive LL or using Com-

pare-and-Compare-And-Swap could significantly improve performance over exclusive LL

or bare CAS.

First, it is well known that test-and-test-and-set, rather than simple test-and-

-set, improves the performance of spin-locks under contention, with little penalty under low

contention. Second, when CAS is implemented by the OS in software protected by a spin-lock,

Bershad [17] advocated the use of compare*-and-compare-and-swap. This operation dif-

fers from compare-and-compare-and-swap in that the former combines the implementation

of CAS and its spin-lock. It tests whether both the lock is free and the data is unchanged, before

acquiring the lock. This approach avoids unnecessary synchronization operations and reduces bus

contention, and is known to be a significant optimization.

Our measurements show that exclusive LL or bare hardware CAS is slightly better than non-

exclusive LL or compare-and-compare-and-swap. The advantage is too slight, however, to

provide a compelling argument for exclusive LL in hardware, all other things being equal. (LL is

typically implemented acquiring ownership only for read, since it is an extension of a normal Load.)

The measurements, do, however, argue against the software optimization of compare-and-

-compare-and-swap, in most cases.

It is worth understanding the difference between my results and the two cases mentioned above.

First, the result is mildly surprising. Second, sometimes compare-and-compare-and-swap

is occasionally a reasonable optimization — it is important to understand when.

Bershad’s compare*-and-compare-and-swap is needed, when CAS is implemented
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in software by the OS, for two reasons. First, it is precisely analogous to test-and-test-

-and-set vs. test-and-set to implement spin-locks. It is better to spin on a cheap local test

and only attempt the test-and-set (accessing the non-cached copy and causing bus traffic) if

the local test succeeds. The second reason is to avoid expensive lock acquisitions if they will be

wasted. If the CAS will fail, it is harmful to acquire the lock — it is expensive for the transaction

issuing the CAS, and also slows down other competing transactions.

If DCAS or CAS are implemented without a lock (e.g. in hardware), then doing a simple (non-

exclusive) read first does not have the same benefits. Non-blocking algorithms do not typically

“spin” in the same sense as spin-locks. Consider the case where the value has not changed, and the

cached copy (and oldval) are up-to-date. A cheap local read from the cache tells the process that

a CAS is likely to succeed — but this means that our reward is to immediately execute the CAS or

DCAS. The latter are expensive memory operations. If the value has not changed, but the cache-line

is not up to date, then the read simply costs an extra memory operation.

Now consider the case where the value has changed and is detected by the preliminary read.

Our simple read will probably not hit in the cache, and will therefore be relatively expensive. In this

case we can avoid executing the DCAS, but we’ve already paid for an expensive read. That isn’t to

say that it had no value: after all, the read is cheaper than a DCAS (and it does not gain exclusive

ownership thus invalidating entries in other caches). This last benefit, however, is of questionable

value. In practice, the odds of DCAS failing are highest when many processors are competing for

the same data-structure. The preliminary read avoids invalidating other caches, true, but one must

remember that most of these other caches had already been invalidated by the transaction which just

recently completed successfully.

So, unlike the case of spin-locks, there is no clear-cut gain here by doing reads to avoid an

expensive failing CAS or DCAS. For purposes of comparison, I ran my tests using both implemen-

tations of DCAS. The results in Figure 5.9 are for a simulated hardware implementation without

this “optimization”, i.e. LL gets exclusive ownership of its operand’s cache line. The results in

Figure 5.10 are for a hardware implementation that includes the “optimization” of allowing LL to

perform shared reads. Figures 5.9 through Figure 5.20 all include measurements with, and without,

LL acquiring exclusive ownership. The measurements support the preceding description, and shows

that the difference between exclusive LL and shared LL is insignificant, and that compare-and-

-compare-and-swap is not a useful optimization. Under low contention exclusive ownership

slightly out-performs ownership for read. Under high contention the degradation is slightly less

severe when LL does not acquire exclusive access, however, the point at which degradation starts
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being noticeable occurs at a smaller number of processors.

In summary, compare-and-(double-)compare-and-swap is valuable only when two

conditions are met. First, a cache hit on the non-exclusive early read must avoid the expensive CAS

(or DCAS) operation. Second, when the code avoids the expensive atomic operation, it must spin

again, and retry.

These two conditions are met when we implement spin-locks, and an equivalent case even

occurs once in the universal transformation I presented in Chapter 3. There it arises in the second

use of DCAS in Figure 3.7 in the routine trans conclude. There, for algorithmic reasons, we

want the current owner of the log to have absolute priority over all other transactions, and not allow

any other transaction to cause the owner’s DCAS to fail. When trans conclude loops, it sets id

to NULL — expecting its own DCAS to fail until the current transaction relinquishes ownership of

this log (which sets log->id to NULL). When log->id is not NULL, then trans conclude

is able to skip the DCAS, abort early, and loop again.

5.4.4 Speculation and LLP/SCP

Some modern processors use speculation. The CPU executes instructions before it knows whether

the instruction should execute. For example, the CPU may fetch and execute instructions beyond

a branch before determining whether the branch is taken or not. The effects of the instruction are

either withheld until the instruction commits, or else are undone if the instruction should not have

been executed.

Speculation raises two issues with respect to LLP/SCP.

The first issue is whether the SC should succeed or not. Consider a speculatively executed

instruction that follows an SC. It may flush a cache line used by SC or SCP before the LLbit is

tested by SC. This can happen either due to dynamic scheduling or by a memory operation done in

an earlier stage in the pipeline. Should this clear the LLbit and cause SC to fail?

The second issue is how to couple the two writes (from SCP and SC) if SC were to be specula-

tively executed. The simple scheme outlined in this chapter is not feasible in the face of dynamically

scheduled speculative instructions.

The simplest solution to both of these problems is to prevent speculative execution after an

SC. In fact, this is the solution already effectively taken by the R10000 (the issue of speculative

execution causing SC to fail is equally applicable to single LL/SC). MIPS recommends that 32

NOPs be inserted after each SC (the R10000 assembler inserts these automatically), precisely to

avoid this sort of problem.
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5.4.5 Hardware Contention Control

As a further extension, a processor can provide a conditional load instruction or Cload. The

Cload instruction is a load instruction that succeeds only if the location being loaded does not

have an advisory lock set on it, setting the advisory lock when it does succeed.

With Cload available, the version number is loaded initially using Cload rather than a normal

load. If the Cload operation fails, the thread waits and retries, up to some maximum, and then uses

the normal load instruction and proceeds. This waiting avoids performing the update concurrently

with another process updating the same data structure. It also prevents potential starvation when one

operation takes significantly longer than other operations, causing these other frequently occurring

operations to perpetually abort the former. It appears particularly beneficial in large-scale shared

memory systems where the time to complete a DCAS-governed operation can be significantly ex-

tended by wait times on memory because of contention, increasing the exposure time for another

process to perform an interfering operation. Memory references that miss can take 100 times as

long, or more, because of contention misses. Without Cload, a process can significantly delay the

execution of another process by faulting in the data being used by the other process and possibly

causing its DCAS to fail as well.

The cost of using Cload in the common case is simply testing whether the Cload succeeded,

given that a load of the version number is required in any case.

Cload can be implemented using the cache-based advisory locking mechanism implemented

in ParaDiGM [26]. Briefly, the processor advises the cache controller that a particular cache line

is “locked”. Normal loads and stores ignore the lock bit, but the Cload instruction tests and

sets the cache-level lock for a given cache line or else fails if it is already set. A store operation

clears the bit. This implementation costs an extra 3 bits of cache tags per cache line plus some

logic in the cache controller. Judging by our experience with ParaDiGM, Cload is quite feasible

to implement. However, the software-only contention reduction protocol described in Chapter 3 is

comparably effective at reducing contention under reasonably low contention, and has only slightly

more overhead in the case of no contention. Under high contention, Cload, by itself, helps, but

requires additional software mechanisms to be competitive with the software-based algorithms de-

scribed earlier in Chapters 3 and 4. Further, under very high load the contention reduction achieved

by Cload appears brittle. Further experiments are needed to understand how to control Cload’s

effectiveness in such situations. Given the slight performance benefit, contention reduction alone

is not sufficient to justify implementing a Cload instruction. If one exists for other reasons, of

course, it may be exploited for contention reduction.
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5.5 DCAS: Hardware vs. OS implementation

DCAS functionality (as well as CAS � (n-location CAS)) can be implemented in software with OS

support, using a technique introduced by Bershad [17]. DCAS is implemented by a few instructions,

using a lock known to the operating system. In the uncommon event that a process holding this lock

is delayed (e.g. by a context switch, cache miss, or page fault) the operating system rolls back the

process out of the DCAS procedure and releases the lock. The rollback procedure is simple because

the DCAS implementation is simple and known to the operating system. Moreover, the probability

of a context switch in the middle of the DCAS procedure is low because it is so short, typically a

few instructions. Thus, the rollback cost is incurred infrequently.

This approach has the key advantage of not requiring hardware extensions over the facilities in

existing systems.

However, the software approach has only been tested for single CAS and under situations where

all processes were applying CAS to a single data-structure [17]. The measurements presented there

are not directly relevant to an OS/software implementation of DCAS. The case of a single write pos-

sesses certain properties that make it more amenable to a software implementation than the multiple

write case: (a) the write is atomic, so no backout or roll-forward of actual data modifications is

required. The lock must simply be cleared and the PC be reset. (b) Since there’s only one write,

there’s no issue of other processes seeing “intermediate states”.

There are also a few other concerns with the software approach for primitives such as DCAS.

First, there is the cost of locking. The straightforward implementation requires the DCAS proce-

dure to access a single common global lock from all processes. In a multi-level memory with locks

in memory, the memory contention between processors for this lock can be significant.

It is difficult to reduce contention on the Bershad lock when a single lock couples every data

structure. A more sophisticated implementation will try to associate different locks with each DCAS

instance, or reduce contention by some other means of using multiple locks. Then there is more cost

and complexity to designate the locks and critical section to the operating system and to implement

the rollback. The locking and unlocking also modifies the cache line containing the lock, further

increasing the cost of this operation because writeback is required. Finally, using multiple locks

re-introduces the possibility of deadlock, and code dealing with deadlock introduces another layer

of complexity.

However, assume all these obstacles can be overcome, and assume that the cost of determining

which lock(s) to acquire is zero. The result of using multiple locks is to have each single lock protect
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a smaller number of locations or data structures. I parameterized all my tests by � , the number of

independent locations protected by each lock. Increasing the number of locks simply shifts the

performance curves to smaller values of � per lock. Thus, the performance results in Figures 5.9

through 5.14 can be used to provide an upper bound on the performance improvements possible by

the more sophisticated approach. At best, multiple locks reduce the ratio of data structures to locks,

but does not eliminate the lock as bottleneck.

At first glance, an attractive approach seems to be allowing the software to specify the lock

meant to control access to the memory locations, and have the lock passed as an argument to the

routine implementing DCAS. If such a scheme could work, then contention on the lock should be

no worse than contention on locks in a blocking implementation — which we know to be low. The

problem with such an approach becomes apparent when we consider the linked list example from

Chapter 4. Descriptors can move from one list to another. If a processor descriptor moves from the

ready queue to the free list, and two processes simultaneously try to delete that descriptor from both

lists then each process may call DCAS under the protection of a different lock. This will allow each

process to see intermediate state introduced by the other process — in short DCASwill not be atomic.

Either the free list and the ready queues must share a single DCAS lock, or finding the appropriate

lock must be a more complicated and expensive approach based on individual descriptors.

A more complicated implementation of compare*-and-compare-and-swap using queuelocks [9,

66] instead of spinlocks might help here, but the complexity of such a scheme is high. I have not

investigated this approach.

Using the Proteus parallel architecture simulator [21] I compared the OS approach to a hardware

implementation to determine the impact of a single global lock. I simulated a 64 processor multi-

processor with a shared bus using the Goodman cache-coherence protocol and a cache with 2 lines

per set. Memory latency is modeled at 10 times the cost of a cache reference. The cost of a DCAS

is modeled at 17 extra cycles above the costs of the necessary memory references. The additional

cost of a CAS over an unsynchronized instruction referencing shared memory is 9 cycles
� �

.

We varied the amount of work (i.e. computation other than synchronization in each transaction),

and the number of active processors. The measurements reported in [17] were for systems in which

there was a single data structure as well as a single global lock. Realistically, the number of data

structures would usually be greater than one. We wanted to measure the impact of a single global

lock protecting DCAS on multiple data structures. Our tests therefore varied the number of data

� �

As noted in Section 5.4.3, this penalty for DCAS over CAS is conservative. It is unlikely that DCAS would actually
cost twice as much as CAS.
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structures being accessed simultaneously on the system.

We tried to use roughly the same test as Bershad did in [17]. Our test consisted of each active

processor continually performing transactions. The aggregate throughput results are in units of suc-

cessful transactions per 100,000 bus cycles. Each transaction consisted of a processor randomly
� 


choosing one of the � data structures, reading its state, performing � cycles of “work”, and writing

a new state (if the structure had not been modified in the interim). Note that the � cycles of “work”

are performed after reading the initial state and before updating with the new state. Thus it was part

of the transaction. Each structure’s state was recorded in 2 words so the update could be done in a

single DCAS. The structures were each on their own page of virtual memory. Unlike the algorithms

in the previous chapters, we do not employ any contention reduction techniques here, since we want

to understand how DCAS behaves under contention.

I limited the simulation reported here to one process on each processor and did not take any

page faults. Thus there were no preemptions, no long delays and we never had to roll back. This

is, in many ways, a best-case scenario for the OS approach — we never incurred any OS overhead.

Any change that introduced rollback would have made the OS approach look worse compared to

the hardware implementation.

In spite of stacking the odds in favor of the OS approach, the impact of the global lock is still

significant. I display representative results in Figures 5.9 through 5.11. They report throughput as

a function of the number of active processors when work = 100 cycles (so the base synchronization

cost is about 10% of the total cost of a transaction), and as we vary the number, � , of data structures

being accessed. For OS assisted DCAS throughput drops noticably as the queue for the global lock

and the cost of transferring the lock’s cache line becomes comparable to the total cost of a single

transaction. The throughput of the hardware DCAS implementation, however, scales up roughly

as the number of processors approaches the number of data structures. Contention remains low

for individual data structures until the number of processes is several times the number of data-

structures.

The performance difference is still noticeable on systems with lower access rates. Tests with

much larger values of work (e.g. lower access rate) show the same shape curves, but the peak is

shifted to a larger number of processors. Figures 5.12, 5.13 and 5.14 show the data for work =

1,000 cycles, so the synchronization cost is only about 1% of the total cost of a transaction. Figures

5.15, 5.16 and 5.17 show the results measured while holding the number of structures fixed at

� �

The overhead of random and setting up each transaction amounts to over 120 cycles. The cost of synchronization,
not including spinning on the lock, averaged a little under 30 cycles.
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Figure 5.9: Throughput of system
with work=100 using hardware DCAS.
Throughput increases as the number of
structures increase. When the number of
processors increases to a point compara-
ble to the number of structures, memory
contention begins to degrade throughput.
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Figure 5.10: Throughput of system with
work=100 using hardware DCAS with-
out acquiring exclusive access on an LL.
Degradation due to contention is slightly
less severe than with exclusive owner-
ship in Figure 5.9. For low contention,
throughput is slightly worse.
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Figure 5.11: Throughput of system with work=100 using OS assisted DCAS. Negligible gain in
throughput as the number of active structures increases because of contention on the global locks.
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Figure 5.12: Throughput of system with
work=1000 using hardware DCAS, where
LL(P) acquires exclusive access of the
cache line. Throughput still increases as
the number of structures increase.
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Figure 5.13: Throughput of system with
work=1000 using hardware DCAS with-
out acquiring exclusive access on an LL.
Throughput is comparable to Fig. 5.12.
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Figure 5.14: Throughput of system with work=1000 using OS assisted DCAS. Small gain in through-
put as the number of active structures increases. The global locks are still hot-spots, although syn-
chronization overhead is only around 1% of the time for an individual transaction.
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� 	 � �
and varying work, � , from 1 to 10,000 cycles. As a point of reference, [59] measured

synchronization cost for fine grained parallel simulation of multiprocessors at 70 to 90% of run-

time. This corresponds most closely to the curves with work = 10 cycles. So, at least one real system

would suffer an even worse penalty due to OS rather than hardware DCAS than Figures 5.9 through

5.14 would suggest. For comparison, according to [102], 3 of the programs in the SPLASH-2

benchmark suite spend upwards of 30% of their runtime spent in synchronization, another 3 exceed

10%, and the remaining 6 spent between 2 and 10% of their run-time performing synchronization.

Thus all would be comparable to our experiments with work between 10 and 100 cycles.

It is instructive to note that the lower the contention on individual data structures the more

significant the advantage of hardware DCAS over OS support. Real systems may show even more

benefits than demonstrated in Figures 5.9 through 5.11 on page 140, since most are designed to

exploit locality and minimize contention. I modified the simulation to improve the locality of the

data structures. In the modified experiment, each processor accessed a single structure 95% of the

time (the structure numbered PID mod nstructs). The other 5% of the time it performed an

operation on a structure chosen at random, uniformly, from all the structures. Figures 5.18 through

5.20 show representative results for the modified experiment which exhibits more locality.

For hardware DCAS it is possible to restructure an application to have fine-grained parallelism,

and a high access rate, as long as the structure of the application preserves temporal and spatial

locality. For OS-supported DCAS, the global lock causes hot-spots that are difficult to eliminate

through restructuring.

Beyond the issue of contention on the global lock, other issues are relevant. The second issue, on

multiprocessors, is that care must be used by readers of shared data structures if they want to support

unsynchronized reads. Without depending on the lock, readers can see intermediate states of the

DCAS, and read tentative values that are part of a DCAS that fails. In addition to the higher cost of

executing more instructions, requiring synchronization for reads significantly increases contention

on the global lock
�

�

. In contrast, systems that provide hardware DCAS require no additional read

synchronization — the DCAS itself guarantees that no intermediate results will be visible. Further

experience and measurements are required to determine if this is a significant issue on real systems.

Third, the OS approach must treat asynchronous handlers (interrupts or signals) specially. Either

interrupts or signals are disabled during the body of the DCAS, or else we must treat each interrupt

� �

In the Cache Kernel, the use of Type Stable Memory-Management (as described in Section 4.2) reduces the danger
of unsynchronized reads because the reads cannot cause type errors. Writes are protected by the global lock, and the final
DCAS will detect that the unsynchronized reads were suspect, and fail. This does not help totally read-only operations,
though.



5.5. DCAS: HARDWARE VS. OS IMPLEMENTATION 143

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50 60

T
hr

ou
gh

pu
t (

xa
ct

io
n/

10
0k

C
yc

le
s)

Processors

hw 64 structures

W=1
W=5

W=10
W=50

W=100
W=1000

W=10000

Figure 5.15: Throughput of system with
64 structures using hardware DCAS. LL
acquires exclusive access to the cache
line. With 64 structures, there’s a reason-
able amount of concurrency. But because
there’s no locality, throughput tops out
after a handful of processors. For large
number of processors, throughput is dom-
inated by contention costs.
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Figure 5.16: Throughput of system with
64 structures using hardware DCAS with-
out acquiring exclusive access on an LL.
This optimization has very little impact
over exclusive access as explained in the
text.
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Figure 5.17: Throughput of system with 64 structures using OS assisted DCAS. No gain in through-
put as the number of active structures increases since all processes convoy on the global lock.
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Figure 5.18: Hardware DCAS, LL exclu-
sive access, mostly local structures.
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Figure 5.19: Hardware DCAS, LL no ex-
clusive access, mostly local structures.
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Figure 5.20: OS assisted DCAS, mostly local structures.
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as a context switch and check to see if we need to roll back. An additional (but minor) consequence

of this is a loss of portability for code that might interlock with asynchronous handlers, The cost

of disabling asynchronous signals is often high enough (especially on processors that require an

off-chip controller to disable interrupts) so that such code would be avoided in library routines used

by functions that did not interact with asynchronous handlers.

Finally, the Bershad mechanism seems harder to test under all conditions. For instance, it is

possible that one of the write operations that the rollback needs to undo is to an area of memory

that has been paged out or that one of the addresses may fault. The system also needs to ensure

that a thread is rolled back out of any DCAS critical section if it is terminated. We believe our

hardware implementation is simpler to verify and operates naturally on top of the virtual memory

management of the system and on top of directly accessible physical memory at the lowest level of

the system software.

5.6 Related Work

Most processors provide at most single Compare-and-Swap (CAS) functionality to support non-

blocking synchronization. A few processors such as the Motorola 68040 provide a multi-word

atomic instruction but that functionality is rare and is not present in any RISC processor to our

knowledge. The RISC-like extension that I propose in Section 5.2 suggests that it is feasible to

support DCAS functionality in modern processors without significant changes.

Other proposals for adding hardware support for non-blocking synchronization either err on the

side of too much or too little. The maximalist proposals are too complex or expensive, so the odds

of implementation are low. The minimalist proposals do not provide enough functionality to be

useful in a wide enough range of cases.

Transactional Memory [43] proposes hardware support for multiple-address atomic memory

operations. It is more general than DCAS but comes at a correspondingly higher cost. The pro-

posed hardware implementation requires six new instructions, a second set of caches in the pro-

cessor, twice the storage for cache lines actively involved in a transaction, and a more complicated

“commit” protocol. Transactional Memory avoids issues of cache collisions by (a) maintaining a

completely separate “transactional cache” and (b) mandating that the transactional cache be fully

associative. Both these features significantly complicate the processor/cache controller implemen-

tation. Further, a fully associative primary cache would either require a longer clock cycle, slowing

down the entire machine, or would involve changes to the data-path to deal with two different hit
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times in the 3 memory stages of the R4000 pipeline. LLP/SCP appears to be a more practical

solution because DCAS functionality is sufficient and significantly simpler to implement.

