5.3Web Servers
5.3.1 Introduction to Web Servers

One of the most popular ways Linux is used is as a platform for running a Web server.
Most people these days are familiar with the World-Wide Web (WWW). Much like
many other distributed systems described in this book, the WWW is built on the client-
server model. In the Web, clients are the people who “surf,” using browsers such as
Internet Explorer or Mozilla, generating Web requests that are sent to Web Servers,
which respond to these requests. The server is responsible for receiving the request,
taking the appropriate actions to find and process the request and then sending the proper
response to the client. Web servers thus implement the server side functionality in the
WWW, and communicate with clients using the HyperText Transfer Protocol (HTTP).
HTTP is the standard by which clients and servers communicate, allowing
interoperability between different vendors and different software. In this chapter we
provide an overview of the following:

What Web servers do;

How Web servers use the network;

What steps Web servers take to service requests;
What concurrency models are used;

Common tuning options for Web servers, and
How Web server performance is evaluated.

ogakrwdE

In this chapter we focus on how Web servers deal with static content, such as HTML files
and GIF images. By static content, we mean that the HTTP responses that are provided
by the server change relatively infrequently, say, through human intervention. In this
context, Web servers are similar to file servers in that their main function is to distribute
files, albeit files that have special meaning and interpretation to HTTP clients. Web
servers are also capable of producing content that is generated more dynamically, namely,
through a parameter-driven program such as CGI and PHP. However, dynamic content
generation has evolved considerably beyond simple HTTP, and thus is the subject of the
next chapter. In this chapter we stick to relatively simple HTTP requests.

5.3.2 HTTP Requests and Responses

HTTP requests and responses are unusual compared to other client-server exchanges in
that they are ASCII text based, rather than binary encoded as is done, say, in NFS. This
is an artifact of how the Web was developed, yet it is convenient in that it allows humans
to easily read the generated requests and responses. The following is an example of a
Web request generated by a browser (in this case, Mozilla):

CET /index.htm HTTP/ 1.1

Host: www. kernel . org

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.2)
Accept:text/xm ,application/xm , application/xhtm +xm ,text/htnl;

g=0. 9, text/ pl ai n; q=0. 8, vi deo/ x- g, i mage/ png, i nage/ j peg,
i mage/ gi f;q=0.2,text/css,*/*;g=0.1

Accept - Language: en-us, en;g=0.50

Accept - Encodi ng: identity;g=1.0, *;g=0

Accept - Charset: |SO 8859-1, utf-8;q=0.66, *;q=0.66
Cache- Control : max-age=0

Connection: close

<cr><|f>

Note that the first line contains the request for the file desired, and that each following
line contains headers with appropriate values. The GET request both specifies the file
requested and the protocol version used by the client. The headers communicate
information to the server about what kinds of features this particular client supports. In
this case, the client is Mozilla, accepts various formats such as HTML text, GIF and
JPEG and XML, and uses the English language. This negotiation allows clients and
servers to dynamically learn each other’s capabilities so that they can communicate most
effectively. We continue the example with the server’s ASCII HTTP response:

HTTP/ 1.1 200 K
Date: Wed, 17 Mar 2004 21:38:55 GMI
Server: Apache/2.0.40 (Red Hat Linux)
Accept - Ranges: bytes
Connection: close
Tr ansf er - Encodi ng: chunked
Cont ent - Type: text/htn
<cr><| f>
50c
<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 3.2 Final//EN'>
<l-- $ld: index.shtnm,v 1.222 2004/02/24 02:05:15 hpa Exp $ -->
<HTM_>
<HEAD>
<META HTTP- EQUI V="Cont ent - Type" CONTENT="text/htnmnl;
charset=utf-8">
<TI TLE>The Linux Kernel Archives</TITLE>
<LI NK REL="icon" TYPE="i mage/ png" HREF="i nages/tux16-16. png">
</ HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LI NK="#0000EQ"
VLI NK="#8A1A49" ALl NK="#f f 0000" BACKGROUND="i mages/ spl ash. png" >

<CENTER><P><H1>The Li nux Kernel Archives</Hl1></ CENTER>

<pP>

<CENTER>

Wl cone to the Linux Kernel Archives. This is the primary site
for the Linux kernel source, but it has nuch nore than just
kernel s.

