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Abstract: Web servers often experience overload situations due to the extremely bursty nature of
Internet traffic, popular online events or malicious attacks. Such overload situations significantly affect
performance and may result in lost revenue as reported by the recent denial of service attacks. Overload
control schemes are well researched and understood in telecommunication systems. However, their use
in web servers is currently very limited. Our focus in this paper is to propose effective overload control
mechanisms for web servers. An important aspect in overload control is to minimize the work spent on
a request which is eventually not serviced due to overload. This paper studies three simple schemes for
controlling the load effectively. The first scheme selectively drops incoming requests as they arrive at
the server using an intelligent network interface card (NIC). The second scheme provides feedback to a
previous node (proxy server or ultimate client) to allow a gapping control that reduces offered load under
overload. The third scheme is simply a combination of the two. The experimental results show that even
these simple schemes are effective in improving the throughput of the web server by 40% and response
time by 70% under heavy overloads, as compared with the case without any overload control.

1 Motivation

The exploding use of web-based user interfaces for conducting business on the Internet has
brought to focus the problem of dealing with overloads to which the web servers (especially
those that form the front end of an e-commerce site) are subjected to. This paper motivates
the need for overload control and presents results of some preliminary experiments on overload
control.

It is well-established by now that Internet traffic is very bursty over a large range of time-
scales and shows asymptotic self-similarity and multi-fractal behavior at intermediate time scales.
For example, our study of web-server request process in [2] shows that the busy-period traffic is
asymptotically self-similar with a Hurst parameter of around 0.8. Several studies have also shown
that WAN traffic is multifractal in nature [15, 3]. Informally, self-similarity and multifractal
behavior imply that there is considerable bunching of requests as they arrive at the server. Such
an arrival process is known to lead to heavy-tailed queue-length distribution, which means that
unless the web server is engineered for a rather low average operating load, it will experience huge
swings in response times and may occasionally experience queue overflows (and the consequent
“server-too-busy” errors sent to clients).



Our recent analysis of e-commerce sites suggests that e-commerce traffic usually cannot be
assumed to be stationary for more than 10-15 minutes [4]. Nonstationarity further exacerbates
loading problems on the web server and consequently degrades user experiences. In addition, e-
commerce sites are increasingly affected by special events either directly (e.g., promotional sale
held by the site itself) or indirectly (e.g., championship game broadcast by television along with
advertisements that direct viewers to the site). Such events can easily subject the front ends (i.e.,
web servers) of the e-commerce sites to loads that are an order of magnitude higher than normal
loads, and thus cannot be handled by conservative engineering practices. The massive overload
of Victoria Secret’s web site during the last Superbowl illustrates this point very well.

All these characteristics call for effective overload control of web servers. The recent denial of
service (DoS) attacks on major web-sites has highlighted this need even further. The DoS attacks
are usually carried out by a simple program, usually replicated on a large number of clients, that
sends out a barrage of HTTP requests to the web-site and overloads it. Obviously, combating
such DoS attacks requires an overload control scheme that can reject requests selectively from
misbehaving clients. This would require rather sophisticated overload controls, which can be
built on the foundation laid in this paper.

The outline for the rest of the paper is as follows. Section 2 discusses load management
schemes both in the context of telecommunications systems (where they are most well developed)
and as they are currently employed by the web servers. Section 3 describes the experimental
setup, Section 4 presents the overload control methods that were tested, and section 5 presents
the results. Finally, section 6 concludes the paper and discusses areas for further work.

2 Overview of Overload Control Mechanisms

Overload control is a very well-researched topic in telecommunications systems, and a carefully
designed overload control scheme is a part of every level of the SS7 signalling stack [10, 11, 12,
8]. In particular, telecommunications signalling nodes use a hierarchical structure to isolate each
SS7 layer from congestion at other layers. Also, every signalling link, its associated processor, all
network level (MTP3) processors, and all application level (ISUP/BISUP or TCAP) processors
are protected by appropriate congestion control mechanisms. This section first discusses the
general structure of these overload control schemes, and then points out special considerations
for applying them to web-servers.

2.1 Overload control in Telecommunications Systems

The signalling network used in telecommunications systems (SS7) is a datagram network where
most telephony related services do not establish any explicit virtual circuit for an end to end
reliable communication. Only the link-layer uses transparent retransmissions to cope with (link
level) errors; higher layers (including application) depend on other mechanisms such as timeouts,
redundant messages, and explicit repetition of certain messages for lost/corrupted/duplicated/delayed
messages. This approach is different from the web-server environment where the transport (TCP)
layer is supposed to provide transparent protection against all losses/duplications of messages.