Oklahoma Update [93] provides an alternate implementation of multiple-address atomic mem-

ory operations. Rather than duplicating entire cache lines involved in transactions (as Transactional

Memory does), Oklahoma Update requires only a reservation register per word used in their version

of Load Linked. This register contains flags plus two words . This contrasts with our imple-

mentation which requires a “link address retained” register per word and a single cache-line buffer

for the delayed SCP. Our design can also work with a word register instead of an entire cache line

to buffer the SCP. However, this approach adds complexity to the chip’s logic, slows down the

SC and increases the time the cache is locked so the savings are questionable. The Oklahoma

Update attempts to implement some features in hardware (e.g. exponential backoff or sorting ad-

dresses to avoid deadlock) which are better done in software, and which needlessly increase the

complexity and size of the chip. Measurements have shown that, for both blocking [9] and non-

blocking [39, 42] algorithms, exponential backoff needs tuning to perform well. It therefore seems

especially questionable to implement this in hardware. Also, buffering of certain requests that come

in during the “pre-commit” phase can cause two processors with non-interfering reservation sets to

delay each other, increasing contention. This arises from the policy of making the commit phase

blocking. Consider processors
� �

,
� �

and
� 


.
���

accesses cache lines Y,Z,
� �

X,Y, and
� 


W,X

(addressed in ascending alphabetical order).
� �

and
� 


should not interact. However, if
� �

holds

Y and Z and
� �

holds X, then when
� �

asks
���

for Y,
� �

stalls, and buffers
� 


’s request for X.

Thus,
�	�

delays
� 


. Longer chains can be constructed. This is not as bad as the shared global

lock required for the OS/software implementation, but does raise some questions about scalability.

Further measurements would be required to determine whether this is significant in real systems.

The answer depends upon the degree of interaction between atomic updates and the number of pro-

cessors in typical systems. Finally, the Oklahoma Update does not guarantee consistency unless the

programmer exercises care in performing at least one write among any set of reads shared among

multiple transactions.

Both Transactional Memory and Oklahoma Update permit contingent writes to occur in the

middle of a transaction. This adds complexity to the implementation since processors must keep

the old values around in order to undo any modifications if the transaction is aborted. Further,

the processor must allow programs to read the updated value at later stages of the transaction. In

contrast, our proposed DCAS implementation requires both writes to occur consecutively (in the

SCP and SC). We know at the start whether the writes will succeed or not, and the writes occur
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atomically, so only the SCP value needs to be buffered. No processor can ever legally read the

buffered SCP value, so no changes need to be made to the normal read data path.

These proposals also differ in their approach to deadlock avoidance. Transactional Memory does

not relinquish ownership to requestors during a transaction. A failed attempt to acquire ownership

aborts a transaction, avoiding deadlock. An attempt to acquire ownership from a completed or

failed transaction succeeds. The Oklahoma Update relinquishes ownership to the requestor until

the precommit phase, at which point it defers all new external requests (requiring an extra buffer)

until after the commit. Deadlock is avoided by ordering requests, but as noted above chains of

non-interacting processes can delay each other. Our implementation relinquishes ownership and

aborts, until the commit point. We commit only if we own both cache lines, and then defer requests

during the two actual writes by SC and SCP. Deadlock is avoided by aborting the owner upon loss

of ownership. We are more likely to abort a running transaction before the commit point than either

Transactional Memory or Oklahoma Update. However, the addition of other forms of contention

reduction, required in any event, reduces the likelihood of an ownership request arriving before the

DCAS. This is a good balance — deadlock is avoided simply and cheaply, but the odds of ownership

loss are low.

These different designs arise because of different assumptions regarding the number of memory

locations that should be atomically updatable at one time. The Transactional Memory paper conjec-

tures between 10 and 100 and Oklahoma Update places the knee at 3 or 4. If implementation were

free, then more locations are better and more powerful. However, our implementation at 2 (DCAS)

is by far the simplest extension to existing processor designs. A key contribution of this thesis is

evidence that indicates that DCAS is sufficient for practical performance, making the extra hardware

complexity of the other schemes unnecessary. In Chapter 3 we demonstrate that while DCAS pro-

vides significant performance over CAS, CAS3 and higher arity primitives only offer incremental

improvements over DCAS.

James [48] also aims for a minimalist proposal, arguing for even fewer locations than DCAS. He

proposes a hardware implementation of Conditional Lock (C-Lock). C-Lock atomically

stores new in *addr2 if-and-only-if addr1 contains old. Since there is only one write, issues of

starvation do not arise, and the hardware implementation is simplified.

Unfortunately, C-Lock cannot efficiently synchronize some common data structures imple-

mented in Appendix D. It was designed to use addr1 as an advisory lock over a complex data

structure. By using an advisory lock, Conditional Lock can be used to implement transac-

tional memory in software. Careful examination of the algorithms I present in Chapter 3 shows that
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replacing DCASwith C-Lock increases even the complexity of the worst-case run-time of software

transactional memory. Although this is not a proof that C-Lock can never achieve comparable re-

sults, I note that the cost is offset by the fact that DCAS can solve the Leader Election problem

or Maximal Independence Set in � ��� � , while C-Lock cannot. The former problem shows up (al-

though in hidden form) in several places in the universal transformation algorithm. Thus DCAS is

still needed.

Further, the argument for C-Lock over DCAS rests not on the sufficiency of the primitive, but

on the simpler implementation of C-Lock. However, C-Lock is only significantly simpler than

DCAS if we try to ensure forward progress, which we defer to software. Given this, we find that

C-Lock must still manage two cache lines, must still ensure that the first was not modified during

the write, and must not allow anyone to gain exclusive ownership of the read-only cache-line during

the write. The only savings is that C-Lock has only one atomic write, while DCAS has two. The

savings of a small amount of logic and a buffer for the deferred cache-line do not seem to make up

for the lost DCAS optimizations to common data structures.

5.7 Conclusions

I show that efficient Double-Compare-and-Swap functionality can be provided by a mod-

est extension to current processor instruction sets. The simplicity of the instruction extension was

demonstrated by describing two additional instructions for a MIPS-like instruction set, LLP/SCP,

and their implementation. The new instructions build on existing mechanism for the LL/SC in-

structions that are already provided to support single CAS and locking functionality. These same

techniques can be applied to other instruction set architectures as well.

Hardware complexity is reduced by depending upon functionality already provided in soft-

ware. The operating system scheduling support ensures that no process, including interrupt routines,

can starve another or cause excessive contention by high rates of preemption. Additionally, non-

blocking algorithms typically include retry loops (that incorporate backoff to reduce contention)

that can eliminate livelock. These mechanisms are required even with conventional synchronization

and are a necessary part of operating system functionality. Providing this support in software avoids

complicating the hardware support to (attempt to) address this problem.

I show that increased complexity of hardware implementations of higher arity primitives may

arise in unexpected places, such as in constraints imposed on secondary caches. Such constraints

can make the costs of implementing non-blocking primitives non-linear in the number of locations.
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This non-linearity, coupled with the sufficiency of 2-location primitives, makes DCAS the “sweet

spot” for hardware implementation.

While experimenting with simulated hardware alternatives, I also demonstrate through argument

and measurement that a commonly applied optimization to synchronization software is not generally

applicable to non-blocking primitives. Protecting CAS by a local test is unlikely to yield significant

performance improvements because in the case of non-blocking synchronization the test is repeated

(expensively) for cache misses, while in spin-locks the test is repeated (cheaply) for cache hits.

I show that my proposed hardware mechanism is faster, safer and degrades more gracefully

under contention than a software implementation. In particular, contention on shared global locks

for synchronization imposes a significant cost, because even though the access rate for individual

data structures might be low, the cumulative rate on the shared lock grows quickly.

This work identifies an important example of carefully dividing functionality between hard-

ware and software. The hardware implementation of DCAS is simplified because starvation and

deadlock avoidance are implemented in software. The software implementation of non-blocking

applications is simplified because atomicity is implemented in hardware. More generally, without

hardware DCAS support, software ends up being slow, complex and fault-intolerant, either because

it uses blocking synchronization techniques or because it attempts to implement non-blocking syn-

chronization in terms of limited primitives like single CAS. However, with more complex hardware

support than that required for DCAS, the hardware is more expensive, complicated and possibly

slower than necessary, given that DCAS is actually sufficient for software needs.

I conclude that the modest architectural support for DCAS that I propose here is an important

missing link necessary to make non-blocking synchronization practical. As the rest of this thesis

argues, non-blocking synchronization is itself an important enabling technology for the efficient

development and deployment of concurrent and parallel software systems in general.



Chapter 6

Conclusions

This thesis demonstrates that a modest amount of hardware support and a small set of software struc-

turing techniques allow efficient non-blocking synchronization of concurrent systems. Non-block-

ing synchronization avoids significant problems with blocking synchronization such as deadlock

and priority inversion.

An efficient implementation of DCAS goes a long way towards eliminating the performance

problems and conceptual difficulty with non-blocking algorithms. No efficient non-blocking im-

plementations of critical data-structures are known without DCAS support. As noted in Chapter 4,

DCAS is sufficient to implement all performance critical shared data structures we have encoun-

tered in practice. Further, as shown in Chapter 3, DCAS enables space-efficient and asymptotically

optimal worst-case time algorithms for universal transformations. Such transformations allow pro-

grammers to write easy to understand sequential specifications and automatically transform them to

equivalent non-blocking concurrent implementations. The identification of DCAS arose from asking

a different question than most other researchers. Rather than asking “What are the best non-block-

ing algorithms we can design with the current primitives?”, I ask “What are the best primitives we

can use to design non-blocking algorithms?”

Another contribution of this thesis is the demonstration that hardware DCAS is implementable

on RISC architectures, given existing support for single CAS functionality. Chapter 5 describes my

proposal in detail. Partly, the increased practicality of my approach over past approaches is related

to the identification of DCAS as the ideal functionality — not trying to implement too much. Partly,

it is the realization that much of the complexity can be deferred to software — indeed it must be

deferred to software. Solving problems (such as starvation) in hardware, would still require software

solutions. Software solutions obviate the need for a hardware solution (as long as the hardware

150
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instruction is deadlock free). Therefore, the hardware implementation of starvation avoidance is

superfluous.

Efficiently supported DCAS would allow fully-synchronized standard libraries and operating

system software to be portable across multiprocessors and uniprocessors without extra overhead or

code complication. It would allow parallel architectures to use software developed for uniproces-

sors, relying on the (non-blocking) synchronization required for signals to handle serialization in

the parallel processing context.

Finally, NBS can improve system structure. This is counter to the folk wisdom that non-block-

ing synchronization introduces excessive complexity. Chapter 4 describes our experience using

NBS in the Cache Kernel, and describes the system benefits that accrue through the use of NBS.

The (mis)perception that NBS increases system complexity is partly attributable to unfamiliarity,

and partly due to real differences between blocking and non-blocking synchronization.

Non-blocking algorithms pay a price in local complexity to avoid impact on concurrent pro-

cesses and non-related functions. Blocking algorithms. in contrast, are locally simple, but may pay

a high non-local cost in awkward system structure. Examples of this non-local impact abound: the

need for different forms of synchronization in interrupt and signal handlers, deadlock avoidance and

detection, and priority promotion, to name a few.

Our experience to date convinces me that the non-blocking approach is an attractive and prac-

tical way to structure operating system software. Locks will become more problematic as signals

are used more extensively in libraries, synchronization becomes finer grained, and as the cost of

memory delays and descheduling become even higher relative to processor speed.

6.1 General directions for future research

This thesis demonstrated DCAS-based algorithms that had better performance characteristics than

equivalent CAS-based algorithms. An interesting area for future work is understanding the funda-

mental differences between CAS, DCAS, and CAS3. This will help explain why DCAS enables direct

implementations of so many data-structures over single CAS, and why so few extra implementations

are possible when adding an � ��� � CAS3.

Simpler and better algorithms can be designed when we can make stronger assumptions about

properties of the system. This thesis identified a set of techniques that are beneficial to systems

in general, and that also enable efficient NBS. A promising direction for future research lies in

searching for other common properties that can be exploited to improve algorithms.
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Further work is required to validate our experience that DCAS is in fact adequate in practice for

the vast majority of shared data-structures. Part of my argument is based on the assumption that

systems that are well designed to avoid memory contention will require only simple shared data

structures. Verifying this, too, is not simply taking a census of data-structures in existing distributed

applications. Rather, the evaluation must take place after the applications are suitably restructured

for reasonable performance.

However, this evaluation, in turn, rests on the assumption that as concurrent programs mature,

they will, in fact, be (re)designed to avoid memory contention. Over time we will see whether this

assumption is well-founded.

More experience is needed converting real systems to be non-blocking. While it is tempting

to simply take existing distributed applications (such as programs comprising the SPLASH bench-

mark) and convert them to be strictly non-blocking, such tests would not validate one of the central

arguments of Chapter 4 — that NBS positively affects system design. To effectively add data-points

to further test my claims, more systems must be designed with NBS from the start. This seems

feasible to do in conjunction with researchers in other fields such as molecular dynamics. Many

fields of computational science are in the process of moving fine grained simulations to both par-

allel supercomputers and networks of loosely coupled personal computers using distributed shared

memory.

Systems running on loosely coupled machines have another desirable attribute from the point

of view of investigating the interaction between NBS and system structure. Machines that use soft-

ware distributed shared memory can easily be extended to support atomic DCAS. Atomicity can be

ensured locally by disabling preemption or techniques such as restartable atomic sequences. Atom-

icity can be ensured with respect to other processors by simply not responding to communication

for the duration of the operation. This avoids the scalability issues of the shared locks in previous

OS-based approaches. Thus, DCAS can be deployed on such machines far earlier than waiting for a

new instruction on future processors.

Software distributed shared memory will provide useful platforms for research in a variety of

promising areas. It will provide useful data about shared data types, contention, and whether NBS

continues to have beneficial effects on system structure. NBS on top of software DSM will not,

however, provide new data on the sufficiency of software versus hardware implementations.

Work is required to further evaluate the merits of hardware support for DCAS versus various

software alternatives, particularly for overall system performance. Many distributed applications

are not yet well optimized for multi-processors. If the frequency of synchronization primitives is
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low after any needed restructuring, then the total system performance of systems implemented on

top of software or OS primitives may not be significantly worse than implementations on top of

hardware primitives. My conjecture is that frequency will remain high (although contention will be

reduced), because the most common examples of successful distributed applications to date seem

to be structurally similar to fine-grained simulation where synchronization costs incur 25 to 70%

of the execution time, where 90% of the code is inside critical sections, and where the dominant

wall-clock-time costs are wait-time at barriers and locks. Thus, I predict that even after I evaluate

highly tuned future distributed applications and systems, the benefits of hardware implementation

of binary primitives will outweigh the costs. At present this is just conjecture, and must be verified.

An interesting area of further research is to explore an efficient hardware implementation of

DCAS in the presence of speculation. Similarly, it would be useful to investigate schemes in which

each instruction in the LLP/SCP sequence can execute in a single cycle when it hits in the cache.

Such performance would be attractive for an implementation with zero-overhead when there is no

contention or sharing. It would not just be attractive, but would become necessary as the frequency

of LLP/SCP increased and the cost of disabling speculation after LL/SC also increased.

6.2 The future of NBS

A fair question to ask is whether NBS will ultimately become common, or even supplant blocking

synchronization. Software designers are unlikely to use NBS without additional support, such as

efficient DCAS. Hardware designers are unlikely to provide efficient DCAS unless a reasonable body

of software uses DCAS functionality. It is reasonable to fear an insurmountable chicken and egg

problem here.

Fortunately, a scalable OS implementation is possible in software DSM systems. Such plat-

forms are becoming more common. In a similar vein, for very small scale multiprocessors and

uniprocessors, Bershad’s technique may be adequate. Consequently non-blocking algorithms will

have an arena in which to demonstrate their value prior to availability of hardware DCAS.

Interpreted languages also offer the potential to implement DCAS under the covers. Java, in par-

ticular, is a prime candidate for such an implementation. First, the syntax of synchronized methods

can equally hide a lock or a non-blocking algorithm using universal constructions. Second, early

Java implementations have had difficulties dealing with data-structures held by failed threads. They

have gone so far as to “deprecate the use of” any operation that can kill a thread. Third, the overhead

of interpreting non-compiled Java may mask the extra cost of DCAS compared to regular memory
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operations.

The possibility of non-blocking software that can use DCAS, and that can exist prior to hardware

support for DCAS, leaves me hopeful that demand for DCAS can eventually be demonstrated to

hardware manufacturers.

I am actively working to convince processor designers to add DCAS support to commercially

available microprocessors. I hope that our work and that of others can lead to a broad consensus

on this direction. Ultimately, I hope that application and system software developers can safely

count on this hardware and operating system support for non-blocking synchronization, allowing

them to write software that is reusable across single process, parallel process, and signal handling

applications with simplicity, efficiency and fault-tolerance.

6.3 Perspective: A Continuum of Transactions

Non-blocking synchronization allows a unified approach to concurrent programming. The trans-

actional programming model (atomic transactions with full ACID semantics) dominates concurrent

programming of distributed databases and distributed applications in general. Within a single shared

memory, however, mutual exclusion is a far more common way to control concurrency. At the low

level, where individual instructions must deal with concurrency, the instructions are again atomic,

with a transactional flavor.

At the high level, in distributed systems, there is rough consensus that atomic transactions are

the best way to deal with concurrency and to implement scalable, robust, fault-tolerant systems.

Atomic transactions bear a certain performance cost over more ad hoc approaches, but the benefits

in fault-tolerance, recovery, and ease-of-reasoning have long been considered to be worth that cost.

Atomic transactions are intended to support the ACID semantics: atomicity, consistency, isolation,

and durability. Additionally, some transaction systems behave much like the universal constructions

discussed in this thesis: the programmer need only write a sequential program and the system

automatically converts the code into an atomic transaction.

At the instruction level, too, we seem to have converged upon atomic transactions as the best way

of dealing with concurrency. The synchronization primitives, Compare-and-Swap or Load-

-linked/Store-Conditional, that deal with concurrency are very similar to “mini atomic

transactions”. They are not full atomic transactions because, in the absence of NVRAM, they do not

support durability. However, these instruction sequences are atomic: they either complete totally

successully or abort with absolutely no effects. They support isolation or serializability: while



6.4. CONCLUDING REMARKS 155

executing, no partial state is visible to other processes or processors. At the level of instructions

they are also consistent: the newly computed state is guaranteed to be a valid successor of the

previous state, or else the “transaction” fails.

It is only in the (large) gap between instructions and high level atomic transactions that we

resort to non-transactional programming models. Non-blocking synchronization fills this gap by

provides atomicity, isolation, and consistency. Recent work (e.g. Rio Vista [61]) has shown how

to provide atomicity and durability very efficiently if a small amount of non-volatile memory is

available. Efficient NBS is the missing piece to provide the full ACID semantics, and thus atomic

transactions, across the entire spectrum of programming systems.

6.4 Concluding remarks

Blocking synchronization is filled with problems and pitfalls. It seems a tractable technique to

contemporary practitioners only because we have spent years of research attacking these problems.

As solutions have been proposed, we have then had years of practice deploying and internalizing

these solutions.

Non-blocking synchronization has clear advantages over blocking synchronization. It is worth

a small cost to purchase these advantages. If the performance cost (or the conceptual complexity) is

too large, then NBS will not be deployable — the general perception is that NBS is too expensive

except for a small number of specialized data structures. This thesis demonstrated that given the

right infrastructure this perception is wrong — non-blocking synchronization can be implemented

cheaply for a large class of interesting systems (for example, systems designed to minimize memory

contention).

I hope that the work presented in my thesis, if adopted by hardware and system designers, will

make NBS a practical approach for all synchronization needs. That, in turn, will be one of the

many steps towards removing the software bottleneck that has slowed the wide-spread deployment

of scalable, fault-tolerant, parallel applications.
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Appendix A

Common Myths and Misconceptions

about NBS

This appendix lists several common misconceptions about non-blocking synchronization.

A.1 Non-blocking algorithms never block

The first misconception about non-blocking synchronization has to do with the phrase “non-block-

ing”. An algorithm is non-blocking if the system, as a whole, never blocks. Individual processes,

however, may block. Some processes block indefinitely due to starvation. Some processes block

temporarily while waiting for another computation to finish.

On the other hand, processes do not block waiting for processes that are not making progress. In

a non-blocking system, if one process is blocked then some other (related) process must be running.

A.2 NBS increases concurrency

The second point that needs addressing is the confusion between optimistic locking, highly con-

current data-structures, and NBS. NBS does not automatically increase concurrency. Optimistic

locking is not (in general) non-blocking.

Optimistic locking reads state and optimistically assumes there will be no contention for the

lock. The general approach is to read all the necessary state words without (or before) acquiring a

lock. Then, perform the computation locally, and finally, with the lock held, check that the initial

state is unchanged (validate the computation). If the state is unchanged, then the computation is still
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valid, and one may make the modifications dictated by the computation (with the lock still held).

The lock hold time is reduced since the computation is done outside the lock. Note, though, that if

a process is delayed while it holds the lock, it still delays all other processes and it is not tolerant of

failures.