</ CENTER>

This response shows that the server understood the client request and is providing the
response (indicated by the 200 OK message). In addition, the server uses the headers to
tell the client that it is using chunked encoding and understands byte range requests.
Finally, the HTML content is returned, which is parsed and displayed by the browser.

This exchange is just an example of one of the ways in which HTTP works, abeit
perhaps the most common example. HTTP is a large, complex protocol and elaborating
its many intricacies is beyond the scope of this book. We refer the reader to
[Krishnamurthy and Rexford 2001] for an excellent overview of HTTP.

5.3.3 Network Behavior of a Web Server

Like other protocols, HTTP is layered above the TCP/IP stack. The following diagram
provides an illustration of this layering, using the same 1SO model from Chapter 5.2:

Application Browser (e.g., Mozilla)
Presentation
Session HTTP
Transport TCP
Network IP
Data Link IEEE 802.3
Physical Ethernet

Using the same packet capture tool Ethereal used in Chapter 5.2, we can see how the
individual requests and responses from Section 5.3.2 use the network. The following
diagram shows the packet exchange used in that example:

{@- «<captures - Ethereal [=][o][x]
File Edit Capture Display Tools Help
IEEEEEEEEEEEEEE
Mo, [Time [source [pestinanon [Protacal [inm
3 0,009020 192,168,123, 145 204,162,189, 116 TCP 43093 > http [SYN] Seq=2957537922 Ack=0 Win=5340 Len=0 MS5=1450 TSY=7E230B3 TSER=0 WS=0
4 TCP hi = =t = TEW=:
http
B 0,038201 192,168,123,145 GET / HTTP/1,1
T 0,187933 204,152,189,116 152,168,123,145 TCP http > 43093 [ACK] Seq=1306141252 Ack=2957538370 Win=G432 Len=0 TSW=2903563513 TSER=7623072
8 0,200803 204,152 189,116 152,168,123.145 HTTP HTTRAL, 1 200 Ok
9 0,2006855 192,168,123,145 204,152,189, 116 TCP 43093 > http [ACK] Seq=2357538370 Ack=1306142700 Win=8688 Len=0 TSY=7EZ3082 TSER=2303563513
10 0,208955 204,152,189.116 192.168.123.145 HTTP Caontinuation
11 0,2085971 192,168,123,145 204,162,189, 116 TCP 43093 > http [ACK] Seq=2957538370 Ack=1306144148 Win=11584 Len=0 TSY=7E23083 TSER=290356251:
12 0,303276 204,152,189,116 192,168,123,145 HTTP Continuation
13 0,303318 1592,168,123,145 204,162,189,116 TCP 43093 > http [ACK] Seq=2957538370 Ack=1306145595 Win=14480 Len=0 TSY=7E23092 TSER=290355352%
14 0,311651 204,152,189.116 152,168,123, 145 HTTP Continuation
15 0.311704 1592.168.123.145 204,152,189, 116 TCP 43093 » http [ACK] Seq=2957938370 Ack=130B147044 Win=17376 Len=0 TSY=7623033 TSER=290356352:
16 0,320601 204,152,189,116 192,168,123,145 HTTP Cantinuation
17 0,320617 192,168,123,145 204,152,189,116 TCP 43093 > http [ACK] Seq=2957938370 Ack=1305148492 Win=20272 Len=0 TSY=7E29034 TSER=290356352:
18 0,3209487 204,152,183.116 152,168,123,145 HTTP Continuation
13 0,329493 192,168,123,145 204,162,189, 116 TCP 432093 > http [ACK] Seq=2957538370 Ack=1305149340 Win=23163 Len=0 TSY=7E23095 TSER=290356352:
20 0,401208 204,152,189, 116 152,168,123, 145 HTTP Continuation
21 0.401255 192.166.123.145 204,152,189, 116 TCP 43093 > http [ACK] Seq=2957530370 Ack=13061513008 Win=26064 Len=0 TSY=7G23102 TSER=290356353:
22 0,410203 204,152,189,116 192,168,123,145 HTTP Continuation
23 0,410278 192,168,123,145 204,152,189,116 TCP 43093 > http [ACK] Seq=2957538370 Ack=1306152836 Win=28960 Len=0 TSY=7E29103 TSER=290356353:
24 0,419325 204,152,189, 116 152,168,123.145 HTTP Continuation
25 0,419338 152,168,123.145 204,152,189, 116 TCP 43093 > http [ACK] Seq=2357538370 Ack=1305154284 Win=31856 Len=0 TSY=7E23104 TSER=290355353¢
26 0.420075 204,152,189.116 192.168.123.145 HTTP Caontinuation
27 0,428088 192,168,123,145 204,162,189, 116 TCP 43093 > http [ACK] Seq=2957538370 Ack=1306155732 Win=34702 Len=0 TSY=7E29105 TSER=290356253:
28 0,4368722 204,152,189.116 192,168,123,145 HTTP Continuation
29 0436737 1592,168,123,145 204,162,189,116 TCP 43093 > http [ACK] Seq=2957538370 Ack=1306157180 Win=37648 Len=0 TSY=7E29105 TSER=290355353¢
300,4445530 204,152,189, 116 152,168,123, 145 HTTP Continuation
31 0.477803 192.168.123.145 204,152,183, 116 TCP 43093 » http [ACK] Seq=2357938370 Ack=1308158456 Win=40044 Len=0 TSY=7629110 TSER=230356353
32 0,519561 192,168,123,145 204,152,189,116 TCP 43093 > http [FIM, ACK] Seq=2957538370 Ack=1306150456 Win=40544 Len=0 TSY=7629114 TSER=2903
42 0,B08370 204,152,183,116 132,168,123,145 TCP http > 43093 [ACK] Seq=130B158456 Ack=2957538371 Win=E432 Len=0 TSW=2903563554 TSER=7629114
£ [R—
Frame 5 (G5 bytes on wire, B6 buytes captured) =
H Ethernet II. Sroct 00302:2d:01tadi?4, Dsty 00:50:18:07:9100
Internet Protocol, Src Addr: 192,168,123,145 (192,168,123,145), Dst Addri 204,152,189,116 (204,152,189,116)
Transmizzion Control Protocol, Src Part: 43093 (43093), Dst Port: http (80), Seq: 2957937923, Ack: 1306141252, Len: 0
—
e
K1l 3]
000 00 50 18 07 91 cc 00 02 2d 01 ad 74 08 00 45 00 Pl - o
0010 00 34 1b BE 40 00 40 0B 5B f7 c0 a8 7b 91 cc 98 4,.08,0, ¥ i |
0020 bd 74 a8 55 00 B0 b0 48 72 83 4d da 22 44 80 10 tTULPSH rLHOD.,
0020 16 dO Ba 90 00 00 01 01 0B Oa 00 74 B3 10 ad 10 Bj..... ... Ll F
0040 dc £O 08 Ad|
Fi\ter:‘ Jnd ip.addr eg 204.152.169.116) and (icp.port eq 43093 and top.port eqg 60) j Reset| Apply |Fi\e: <capture= Drops; 0
7 — |

The first three packets illustrate the TCP 3-way handshake used to establish a connection
to the Web server. The fourth packet contains the HTTP request from the client., and the
sixth contains the response header with the 200 OK message. The remaining packets are
mostly either data packets containing the body of the HTTP response (packets from the
server to the client) or the TCP acknowledgments for that data (packets from the client to
the server). The fina four packets are the 4-way handshake used to shut down the
connection (the first FIN from the server is packet number 30; the FIN bit isnot visiblein
the diagram but it is there if you expand the view of the packet).