Such a behavior considerably complicates feedback overload control as discussed later in the
paper.

In the following, overload control schemes are described in general terms. Details of specific
schemes for link, network and application level congestion control may be found in [10]. The
overload control is typically effected by defining 3 thresholds for the monitored parameter (e.g.,
CPU queue length) (a) abatement, (b) onset, and (c) discard. When the onset threshold is crossed
from below, a feedback message is sent out towards the traffic source to request cut-down in
the traffic. The traffic throttling happens at somecontrol node, which is usually just the previous
node, but could in principle be any node on the path back to the source, including the source itself.
If the discard threshold is crossed before the traffic has been adequately cut-down, the excess
traffic is simply discarded. Once the onset threshold is crossed, feedback messages continue to
be sent until the monitored parameter goes below the abatement threshold. The motivation of
continuous feedback is both to guard against dropped feedback messages and also to effectively
handle rapidly fluctuating loads. In order to limit the feedback related overhead, most schemes
don’t send feedback for every message. Instead, they may send feedback for everyn messages
or every� seconds, wheren or � are parameters of the control mechanism.

One crucial aspect in overload control is the amount of resources expended on calls that
are eventually dropped. Since setting up/tearing down a call involves a sequence of signalling
messages, it helps to be more reluctant to drop messages well into the call setup process. Also,
it undesirable to drop messages related to call teardown, since processing those messages would
release resources. This brings in the concept ofcongestion prioritiesfor various messages. That
is, depending on their expected importance, messages are assignedcongestion prioritiesfor the
purposes of overload control. Congestion priorities need not be identical to scheduling priorities
at the server; for example, the server may process all accepted messages in a FCFS manner but
give high congestion priorities to important messages so that they are unlikely to be dropped.
Congestion priorities are implemented by using a separate sequence of abatement (Ai), onset
(Oi) and discard (Di) threshold for each priority leveli. (Assuming that higheri represents
higher congestion priority, one typically usesAi+1 > Di.) The feedback message indicates
the priority level at which onset threshold has been crossed. The highest onset level crossed
essentially indicates the priority level such that all messages of same and lower priority are to be
throttled.

Even when only one congestion priority is used, it may be useful to have a sequence of
increasing onset levels, such that crossing levelOi indicates a “severity-level” ofi to the control
node. This can be used by the control node for deciding the how much traffic to throttle. The SS7
application-level congestion control mechanisms known as automatic congestion control (ACC)
and automatic code gapping (ACG) use such an approach. The severity level is typically used in
one of the following two ways for traffic throttling at the control node:

1. Percentage throttling: Traffic is throttled probabilistically (with higher drop probability at
higher severity level).

2. Gapping control: The severity level is translated into a “gap” (i.e., minimum time between
successive requests) and this gap is enforced by dropping all non-conforming requests.



Many considerations go into setting various congestion thresholds including feedback delays
(which decides spacing between onset and discard thresholds), maximum acceptable response
time (which decides location of onset threshold), probability of the queue running empty (which
decides the abatement threshold), etc. These considerations apply in the web-server context as
well, but a full discussion of these is beyond the scope of this paper.

2.2 Overload Control in Web servers

Before considering overload controls, let us first note a few important distinctions between web-
servers and SS7 signalling nodes. Unlike the latter, current web servers have a monolithic ar-
chitecture, with most of the processing performed on the main processor. A direct consequence
of monolithic structure is large overhead associated with bringing a request up to the applica-
tion layer. (The current architecture also results in unexpected bottlenecks which makes explicit
overload control even more important [1].) In particular, an incoming packet will result in I/O in-
terrupt handling, TCP processing, message assembly, possibly a copy from kernel to user space,
and message analysis at the HTTP level, before the request can actually be dropped. This “wasted
effort” would result in an unstable situation where the throughput continues to degrade as a func-
tion of overload amount. This is a critical consideration in any practical overload control scheme
for web-servers. As the Web server architecture matures, it is expected that different software
layers would run on different physical processors, which would make the task of isolating each
processor easier. In fact, driven by the needs for QoS support, IPSec support [6], offloading
of protocol processing from the main processor, etc., more distributed approaches are emerging
rapidly. One such approach is to have several special purpose processors connected via a high-
speed, low latency interconnect (e.g. InfiniBandTM ) for assisting the main processor (e.g., for
TCP processing, security processing, etc.). Concurrently, the intelligence is percolating down
into “protocol processors” and intelligent NICS that can do packet classification, packet forward-
ing, partial TCP processing (e.g., TCP checksums), etc. Assuming that these processors do not
themselves get bottlenecked, much of the overhead of dropping packets is eliminated and good
overload performance can be achieved. The experiments reported here used such a setup. It is
important to note, however, that much of the benefit of overload control can also be achieved by
implementing packet classification and dropping in the driver software of an ordinary NIC.