Optimistic locking reduces the window of inconsistency (although the inconsistency still spans

multiple writes). Optimistic locking is also useful when the delay to acquire a lock is large; the

optimistic computation can proceed in parallel with lock acquisition.

Highly concurrent data structures are (mostly) independent of the method of synchronization.

Highly concurrent data structures reduce the granularity of synchronization and, where possible,

separate state into read-only sub-objects that can support multiple simultaneous readers. However,

both locks and NBS impose a total order on operations on a data structure. To see this, recall that

most non-blocking algorithms require that values are not modified by other transactions from the

time the locations are read until they are modified (possibly by CAS or DCAS). Therefore in order

for a transaction,
�

, to succeed, it must have exclusive access to those locations during the interval.

(Clearly if any other transaction wrote those locations during the interval, then
�

would fail. Further,

if any other transaction read those locations during the interval, it would fail after
�

modified those

locations.) So, although NBS has many advantages over blocking synchronization, automatically

increasing concurrency is not one of them.

To explain this another way, it is possible (up to deadlock avoidance and fault-tolerance) to

convert any concurrent algorithm that uses NBS to an equivalently concurrent algorithm using locks.

Simply assign a lock per location referenced in the NBS algorithm and acquire each lock before the

first access to its corresponding location and release them after the last access. (NBS obviously

makes this easier by eliminating locks and using the data locations themselves for synchronization.

The locking version will be cumbersome and expensive and suffer from the many other problems

that plague blocking synchronization but it will exhibit just as much concurrency.)

This is consistent with the second law of concurrency control mentioned by Jim Gray “Con-

current execution should not have lower throughput or much higher response times than serial

execution.”([32], page 377).

A.3 Concurrency is good

The third truism that needs qualification is that increased concurrency is, in and of itself, a good

thing.
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In practice, we have found that actual contention on most data structures is low. Care must be

taken that increasing the potential for concurrency under contention does not increase the cost of

the common case where there is neither contention nor concurrency.

Even in cases where multiple processes contend for accesss to a single shared data-structure,

increasing concurrency is not always beneficial. The naive view is that by doubling the number of

processes allowed to concurrently operate on a data structure we can roughly double the throughput

of the system. This ignores the cost of communication and remote memory accesses, and the costs

due to communication contention and memory contention. Increased parallelism is a good thing,

but not necessarily at the cost of increased contention.

Care must be taken that the costs invested in increasing concurrency are justified by the benefits

we can reap in each particular case. If a data structure is accessed serially by processes on separate

processors then we can expect the second processor to take several cache misses. Each cache miss

can take hundreds of times the memory latency of a cache-hit (and the gap is growing as processor

speeds increase relative to memory speeds).

Mutual exclusion eliminates simultaneous access to shared locations (other than, perhaps, the

lock word itself). However, even reduced contention does not eliminate cache misses. Consider

processor
� �

operating on shared cache line
�

. Even if processor
� �

does not access
�

until
� �

has

finished, it will still take cache misses — or acquire the cache lines some other way. The key is not

simply to reduce simultaneous contention, but to design algorithms such that data remains local to

a given processor (more precisely, so that data can remain in a local processor’s cache).

Memory costs must be borne in mind when considering properties such as disjoint-access-

parallelism [47] (discussed more fully in Section 3.2.5.1). An algorithm is disjoint-access parallel if

two transactions that access disjoint sets of locations can execute concurrently without interference.

Clearly, any algorithm that paid any price for increased concurrency within a single cache line is

flawed (the memory system will serialize the transactions in any case). Often, concurrency over

larger blocks of memory is detrimental, too, because there are other algorithmic reasons that access

is serialized. Any cost paid to make inherently serialized accesses concurrent is wasted. Finally,

even if concurrent access is possible, before trying to implement disjoint-access-parallelism, care

must be taken to determine the appropriate granularity of the concurrency lest you pay a price only

to “benefit” by damaging performance due to memory contention.
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A.4 Complicated data structures need to be shared

The key to reducing memory costs is to design algorithms such that data remains tied to a single

processor’s cache. It follows that well-designed concurrent algorithms will have processors mostly

operating on local data-structures — computations will be structured so that (ideally) the parallel

portions all execute out of local memory. So, shared data structures are mostly used for communi-

cation and management of parallel tasks working towards a common goal, but operating on (mostly)

local data structures.

Most complex data structures are used as part of algorithms where asymptotic behavior is im-

portant (else simple data structures with small constant factors would be sufficient). Given a system

structure where parallel computations are executing on local objects, most of these more compli-

cated objects will be part of the local computations. Simple objects should be sufficient for com-

munication and management, else the problem was probably structured inefficiently — the memory

and communication costs are probably outweighing the advantages of this degree of parallelism.

Fortunately, given DCAS, most simple objects have relatively efficient non-blocking implementa-

tions.

It is conceivable that a small minority of algorithms might require sharing of complex data

structures. However, major justification is required to overcome the costs of communication and

memory traffic.

A.5 NBS improves performance

NBS can occasionally improve system throughput by eliminating cases where many processes wait

for a stalled process. In the (common) absence of such delays it is not the primary goal of NBS

to improve average-case performance. NBS simplifies system design, and provides fault-isolation

and fault-tolerance. The question is whether the performance cost of such benefits is too expensive.

Therefore, the performance goal of NBS is not to improve over locks, but to be comparable to the

equivalent locking implementation in the common case when there are no delays.

There are generally two comparisons we need to make. First, we must compare the constant

overhead of the synchronization in the common case of no contention. Second, we must make sure

that the system doesn’t degrade badly (e.g. non-linearly) in the presence of multiple processes.

Linear degradation is the “natural” limit of acceptable performance hit. If the performance cost

of NBS is linear in the number of processes, then the total run-time of the non-blocking concurrent
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algorithm running on � processors is at worst (up to big � ) equivalent to running the sequential

version on a single processor.

If it happens, as it sometimes does with simple data structures, that a non-blocking implemen-

tation out-performs all blocking implementations, that is a lucky circumstance, but is not a goal.

It is important to bear in mind that the percentage of time operating on the shared data structure

is likely to be low compared to the time operating on the private data structures. Thus, while access

to the shared code shows no improvement in worst-case time complexity, the private operations can

be totally overlapped and may exhibit up to a factor of � speedup if the parallelism exists.

A.6 Locks are not non-blocking

A “lock” is simply a convention that grants a particular process exclusive ownership over some

abstract object. The common implementations of protocols that use locks are not non-blocking,

because if a process is delayed or dies while holding a lock, all accesses to the locked object must

wait, or block, until the process releases the lock, relinquishing ownership. However, as described

in Chapters 2, 3, and Appendix B, preemptible or interruptible locks exist. There is no reason that

non-blocking algorithms cannot be implemented using such locks — in fact, some are [52, 99].

These were some commonly held misconceptions about non-blocking synchronization. Shed-

ding these preconceptions will make some of my assumptions clearer to you while reading the rest

of this thesis.



Appendix B

Taxonomy of Universal Constructions

Any non-blocking universal transformation in a system where the basic primitives are of arity � must

be able to deal with algorithms that update � � � locations. This means that there must be some

point at which the data-structure being updated is in an inconsistent intermediate state (although

perhaps internally consistent), and cannot be immediately taken over by another transaction without

some additional work.

We characterize all universal transformations by their approach to three issues dealing with

intermediate state.

B.1 Update-in-place vs. local-copy

The first subdivision is between algorithms that update data structures in-place, and between those

that update local copies. Algorithms that operate on local copies may divide the data structure into

blocks in order to reduce the amount of data that must be copied. Blocks may (or may not) vary in

size or number — a block is simply the unit of copying. Any attempt at modification within a block

triggers a copy of the entire enclosing block, and the modification is made to the local copy.

On every read, the algorithm tests whether the location is already part of a local block or not.

If it is part of a local block, the value is read from the local copy. If not, the value should be read out

of the original data structure. On every write, the algorithm tests whether the location is already

part of a local block or not. If not, the enclosing block is copied from the original data structure to

a local copy. The new value is written to the local copy.

Upon completion of the update, the algorithm must atomically replace all changed locations

at once. Some data structures consist of blocks and pointers, and possess a single root. For such
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Figure B.1: Relationships between categories of update algorithms.

data-structures, atomically swapping in the new root is sufficient. For universal algorithms that

transparently copy and update arbitrary local blocks, the equivalent of CAS � must be used to simul-

taneously update all modified roots at once. In the extreme case, where a table of root pointers to

every block is used, then CAS � atomically replaces all modified blocks at once.

Updating local copies incurs the overhead of copying at least � locations for a transaction that

modifies � locations. In addition, it incurs a lookup cost for each read or write to check whether the

transaction should access a local copy or the original data structure. By copying larger chunks than

individual words you can reduce the cost of the lookup, but you increase the amount you copy. This

additional overhead is not dependent on the arity primitives used to implement the NBS algorithms;

it is a fundamental cost of operating on local copies. All other things being equal, we would prefer

to update in place rather than to operate on local copies in order to avoid the copying and lookup

costs.
�

(Of course, in the unlikely case that the vast majority of locations in a data structure are

written in a given update, then copying the entire data structure might be appropriate. This increases

the copying cost (which must be paid regardless), but completely eliminates the lookup cost).

�

Gray[32] and Reed[82] both argue that update-in-place is a worse form of update than copying. They are not talking
about the same classification as we are; the alternative to update-in-place is version storage, a record of the complete
object history. In their terminology, both approaches I discuss are “update-in-place”. To them, the approach I refer to as
copying is just a particularly inefficient form of update-in-place.



164 APPENDIX B. TAXONOMY OF UNIVERSAL CONSTRUCTIONS

It is instructive to note that a distinction still exists between updating-local-copies and updating-

in-place even when the block size is a single word. In the local-copy case, we still must determine

whether references are to local copies, we still need to connect words by pointers, and there is

almost certainly space overhead for every word in your memory.

Updating-in-place has associated costs, too, however. The data structure is potentially logically

inconsistent during the update. This means that if another transaction wants to proceed it must

somehow get the data structure into a consistent state. (Algorithms that operate on local-copies

have this problem only during a brief window while doing the final CAS � (or equivalent)). Therefore

update-in-place algorithms must always pay the cost of keeping the data structure in a state where

it can be returned to a consistent state. In practice, however, such costs seem small compared to

the copying and lookup costs of the update-local-copy algorithms. In the uncommon event that a

transaction is stalled and another attempts to proceed, the second transaction must actually return the

data structure to a consistent state as outlined in Section B.3. I assume, however, that contention is

low (contention reduction techniques help ensure that this is true) and that long delays are infrequent

and expensive. Therefore the cost of actually returning to a consistent state is incurred infrequently,

and can be mostly ignored. We still must always consider the bookkeeping costs to keep the data-

structure in a state where it can be restored, because this cost is borne in the common case.

Algorithms that update in place can themselves be subdivided based upon their behavior when

two transactions conflict. There are two distinct problems that must be solved. The first problem

is detecting transaction conflicts. The second problem is how to proceed when the preempting

transaction wishes to operate on a data structure that is in an intermediate state.

B.2 Detecting conflicts between transactions

Two different sides must detect a transaction conflict. First, a transaction,
�	�

, wishing to access

a data structure, � , that is already part of another transaction,
���

, (which has possibly stalled or

failed) must detect the fact that � is already “owned” by
� �

, and either back-off and try again, abort,

or “take over” the data structure. This first case is trivially detected by conventionally marking a

data structure as currently being part of a transaction (and, hence, potentially inconsistent). This

is the approach taken when using locks (This first case of conflict detection is also applicable to

the copying protocols described above; however it is merely used to reduce contention and not to

protect the integrity of the data structure). It is a well understood technique.
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However, in non-blocking systems, “ownership” can at best be only advisory, it cannot be per-

manent (else an owner can delay all other processes in the system). This gives rise to the second

case of conflict detection. If transaction
� �

were delayed while owning a data structure, then trans-

action
� �

may “take over” ownership of the data structure.
���

is the owner, but
� �

still believes

it is the owner. Similarly, in non-blocking systems that eschew the notion of ownership, multiple

transactions will attempt to proceed in parallel. In such cases, even though
�	�

can legally proceed,

and even though it has already begun updating � ,
� �

must still detect whether another transaction,
� 


, has taken over that data-structure.
� �

must detect this, since once
� 


has acquired � ,
� �

must

be careful to avoid making any forbidden modifications.

There are two general approaches to detect the fact that a data structure has changed “underneath

you”, so to speak. The first is to maintain some indication of the current status of the data structure

and atomically check this simultaneously with each write. The second is to depend upon some

operating system support to allow an external agent (e.g. the operating system or the preempting

transaction) to alter the flow of control of the preempted transaction upon conflict.

The drawback with checking on each write is the potential performance cost. Using single CAS

either some indication of the state of the transaction must be co-located with every location, roughly

doubling the size of the data structure, or else the status check and the write are not performed

atomically. In the latter case, there is always the possibility of a change of status between the check

and the write, so a more complicated and expensive protocol must be used involving multiple phases

and considerable expense.

Using DCAS a single state word can be associated with each transaction and with each data

structure thus reducing the space requirements. DCAS allows the check and write to always be

done atomically, eliminating the need for any further protocol. There is a cost, but it is directly

proportional to the number of writes, independent of the number of reads and/or the number of

active processes.

An alternate approach, aimed at reducing the cost of expensive atomic CAS and DCAS is to

depend on active OS support. The basic idea is to protect the integrity of the data structure using

locks, but avoid or recover from long delays. The first general method using this approach is to use

OS support to reduce the likelihood of long delays by prohibiting preemption while a lock is held.

This is not always possible (some preemptions, such as those triggered by page-faults, are coerced),

and not desirable since it provides a loophole through which processes can gain an unfair share of

the machine. Further, it is not fault tolerant (what happens if a process fails while holding a lock?),

and not sufficient, since, if you are preempted the recovery code must be the same as in systems
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without such OS support. A variant of this approach is useful as a contention reduction technique

(depend upon the OS to release the lock if you are preempted), but it is not sufficient to protect data

integrity and provide non-blocking implementations.

The second general method of depending upon active OS support is to aid the preemptor, rather

than the preemptee. The goal is, once again, to provide an efficient alternative that allows us to use

normal reads and writes rather than expensive atomic CAS or DCAS. The basic idea is to use a lock

to protect the data structure and use normal reads and writes while holding the lock. If the preemptor

wishes to access a locked data structure, it must (a) inform the lock-owner (when it resumes) that it

no longer holds the lock, and (b) it must transform the modified data-structure to a consistent state.

Assuming no copying, this requires knowing exactly where the lock-owner stopped operating on

the data-structure, in order to know precisely which locations have been modified. Therefore, the

lock-owner must maintain this state. If we just use normal reads and writes, then care must be taken

to avoid race conditions between logging each modification and altering the location in memory.

One would normally not use CAS or DCAS instead, because the point of using locks was to avoid

such expensive operations.

There are several drawbacks with depending on active OS support for either the preemptor or

the preemptee.

First, the OS approach must treat asynchronous handlers (interrupts or signals) specially. Either

interrupts or signals must be disabled while the lock is held, or else we must treat each interrupt as a

context switch and check whether we were preempted. A related (but less significant) consequence

of this is a loss of portability for code that might interlock with asynchronous handlers.

Second, the use of locks (even preemptible, advisory, locks) re-introduces problems of potential

deadlock. Deadlock avoidance is possible, but increases the complexity of the code.

Third, the OS approach is less fault-tolerant than solely CAS or DCAS based approaches. The

OS approach fails if the OS does not release a lock held on a particular processor. However, a study

by Jim Gray [33] claims that 90% of failures are OS failures, and not hardware failures. Thus, it is

far more reasonable to assume that the memory system on a failed node is consistent than it is to

assume that the OS will continue to function correctly on that node.

Fourth, the OS approach may be less portable than the DCAS approach. The interface and

specification of Double-Compare-and-Swap functionality is straightforward, and easy to en-

capsulate in an inline routine. The OS support required here is more complex, harder to specify,

and less likely to be standardized. On the other hand, if support for a facility similar to Scheduler

Activations [10] became standardized and universally deployed, it may be sufficient to make the OS
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approach portable.

Fifth, the OS approach seems to be less modular and less secure than the application level ap-

proach. All the OS approaches require some modification to the scheduler’s behavior. For reasons

of security and fairness it is preferable that algorithms react and respond to decisions of the sched-

uler, rather than alter the behavior of the scheduler. Thus setting your own priority is reasonable, but

altering decisions (preempting other processes or inhibiting preemption of oneself) is undesirable.

Further, for safety and modularity it is best if the scheduler need not access external data-

structures (especially not in user space), nor have any knowledge of internal process actions (includ-

ing synchronization). Reading information that the scheduler itself chooses to export (e.g. current

process) is safe, but requiring the scheduler to clear locks in the process’s private address space is

not.

For all these reasons, unless the performance issues are overriding, checking for transaction

conflicts is preferable to depending upon active OS support.

B.3 How to proceed when conflict is detected

Regardless of whether one detects conflicts by OS support or by checking each write, in the event

that a conflict is detected, the preemptor must decide whether to proceed or to wait. In local-copy

protocols this decision only affects performance due to contention, because each process operates

on its own local copy. Even in Allemany and Felten’s SOLO protocol [2], which is a copying

protocol hiding in update-in-place clothing, the preemptor makes a local copy before acquiring

ownership. In update-in-place protocols only one process may operate at a time, so proceeding is a

weightier decision. Before proceeding, a process must find some way of preventing the preemptee

from making any future modifications.

Still, in general the decision whether to proceed is straightforward: it makes sense to proceed

only if the original process is not making any progress. If it is making progress, it behooves us to

wait for it to complete. The question is how to determine whether the process is making progress

or not. One can either guess or one can know (subject to certain assumptions). Guesses involve

heuristics (such as the amount of time since we last know the process did something, or waiting a

reasonable amount of time until we assume it should be finished if it were making progress). These

guesses are not guaranteed to be correct, but should be correct with high probability. The basic

assumption needed in order to know that a process is making progress is to assume that the code is

correct; therefore if it is currently running on some processor then it is making progress. Therefore
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“knowing” whether a process is making progress comes down to knowing whether it is currently

running. Either the owning process (with active OS assistance) can record when it is preempted

(a’la Allemany and Felten), or the process attempting to take over can check (through passive OS

assistance) whether the current owner is still running.

Assume the preemptor knows or guesses that the owner is stalled, and wants to proceed despite

detecting a conflict with the preemptee. If so, it must restore the data structure to some consistent

state. The preemptor can either roll-forward the original transaction to completion, getting to a new

consistent state, or else it can roll-back the original transaction to a previous consistent state
�
.

Roll-forward algorithms are implemented by encoding the desired operation in the shared data-

structure so that competing transactions can complete stalled partial transactions (“helping”) before

beginning their own operation. Unfortunately, to implement roll-forward in an update-in-place

universal transformation (where the mechanical translation is done with no specific knowledge of

the original sequential algorithm), one is either required to know the behavior of the transaction in

advance, or else perform some form of process migration from a stalled process to the currently

active process.

One way to establish (in advance of the transaction’s operations on shared memory) which oper-

ations the “helper” needs to perform is by running the transaction twice (running it once and caching

the reads and writes) — but this is effectively updating a local copy with all the associated costs.

At the other extreme is process migration: if a process is stalled, we migrate the process to the pro-

cessor running the preempting transaction. Process migration, however, is tricky to implement at

best, is not possible in many cases if the original process has terminated, assumes homogenous ar-

chitectures (or else pay the cost of interpretation), and can be costly. In practical terms it is not clear

whether it is better to wait for the original process to resume, or to perform the migration (when the

first transaction completes we need to restore control to the original process, and simultaneously

proceed with the second transaction in the preempting process). For this thesis, in order to compare

against algorithms which employ helper functions, we ignore the details of exactly how one con-

structs a particular helper function, and simply assume that one is produced (possibly expensively).

An alternative that lies between local copy and process migration is possible when the algorithm

�

It is important to note that my use of the term “roll-back” is significantly different than aborting a transaction because
some other transaction has completed successfully. In the cases where progress has already been made, roll-forward of
the incomplete transaction is generally not even possible. Second, when some other transaction has completed, cleaning
up (sometimes called “rolling back”) the partial state of the incomplete transaction, does not restore the data-structure
to the previous state. It is transformed to the state after the other transaction has finished. When Moir [74] and others
refer to “roll-back”, they use it in the sense of cleaning up an aborted transaction after progress has been made by another
transaction.
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is specialized for a particular data structure. The basic requirement is to be able to register some

high level notation specifying the desired operation, and some shared location describing the current

state of the computation. The implementation of CAS � described in Section 3.2.1.1 is a concrete

example of this approach. A CAS � operation is fully determined by the initial list of arguments, and

the state is simply an index recording which arguments we are processing (the � -th CAS) and some

bits recording whether the combined CAS � has been successful so far or has already failed.

Appendix D shows examples of algorithms using helping in data-structure specific implementa-

tions — that is, not in universal constructions. No code is passed around, no helper function is used,

but the algorithm itself is written in such a way that it can incorporate helping. Examples of this ap-

proach are the doubly linked lists of Section D.7 and the heap implementation of Israeli et al. [46].

Unfortunately, while these are good solutions, the approach depended on careful algorithmic design.