The next diagram illustrates one packet in detail:

File Edit Capture Display Tools Help

(@i ethereal-pcap - Ethereal |[=][a]]

el x [&0] S| |%0] #h

Time Source Destination

'T]_ et iR i = S e

M Frame 8 (1514 buytes on wire, 1514 buytes captured)
E Ethernet 11, Srci 00:50:18:07:31cc, Dst: 00202:2d:01:adi74
Bl Internet Protocol, Src Addr: 204,152,1893,116 (204,152,189,1167, Dst Addr; 192,158,123,145 (192,168,123,145)
Wersiony 4
Header length: 20 bytes
H Differentiated Services Field: Ox00 (DSCP 0007 Default: ECM: 000}
Total Length: 1500
Identification: Oxfebd (B5213)
E Flags: 0x04
Fragment offzet: 0
Time to live: 51
Protocol: TCP (0x0B)
Header checksumt 0x7d17 (correct)
Source; 204,152,189,116 (204,152,189,116)
Destinations 192,168,123,145 (192,168,123,145)
B Transmizsion Control Protocol. Sec Port: http (800, Dst Port: 42093 (430930, Seqt 1306141252, Ack: 2957538370, Len: 14
Source port: http (80)
Destination port: 43092 (430930
Sequence number; 1306141252
Mext sequence number: 1306142700
Acknowledgement numbert 2357538370
Header length: 32 bytes
H Flags; Ow0010 (ACK)
Window size; B432
Checkzum: 0xE7ES (correct)
E Options; (12 butes)
B Hypertext Transfer Protocol
E HTTPA1.1 200 OKSrsn
Date: Wed, 17 Mar 2004 21338355 GHTr'n
Server: Apaches2,0,40 (Red Hat Linw:)sesn
Accept-Ranges: bytesrin
Cannection: closehrin
Transfer-Encodingt chunkedsrin
Content-Type: text/htmlyrin
“rh
Data (1259 bytes)

[4] [

0000 00 02 2d 01 ad 74 00 50 18 OF 31 cc 0B 00 45 00 L-.-t.P L. 1LLE,
010 05 do fe bd 40 00 33 06 Fd 17 cc 98 bd 74 c0 a8 LOMEL3, FLILAAT
0020 Fh 91 00 50 a8 55 4d da 22 44 b0 48 74 42 80 10 {,.PTUMO "D°HtE..
C020 19 20 B7 B8 00 00 01 01 08 Da ad 10 dc £9 00 74 | gh,,.. ... 00.¢
0040 B3 10 48 b4 b4 B0 2F 31 Ze 31 20 32 20 30 20 4F i HTTRA .1 200 0

WLz

FiIter:|J.1 52.189.118) and (tcp.port eq 43093 and top.port eqg §0) lJ Reset] .ﬂ«pply“ File: ethereal-pcap

[*]

Zooming in on packet 8, which contains the HTTP response headers from the server, we
see that thisis aHTTP packet encapsulated on top of TCP, which in turn is embedded in

an IP packet, which itself is the payload of an Ethernet packet.

5.3.4 Anatomy of a Web Server Transaction

In this section we provide an overview of the steps a Web server takes in response to a

client request. For this purpose, we provide the following pseudo-code:

s = socket(); /* allocate listen socket */
bi nd(s, 80); /* bind to TCP port 80 */

listen(s); /* indicate willingness to accept */

while (1) {
newconn = accept (s); /* accept new connection */
renot el P = get socknane(newconn); /* get renote | P addr */
renot eHost = get host bynane(renotel P); /* get renmote | P DNS name */
gettimeof day(currentTime); /* determine time of day */
read(newconn, reqBuffer, sizeof(reqBuffer)); /* read client request */
reqlnfo = serverParse(reqBuffer); /* parse client request */
fileName = parseCQutFil eName(requestBuffer); /* determine file name */
fileAttr = stat(fileNane); /* get file attributes */
server CheckFil eStuff(fileName, fileAttr); /* check perm ssions */
open(fil eNane); /* open file */
read(fileNane, fileBuffer); /* read file into buffer */
header Buf fer = serverFi gureHeaders(fil eNanme, /* determ ne headers */

reqgl nfo);

wr it e(newSock, headerBuffer); /* wite headers to socket */
write(newSock, fileBuffer); /* wite file to socket */
cl ose(newSock) ; /* cl ose socket */
cl ose(fil eNane); /* close file */
wite(logFile, requestlnfo); /* wite log info to disk */

}

The above is arelatively simple implementation of a server, which does not perform any
possible optimizations and can handle only one request at a time. The example only hints
at the more complex functionality that is required by the server, such as how to parse the
HTTP request and determine whether the client has the appropriate permissions to view
thefile. In addition, it has no error handling, for example if the client requests a file that
does not exist. However, the example gives a good idea of what steps are required by a
Server.