These are no longer universal constructions that are oblivious to the emulated algorithms. They re-

quire extensive (human?) pre-processing. Given that one of the goals of the universal constructions

is to avoid placing a conceptual burden on programmers, it is questionable whether this technique

is reasonable in general, although it is certainly useful for some specific data-structures which can

be incorporated in code libraries.

In addition to the cost and complexity of constructing helper functions, they suffer other draw-

backs. First, if the original process was delayed quasi-deterministically (for example, because of a

page fault), then the “helper” will also be delayed, and no progress will be made (in fact, the likeli-

hood of a fault might get worse if you switch to another processor). More generally, any argument or

data dependent fault (protection fault, algorithm bug) will eventually occur in every process access-

ing the shared data structure as it tries to help the failing transaction. This is precisely the opposite

of the intended effect of non-blocking algorithms — one of the goals of non-blocking algorithms is

to isolate faults.

Second, algorithms that depend upon helper functions implicitly assume that helper functions

are context-free. This may not always be an unreasonable assumption, but care still must be taken

to avoid global variables, and to execute the helper in the context of the original process in or-

der to respond appropriately to environmental queries, and to acquire the protection rights of the

helped process. Finally, when synchronizing with asynchronous handlers, helpers must be able to

be executed by the handler (interrupt handlers are a special case of this tricky problem).

Third, roll-forward implicitly assumes that all operations are of equal priority. More specifi-

cally, any algorithms that exclusively uses helper functions determine the order of operations at the

time a transaction “acquires ownership” of (i.e. registers their helper function in) a data structure.
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Roll-forward algorithms behave like algorithms that use locks: once you begin an update, you are

committed to completing it. In Chapter 1 I enumerate the advantages of non-blocking synchroniza-

tion over blocking synchronization. One of the key advantages listed there is the fact that NBS

eliminates priority inversion. More generally, NBS can eliminate synchronization interactions that

subvert scheduler priorities. It is true that any non-blocking algorithm will avoid basic priority in-

version: it is impossible for a medium priority process to delay a high priority by preempting a low

priority lock-holding process. However, algorithms that strictly roll-forward cannot eliminate an

entire class of scheduling problems: cases where transactions, rather than simply processes, have

priorities. Consider a very, very, long transaction being executed on behalf of a very, very, low pri-

ority process. It is not always reasonable for the high priority process to first finish the long running

low priority transaction. That itself might constitute an unacceptable delay for, say, an interrupt

handler.

The alternative to roll-forward is to roll-back to a previous consistent state. Roll-back avoids all

of the drawbacks associated with helping. However, roll-back of compound operations has one big

drawback of its own: it can never be strictly non-blocking. Roll-back can never be non-blocking

because there is no way to guarantee progress when roll-back returns the system to a previous

state. The sequence of events that caused the system to roll-back can be endlessly repeated. In

contrast, primitive atomic operations have the property that the only way a transaction can fail due

to contention is if another transaction has succeeded. Roll-forward guarantees that transactions

never fail solely due to contention.

Therefore, roll-back is only an acceptable choice if we are willing to depend upon probabilistic,

rather than deterministic, guarantees of progress. If we choose to use roll-back, algorithms can be

effectively non-blocking, but cannot be strictly non-blocking. Given the costs of roll-forward, and

given that contention and preemption are both relatively infrequent, and given that effectively non-

blocking algorithms make progress with probability 1, usually roll-back is a more attractive option

than roll-forward. There are no issues of prophecy or prediction: one merely has to record what the

transaction has already done. The extra cost over using locks is recording enough state so that any

modifications can be undone. The odds of not making progress are low.
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CAS � is Non-Blocking and
� � ���

C.1 CAS � is non–blocking

In this section it is useful to remember that STM with roll-forward (and CAS � in particular) always

completes a transaction (with either success or failure) after a single transaction attempt. STM with

roll–back may retry and take multiple attempts if the transaction attempt is undone, but had not

finished.

Lemma 1 Every write (in trans write or CASnInternal) increments idx and every undo

decrements idx. Nothing else changes idx.

Lemma 2 While a log is active (owner of any domains), all writes in the transaction precede all

undo’s of that transaction attempt.

Writes explicitly (and atomically) check that state.undo is FALSE, or else the write fails.

state.undo is set to TRUE before cleanup performs any undos. So, all writes must precede

cleanup (and all undos occur in cleanup). cleanup explicitly checks that state.undo is

TRUE while undoing each log entry. If state.undo is no longer TRUE, then some other process

has already cleaned up this transaction attempt, and cleanup returns.

The only time undo is reset to FALSE is by trans init. trans init is called once at

the beginning of each transaction attempt, before any attempt is made to install log as owner of a

domain. So the only writes that may follow an undo are in a different transaction attempt (the log

must have been cleared from owner, and original values must have been restored). �

171
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Lemma 3 While a log is active (between being installed as owner and releasing ownership), each

value of log->state is unique (each pair of values (idx, undo) occurs precisely once).

It follows from Lemma 2 that there are no cycles between increments or decrements of idx. Thus,

state takes on monotonically increasing integer values with state.undo == 0. If the trans-

action is aborted, it then goes through the same integer values, but with state.undo == 1.

Each integer may be present at most twice, but each time with a different value of undo. �
Lemma 4 The owner field is only cleared of log if the transaction which allocated log was

finished and either completed or was aborted. (The transaction completed only if log->state

records that finish == TRUE, and idx == max, and undo == FALSE. The transaction aborted

if idx == -1 and undo == TRUE).

The pointer to the log in the owner field is only cleared to NULL by trans cleanup. This

function is only called in two places: trans cleanup is either called by trans commit or

it is called immediately after a call to trans abort. commit is only called when a transaction

is complete, and therefore when idx is at its maximum possible value for this transaction (once

finish or undo is set, any attempt at a write fails). commit sets finish, and abort sets

undo and sets idx == -1 after undoing. cleanup ensures that idx == -1. �
Note that the converse is not true. idx may be -1 while the owner field still contains log. For

CAS � , an aborted active log means a complete (but failed) transaction. There is no retry. This is

also true of all the STM algorithms with “roll-forward”, or “helping”. STM with roll-back, however,

must retry after an aborted active log (unless finishwas set.) The proof sketch that the algorithm

is non–blocking only applies to STM with roll-forward (CAS � being one particular example) — it

does not apply to STM with roll–back.

Lemma 5 All references to log are either bracketed by trans init and trans conclude or

by successful trans begins and trans conclude.

That trans init and trans conclude are matched is clear by inspection. However,

trans begin is a slightly trickier case.

If trans begin returns FALSE when called, then trans open (the caller) retries the loop.

trans open calls trans begin again, before referencing any log. We still must show that if

trans begin returns TRUE, then the matching trans conclude (called by trans open)

is called on the identical transaction that trans begin was called on. Since the local variable
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owner does not change value, we must only establish that the log pointed to by owner is not

deallocated and reallocated to a new transaction (possibly storing that identical log into *domain

again). Note that for trans begin to have returned TRUE, the DCAS in the while clause of

trans begin ensured that the reference count for log was incremented while *domain ==

log. (The DCAS is race-free). A log is only deallocated if the reference count goes to zero. There

is no decrement corresponding to the increment in trans begin other than trans conclude.

So, log cannot have been deallocated.

The indirection through &(log->helperCount) at (3.1:1) is not protected by the refer-

ence count. We depend on type–stable memory management [34] to ensure that the indirection

is type-safe and does not raise errors, even if log were deallocated. We assume, without much

further comment, a system with type-stable memory management. Section 4.2.3 and Appendix E

briefly defend this assumption as reasonable (and that implementation is practical). Further, to my

knowledge, every paper on non-blocking algorithms either implicitly or explicitly makes equivalent

assumptions (e.g. [39]), pays a high cost in ensuring that objects are not deallocated [100], or else

uses static allocation of all data structures (e.g. [74]). Thus, our results are comparable to previous

work because TSM does not extend the basic model we are working with. � .

Lemma 5 depends upon type–stable memory management (TSM). To clarify the limits of our

use of TSM (it is not a magic bullet), I note that we must check for log == NULL ourselves —

TSM cannot help here. TSM only ensures type-safety, that is if the object pointed to by log was

once an object of type Log, it is still an object of type Log as long as log has not been rewritten.

Here, however, we are concerned whether the value of log was ever a valid (Log *).

Lemma 6 log can only be stored in the owner field once in any transaction attempt. No log from

any other transaction can be stored in owner during this transaction attempt.

The operative line of code is (3.2:2). trans start can only successfully store a log in owner if

the field currently contains NULL. By Lemma 4 it can only be set to NULL outside of a transaction

attempt. �
Since a log cannot be re-allocated until it has been deallocated, and because helperCount

can only be incremented if *laddr == log, and because *laddr is cleared before the first

decrement of helperCount, and because log can be installed in domain at most once between

allocations, then we know that once helperCount == 0 it will stay 0. Then precisely one thread

executes statement (3.1:4) so we can safely call deleteLog once we’ve seen a zero once.
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Lemma 7 A log cannot be freed and reallocated for a new transaction, or used in another transac-

tion attempt, while any live references to it exist from an earlier transaction attempt.

By our assumption that we are only dealing with roll-forward, the original caller never loops

and retries. (CASn has no loop, and for STM with roll-forward, the transaction is guaranteed to be

successful on the first iteration.) Thus the only possible reuse of a log must go through the free pool

of logs.

The log is not deallocated and returned to the free pool until the reference count is 0. By

Lemma 5 all uses of references to a log are bracketed by calls that increment and decrement a

reference count. The reference count (helperCount) is positive while any references to log

may be used. �
Lemma 8 After a successful trans start(domain, log), if log->state.idx is non-

negative then *domain == log.

By Lemma 4 the log can be cleared from owner only if idx reaches the maximum value with-

out undo, or is decremented to -1 by trans cleanup. If the log is cleared without undo, then

trans cleanup atomically sets idx to -1 along with clearing the log from the owner field.

So, regardless if committed or aborted, idx == -1 immediately following the log being cleared.

log->state (including idx, undo, and finish) is initially 0. By Lemma 3, states cannot

repeat.

By Lemma 7 we know that if we reference log it cannot have been reallocated for another

transaction attempt, and, thus, a non-negative value of idx guarantees that log is still stored in the

owner field of the domain. �
Lemma 8 allows us to check (at (3.3:2)) loc and &log->state atomically, without checking

*domain, yet still be guaranteed that *domain == log. Thus, DCAS can be used to simul-

taneously update the memory location and increment the index into the log, and ensure that the

transaction has not been aborted.

TSM alone is not sufficient here. To ensure that Lemma 8 holds we need the explicit reference

counts to make sure that log is not reused by another CAS � until no one is looking at log.state.

Lemma 9 If the if clause (including the CAS) in trans commit (at line 3.2:3) fails, then an-

other process has already aborted or committed this transaction attempt and executed this state-

ment.
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The if clause can only fail if finishwere already set (only possible by some process execut-

ing this statement) or if undowere set because the transaction attempt were aborted. We know that

log cannot be reallocated to another transaction during this routine by Lemma 7. �
Lemma 9 guarantees that any time a process reaches (3.2:3) either it can complete the transaction

or someone else already has.

If the algorithm reaches commit (3.2:3) and has not yet failed, it marks finish so no other

process tries to undo a successful transaction. (force == TRUE is used to allow a transaction to

complete (not retry) even if undo is true.)

The lemmas above show that if processes follow this protocol, once a transaction installs a log as

owner of a domain, no other transaction may access that domain, so transactions are not interleaved.

Further, either all of the writes in a transaction complete, or they are all completely undone. If they

complete and successfully mark finish using CAS at (3.2:3), then they are “committed” and

cannot be undone. It is easy to see that a successful CAS here
�

is the point of linearization [44]. (In

fact, the exclusive access given by owning the domain, enforces a strict sequential order.)

The lemmas have not yet, however, guaranteed that progress is made in finite time.

Lemma 10 A transaction’s log fails to be installed as owner over a domain only if another trans-

action has already acquired ownership.

Lemma 11 Assume the sequential specification of an algorithm completes in a finite number steps.

Assume there are � writes to memory in this algorithm. Then using the protocol described here,

each helper must complete within at most
� � “steps”.

The body of each helper function only interacts with the protocol through explicit calls to the func-

tion trans write, or by folding in the trans write functionality (as CASnInternal does).

There are no loops in trans write. There are at most � calls to trans write. If the transac-

tion is undone then each of these � writes may also be undone.

All helpers are executing the same code and every write or undo modifies idx. By Lemma 3,

states cannot repeat. Therefore, if an attempt at the � th write fails due to a conflict with another

process executing the same transaction, it must have encountered a “future” state. The � th state

must have already succeeded in some other process. So, when the local transaction has executed
� �

�

Strictly speaking, given the strict sequencing imposed by the exclusive access one can choose any point from the
time the log is successfully stored into the domain until this commit point as the point of linearization. However, that
is only true for the algorithms that use helping (“roll-forward”) and don’t support multi-objects. For algorithms that use
multi-objects and/or rollback, this is the appropriate point of linearization.
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steps, either they all succeeded and the transaction has completed, or else some other process has

completed the transaction for us. �
Lemma 12 Each iteration in trans open either installs log as owner and returns to the caller,

or else helps complete another transaction (which is already the owner of this domain).

Lemma 13 trans begin can only be called at most once for each transaction by each process.

Proof: trans begin is only called by trans open. Consider process
�

.
�

executes a call

to trans begin with an argument of log = *domain. There are only two possible ways to

return from trans begin.

trans begin returns FALSE only if *domain is no longer pointing to log, which by

Lemma 4 can only occur if the log’s transaction completed. Once a transaction has completed,

its log is never again stored in any domain.

If trans begin returns TRUE, then trans open calls trans conclude. The call to

trans conclude ensures that the transaction corresponding to log completes before process
�

gets a chance to call trans begin again. �
Lemma 14 trans conclude can only be called at most once for each log by each process.

Proof: trans conclude is only called by trans open if and only if trans begin re-

turned TRUE (and incremented the reference count on log). By Lemma 13, trans begin is

called at most once for each log by each process. �
Lemma 15 The loop in trans begin (and hence the increment in the while) can only be exe-

cuted at most
� � times for a given transaction.

Proof: The loop repeats only if the DCAS fails. The DCAS fails only if log has been re-

moved from *laddr (in which case trans begin returns FALSE and a transaction has com-

pleted) or else some other process incremented or decremented *cnt between reading the argu-

ments to DCAS and executing the atomic instruction. Increments of *cnt occur only in successful

trans begins. Decrements only occur in the call to atomic decr in trans conclude. By

Lemmas 13 and 14 trans begin and trans conclude are each called once per process per

transaction. There are � active processes contending for a domain, so the DCAS in trans begin

can fail due to contention at most twice per process per transaction (and at most once due to trans-

action termination (*laddr not pointing to log)). �
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Lemma 16 atomic decr can only loop at most � � � times.

Proof: The simple implementation of atomic decr is to read the value, � , and attempt to atomi-

cally CAS in � � � . Each time � changes between the read and the CAS, the CAS fails. By Lemma 13

the reference count in log is incremented at most once by each actively contending process. The

reference count starts at 1 upon allocation by the original transaction, so the maximum value it can

reach is � � � . �
Lemma 17 Given a set of operations each of whose sequential specification always executes in a

finite number of steps. Assume each operation is implemented as a helper function with � writes

to shared memory. Then, each process executes a finite number (at most ��� � � � � ) of steps before

some process completes a transaction (makes progress).

Proof: By the preceding lemmas, each procedure in the protocol either completes in a finite number

of steps or guarantees that another transaction has completed in a finite number of steps. (There are

a finite set of procedures listed in Chapter 3).

Management of the reference count can take � � � � steps. The body of the helper function (in-

cluding cleanup) must complete in � ����� steps. �
Theorem 18 CASn in Figure 3.3 is a non-blocking implementation of atomic CAS � .

Proof: In this simple version, with a single global domain, atomicity and correctness follow

directly from the fact that ownership of the domain (by a transaction, not a process) is exclusive.

Exclusive ownership guarantees that no CAS � reads any intermediate state, and imposes a strict

serial order on all CAS � s. The guarantee of progress follows immediately from Lemma 17. �

C.2 CAS � is ��� ���
The general strategy I use to show that CAS � is � ����� is to show that the transaction goes through

at most � ����� state changes. The first steps toward this were shown in the lemmas leading up to

Theorem 18. In the preliminary version of the algorithm the cost of managing the reference counts

on the log was ��� � � . I show how the modifications introduced to deal with contention reduction

reduce that cost to � ��� � .
The � ����� state changes may take place in multiple processes, and individual processes may be

delayed arbitrarily long. However, the delay between each individual state change is ����� � .
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Lemma 19 log->ID can only change if the current owner is preempted by the scheduler or in-

terrupted.

The owner must have been running at the time it acquired ownership of log->ID. log->ID

is only modified by the DCAS at (3.6:5). That code is protected by (3.6:3), which tests whether

log->ID is currently executing. This guarantees that the owner must not have been running when

the waiter executed (3.6:3) (although it mayhave since resumed). �
The DCAS at (3.6:5) ensures that the current process takes over ownership of the log owner,

only if owner still owns domain. Once we acquire ownership of the log, we call trans begin,

which only succeeds in incrementing the reference count if the log we own, still owns the domain.

Lemma 20 owner is valid inside the body of the while loop in trans open.

If we reached statement (3.6:1), then *domain was not NULL. If it had been NULL, then the

call to trans start(domain, log)would have succeeded, and we would have returned from

the while loop before (3.6:1).

We store the current value of the owner of domain in the local variable owner. We test to

make sure owner didn’t complete its transaction between trans start and the assignment. If

it did, and *domain == NULL, then we need to retry the loop in order to execute �trans start.

If owner is non-null then it points to a log that was the owner of domain. All subsequent ref-

erences through owner come after the call to trans begin which only returns successfully if

it atomically incremented the reference count while owner still owned domain. Thus, if we pass

trans begin, owner is not reallocated. �
Lemma 21 trans begin returns FALSE iff the current process had been preempted.

The DCAS at (3.7:1) fails only if another process has installed their ID in log. By Lemma 19 this is

only possible if the current process had been preempted at some point. The statement immediately

preceding the call to trans begin checks to make sure that myId is installed in Log->ID. �
Lemma 22 The loop in trans begin executes at most once per call, and is called at most once

per preemption

There are two options. If log->ID still points to myId, then cnt could not have been modified,

and the DCAS must succeed. Alternatively, if myId is changed, then (3.7:1) returns immediately.

trans begin is only called if ID is successfully changed to myID by the new owner, which

by Lemma 19 happens at most once per preemption. �
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Lemma 23 The process currently owning log can exit trans conclude in ����� � steps. At least

one other waiter also exits trans conclude in 1 extra step and is able to acquire ownership of

the domain for a new transaction.

If the transaction was preempted locally � times, then up to � waiters may be looping in

trans conclude waiting to decrement the reference count. Only one process whose process

ID is stored in Log->ID can succeed at the DCAS on line 2. Once it succeeds, log->ID is null.

Because process ID’s are unique, no other process can contend with the decrement, and the owner

exits trans conclude in constant time.

� waiters now contend for decrementing the reference count. Although, one waiter will only

succeed after ������� steps, one waiter will also succeed in O(1). �
The body of CASnInternal can take � ����� steps to execute. The transaction can only be pre-

empted ������� times, each with a call to trans begin. By Lemma 22, each call to trans begin

loops only once. By Lemma 23 the current owner can exit trans conclude in � ��� � . Thus we

have:

Theorem 24 CAS � executes in worst–case time � ����� .

C.3 Multi-object updates are non-blocking and livelock free

Section 3.2.3 introduced enhanced protocols that supported multi-object domains for both STM

with roll-back and roll-forward. These enhancements affect the reasoning behind the proofs that the

simpler algorithms were non-blocking.

Can two or more transactions deadlock? No, because transactions only wait for running pro-

cesses. No running process is forced to wait for a waiting (non-running) process, and therefore

cyclical dependencies (and, thus, deadlock) are impossible.

For STM with roll-back, we can ask whether two or more transactions can livelock? (By live-

lock we mean that two or more transactions persistently abort each other so no progress is made).

Livelock is unlikely, given exponential backoff, but this assurance is not sufficient to prove that the

algorithm is non-blocking (static transactions (such as CAS � even with no helping) can be made

livelock free by simply sorting the arguments in ascending address order. However, this is not a

general solution, and clearly does not work for dynamic STM).

To deterministically avoid livelock, we introduce the explicit notion of precedence. In the sin-

gle domain case we implicitly gave precedence to running processes over blocked processes. We
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avoided livelock and ensured progress (in the absence of infinite preemptions) by guaranteeing that

once a transaction acquired ownership of a domain, it was guaranteed to complete without being

aborted or preempted. In the multi-domain case we can make no such guarantee with the original

approach. Consider two transactions,
� � � and

� � � , which access domains � � � � � and � � � � �
respectively. If

� � � proceeds to the point it owns
�

and
� � � passes the point at which it owns

�
,

one (at least) must be aborted before the other can proceed.

By imposing an order on transactions, (and establishing that a maximal precedence transaction

exists), we can guarantee that the highest precedence successfully running transaction is not aborted.

The fixed order guarantees that there are no cycles — if transaction
� � � aborts

� � � , we guarantee

that
� � � will not later abort

� � � . The existence of a maximal precedence ensures progress — there

is always some transaction that no one will abort. By giving running processes precedence over

waiting processes we ensure that processes experiencing long delays do not cause other processes

to wait. (The waiting is still cycle-free (and thus deadlock free) because running processes never

wait for stopped processes, regardless of precedence).