5.3.5 Different Models of Web Servers

Like many other servers, Web servers have certain performance requirements that affect
how the server is implemented. Severa possibilities are available for the architectural
model that the server isimplemented with. One of the major issuesis how the server will
handle concurrency. Web servers are required to handle many clients simultaneously,
sometimes up to tens of thousands of clients. In the example above, the server only deals
with one client at atime. For example, if the file that the client requests is not in the
servers file cache, the server will block waiting for the file to be loaded from disk.
During this time, the server could be handling other requests that may be less expensive
to serve, but the above example will instead wait, wasting cycles. In addition, since the
example above is using a single process, if the server is an SMP, other processors will be
completely under-utilized. The typical approach to dealing with this problem is through
some form of concurrency mechanism; we describe severa approaches below.

The most common form of concurrency is using processes. The most popular Web
server, Apache, was originally implemented using processes. Each process has a separate
address space and is fully protected and isolated from other processes through a virtua
machine abstraction. By assigning each request to a separate process, one process can
make forward progress while another is blocked on another activity (such as waiting for a

client or a disk). In addition, on an SMP, multiple processes can run in paralel. The
disadvantage of processes is that they are relatively expensive abstractions to use,
requiring resources such as memory to be allocated to them. If a server has thousands of
clients, it may have thousands of processes, which can tax a system’'s resources.
Typically, any system is limited in the number of processes it can have active.

The next most common approach is using threads. Apache 2.0 provides the option of
using threads rather than processes. Threads are similar to processes but are “lighter-
weight”, namely, require fewer system resources. Threads typically share address spaces
but have separate program counters and stacks. Threads are cheaper than processes but
trade off protection for speed. In addition, systems can run low on resources even using
threads, given a large enough number of clients.

Many research Web servers, such as the Flash Web server from Rice University (not to
be confused with MacroMedia’'s Flash browser plug-in), use something called the event-
driven model. In this model, a single process is used, without threads, and connections
are managed using a multiplexing system call such as select() or poll(). The server
queries the readiness of all connections using the system call, and determines which
connections require service (and conversely, which are idle). The server then reads
requests or writes responses as appropriate for that particular connection. The advantage
of the event-driven model is that it is typically faster than process or thread-based servers,
since it maximizes locality and has many performance optimizations not available to
these other models. The disadvantage is that it is more difficult to program, since the
developer must explicitly manage state for many requests, each of which can be in a
different stage of progress. In addition, operating system support for interacting with the
disk in this model (namely, asychronously) has been historically absent in Linux.
However, with the introduction of asynchronous I/O in Linux 2.6 this limitation is being
remedied.

The final architectural model we consider here is the in-kernel model. Examples include
RedHat's Tux server and IBM’s AFPA server. In this approach, the entire Web server is
run as a set of kernel threads, rather than in user space. The advantage to this approach is
that performance is maximized, since sharing is easy and no expensive user-kernel
crossings are incurred. The disadvantage is that kernel programming is more difficult,
less portable, and more dangerous than user-space programming. For example, if the
server has a programming error and crashes, an in-kernel server will take down the whole
machine with it.

5.3.6 Tuning Web Servers

Many of the approaches to tuning other servers given in other chapters are appropriate for
Web servers as well. For example, increasing the size of the send and receive socket
buffers via sysctl or setsockopt, as described in Section 4.6, are useful. Similarly,
increasing the size of the accept queue helps prevent requests from being dropped by the
operating system before the Web server even sees them. In this section we focus on

tuning that is done for Web servers in particular. This in addition to tuning that is done
on the operating system.