Note, however, that with roll-back and without helping, an adversary can always force livelock

by perpetually repeating the sequence of steps that caused the initial rollback. However, the adver-

sary must accomplish five steps to force livelock: It must (a) force
� � � to relinquish the processor

after every time it acquires
�

, (b) further force
� � � to remain descheduled until

� � � is ready to

start, (c) it must schedule
� � � while

� � � is descheduled, (d) it must also interrupt
� � � after every

time it acquires ownership of
�

, and (e) it must resume
� � � at that point. Under the assumption

that infinite process descheduling is not allowed (no algorithm can make progress under such con-

ditions), then the adversary cannot do either (a) or (d), and so cannot force livelock. Even in the

case where we allow infinite preemption, an adversary cannot delay a runnable process if no other

processes are runnable on the machine, so by increasing the delay of
� � � between attempts, we

can reduce the probability to 0 that the adversary can wait long enough in (b) to cause livelock. The

policy described above ensures that as long as there is one run in which
� � � is not preempted while

� � � is runnable, then livelock is impossible and progress is probabilistically guaranteed.

This policy of aborting on conflict, however, introduces some inefficiencies. Consider two trans-

actions that only overlap on domain
�

(or any set of domains that they both access in the same

order). If transaction
� � � , with lower precedence, acquires

�
first, then if

� � � , with higher prece-

dence, attempts to acquire
�

before
� � � has completed, then

� � � would be needlessly aborted,

wasting the work done so far. In truth, transactions only need to be aborted if a cyclical dependency
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should arise. If the dependencies are not cyclical, we should be able to serialize them in any or-

der (precedence is introduced to avoid livelock, not to ensure that higher precedence transactions

complete first!).
� � � should be able to wait until

� � � finishes, and then proceed.

To reduce the work wasted due to needless aborts, we defer assigning precedence until two

transactions conflict for the first time. Initially precedence is 0 (unset). If either transaction has a

precedence of 0 at the start of a conflict, it is impossible for them to have any cyclical dependencies.

Therefore, if both transactions are currently running, and at least one of them has zero precedence,

the second transaction to attempt to acquire ownership of a given data structure will defer and back-

off rather than abort. This does not eliminate all needless aborts, but it catches the most common

case with very little cost.

For STM with roll-forward, a different form of wasted work is introduced by so-called redun-

dant helping [87, 74, 1]. Redundant helping is not a problem caused by aborting too frequently, but

rather with not aborting aggressively enough.

The first problem introduced by redundant helping is reduced parallelism caused by inteference

between disjoint accesses. If we follow the rule that a transaction
� � must help all transactions

� �

with which it conflicts before proceeding on its own operations, then long transitive helping chains

can be built up. Assume
� �

conflicts with
� �

, which in turn conflicts with
� 


, and assume
� �

and
� 


access disjoint locations. When
� �

detects its conflict with
� �

and tries to help
� �

, it discovers

the conflict with
� 


and tries to help
� 


. This effectively serializes
� �

and
� 


, because
� �

cannot

proceed until
� 


has completely finished. Arbitrarily long chains can be built up. If a chain of
�

interefering transactions exist, breaking the chain by aborting at least one transaction every � links

in the conflict graph will abort
� � � transactions, but also allow

� � � transactions to proceed in

parallel.

Some approaches [87, 74] attack this problem by simply eliminating recursive helping when

first detected, aborting the first transaction that tries to recursively employ helping. (This aborts a

full half of the conflicting transactions in a chain of
�

transactions, but also allows the remaining
� � � transactions to proceed concurrently). Others [1] actually operate on the conflict graph, and

schedule optimal helping policies. The contributions of [1] are orthogonal to the point of this thesis.

While in this thesis I eliminate recursive helping without explicitly optimizing by consulting the

conflict graph, I note that one can apply their techniques both to my STM with roll-forward to

optimize the helping, and to STM with roll-back, to minimize the needless aborts. It is important

to note that in my STM algorithm, where domains are data-structures, long chains are unlikely.

And when they do occur, most likely real dependencies exist (thus breaking the chains would not
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increase parallelism by much). Therefore the cost of such optimizations are unlikely to result in

useful benefits. I have not measured this tradeoff in any real systems.

Helping introduces a second problem: wasted work due to helping a transaction that is bound to

fail. If a transaction reads old values, performs a computation, and then tries to update using CAS � ,

a conflict probably means that the original CAS � will fail (exactly how probable will depend on the

granularity of the conflicts). A chain of � conflicting transactions might well result in � � � failures.

This problem does not arise unconditionally in the dynamic STM algorithms, because the reads only

occur after acquiring ownership. It depends on the algorithm being emulated. The high probability

of failure upon conflict does occur for CAS � (because the transaction depends upon values read

before the transaction began), but not for Fetch&Incr (where the transaction is commutative, nor

would it occur for idempotent transactions). For CAS � , where the problem does arise, eliminating

recursive helping also reduces this inefficiency.

Note, however, that avoiding redundant helping by aborting means that even in STM with roll-

forward some transactions roll-back and are forced to retry. Non-blocking algorithms that work by

updating local copies (such as [74]) only abort due to conflict in the case that some other transaction

has succeeded, and hence there is still a guarantee of progress, so the algorithms are provably non-

blocking. In our algorithm, which updates in place, conflict is detected by partially completed

transactions when they attempt to acquire ownership of a data structure that is owned by another

partially completed transaction. We need to establish that if a roll-back occurs, we have a guarantee

that some transaction has completed and made progress.

Precedence numbers come to our aid, here, too, as any time an abort occurs, some transaction

with highest precedence number
�

will complete. (Note that if it is preempted, the completion is

accomplished by helpers, not the original process.)

Once again, linearizability follows from the strict ordering imposed by the exclusive ownership

of domains. Any two transactions that interact (access a shared domain) are strictly ordered with re-

spect to each other. Further, the strict ordering applies between transactions that transitively interact

because all domains are released after completion of the transaction.

�

This is not a unique transaction, although the precedence number is unique. We cannot guarantee that two or more
transactions will not have identical precedence numbers because the precedence is bounded, and precedence can wrap-
around. However, the code presented here works correctly even in the case of wrap-around. Equal precedence transactions
wait rather than abort. Two equal precedence transactions can actively interfere over only one domain at a time. Thus
no cycles can be introduced between the equal-precedence transactions. As long as at least one transaction with maximal
precedence exists, one of them is guaranteed to proceed.



Appendix D

Non-blocking Implementations of

Data-Structures

D.1 Introduction

A programmer wishing to implement an efficient non-blocking algorithm for a given data structure

must proceed by trial and error. There is no known recipe to achieve both non-blocking progress and

efficiency. Herlihy [38] and others have shown that it is possible to implement any data-structure in

a non-blocking (or wait-free) manner, but his construction [41] and other universal constructions,

are often inefficient. Chapter 3 presents another general technique for converting any sequential

algorithm into an equivalent non-blocking algorithm with reasonable asymptotic performance. Un-

fortunately, in the common case (small-scale and low contention) even these universal constructions

do not produce efficient implementations compared to well-tuned blocking algorithms for a specific

data-structure. This appendix addresses the question of how one can design efficient non-blocking

implementations of particular data-structures. This appendix describes techniques a programmer

can apply, and gives one or two concrete examples of implementations of data structures using each

technique.

It is important to stress that this appendix does not claim to be “universal”. The techniques

presented here are not guaranteed to cover every data structure. They are also not mechanically ap-

plicable. A programmer must carefully choose the techniques that apply to his or her data structure.

Though the set of tricks and techniques presented here is not provably exhaustive, I hope it is

representative enough to enable readers to convert most performance critical data structures that

they might encounter in practice. There is anecdotal evidence to support my claim that this hope is

183
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realistic: at first, each new data structure I attempted to implement added a new technique to my

list. Gradually, new additions to the list of techniques became rare. More recently every new data

structure I have attempted to implement has been amenable to a non-blocking implementation using

a technique I had already encountered.

By presenting techniques that are not “universal”, I am implicitly relying on answers to the

questions “what data structures are important?” and “what are the typical patterns of usage of a

given data structure?” I think this is legitimate: it is good system design to optimize for the common

case, and one should be willing to take advantage of features of that common case (e.g. single writer

multiple reader, or low contention). To the extent that system designers have similar answers to these

two questions, the techniques in this chapter will be useful. I believe that there is a rough consensus

on important data structures and typical patterns of usage in the case of performance critical shared

data structures.

It has been our experience that, where performance is relevant, contention rates on data structure

are low. This is sometimes fortuitous [98, 67] and sometimes by design [25].

In either case, the low contention arises since memory contention is usually significantly more

problematic than synchronization contention. That is, even assuming synchronization is free, and

unlimited concurrency is algorithmically possible on a shared data structure, the cost of faulting

the data from processor to processor can swamp other costs (even the cost of direct communication

must be amortized over the time of the computation). Therefore, it is preferable to (re)structure data

structures and algorithms to reduce memory contention (and communication costs) and partition the

data so that each processor typically caches a portion of the data and works locally on it[25]. Once

data is partitioned in this manner, synchronization becomes a mostly local issue.

Therefore it is reasonable to assume that contention on shared data structures is usually low and

optimize for that case. (We require graceful degradation when our assumption is wrong).

What kind of data–structures are shared? It seems questionable from a reliability standpoint to

have threads from separate address spaces (particularly on separate processors) sharing access to

complex data structures. These data structures are also more difficult to program and to maintain

and often provide marginal performance benefits in practice, particularly when synchronization

overhead is taken into account. Their asymptotic performance benefits are often not realized at the

scale of typical operating system data structures. (Based on first principles, this should also hold true

for all applications distributed across multiple processors in general, although our direct experience

supporting this assertion is more limited.)

Thus, where performance is an issue, shared data structures will commonly be simple data
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structures with low contention. (This is not to say that there is no place for complex data structures,

just that in well-designed systems they will usually not be shared between separate processors in

critical cases.)

In a real sense, then, the performance gains achieved by using DCAS (rather than CAS or locks)

directly (rather than through universal transformations) in simple data structures are at least as

compelling advantages of DCAS as the asymptotic results presented in Chapter 3 — because simple

data structures are most likely to be used in performance critical areas.

D.1.1 Approaches

There are two general approaches to one can use to implement a data-structure-specific non-block-

ing update.

1. Detect conflicts and retry: Locally record an initial state of the data structure. Compute

an updated state based on this initial state. Then, atomically test that the data structure is

unchanged and, if so, install the new state. If the state has been changed, begin again.

Note that if the test and installation are truly atomic, then the state can have changed between

the read and the test/installation of the new state only in the case that some other operation

updated the state successfully. This condition is sufficient to imply that this approach is

strictly non-blocking because the only way that one process can delay another process is by

making progress. (Strictly speaking, we also depend upon the fact that the computation of a

new state occurs in finite time.)

If the test and installation are not atomic, then there exists some possibility of interference

between two partial updates. The result of the interference might be that neither update is

successful. In such cases, the best we can aim for is to be non-blocking with probability 1, or

to be effectively non-blocking as described in Chapter 1.

2. Cooperate: Record your intended operation in shared memory and have other processes help

you complete if you are delayed. Before modifying a data structure, check if any operation

is pending. If so, first complete the pending operation. If there is no pending operation then

atomically record your intended operation. Finally, begin your update, checking to make sure

no one else has completed it for you.

If there is a non-blocking implementation of “recording intended operations” (there is), and

if execution of each operation takes finite time (it does, by assumption), then this approach is
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non-blocking.

Section B.3 points out some drawbacks with fully general helping mechanisms. For some

particular data structures these drawbacks do not apply.

A small number of basic techniques and tricks can help realize these approaches for specific

data structures. Each of the following techniques is described in its own section.

� Direct implementation.

� Single Server

� Layers of read-mostly hierarchy

� Relaxing Consistency Requirements

� Copying small sub-objects

� Explicit and Implicit Helping

� Adding bits to invalidate states

� Consistency and hints

Appendix A addresses the misconceptions that NBS increases concurrency and that increased

concurrency is necessary or sufficient to implement NBS.

Increasing concurrency reduces, but does not eliminate, conflicts between different transactions

attempting to modify a single object. One still must make sure that the algorithm is non-blocking in

the case of updates that still do conflict.

Conversely, it is also important to understand that non-blocking algorithms do not necessarily

increase concurrency. non-blocking updates may still impose a strict total-order on the updates

applied to a data structure, and these might execute serially resulting in no obvious throughput gain.

While the techniques described in this chapter occasionally increase concurrency for a given

data-structure, I am mostly interested in the non-blocking property itself. For the purpose of this

presentation, increased concurrency is incidental, and is rarely discussed.
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Push(*stack, *entry)
{

pointer_t old_top;

do {
old_top = stack->top;
entry->next.ptr = old_top.ptr;

}while(!(CAS(&(stack->top),
old_top,
<entry,
old_top.count>)));

}

entry *Pop(Stack *stack)
{
pointer_t old_top;
entry *top;

do {
old_top = stack->top;
top = old_top.ptr;

if (top == NULL) {
return (FALSE);

}
}while(!(CAS(&(stack->top),

old_top,
<top->next.ptr,
old_top.count+1>)));

return(top);
}

Figure D.1: Code implementing Treiber’s non-blocking stacks

D.2 Common cases

Given atomic DCAS, we know that any atomic update that only modifies two words of memory can

be implemented directly. In the trivial cases where the entire data structure can be explicitly im-

plemented in one or two words (say, a double-width counter) the implementation is straightforward

and uninteresting. However, the state of many data structures of arbitrary size are fully determined

by only two words at any given time.

D.2.1 List-based stacks

Consider a stack supporting two operations, push, and pop. push adds a new element to the top

of the stack. pop removes the top element of the stack and returns it to the caller. Clearly the total

state of the stack is larger than two words — it is proportional to the number of elements in the

stack. A non-blocking push can still be implemented easily. Suppose we want to push entry

onto the stack. On each attempt, we can set entry->next to point to top = stack->top

with no synchronization (since entry is purely local to our process until it is successfully stored

on the stack). Next, we can attempt to atomicaIly update the top of the stack to point at entry

using CAS. If the attempt to atomically change stack->top from top to entry succeeds, then

the stack remains in a consistent state. If the attempt fails, then someone else must have successfully

altered the top of the stack, and we retry.
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pop is slightly more problematic. We can no longer simply look at stack->top. Consider a

stack whose top three elements are
�

,
�

, and
�

, in order. Process
�

begins a pop operation which

reads the contents of stack->top (
�

) into top, then reads top->next (
�

) into next. At

this point some other process may pop both
�

and
�

off the stack, and then push
�

back on. To

complete the pop operation,
�

wants to store next (pointing to
�

) into stack->top.
�

cannot

simply check that stack->top still points to ��� � (which still contains
�

) — in our example
�

is

the top element but the next element is
�

!
�

must ensure that it has correct values for both the top

two values. For CAS-only implementations this can be achieved by either adding version numbers

to the stack->top pointer (e.g. Treiber [84]), or guaranteeing that
�

will never be reused (e.g.

atomic-pop on the Lisp Machine [97]).

Treiber’s non-blocking algorithm for LIFO stacks (pseudo-code in Figure D.1) illustrates how

this problem is solved in a CAS-only system. The stack top pointer consists of a version number

and a pointer to the top-of-stack. On machines with a double-width CAS the representation is

straightforward — a word for the version number and a word for the pointer. On machines that only

operate atomically on smaller width words, the pointer can be represented as an index into an array,

so that both the “pointer” and version number can fit into a single word. The version number is only

incremented on pop to reduce the rate of wrap-around (this effectively gives us 1 extra bit, doubling

the time between wrap-arounds).

Using DCAS, however, pop can be implemented as simply as push. We record newTop =

top->next at the start of an attempt. If stack->top is top and top->next is newTop, then

changing stack->top to point to newTop atomically changes the stack from one consistent state

to another. Once again, we can only fail if some other process successfully pushed or popped the

stack between the initial read of both stack->top and top->next and the execution of DCAS.

The entire state of this stack at any given time is maintained in these two locations. One of the two

locations, though, varies over time.

The non-blocking code implementing list-based stacks is shown in Figures D.2 and D.3.

do {
backoffIfNeeded();
top = stack->top;
entry->next = top;

} while /* Retry if changed */
(!CAS(&(stack->top), top, entry));

Figure D.2: Push on stack (list).
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do {
backoffIfNeeded();
top = stack->top;
if (top == NULL)
{ return(FALSE); }

newTop = top->next;
} while

(!DCAS(&(stack->top), &(top->next),
top, newTop,
newTop, NULL));

Figure D.3: Pop from stack (list).

backoffIfNeeded hides the details of an exponential backoff algorithm to improve per-

formance of this algorithm under contention. An exponentially growing backoff interval is stored

(either in the shared data structure or in a local variable). A number is chosen, uniformly, from

within that interval, and the process waits that amount of time before doubling the interval and

retrying.

Note that the approach of minimizing logical contention, outlined in Chapter 4, can sometimes

eliminate the need for any backoff algorithm. If we know that the maximum number of processes

contending on a given data structure is bounded, and we know the minimum time before a process

that successfully performed an update could possibly retry, it is sometimes possible to demonstrate

that backoff is unnecessary. In practice this is fairly common inside an OS kernel, where a successful

update might mean that the given processor will not access that data structure again until after, at

least, a context switch.

D.2.2 Array-based stacks

An array-based stack can be more efficient
�

than a list-based one – it avoids allocation and de-

allocation for each operation, and avoids the space overhead for list pointers in each entry. Further,

this same approach can be generalized to support an implementation of a set of arbitrary elements

(where the potential size of the set is either large or not known in advance, so that a bit-vector

�

In practice, care must be taken in deciding on the representation of a stack. Allocation and deallocation can be done
out of per-processor free-lists, so no synchronization is needed and we can expect few cache misses for heavily used
stacks. Also, array-based stacks require two writes (the stack-pointer and the top-element of the stack), invalidating two
cache lines. In contrast, list-based stacks only write stack->top, while the second argument (top->next) is only
read. Further CMDS (Section 4.3), would suggest padding out stack-entry’s to be full cache-lines. If we pad each
location in a stack-based array we lose the space advantage over list-based stacks. If we do not pad, then we increase
memory contention.
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approach is infeasible).

First consider the array-based stack itself. If we implement a stack as an array, then although the

stack may grow and shrink, any operation on the stack still affects only two words: the stack-pointer

and one value. Figures D.4 and D.5 implement push and pop, respectively, for a non-blocking

array-based stack implementation.

do {
backoffIfNeeded();
index = stack->sp;
if (index >= stack->size)
{ /* signal stack_overflow */ }

oldVal = stack->data[index];
} while

(!DCAS(&(stack->sp),
&(stack->data[index]),

index, oldVal,
index+1, val));

Figure D.4: Push on stack (array).

do {
backoffIfNeeded();
index = stack->sp-1;
if (index == -1) {

/* signal stack underflow */
} else {

returnValue = stack->data[index];
}

} while
(!DCAS(&(stack->sp), &(stack->data[index]),

index+1, returnValue,
index, (T)NULL));

Figure D.5: Pop from stack (array).

The implementation is straightforward. (As discussed in Chapter 2, Synthesis [64] tried to be

clever, and used CAS rather than DCAS in pop. Their cleverness introduced a race condition.)

Section D.9.2 considers extending our implementation to an array-based set, where we support

constant time deletion of arbitrary elements.
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D.2.3 FIFO queues

In both array-based and list-based implementations of stack, the 2-location update always mod-

ifies one fixed location (stack->sp and stack->top respectively). The second argument

(stack->data[index]) in the array-based implementation varies. (Although the second ar-

gument (top->next) to DCAS in the pop operation of the list-based implementation varies, too,

it is essentially just read, not written.) Despite this variation in the second argument, the operations

are strictly linearized based on updates to the one fixed location.

The following DCAS-based non-blocking implementation of FIFO queues (see Figures D.6 and

D.7) varies both first and second word of state. It is loosely derived from the CAS-only implemen-

tation of Michael an Scott[70] (see Section D.5.1). This example demonstrates how the degree of

concurrency in a non-blocking implementation matches the degree of concurrency in the equivalent

blocking implementation. The Michael and Scott implementation allows a concurrent enqueue and

dequeue to execute in parallel as long as the queue is not a singleton (when the head and tail are the

same object). They provide a CAS-only non-blocking implementation and a lock-based blocking

implementation.

The DCAS implementation presented here is noticeably simpler than the CAS-only implemen-

tation. It eliminates the complexity of managing both head and tail pointers when dequeuing a

singleton node, thereby avoiding the need for a dummy node. Further, because the queue always

transitions from consistent state to consistent state there is no need to include counters in each

pointer. Finally, in the common case of enqueuing on the tail of a non-empty queue, the DCAS al-

gorithm does not have to deal with updating the tail pointer after the update of the next pointer

— both are updated atomically and so can never get out of synch.

D.2.4 Priority queues: linked lists

It is not the case that any data-structure that only modifies two words per operation is trivially

implementable using DCAS. Consider the case of inserting an element into a singly linked list.

In such a case the update consists of modifying a single word (the next pointer of the previous

element). However, that modification is only correct if the entire chain of next pointers from the

head of the list still points to prev. If we are inserting the element into the � th position in the list,

then the state depends on � next pointers.

An example that illustrates this problem is an attempt to insert entry into a list
�

. Process
�

finds that entry belongs after � and before � , and then goes blocked. While
�

is blocked other
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entry->next = NULL;
do {

backoffIfNeeded();
tail = q->tail;

} while /* Retry if tail changed */
((tail == NULL)?
(!DCAS(&q->tail, &(q->head),

NULL, NULL,
entry, entry)):

(!DCAS(&(tail->next), &(q->tail),
NULL, tail,
entry, entry)));

Figure D.6: Enqueue on FIFO Queue.

do {
backoffIfNeeded();
head = q->head;

if (head == NULL) {
/* Queue empty */
return(FALSE);

} else
{ newHead = head->next; }

} while
((newHead == NULL)?
(!DCAS(&(q->head), &(q->tail),

head, head,
NULL, NULL)):

(!DCAS(&(q->head), &(head->next),
head, newHead,
newHead, NULL)))

return(head);

Figure D.7: Dequeue from FIFO Queue.
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processes first delete � and then � and insert them both on another list
���

(the free list would be a

particularly bad case of
� �

!). When
�

resumes, � is still pointing at � , although both are now in
� �

rather than in
�

. The insertion, however, would succeed, and entrywould now be inserted into
� �

rather than
�

.

Fortunately, in any case where the state depends upon an arbitrary number of reads and only

one write, we can conventionally protect the entire data structure with a version number. If the

version number is incremented on every modification, we can use it to guarantee that the state of the

data-structure is unchanged from the beginning of an update until the time we wish to atomically

perform the write. In the previous example the insertion would fail despite the fact that � is still

pointing to � , since the version number of
�

would have been changed.

Figures D.8 and D.9 display the implementation of a non-blocking priority queue as a linked

list. The DCAS simultaneously updates the next pointer and increments the version number.

Note that the list is initialized with a dummy entry (i.e. the “empty” list consists of a single

entry). Nothing ever looks at the contents of the dummy entry, but the code is slightly simpler this

way, since we do not need to special case insertion or deletion at the head of the list.

do {
backoffIfNeeded();
version = list->version;

for (p=list->head;
(((next = p->next) != NULL) &&
(next->datum < datum));
p=next) {}

entry->next = next;
} while /* retry if list changed */
(!DCAS(&(list->version), &(p->next),

version, next,
version+1, entry));

Figure D.8: Insertion into middle of a singly-linked list. Note that
list is initialized with a single, “dummy” entry.

Given that word sizes are bounded, the correctness of this algorithm depends upon the version

number not wrapping around to have the same value during the course of a single update. The

probability of this happening must be assessed on a per-instance basis. If the probability of wrap-

around (or the cost of incorrect operation) is too high, then several alternatives to version numbers
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do {
backoffIfNeeded();
version = list->version;

for(p=list->head;(p->next!=elt);p=p->next){
if (p == NULL) { /* Not found */
if (version != list->version)

{ continue; } /* Changed, retry */
return (NULL); /* Really not found */

}
}

} while(version != list->version ||
!DCAS(&(list->version), &(p->next),

version, elt,
version+1, elt->next))

Figure D.9: Deletion from the middle of a singly-linked list.

are possible for a modest cost.

Elsewhere in the literature (e.g. [11]) people have proposed using the “bounded tags” approach

developed by Moir[73] to deal with the problem of version-number wrap-around. Bounded tag

algorithms guarantee that � objects can be assigned unique IDs from a fixed size set of names.

I propose another alternative, described more fully in Chapter 3 (where I use it in my universal

constructions), to use a unique ID rather than a version field. The unique ID must have the property

that it cannot be re-used during the lifetime of any transaction that has observed it. In other words,

if a process,
� �

, reads a particular unique ID at the beginning of an update and the unique ID field

still points to the same unique ID at the end of the update, then it is guaranteed that no transaction

has made any modification to the data structure during that time, regardless of how long
���

waits.

This is trivial to implement by using a pointer to a shared object in memory as the unique ID.

If list->uniqueId is NULL at the start of an update, the process atomically installs a newly

allocated unique ID with a reference count of one into list->uniqueId. If list->uniqueId

is not NULL, then the code must atomically increment the reference count of the unique ID while

simultaneously checking that this unique ID is still installed in list->uniqueId.

When we finish with an attempted update, instead of incrementing the version number as part of

the final DCAS, we try to set list->uniqueId from the unique ID we read originally to NULL.

After the DCAS, whether or not the DCAS succeeded, we decrement the reference count. The DCAS
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can only fail if some other process has already set list->uniqueId to NULL once. The object

is only deallocated and eligible for re-use when the reference count goes to zero. Note that only

one process can possibly see a reference count of zero: the reference count monotonically increases

until list->uniqueId goes to NULL, at which point it monotonically decreases.

D.2.5 Double-ended queues: deques

The examples of direct implementation just given above dealt with data structures whose state natu-

rally fit into two words of memory, and hence were easily handled by DCAS. What of data-structures

where the state requires more than 2 words? Sometimes it is possible to encode 2 or more indepen-

dent state variables into a single machine word.

A simple example of this technique is simply compressing full-word pointers into half-word

array indices. Consider the implementation of a non-blocking double-ended queue, or a deque.

A deque is a queue that allows enqueues and dequeues at both ends. That is, it supports four

operations that modify its state: pushTop, pushBottom, popTop, and popBottom. Deques have

become important data-structures in the implementation of work-stealing [20] schedulers.

Work-stealing schedulers maintain a per-processor queue (deque) of runnable threads. If a pro-

cessor empties its list of runnable threads it becomes a “thief”, and steals a thread from the top of a

“victim” double-ended queue. Local processors treat the bottom of the deque as a stack of runnable

threads. (The work-stealing algorithm has been refined by [15] to match “thieves” with “victims”

to efficiently support distributing computation across a wide area network.) Work-stealing schedul-

ing has many nice theoretical and practical properties and is deployed in a number of systems (e.g.

[31, 19, 35, 29, 91]).

The deque is central to an implementation of work-stealing scheduling. Recently, Arora, Blu-

mofe, and Paxton [11] have proposed a non-blocking implementation of deques using only CAS.

Their implementation depends on the fact that only a single process operates on the bottom of any

given deque (so calls to pushBottom and to popBottom will not execute concurrently), their

implementation does not support a pushTop operation, and their implementation fails if a counter

wraps around between invocations. My DCAS-based implementation of deques supports all 4 func-

tions, allows multiple processes to access both the top and bottom of the deque, and does not depend

on probabilistic correctness.

A deque consists of a header with two pointers, top and bottom, which point into a contiguous

area of memory. If the area of memory is a bounded array, we can use array indices rather than



196 APPENDIX D. NON-BLOCKING IMPLEMENTATIONS OF DATA-STRUCTURES

pointers and fit both top and bottom into a single word. Figures D.10 and D.11 implement a non--

blocking deque using this trick.

void pushTop(deque *dq, void *newval)
{
if ((dq->ptrs).top == 0) { ERROR(); }
do {
ptr = dq->ptrs;
if ((ptr.bot <= ptr.top) &&

CAS(&(dq->ptrs, ptr, <0,0>))) {
ptr = <0,0>;

}
} while (!DCAS(&(dq->ptrs), &(dq->entries[ptr.top-1]),

<ptr.bot,ptr.top>, NULL,
<ptr.bot,ptr.top-1>, newval));

}

void *popTop(deque *dq)
{

do {
ptr = dq->ptrs;
if (ptr.bot <= ptr.top) {
if (CAS(&(dq->ptrs, ptr, <0,0>)))
{ ptr = <0,0>; }

return((void *)NULL);
} else {

val = dq->entries[ptr.top];
}

} while (!DCAS(&(dq->ptrs), &(dq->entries[ptr.top]),
<ptr.bot,ptr.top>, val,
<ptr.bot,ptr.top+1>, NULL));

return(val);
}

Figure D.10: Insertion and deletion at the top of the deque

Ideally, operations at the top and bottom of a deque should be able to execute concurrently. Both

my implementation and the published implementation [11] preclude this by making bot and top

share a single word. We will revisit the deque example with an alternate, concurrent, non-block-

ing implementation when we illustrate the technique of making intermediate states “consistent” in

section D.5.1.
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void pushBottom(deque *dq, void *newval)
{
do {
ptr = dq->ptrs;
if ((ptr.bot <= ptr.top) &&

CAS(&(dq->ptrs, ptr, <0,0>))) {
ptr = <0,0>;

}
} while (!DCAS(&(dq->ptrs), &(dq->entries[ptr.bot]),

<ptr.bot,ptr.top>, NULL,
<ptr.bot+1,ptr.top>, newval));

}

void *popBottom(deque *dq)
{

do {
ptr = dq->ptrs;
if (ptr.bot <= ptr.top) {

if (CAS(&(dq->ptrs, ptr, <0,0>)))
{ ptr = <0,0>; }

return((void *)NULL);
} else {

val = dq->entries[ptr.bot-1];
}

} while (!DCAS(&(dq->ptrs), &(dq->entries[ptr.bot-1]),
<ptr.bot,ptr.top>, val,
<ptr.bot-1,ptr.top>, NULL));

return(val);
}

Figure D.11: Insertion and deletion from the bottom of a deque
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D.3 Single server model

It is common to discover that a particular data–structure has a single consumer/reader and multiple

producers/writers (or vice versa). In these cases we can exploit the lack of concurrency to avoid

synchronization — the single consumer or writer can serialize tricky operations. The serialization

already occurs naturally (that is, the lack of concurrency is not the result of converting to a non--

blocking implementation). We are not paying any penalty for this serialization.

D.3.1 Examples from other work

Synthesis [64] proposed using servers to serialize all operations for data-structures that were difficult

to synchronize. This, unfortunately, introduces the single server as a serial bottleneck where none

existed before. (Fortunately, they never needed to resort to this technique except for preliminary

prototype implementations).

The interesting cases, though, are when one can exploit naturally occurring lack of concurrency.

In an earlier Synthesis paper [63], Massalin describes several array-based circular FIFO queues,

implemented using DCAS. Versions are optimized for the cases of single producer and single con-

sumer, single producer and multiple consumers, and multiple producers and single consumers. The

fact that one path through the code always went through a single process simplified the synchro-

nization needed, and improved performance. Matching the appropriate implementation to each

application benefited their thread and I/O systems.

The CAS-only implementation of deques in [11] exploits the fact that, in the work-stealing

algorithm, only one process ever manipulates the bottom of a deque. Thus manipulations of the

bottom pointer need not be synchronized, popTops must be synchronized only against each

other, and the only complicated synchronization involves making sure that bot and top do not

pass each other. This observation significantly simplifies the code in [11] (although at the cost of

more limited functionality compared to fully general deques).

Chesson [28] designed a stack for a non–blocking shared-memory message-passing library,

which SGI ships as a product. It exploited multiple-writers/single-readers to avoid the version

number used by Treiber [84].

D.3.2 Single server heap

It is often the case with a heap (or other implementations of priority queues), that one only actually

heap-delete-tops (removes the top item) one item at a time (exhibiting no parallelism) but



D.3. SINGLE SERVER MODEL 199

heap-insertmight get called at any time by any number of processes (concurrent with at most

one delete-top and many other inserts). In such a case heap-delete-top can act as a single

server, and serialize all requests. heap-insert can “lie” and simply atomically enqueue the new

item on a “pending insert” list. heap-delete-top first real-heap-inserts everything on

the pending list sequentially, and only then does a real-heap-delete-top. (“There is no need

for concurrency control if there is no concurrency.”)

There are concurrent non-blocking implementations of heaps (e.g. [46]), but if the natural

structure of the system is limited to a single deleter, there is nothing to be gained by parallelizing.

D.3.3 A FIFO queue with a single dequeuer

Imagine a FIFO queue with many enqueuers and a single dequeuer. (Such a data structure might

used for the output queue for a single port on a (hypothetical) network switch.) We can exploit the

fact that there is a single dequeuer to eliminate almost all synchronization on the dequeue operation.

The only case we must protect against is when there is a single entry in the queue and we simulta-

neously try to enqueue and dequeue. Enqueue is unchanged from Figure D.6, while the new version

of dequeue is presented in Figure D.12.

head = q->head;
if (head == NULL) {

/* Queue empty */
return(FALSE);

} else {
newHead = head->next;
if (newHead == NULL) {
if (DCAS(&(q->head), &(q->tail),

head, head,
NULL, NULL)) {

return(head);
}

} else {
newhead = head->next;

}
q->head = newhead;
head->next = NULL;
return(head);

}

Figure D.12: Dequeue code for FIFO Queue with single dequeuer.

Since there’s only one dequeuer, and all enqueues are done at the tail of the queue, head
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= q->head cannot change during a dequeue (unless it starts as NULL). Similarly, newhead =

head->next will not change once it is no longer NULL. If head starts out as NULL then we

can legitimately return NULLwith no synchronization since the dequeue operation can be serialized

before any of the enqueues. If newhead is not NULL, then no enqueuer will interfere with the

first two elements on the queue, and the dequeue can be done with no synchronization. If head

is not NULL and newhead is NULL, then there is only one element in the queue. A dequeue

must update both q->head and q->tail, and an enqueue must set the next pointer of the

element being dequeued — synchronization is needed. dequeue tries to DCAS both q->head

and q->tail from head to NULL. If it succeeds, the dequeue is complete and can return. If it

fails, then some enqueue has succeeded and the queue is now in a state where enqueue does not

conflict with dequeue, so we can proceed one more time with no synchronization. This time we are

guaranteed to succeed.

D.4 Reducing contention by adding read-only hierarchy

A common reason to increase complexity by adding a layer of hierarchy or indirection to a data

structure is to reduce contention. For example, as noted in Chapter 4, a large list that is searched

frequently may be revised to be a hash table. Then, searches and updates are localized to a portion of

the list (a single bucket), reducing the conflict with other operations, assuming they hash to different

buckets.

The key feature that can be exploited to simplify non-blocking implementations is the fact that

the upper levels of the hierarchy are read-only or read-mostly: descriptors are only added at the

leaves. No synchronization is needed for access to the hash table – no conflicts are possible unless

two processes access the same bucket.

Operations in the hash table are implemented by using the hash-key mod the number of buckets

as an index to find the target bucket. The bucket is implemented as a list, protected by a version

number. Insertion, deletion, and lookup are implemented simply as the corresponding operations

on lists.

This implementation is complicated somewhat if operations on the entire hash table are desired

(e.g. resizing the hash table). Assuming such operations are rare, two simple implementations are

possible. The first approach enlists “helping”. If the hash table needs to be resized, it is marked

as dirty, and every subsequent operation first tries to help finish the resizing before performing its

own operation. The second approach also marks the hash table as dirty, but instead of helping, each



D.5. RELAXING CONSISTENCY REQUIREMENTS 201

operation operates on both the old and the new bucket arrays.

Hash tables are also used to implement lookup tables, and not to reduce contention. In such

cases the base approach still works: A single version number can protect the entire hash table.

The only modifications to the hash table are still insertions and deletions into lists rooted in each

individual bucket. Resizing the hash table is also a single write — the hash table is enlarged by

overwriting the pointer to the bucket array. A client calling a routine that determines it is time to

resize the hash table creates a new bucket array of the appropriate size (for example, the smallest

prime number greater than twice the current number of buckets). It walks over the current hash

table, inserting each entry into its private new copy of the bucket array. When it is finished, if the

version number has not been changed, it replaces the old array with the new, and increments the

version number.

D.5 Relaxing consistency requirements

Data structures often constrain independent words to maintain relationships with each other in order

for the data structures to remain consistent. If these invariants are violated operations may fail.

Invariants that relate � � � independent words, where primitive atomic operators have arity � ,

must be violated at some point. If only � words are updated, ��� � words may be inconsistent. A

process running an algorithm may halt while the object is in such an inconsistent state. Algorithms

that use locks never expose these states unless a process fails. Using NBS, these states may be

exposed in the normal course of execution.

A programmer can deal with this issue by relaxing the consistency requirements. Consistency,

with respect to the data structure, may be redefined to allow these formerly inconsistent states to

exist – operations must now be prepared to deal with the larger variety of states. The key is to

redefine consistency in such a way that each new operation can maintain the (new, relaxed) strict

consistency by modifying only one or two words.

Two alternatives exist: First, the contract with the client is unchanged. In this case, all recovery

from the new intermediate states is handled internal to the data structure. Second, the new states

are exposed to clients — clients must be reprogrammed to handle the new semantics of the data

structure.
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D.5.1 Making internal intermediate states consistent

The list-based FIFO queue implementation of Michael and Scott [70] is the most efficient non--

blocking implementation in the literature. It out-performs all blocking and non-blocking implemen-

tations.

Their basic approach is similar to Treiber’s stacks: they include a version number with each

pointer. However, version numbers by themselves are not sufficient to implement an efficient non--

blocking FIFO queue.

The usual invariant for FIFO queues that allow insertion at the tail and deletion from the head,

is to require the queue’s tail pointer to always point at the “last” element — an element whose

next pointer points to NULL. Michael and Scott’s main insight was to relax that invariant and

allow tail to point to any element in the queue. The nearer the tail, the more efficient, but even if

tail happens to point to the head of the queue, operations are still correct.

Michael and Scott implement the version numbered pointers by using a double-width CAS (not

DCAS). Each pointer is two words wide. The first word contains the actual pointer and the second

word contains a version number. The version number guarantees that deletions from the head of the

list occur correctly.

Dequeuing an entry from the head of the queue is done by reading the current head (and version

number), and remembering the next pointer of that head entry. Using CAS, atomically replace the

head of the queue with the second element of the queue (the saved next pointer) if-and-only-if

head has not changed (the version number detects changes). The empty queue contains a dummy

entry, so head and tail never both point at the same entry in a non-empty queue.

Without the version number, the following sequence would corrupt a queue initially containing

only
�

and
�

:
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Process 1 Process 2

(Begin Dequeue)

Read head (=
�

)

Read head->next (=
�

)

Dequeue
�

Dequeue
�

Enqueue
�

Enqueue
�

Replace
�

in head with
�

The queue head now points to
�

, which may be on another list (even the free list)! Meanwhile

tail points to
�

, and the data structure is incorrect. Adding version numbers to pointers avoids

this problem, because if any intervening dequeues or enqueues occurred our attempt to change

head from
�

to
�

fails.

Enqueuing on tail is slightly trickier, since both tail and the next pointer of the last entry

in the queue need to be updated. The authors solve this problem by relaxing the requirement that

tail always point to the last entry in the queue. As long as tail is always guaranteed to point

to some entry in the list, the actual tail can be found by following the next pointers until you

reach NULL. At the start of enqueue (or dequeue when head == tail), incorrect tail pointers are

updated. (This algorithm is explained in more detail in Section D.7.1). To enqueue an entry at the

tail of the queue, it is now correct to proceed in two independent steps. First, atomically replace

the next pointer of the last entry in the queue (which must currently be NULL) with the pointer to

the entry being inserted. The queue is now in a valid state, since tail can legally point to any

element in the queue. Then, in a separate step, update tail to point to the newly inserted entry

if-and-only-if tail is still pointing to the entry that was at the tail of the queue when this operation

began (and has the same version number). If not (in the rare case that a conflicting update completed

while we were enqueuing), a subsequent enqueue or dequeue is guaranteed to fix up tail.

D.5.2 Expose more states to robust clients

It is sometimes the case that implementing a non-blocking version of a library routine is difficult,

particularly in routines being ported from one system to another. In such cases, rather than always

trying to enforce the original semantics, it is sometimes preferable to expose more states to clients

and re-implement the clients to deal with the new variety of states. This redefinition not only finesses

a difficult problem, but it can also enhance the robustness of the system as a whole by managing
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unusual situations at the highest level at which they are meaningful. (Unfortunately, it is not always

possible to redefine clients — especially for widely used modules with many existing clients — in

such cases this approach is not applicable.)

The value of exposing more states to clients is best illustrated by a concrete example. Consider

signal delivery in the Cache Kernel. There, signal delivery was made unreliable to simplify the code

that ensured that signals were only delivered to the correct process. Clients were explicitly required

to recover from unreliable signal delivery. Since there were other reasons that signal delivery was

not always reliable, this change actually increased the robustness of the system.

In the Cache Kernel [24], objects managed by the kernel are only “cached” versions of objects

owned by higher level application kernels. This is analogous to well-understood memory caches.

If the kernel must manage a new object, and no additional space exists in the kernel’s cache for that

type of object, the kernel looks for some object to flush from that cache. Dirty objects are “written

back” to the client (application kernel) before being flushed from the cache. However, the same

kernel object is now a cached version of a different client level object.

At the Cache Kernel/application kernel interface objects are referred to by ckoids (cache kernel

object IDs) rather than raw pointers. Ckoids are 32-bit quantities composed of an index into the

object cache (effectively a pointer) and a version number. This convention is designed to eliminate

the problem of pointers to cached objects going stale, by checking the version number against the

version number in the kernel’s cache.

However, inside the kernel such approaches do not always work.

Consider the following example. Process objects, like all other objects managed by the kernel,

can be written back to their Application Kernels. Each process object has a version number that is

updated when it is taken off of the list that indicates the process is still alive.

There is also a signal TLB for improving the performance of vectoring signals into user space.

When a signal arrives on physical address physaddr P, the system looks P up in a hash table. It

scans the hash chain (of TLB entries) for an entry E that matches P. E contains a virtual address

(reverse-translation) as well as a pointer to the signalling process S.

How do we synchronize adding a TLB entry that refers to S with writing back process S? We

must ensure that we do not deliver signals to whatever process ends up occupying S’s slot (and

translate P to the wrong virtual address).