5.3.6.1 Tuningfor all Web servers
These changes are useful for all Web servers, regardless of the architectural model.
echo 30000 > /proc/sys/net/ipvdl/tcp_nmax_syn_backl og

This parameter increases the number of TCP SYN packets that the server can queue
before SY Ns are dropped.

echo 2000000 > /proc/sys/net/ipv4/tcp_max_tw buckets

Web servers typically have alarge number of TCP connectionsin the TIME-WAIT state.
This parameter increases the number connections that are allowed in that state.

echo 50000 > /proc/sys/ net/corel/ netdev_max_backl og

This parameter sets the length for the number of packets that can be queued in the
network core (below the IP layer). This alows more memory to be used for incoming
packets, which would otherwise be dropped.

5.3.6.2 Apache

Apache’s main configuration file is httpd.conf. Several parameters can be modified in
that file to improve performance:

Maxd i ents 150

This parameter sets the upper bound on the number of processes that Apache can have
running concurrently. Larger values allow larger numbers of clients to be served
simultaneously. Very large values may require Apache to be re-compiled.

MaxKeepAl i veRequest s 100

This parameter indicates the number of requests that a single Apache process will
perform on a connection for a client before it closes the connection. Opening and closing
connections consumes CPU cycles, and thus it is better for the server to provide as many
responses on a single connection as possible, so larger numbers are better. In fact, setting
this value to O indicates that the server should never close the connection if possible.

MaxRequest sPerChild 0O

This parameter determines the number of requests an individual Apache process will
serve before it dies (and is re-forked()). O implies the number is unlimited, but on some

systems with memory leaks in the operating system, setting this to a non-zero value keeps
the memory leak under control.

M nSpar eServers 5
MaxSpar eServers 10

These parameters determine the minimum and maximum number of idle processes that
Apache keeps around in anticipation of new requests coming in. The ideais that it is
cheaper to keep an live process idle than to fork a new process in response to a hew
request arrival. For highly loaded sites one may wish to increase these values.

5.3.6.3 Flash and other Event-Driven Servers

A common problem event-driven servers have is that they use a large number of file
descriptors, and thus can run out of these descriptors if the maximum is not increased.

ulimt -n 16384
The above is a sh (shell) command that increases the number of open files a process may
have. The process (in this case, the Web server) must also be modified to take advantage
of large numbers of descriptors:
#include <bits/types.h>
#undef __FD_SETSIZE
#define_ FD_SETSIZE 16384
Thedefault FD_SETSIZE on Linux 2.4 is only 1024.
5.3.6.3 Tux
echo 20000 > /proc/sys/ net/tux/ max_connect
This parameter determines the number of active simultaneous connections.
echo 8192 > /proc/sys/ net/tux/ max_backl og
This parameter sets the max number of connections waiting in Tux’s accept queue.
echo 0 > /proc/sys/net/tux/logging
This parameter disables logging of requeststo disk.
5.6.5 Performance Toolsfor Evaluating Web Servers
Many tools are available for evaluating the performance of Web servers, aso known as

workload generators. These are programs that run on client machines, emulating the
behavior of a client, constructing HTTP requests, and sending them to the server. The

workload generator can typically vary the volume of requests that it generates, called
load, and measures how the server behaves in response to that load. Performance metrics
include items such as request latency (how long it took for an individua response to
come back from the server) and throughput (how many responses a server can generate
per second).

Perhaps the most commonly used tool is SPECWeb99. This tool is distributed by the
Systems Performance Evauaton Cooperative (SPEC) non-profit organization, whose
Web site is www.spec.org. This tool is probably the most-cited benchmark, and is used
for marketing purposes by server vendors such as IBM, Sun, and Microsoft.
Unfortunately, the tool costs money, although it is available freely to member institutions
such as IBM. The benchmark is intended to capture the main performance characteristics
that have been observed in Web servers, such as the size distribution and popularity of
files requested. Thetool is considered a macro-benchmark in that it is meant to measure
whole system performance.

Another tool frequently used is httperf from HP Labs, which is available freely under an
open-source license. This tool is highly configurable, allowing one to stress isolated
components of a Web server, for example how well a server handles many idle
connections. It isthus used more as a micro-benchmark.

Many other tools exist for evaluating Web server performance, including SURGE,
WebBench, and WaspClient. However, describing them al is outside the scope of this
chapter. Nevertheless, many options are available for stressing, testing, and measuring
servers, and many of these are fredly available.