One option is to use the same approach as at the Cache Kernel/Application Kernel interface and

use ckoid’s rather than raw pointers. We can (and do) tag the pointers in the TLB entries with the

version number we expect the process to be. Unfortunately, this approach is not sufficient. The
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entries can sit around forever, and there is no way to prove that the version number will not be

reused. (Version numbers are only 13 bits long).

We use the following approach to implement thread deletion.

1. increment ckoid version.

2. take thread out of list of threads.

3. copy into writeback buffer.

4. finally, invalidate signal TLB.

(This can be generalized to any delete sequence that invalidates the signal TLB after incrementing

the ckoid version.)

We use TLB entry insert code like this:

1. find the destination process by ckoid

2. create a TLB entry labelled ”suspect”

3. check that the ckoid is still valid. If so, clear the suspect bit. Else (if it is no longer valid)

remove TLB entry.

Given insertion and deletion code structured in this way, the signal delivery code has a choice. It

can either spin on the suspect bit, or simply ignore suspect entries. If it spins, care must be taken to

avoid deadlock — the resulting code is not non-blocking. If the delivery code skips suspect entries,

then we have seemingly changed the semantics of signal delivery: we must drop signals in this

race case. (Consider a signal which arrives between inserting a suspect TLB entry and clearing the

suspect bit.)

Upon closer inspection, dropping signals in this race case is acceptable — and not simply be-

cause it is an unlikely case. The client code should already be robust in the face of dropped signals,

since signals can be dropped for other reasons.

The system, as a whole, gains robustness by moving the recovery code up to the level of the

system which can meaningfully deal with the failure. Building extra reliability and consistency

at the lowest levels of the system can lead to inefficiency[86]. Care must be taken, however, to

apply this technique appropriately. Sometimes it is necessary to solve hard problems — but, in our

experience, situations that require difficult non-blocking solutions are always worth flagging to see

whether the problem is best solved at a higher level. In this case, if we assume that signal delivery
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must be made reliable, then the alternatives to relaxing the semantics (or making clients more robust)

are either to accept a blocking implementation or to have insertion, deletion and signal delivery use

more expensive techniques derived more directly from the universal protocols described in Chapter

3. In this case, relaxing the lower level semantics and implementing reliability at higher levels

seems the best choice.

One final note. The algorithm that allows us to drop signals, as described here, cannot succeed

without the “suspect” bit. Although insertion that overlaps with deletion will not leave an invalid

TLB entry in the table, a signal that arrives during insertion cannot distinguish between an (invalid)

TLB entry that is going to be deleted and a (valid) TLB entry that will stay. There is no simple way

to only insert “valid” entries, since deletion can always occur between determining that a process is

valid and the actual insertion.

D.6 Copying small descriptors

There are data structures that maintain invariants relating many individual words of state. The pre-

vious section assumed that only one or two words need be written in any given update. This one

or two word limit either arose naturally or was achieved through techniques described in this Ap-

pendix. However, it is not always practical to design one or two word incremental updates. In data

structures where such updates are not possible, we can group fields that are updated together into

a distinct descriptor. The descriptor is referenced from, but not included in, the object’s header.

Operations modify a copy of this descriptor (possibly copying some fields that are not being mod-

ified), and atomically install a new, modified, copy as part of the operation. For variable size data

structures the amount of data copied is constant — it is proportional to the size of the descriptor

regardless of the number of entries in the object. The same technique can be used to update multiple

fields per-entry with a single write. If operations on the data structure only involve updating a single

entry (regardless of the number of fields) and any number of fields in the header, DCAS supports a

simple atomic non-blocking update using this technique.

Consider extending the linked list of Section D.2.4 to include the length of the list (it is easy to

see how to add the maximum value element and the minimum value element, too, for example. I

only deal with a single attribute, length, here to keep the example simple.).

We require a unique ID to detect conflicts between updates to this list. It is insufficient to merely

keep a version number in the descriptor. DCAS cannot simultaneously check that list->fields

still points to the descriptor, and that uniqueId->versionNumber has not changed, and that
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int incrRefCount(T **address, T *object)
{
int count = object->refCount;
while (!DCAS(address, &(object->refCount),

object, count,
object, count+1)) {

if (*address != object)
{ return(FALSE); }

count = object->refCount;
}
return(TRUE);

}

Figure D.13: Definition of incrRefCount: to ensure that it is safe to use and copy the object,
incrRefCount only succeeds if it can atomically increment the reference count while a pointer
to object is still stored in address.

copy = new listFields;
do {

if (uniqueID != NULL) /* NULL 1st time */
{ decrRefCount(uniqueId); }

backoffIfNeeded();
uniqueId = list->fields;
if (!incrRefCount(&(list->fields),uniqueId))
{ uniqueId = NULL; continue; }

*copy = *uniqueId;
copy->length++;
copy->refCount = 1; /* In case we succeed */

for (p=list->head;
(((next = p->next) != NULL) &&
(next->datum < datum));
p=next) {}

entry->next = next;
} while /* retry if list changed */
(!DCAS(&(list->fields), &(p->next),

uniqueId, next,
copy, entry));

decrRefCount(uniqueId);
decrRefCount(copy);

Figure D.14: Insertion into middle of a singly-linked list that main-
tains a count of length.
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copy = new listFields;
if (uniqueID != NULL)
{ decrRefCount(uniqueId); }
do {

backoffIfNeeded();
uniqueId = list->fields;
if (!incrRefCount(&(list->fields),uniqueId))
{ uniqueId = NULL; continue; }

*copy = *uniqueId;
copy->length--;
copy->refCount = 1; /* In case we succeed */

for(p=list->head;(p->next!=elt);p=p->next){
if (p == NULL) { /* Not found */
if (uniqeId != list->fields)

{ continue; } /* Changed, retry */
return (NULL); /* Really not found */

}
}

} while(!DCAS(&(list->fields), &(p->next),
uniqueId, elt,
copy, elt->next));

decrRefCount(uniqueId);
decrRefCount(copy);

Figure D.15: Deletion from the middle of a singly-linked list that
maintains a count of list length.
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p->next still points to elt.

The address of the descriptor now replaces the version number in the original linked list exam-

ple. For the address to function correctly as a unique ID, we must guarantee that uniqueId is

not reused (freed, reallocated, and reinstalled in list->fields) while any process has a copy

of uniqueId. To ensure this, we increment a reference count on the descriptor before copying

uniqueId to copy and decrement the reference count after DCAS. uniqueId is not returned to

the free pool unless the reference count reaches 0, so if the DCAS succeeds we are guaranteed that

it is still the same instance of uniqueId and no modifications have been made to list in the

meantime. This reference count also protects the non-atomic copying operation, so we can avoid

the extra check words used in Herlihy’s general methodology. Finally, note that the increment and

decrement of the reference count need not be performed atomically with the state update.

D.7 Helping

For data structures with inexpensive operations, DCAS enables a simple form of helping, or roll-

forward. The basic idea is straightforward. At the start of each transaction the process about

to update the data-structure “registers” its operation and arguments in the data-structure. If it is

preempted by another process before it completes, then the other process completes the original

transaction before beginning its own.

D.7.1 Implicit Helping

The CAS-only FIFO-queue implementation of Michael and Scott[70] employs implicit helping to

make sure the tail-pointer is correct. Entries are enqueued on the tail of the queue. If a process

succeeds in setting tail->next = entry;, but is preempted or fails before executing tail

= entry;, then the preempting process finds tail pointing to a queue-entry with a non-NULL

next pointer. This must mean that an enqueue operation is incomplete, and it sets tail to the

last entry in the list, “helping” the previous enqueue operation finish before it executes its own

operation. This “registration” is implicit. Once you perform the first modification in the enqueue,

you are implictly registered to update the tail pointer, too.

Another way of understanding the Michael and Scott algorithm is to recognize that the tail

pointer is only a hint used as a performance optimization. (The use of hints to aid non-blocking

implementations is described more fully in Section D.9.) We can detect an incorrect tail: the

next pointer is non-NULL. We can recover if tail is incorrect: it is always possible to find the
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tail of a FIFO queue by following next pointers even if tail is not up to date. tail can still be

useful as a performance optimization: a tail pointer that points to any entry past the second element

in the queue does reduce the search time to find the tail. The only correctness requirement is that

tail point to an entry that is actually in the list. The Michael and Scott algorithm simply defers

updating tail until a non-preempted operation completes, or a dequeuer tries to remove the entry

pointed to by tail from the queue. It is easy to see that any operation that fails to update tail,

or defers updating tail, is nevertheless guaranteed to leave the list in a correct state.

D.7.2 Explicit Helping: roll-forward

Sometimes implicit helping is inefficient (or insufficient). Consider the case of doubly-linked

lists using DCAS. One could imagine helping being invoked implicitly if you ever discover that

node->next->prev is not equal to node. (I use this approach as an example of the technique

in Section D.9, “Consistency and hints”). In such a case, sometimes search must be used to recover

the correct prev pointer. This can occasionally be expensive for long lists experiencing heavy

contention.

The alternative is explicit helping. In the doubly-linked list example, we add a field nextOp to

the header of the list. This, combined with suitable updates to the version number, provides enough

information to allow helping.

The general idea is that each process,
�

, registers its intended operation in the header of the

doubly-linked-list. Once
�

successfully registers, it is guaranteed that its operation will complete

within the next 4 steps that any process (including
�

) takes.

We keep a version number with the list which is incremented with every valid step any process

takes. The version number (mod 4) tells us what step a process is up to in performing the operation

and item specified in d->nextOp (we take advantage of the assumption (here) that list entries are

(at least) word aligned, so the bottom bit will always be 0 and we can encode INSERT or DELETE

in it). When step = 0 (i.e. the version number is congruent to 0 mod 4) it is legal for some process

to try to insert its own item and operation in nextOp. Once an operation and item are successfully

installed in nextOp, then all processes co-operate on performing nextOp.

The state transitions are straightforward and can be tracked by following the DCAS’s in the code

below. The only slightly non-obvious step is the need for extra DCAS’s in step 1 of INSERT. They

are needed because a helper might have gotten ahead of the original inserter, so the inserting process

cannot assume that entry is not yet in the list. If entry has already been inserted, the inserting

process cannot set the next pointer (or the back-pointer (prev)).
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int dl_do_insert (dl_list *d, int version, (void *) entry)
{

for (p = d->head;
(((next = p->next) != NULL) &&
(next->datum < entry->datum));
p = next) {}

DCAS(&(d->version), &(entry->next),
version, (void *)NULL,
version, next);

DCAS(&(d->version), &(entry->prev),
version, (void *)NULL,
version, p);

DCAS(&(d->version), &(p->next),
version, p->next,
version+1, entry);

}

int dl_do_delete (dl_list *d, int version, (void *) entry)
{

p = entry->prev;
new = entry->next;
if DCAS(&(d->version), &(p->next),

version, entry,
version+1, new) {

/* Only one xaction can get in here */
entry->next = entry->prev = NULL;

}
}

Figure D.16: Main step for insert and delete into doubly linked list. These routines set the forward
pointer (next) for doubly linked lists.
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int dl_list_op (dl_list *d, int op, (void *) entry)
{

int version, started = FALSE, start = 0;
int entryOp = (int)entry | DL_OP_INSERT;

do {
version = d->version; int step = version%4;
void *oldEntry = d->nextOp;
int oldOp = (int)oldEntry & 0x1;
oldEntry &= ˜0x1;

switch (step) {
case 0: /* register in nextOp */

if (DCAS(&(d->version), &(d->nextOp),
version, (void *)NULL,
version+1, (void *)((int)entry|op))) {

started = TRUE; start = version;
}
break;

case 1: /* set next pointer */
if(op==DL_OP_INSERT){dl_do_insert(d, version, oldEntry);}
/* else op == DL_OP_DELETE */
else {dl_do_delete(d, version, oldEntry);}
break;

case 2: /* fix up backpointer */
if (op == DL_OP_INSERT) { new = oldEntry; }
/* else op == DL_OP_DELETE */
else { new = oldEntry->prev; }
DCAS(&(d->version), &(oldEntry->next->prev),

version, oldEntry->next->prev,
version+1, new);

break;
case 3: /* unregister op */
DCAS(&(d->version), &(d->nextOp),

version, d->nextOp,
version+1, (void *)NULL);

}
/* Keep going while our Op has not been started yet,
* or we’re in the middle of operating on ours.
*/
} while (!started || (version>=start && version < start+4));

}

Figure D.17: Main utility routine to perform operations on doubly-linked lists.
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dl_list_insert(dl_list *d, (void *) datum)
{
dl_list_entry *entry = new (dl_list_entry);
entry->datum = datum;
dl_list_op(d, DL_OP_INSERT; entry);

}

dl_list_delete(dl_list *d, (dl_list_entry *) entry)
{
dl_list_op(d, DL_OP_DELETE; entry);

}

Figure D.18: Insertion and deletion calls from the middle of a doubly-linked list.

D.7.3 Roll-back

One should note that if the objections to helping (e.g. page faults) raised in section B.3 apply in a

case where doubly-linked lists are needed, the algorithm for doubly-linked lists presented here can

be adapted to roll-back rather than roll-forward.

The idea behind roll-back is to restore the data-structure to a previous consistent state, rather

than going forward with a half-finished operation to a new consistent state. (The use of roll-back is

no longer strictly non-blocking , since there is now a small possibility that every operation is rolled

back and no progress is made.) The roll-back is performed by inspecting version mod 4 and the

nextOp field. There is already enough information to undo any steps already taken.

The modification to support roll-back is straightforward.

Consider a client,
�

, attempting to delete an old entry or insert a new entry. If the version

number is not congruent to 0 mod 4, then a partial operation is in progress by some earlier process,
�

.
�

must undo each step of the original operation, while simultaneously incrementing version

by 7.

If we simply decrement version for each step we undo, then the original process,
�

, might see

the version number repeat during
�

’s operation. Incrementing by 7 decrements step by 1 mod 4,

but produces a new version number guaranteeing that
�

will know not to proceed. We increment

by 7 for each step we undo in case another process,
� �

tries to help undo
�

’s operation also. If it

succeeds, and proceeds, then
�

might see a repeated version number due to steps taken by
� �

. If

so,
�

may try to continue undoing an already undone operation.

When the operation is undone and
�

’s nextOp is replaced by
�

’s nextOp,
�

may proceed.
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�
will keep trying to start over from scratch until it succeeds in executing all 4 steps itself — there

is no helping, so if
�

does not finish the operation, no one did.

An alternate approach to incrementing by 7 on every step is to reserve one bit from version

to use as direction. direction can be either FORWARD or BACK. Then we increment by 4

only for the transition between FORWARD and BACK or between BACK and FORWARD. After that

we can simply decrement, because there will be no repetition of version numbers.

The schemes are roughly equivalent except for how long it takes the version number to wrap

around. Reserving a bit reduces the version space by a factor of two regardless of contention.

Incrementing by 7 potentially increases the size of an operation (in version number space) by a

factor of 6 — from 4 to 24 — but only if there is roll-back. Given our experience with low contention

on shared data structures, the increment-by-7 method is probably most suitable.

D.7.4 Hybrid approach: roll-back and roll-forward

It is also possible to extend this implementation to support an approach that mixes roll-forward

with roll-back. Each client that finds a transaction in process decides (based on some case-specific

criteria) whether to roll-forward or roll-back in order to proceed. For simplicity, we assume that

once roll-back starts for a given operation we do not switch back to roll-forward.

The modifications to the implementation are once again fairly straightforward.

We reserve the lower bit of version to encode direction: either FORWARD or BACK. We

again consider the case of a client,
�

, attempting to delete an old entry or attempting to insert a

new entry. If the version number is not congruent to 0 mod 4, then a partial operation is in progress

by some earlier process,
�

. If
�

elects to roll-forward, the behavior is the same as the original

implementation. If
�

elects to roll-back, then
�

first sets direction to BACK so that the original

process knows not to take forward steps, and simultaneously increments the version number by 4. If

we do not signal a change in direction, then
�

and
�

might cause step to oscillate between 1 and

2, infinitely looping, causing livelock, in violation of the rule against transitioning from roll-back to

roll-forward.

We also need some way to let
�

know when to quit trying to perform its operation. It can no

longer determine from the version number. Assume
�

is making progress and reads version number

103, and then goes blocked. If it resumes to find version number greater than 108, it is possible that a

helper rolled-forward to 104, or that a client rolled-back to 108. Since it cannot distinguish between

them, we need some way that a helper can communicate success or failure back to
�

.

Clearly a per-list bit associated with nextOp is insufficient, since many operations can be
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outstanding at a given time. We need some form of per-operation state. A table consisting of entries

for each process has drawbacks. First, the size scales as the total number of possible processes

in the system, and not as the size of the actively contending processes. Second, per-process state

is insufficient if asynchronous handlers can execute operations that contend with operations in the

process whose stack the handler is running in.

The solution is to allocate a record from the heap to encode and store nextOp. It now in-

cludes entry, operation, and status. No synchronization is needed to write n->entry or

n->operation since there is only one writer, and it has exclusive ownership of these two fields

during writing. Afterwards, the fields are read-only. Access to nextOp->status is protected

by adding another stage to the step in the version number. The only potentially tricky issue is tak-

ing care to be explicit about the “commit” point. If the convention specifies that once status is

SUCCESS it will never change, you are no longer free to roll-back after that point.

Section D.2.4 and Chapter 3 discuss using the address of an object in shared memory as a unique

ID, rather than depending on a version number. Data-structures that allocate a record from the heap

for each operation are prime candidates for such unique IDs. Recall that version numbers are a

performance optimization to save the cost of heap allocation and reference count. Unique IDs are

guaranteed to be unique, while version numbers depend on (convincing) probabilistic arguments to

ensure correctness. Given the cost of allocating nextOp from the heap, extending that to support

unique IDs rather than version numbers is a logical step – the incremental cost of maintaining the

reference count is small. If we add a unique ID to the doubly-linked list, we would add step and

status fields to the unique ID and need no longer worry about decrementing, or where to store

the return value.

D.8 Adding bits to invalidate states

Most of the preceding techniques discussed ways to reduce the number of words of state (or words

per update) to one or two, to enable direct implementation using DCAS. This section proposes an

alternative technique. Rather than striving to reduce state, we can augment the original sequential

data structure with extra bits in strategically located fields. The redundant bits can be viewed as

compact (possibly lossy) encodings of other state, not normally co-located with this field.

The simplest use of this technique is to use double-width pointers that incorporate a version

number. The version number does not encode the value of any other field in the data structure, but

does record the fact that a state change has occurred. There is clearly increased cost compared to the
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sequential specification: the storage required for each object is larger and dereferencing the pointer

requires an extra indirection. However, adding version numbers allows a CAS or DCAS to atomically

test and fail even if a pointer is reassigned to an old value. I have described many examples of this

technique, such as Treiber’s stacks [84], Michael and Scott’s FIFO queue [70], and Arora, Blumofe

and Paxton’s deque implementation [11], among others.

D.8.1 Tag Bits: Concurrent Heap

Another example of increasing the size of an object in order to encode extra information occurs in

the heap-based priority queue implementation of Israeli and Rappaport [46].

A heap is a complete binary tree in which each node has a value with equal or higher priority

than either of its children. The highest priority item is at the root of the heap. The standard imple-

mentation of a heap is in an array, where the left and right children of the node stored at index � are

stored at indices
� � and

� � � � , respectively.

Insert places a node at the first open array index (if the heap is of size � , index � � � is

the first open space), and proceeds to swap it with its parent, until the new node propagates up to a

point in the heap where it has lower priority than its parent.

DeleteMin generally removes the root of the heap, and takes the node at the greatest occupied

index (if the heap is of size � , index � is the greatest occupied index) and places it at the root

(decrementing the size of the heap). The low priority node at the root is now (recursively) swapped

with its highest priority child, until it reaches a point when it is either at a leaf, or it has higher

priority than either of its children.

The heap is potentially inconsistent during insertion or deletion. During insertion the node that

is in the process of bubbling up may not be of lower priority than its parent. During deletion, the

node that is being swapped down may not be of higher priority than both of its children. These

states may be exposed during a non-blocking update. A node that violates the order invariant can

cause a subsequent insertion to terminate prematurely, permanently leaving the heap out of order. It

can also confuse a delete operation in indeterminate ways.

The non-blocking version proposed by Israeli and Rappaport in [46] augments the heap’s data

structure by storing extra state at each node. The new state specifies whether this node is in the

process of being floated up (insertion), or swapped down (during deletion). Operations can execute

concurrently, without interference until they encounter a node that is moving either up or down.

Given the extra state, the new insertion or deletion can make the heap consistent before proceeding.

One process may have to help another process in order to convert a subtree into a state where an
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operation can complete.

The swaps are performed using DCAS functionality, thus requiring no auxiliary storage. (I

ignore many subtle details in the interest of space).

It is interesting to compare this algorithm to a universal transformation, such as the one pre-

sented in Chapter 3. The heap-specific algorithm appears to possess three advantages over the

universal construction. First, no logging is required. Second, it can safely roll-forward rather than

simply roll-back. Third, many operations can execute concurrently assuming they do not conflict.

The first two advantages (no logging and roll-forward) result from the fact that “how to proceed”

is trivially encoded in the data structure as part of the swap (using DCAS). As mentioned, each node

includes a two-bit wide field specifying whether the value is in the process of percolating upward

or downward or is stable. If an operation encounters a “moving” node while inserting or deleting,

it knows that the subtree rooted in this node is out-of-order in the heap. Enough information is pro-

vided to finish the previous operation before performing the current operation on a newly consistent

heap.

The third advantage, increased concurrency, results from the observation that if two operations

access disjoint sets of nodes, then their results will be consistent, regardless of their order of execu-

tion. If they do overlap, then the helping done by the algorithm ensures that their relative order of

execution is identical for every node in which they overlap.

On the other hand, despite these advantages, it is important to note the actual savings accrued are

small. The costs are similar even though this algorithm avoids logging, because in both algorithms

every write must be done with DCAS, and the logging (three unsynchronized writes) is just noise

compared to the DCAS. The other advantages only arise under relatively high contention: with low

contention, there are few opportunities to exploit concurrency, and roll-back or roll-forward rarely

occur so the difference between them is not significant.

D.8.2 Invalidation: Concurrent Deque

Another common technique augments the sequential specification by increasing the number of dif-

ferent values a given field may take. The simplest such technique is to invalidate a field by replacing

a consumed data value with a distinguished INVALID marker.

A concurrent deque implementation can serve as an example. Our first attempt at a non-block-

ing deque implementation (in section D.2.5) was strictly sequential. It disallowed any concurrent

accesses to the deque. Conceptually, though, operations at the top of the deque should not affect

operations at the bottom. Both should be able to proceed in parallel (when there is more than one
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element in the deque).

Simply treating the two ends independently will not guarantee consistency, since we must make

sure that we do not simultaneously dequeue one end past the other. Figures D.19 and D.20 contain

an implementation of a concurrent deque that solves the problem of simultaneous popBottom and

popTop on a one element deque by augmenting the set of values that each element can hold.

By adding more values to elements of the deque that are outside the valid range, we can prevent

both sides simultaneously dequeuing, thus allowing top and bottom to be stored in two indepen-

dent words and to proceed mostly in parallel. The only requirement is to reserve at least one value

for entries in the deque that represent invalid bit patterns. This can either be a reserved “INVALID”

value, or else the type of value stored in the deque might already have “undefined” values. For

example, on some machines pointers must be aligned, i.e. an integral multiple of the word size in

bytes. An odd pointer is impossible in the normal course of events, so we can reserve them to mean

INVALID).

Given an INVALID entry, it is easy to see that popbottom and poptop cannot both pop the

same word (or pop past each other). If popbottom and poptop both try to execute concurrently

on the same word (the only word in the deque), then only one can succeed. The first person to

succeed converts the entry to INVALID, guaranteeing that the second pop will fail.

Even if bottom and top pointed at the same entry when the deque is empty, then we still would

not enqueue two entries in the same location, since enqueue will only succeed if the entry were

originally INVALID, and so only one enqueuer (bottom or top) could succeed. In fact, however,

this is unnecessary, since bottom and top grow in the opposite directions, so there’s no conflict and

no synchronization needed even on simultaneous enqueues from both directions on an empty queue.

A final note: the heap algorithm of Israeli and Rappaport [46] use this same trick of INVALID

entries to ensure that the heap size is consistent with the number of entries actually in the heap.

By checking that array[size+1] contains INVALID, multiple operations can coordinate the

transfer of the lowest entry to the root during a DeleteMin operation.

D.9 Consistency and hints

Lampson [56] recommends using hints to speed up normal execution. A hint is the saved result of

some computation. However, a hint may be wrong.

Because a hint is used to speed up normal computation, it must be correct most of the time. The

bigger the gain of a successfully used hint relative to the “normal” computation, the more frequently
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void pushTop(deque *dq, void *newval)
{
do {
bottom = dq->bot;
top = dq->top;
if (top == 0) {

if ((bottom <= top) &&
DCAS(&(dq->bot), &(dq->top),

bottom, top,
INITPOS, INITPOS)) {

bottom = INITPOS; top = INITPOS;
} else { ERROR(); }

}
} while (!DCAS(&(dq->top), &(dq->entries[top-1]),

top, INVALID,
top-1, newval));

}

void *popTop(deque *dq)
{
do {
bottom = dq->bot;
top = dq->top;
if (bottom <= top) {
return((void *)NULL);

} else {
val = dq->entries[top];

}
} while ((val != INVALID) &&

!DCAS(&(dq->top), &(dq->entries[top]),
top, val,
top+1, INVALID));

return(val);
}

Figure D.19: Insertion and deletion at the top of the concurrent deque
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void pushBottom(deque *dq, void *newval)
{
do {
bottom = dq->bot;
top = dq->top;
if ((bottom <= top) &&

DCAS(&(dq->bot), &(dq->top),
bottom, top,
INITPOS, INITPOS)) {

bottom = INITPOS; top = INITPOS;
}

} while (!DCAS(&(dq->bottom), &(dq->entries[bottom]),
bottom, INVALID,
bottom+1, newval));

}

void *popBottom(deque *dq)
{
do {
bottom = dq->bot;
top = dq->top;
if (bottom <= top) {
return((void *)NULL);

} else {
val = dq->entries[bottom-1];

}
} while ((val != INVALID) &&

!DCAS(&(dq->bot), &(dq->entries[bottom]),
bottom, val,
bottom-1, INVALID));

return(val);
}

Figure D.20: Insertion and deletion from the bottom of a concurrent deque



D.9. CONSISTENCY AND HINTS 221

a hint can afford to be incorrect. Because a hint may be incorrect, there must be some (efficient) way

to verify the validity of the hint before depending upon it. Verifying the validity of a hint is usually

easier and cheaper than computing the value from scratch. Because verification may determine that

the hint is invalid, clients must provide enough information to compute the correct value.

Hints are often useful when designing non-blocking algorithms. Often, complex algorithms

are used because the simpler algorithms do not provide needed performance. We can redesign

such complex algorithms as hint-based performance optimizations of the “simple” versions of the

algorithms. This view may allow us to relax some of the consistency requirements of the more

complex algorithm.

D.9.1 Doubly-linked lists

Section D.7 describes an implementation of doubly-linked lists that performs well even under high

contention. It records the state of the computation in the low bits of the version number. Processes

that try to insert or delete entries on a list that is not in phase 0, first “help” finish the previous oper-

ation (or undo it), and then attempt to proceed themselves. Unfortunately, this has an unnecessarily

high cost in the common case of low contention.

A better approach is to only depend upon the next pointers to ensure integrity of the list. The

prev pointers serve only as hints. A doubly-linked list is implemented using the singly-linked list

implementation. After a successful insertion or deletion the next step is to update the prev pointer

using DCAS while keeping the version number equal to the just incremented value. If the DCAS

fails because another operation has intervened, the operation just gives up. The list is consistent, but

the prev pointer is no longer a valid hint.

It must be possible to verify that a hint is valid and, if it is invalid, it must be possible to recover.

A first attempt at verification that the prev pointer is valid is to check that (entry->prev->next

== entry). This test correctly determines whether the back-pointer is valid only if the list precludes

the possibility that both entry and entry->prev might end up being neighbors on some other

list!

In cases where a pair of neighbors may find themselves neighbors on a different list, a different

form of verification is needed. Each entry must maintain an entry->list field which points to

the list it is on. To simplify our example, we assume that each entry has a single, exclusive, owner

when it is not on any list. This owner sets entry->list to NULL after a successful delete, and sets

it to list before attempting to insert it on list. These assignments do not need synchronization

since ownership is exclusive. If entry->prev is invalid, we require that delete updates the
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prev pointer of the entry it is about to delete before actually performing the delete.

Given a correctly maintained entry->list we can verify that the prev pointer is a valid

hint. First, read list->version. Second, check (entry->prev->next == entry).

Then check that both entry->list and entry->prev->list are pointing to list.

If delete did not guarantee that entry->prevwas correct before deleting entry, then the

following case would cause deletion to fail.

Consider three consecutive elements in a list, � ,
�
, and � . Process

� � attempts to

delete
�
, and processes

� �
and

� �
both attempt to delete � .

� � deletes
�
, however b->next still points at � , and c->prev is not yet updated.

� � is then delayed or stopped before setting b->list to NULL.
� �

successfully deletes � , however c->prev still points at b because
� � did not

update it. Assume that
���

is stopped or delayed at this point and does not set c->list

to NULL.
� �

has a reference to � and attempts to delete � from list. It reads the version

number, determines that c->prev->next == c, and that c->list == list

and that b->list == list.
� �

will incorrectly decide that it can safely and suc-

cessfully delete � from list (again).

The modification of delete to guarantee that entry->prev was correct before deleting

entry ensures that even this case works correctly. In the previous example
���

would first try to set

c->prev = a; thereby allowing
� �

to detect that � was already deleted.

D.9.2 Array based sets

Many data-structures, such as doubly-linked lists, have version numbers or some other mechanism

that allows operations to easily detect interference and abort the update of the hint. This is not

always possible. In such cases, the technique of “invalidation” can be used.

Suppose we want to extend the implementation of array-based stacks from Section D.2.2 to

supply an implementation for an array-based set. The complexity of the implementation increases

over stacks, since we need to be able to remove entries other than the top. The point of array-based

sets or collections is to support efficient insertion and deletion of objects without searching for the

position of a given element. (Lookup costs cannot necessarily be reduced). Insertion can be done

at the first free location, at constant cost. Deletion can be accomplished without search by binding

an array-index together with the value stored in the set. Clients refer to set elements through an
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extra level of indirection, an entry, in order to have access to the array-index. The indirection is

required so that the set can update entry->index if the position of the element in the array has

changed. The position can change if another client deletes an element from the middle of the set.

It is desirable to maintain a compact representation of the set (to reduce space costs and facilitate

lookups), so if a gap opens up, elements will be moved down from high indices to fill the gap.

But this means that we must alter three independent locations on a delete operation: the

size field, the location in memory from which we delete the element, and the index field of the

new entry we move into the slot occupied by the old entry. Luckily, the index field (like the back-

pointer in doubly-linked lists) can be viewed as a performance optimization. It is just a hint, we

can easily (and cheaply) detect that it is incorrect (if elements[index] is not == entry). If

index is incorrect, it is easy (but more expensive) to reconstruct — simply search elements for

entry.

entry->value = val;
do {

backoffIfNeeded();
index = set->size;
entry->index = index;
if (index >= set->max)
{ /* signal set_overflow,

* or allocate larger array */ }
/* oldVal should really be NULL */
oldVal = set->elements[index];

} while
(!DCAS(&(set->size),
&(set->elements[index]),

index, oldVal,
index+1, entry));

Figure D.21: Insert in set (array).

Unfortunately, there is no version number that protects the integrity of the entire data structure.

Therefore there is no simple way to detect whether another process moved entries around while we

were performing the search. This raises problems in designing a correct implementation.

Consider starting with the simplest possible implementation: insert reads set->size into

size, and sets entry->index equal to size with no synchronization. It then (atomically)

increments set->size (if it is unchanged from size) and sets elements[set->size]equal

to entry.

delete first reads, with no synchronization, entry from elements[entry->index],
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setEntry *delete (Set *set, setEntry *entry)
{
if (!CAS(&(entry->deleted),FALSE,TRUE)) {
/* already deleted by someone else */
return(NULL);

}
int index = entry->index;
/* Is index correct? */
if ((oldEntry = set->elements[index]) != entry) {
if (oldEntry != NULL) {
int newIndex = oldEntry->index;
DCAS(&(set->elements[newIndex]), &(entry->index),

entry, index,
entry, newIndex);

}
}
index = entry->index; /* index is now correct */
while (TRUE) {
backoffIfNeeded();
top = set->size-1;
SetEntry *topmost = set->elements[top];
if (topmost && (topmost->deleted == TRUE)) {

continue;
}
if (!DCAS(&(set->elements[top]),

&(set->elements[index]),
topmost, entry,
entry, topmost))

{ continue; }
DCAS(&(set->elements[index]),

&(topmost->index),
topmost, top,
topmost, index);

DCAS(&(set->size), &(set->elements[top]),
top+1, entry,

top, NULL);
return(entry);

}
}

Figure D.22: Delete from set (array).
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reads size from set->size, and reads topmost from elements[set->size-1]. It then,

atomically, both decrements set->size (assuming it has not changed) and stores topmost

in elements[entry->index] (assuming it still contains entry). If both stores succeed,

delete returns successfully to the caller, otherwise it retries.

This attempt almost works. Insertion is clearly correct (it is equivalent to Push). Deletion will

never overwrite a value in the set, even if set->size changes value during the operation, because

the second comparison in the DCAS will only succeed if elements[entry->index] == entry, in

which case entry is returned to the caller.

However, because elements[set->size-1] is not read atomically with the update, it is possible

that the top value at the time of the DCAS is no longer equal to the original elements[set->size-1].

Thus we can lose a value by decrementing sizewithout copying the value back into the valid range.

The example illustrates this problem. Process 1 wishes to delete
�

from the set; Process 2 wishes

to delete
�

and insert
�

. Assume
�
->index == 3,

�
->index == 5 and set->size ==

10.

Process 1 Process 2

(Begin Delete
�

)

Read elements[3] (=
�

)

Read set->size (= 10)

Read elements[9] (= � ) (Begin Delete
�

)

elements[5] = �
set->size = 9

(Begin Insert
�

)

elements[9] =
�

set->size = 10

elements[3] = �
set->size = 9

The result of this sequence of operations is that � now appears twice in the set, and
�

is lost.

A solution is to adopt the notion of invalidating entries. Array-based stacks worked by setting

pop’ed elements to NULL. We will do the same thing here. However, we do not want to allow

NULLs inside the set, to maintain our compact representation. So we first swap entry with the

topmost entry in the set (topmost = set->elements[set->size-1]). For this transfor-

mation to be valid, we must ensure that if the state of the set was valid before the operation, it is still
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valid after we swap entries. The new state is valid (with the order changed so that entry is now

the topmost element of the set) — if we can guarantee that topmost was still in the set at the time

of the swap. We guarantee this by requiring delete to write NULL in the place of deleted entries

– then the swap would fail if topmost had been deleted. Given the swap, we can now atomically

decrement size and overwrite entry with NULL.

Unfortunately, entry->index and topmost->index are incorrect.

We can avoid this issue by treating index as a hint; then we can set it in a separate step. After

successfully deleting entry, we set topmost->index to entry->index. Unfortunately, this

does not protect against the deleting process being delayed or failing. We can try to recover by

having any deleter detect an invalid index and search for the item. As mentioned earlier, there is

no convenient way to ensure that the search was not interrupted, or that the entry will not be moved

between the time index is computed and when it is set.

Fortunately, entry will only be moved if some deleting process finds it as topmost. There-

fore we know that index will only be decremented (it will never be incremented, unless entry is

being deleted), and that the move to a lower index occurs in precisely one place in the code. Once

we know that index is monotonically decreasing, we can implement a synchronization-free find

routine. Simply start at a known previous value of index, or, if there is no known valid value of

index, start at size. If the search is downwards in the array of elements, then no swap can cause

an undeleted entry to disappear — it can only be copied to a location the search has not yet in-

spected. If a deletion moves entry up, skipping over the search, then the delete is serialized

before the find. This implementation of find is not only synchronization-free, but also read-only

and supports infinite concurrency.

Unfortunately, we might not want to pay the price of a search to fix up index. A further prob-

lem is that the implementation of delete is not strictly non-blocking. Consider two processees

trying to delete entry and topmost respectively. They may alternate swapping entry and

topmost so that each time one tries to decrement size the other had just performed the swap,

causing the decrement to fail.

A solution to both these problems is to exploit the fact that the deleted entry contains the cor-

rect index for topmost and that topmost’s index is pointing to the deleted entry. To maintain

this invariant, we need only know when the topmost element of a set is “about to be” deleted —

that is, when it has been swapped but the indices have not yet been updated. To do this we add a

field to each entry which allows us to mark an element as deleted. Before performing the swap, we

atomically mark entry->delete to be TRUE (this must be atomic to guarantee that only one
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deleter of a given element succeeds). This moves the “commit” of the delete operation earlier, since

once you set the deleted field, the entry is no longer considered part of the set
�
.

Now the algorithm is straightforward. We will attempt to guarantee that an entry’s index is either

correct, or else pointing to an entry that was just swapped with this entry. To guarantee this we must

alter the delete operation in two ways. First, if you try to delete an entry that has an incorrect index,

you update index by looking at the index of the entry that your index is pointing at. Second, if

the topmost element is marked deleted, then you must update the index of swapped entry, and then

decrement set->size and set that entry to NULL before you proceed. This also guarantees that

once you set deleted, then entry is never moved, and that the top entry in the set is always

either deleted or else has a correct index.

After checking whether it is permissible to proceed, the actual delete operation now takes

four steps. First, mark the entry as deleted. Then perform the swap. Third, update the index

pointer of the (former) topmost element. Finally, decrement size and replace the entry with NULL.

D.10 Would CAS3 make a difference?

Given the advantages DCAS provides over CAS-only implementations, it is natural to ask the ques-

tion: “will CAS3 provide similar gains over DCAS?”. There is no definitive answer to that question,

yet.

Empirically, I report that we have not encountered any important data-structures that were not

efficiently implementable using DCAS that did have an efficient CAS3 implementation. Chapter 3

points out that there is a constant time implementation of CAS � using DCAS, and so there is a

reasonable expectation that the answer to whether CAS3 will provide similar gains over CAS2 will

remain “no”.

�

If the deleter fails at this point (before the swap), the set is still consistent. The element might be lost, true, but this is
always a possibility if the process dies after a successful deletion, too. We can depend on TSM audit code to (eventually)
reclaim the entry.



Appendix E

Implementation of Type-Stable Memory

Management

As noted in Chapter 4, it is simple to implement type stability if we allow ��������	��
 to be infinite.

However, this can result in poor utilization of memory if the system “phase-shifts”. Never actually

freeing the unused memory can result in serious under-utilization of memory. Similarly, although it

is simple to implement type stability if we use a reference counting scheme (or a garbage collector),

we reject this approach as being too expensive (e.g. updating reference counts while a process walks

a list). However, implementing TSM with finite ��������	��
 is still not difficult. We need only concern

ourselves with a correctly functioning system. By this I mean that if an object is part of a data

structure in the heap, then it will not be on a free list. If this property does not hold then the system

may fail, independent of type stable memory. Thus, the only references we are concerned with are

“temporary” ones stored in local variables, such as when a process traverses the individual objects

of type
�

stored in a collection.

We first present a brief description of some approaches to reclaiming memory in the context of

an operating system kernel.

E.1 Kernel implementation

If an entire page of a free list has been untouched for some time � � � �������	��
 , then the only issue is

whether a kernel thread has been “inside” some data structure for � , and might be potentially holding

a temporary pointer to one of the free objects. There are two cases: either the kernel was entered

through a system call, or else was executing in a kernel-only thread.

228
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If the thread was entered through a system call, then we only need worry if any currently exe-

cuting system call started longer than � units in the past. This is easy to check. If a system call is

blocked, then we can (a) wait for it (i.e. delay and retry), (b) inspect its stack for pointers into the

page(s), (c) note that some blocked system calls are “safe”, or (d) abort it, (on systems that support

UNIX EINTR semantics).

Kernel-only threads typically have a top-level function that loops waiting for some set of con-

ditions to become true (a set of events). There is usually at least one “safe point” in the top-level

loop where we know that the process is not holding on to any temporary pointers. The kernel thread

registers with the TSM manager. Each time the kernel process reaches the “safe point”, the process

may set a timestamp and reset the allocator high-water mark. As long as it has reached the “safe

point” � units in the past, we can safely delete all objects above the high-water allocation mark.

E.2 User-level implementations

Implementation of TSM for user-level code is not much more complex. Although user-level systems

may act in more complicated ways than OS kernels, we can still generalize the timestamp trick.

We implement a single per-type reference count and a timestamp, meant to record the number of

temporary variables pointing to
�

(i.e. of type (
�

*)). This reference count is incremented once

each time a temporary variable becomes active. In a blocking system, such an active temporary

variable is almost certainly protected by a lock on some data structure containing a collection of

objects of type
�

. The reference count is decremented when the variable goes out of scope. Thus

the reference count is incremented/decremented once per activation, rather than once per reference

to each object of type
�

. Whenever the reference count reaches 0 and the timestamp is older than

� �������	��
 , we record a new timestamp and set the high water mark to the current size of the free list.

If the TSM manager finds that the timestamp is not more recent than ���������	��
 , then all objects above

the high water mark have not been referenced for � � � ������	��
 time units and are available to be

returned to the general memory pool. Note that for types that have separate per-processor free lists

the reference count is not shared by other processors. The overhead for TSM involves no non-local

writes.

It is possible (though unusual) for a system to have a large number of processes all containing

temporary variables pointing at objects of a very common data type. It is possible in such a system

that the reference count described above will never go to zero, although the free list remains large.

A simple solution for these data-types is to keep two reference counts, rfcnt0 and rfcnt1. One
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counter is the currently active reference count. A process will always decrement the counter that it

incremented, but it will always increment the currently active reference count. Thus, the inactive

counter can only decrease.

We start with rfcnt0 active. After some delay
�
, we swap the currently active reference counter

and rfcnt1 becomes active. From then on, whenever the inactive counter reaches 0, it becomes

the active counter. Each time rfcnt0 becomes 0, we know that every pointer to objects of type
�

became active since the previous time that rfcnt0 became 0. Therefore, we can treat the event

“rfcnt0 equal to zero” exactly the way we treat “ref-count equal to zero” in the single refcount

scheme, waiting for � �������	��
 and releasing all the type
�

pages to the general pool.

�

The algorithm is correct for any value of delay as long as rfcnt0 was incremented at least once. However, delays
comparable to ���������
	�� will reduce excess overhead. Shorter delays will impose needless work, longer delays will delay
reclamation.
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