The overload control mechanisms in place in current web servers are rather rudimentary.
Often, the only overload control technique is to return the HTTPserver too busymessage if the
HTTP server queue exceeds some threshold. It is then up to the client to decide whether it wants
to retry the request and with how much delay. A more sophisticated scheme is to do admission
control at a node in front of the server farm (e.g., a load-balancer), so that web-servers don’t have
to deal with excess requests. Such an approach does not result in any wasted work on the web
servers, however, it requires HTTP processing capability in the front end, which is used more
and more as the overload increases. Thus, the detrimental effect of overload (i.e., wasted work)
occurs at the front end, which is highly undesirable. More sophisticated load balancers also try to
do balancing between multiple clusters of web-servers, perhaps located in geographically diverse
areas [14, 13]. The geographical diversity allows the use of spare capacity in another region if the
servers in one region are overwhelmed. It is also possible to exploit geographically distributed



servers in minimizing the effects of network congestion and delays. Although sophisticated load-
balancing can help considerably in alleviating overloads caused by the highly variable nature
of the web traffic, it must be noted thatload-balancing cannot replace proper overload control.
Thus, a good overload control is essential for commercial grade servers even with load-balancing.
Moreover, for small (e.g., single node) web-servers where load-balancing does not apply, or when
not all servers can handle all web-pages, overload control becomes even more essential.

In this paper, a direct implementation of overload control on the web-server is explored with-
out necessarily assuming the presence of a “front-end” node that does admission control or load
balancing. The motivation is to decentralise the rather heavy duty tasks of packet classification
(needed for QoS based overload control), maintaining information on TCP sessions in progress,
maintaining status about (possibly a large number of) traffic sources, etc. With the availability
of intelligent NICs, packet classification and dropping can be done on each server without in-
curring significant “wasted work”. Also, instead of directly sending “server-too-busy” message
from the server application level to the client application, lower level feedback messages are sent
which can be used either for throttling the traffic or for simply indicating “server too busy” on
the client end. Whenever feasible, the feedback is sent to a server on the path back to the client
(e.g., the front-end load balancer, a proxy server, firewall, re-director node, etc.) so that traffic
throttling can be effected easily. Dropping traffic as close to the source as possible helps cut down
unnecessary traffic through the network.

As noted in the last subsection, a major difference between web-servers and SS7 nodes in
terms of overload control issues is the connection oriented (TCP) environment. In an SS7 node,
it is usually okay to simply drop any messages that cannot be handled since this would eventually
result in a dropped call and subsequent retry by the user. In contrast, dropping a packet over TCP
layer results in repeated attempts by the other side to retransmit the packet. The TCP-initiated
retries are more troublesome because of much smaller gaps between retries compared to retries
by a human and the overhead of maintaining the connection related information. A feedback
mechanism that can avoid automatic retries in this case would be very helpful, but would surely
require some changes to the default TCP behavior.

Although the use of intelligent NICs in a monolithic server allows dropping of packets with-
out incurring much overhead on them, it introduces a mismatch between the relevant data units
that the application layer may wish to drop (i.e., an entire message) and the data units that the
NIC deals with (i.e., packets). Although most requests to a web-server fit in one ethernet packet,
a general solution demands that all packets corresponding to a request be identified and dropped.
When there is a one to one mapping between TCP connections and application layer requests,
this mismatch is easy to handle. In particular, by dropping the TCP connection request (i.e., the
SYN message), the entire data exchange is avoided. However, a TCP connection may be used
for multiple application level data transfers (using keep-alive feature of HTTP/1.0 or by default
in HTTP/1.1). In such a case, overload control can be considered at two levels of granularity: (a)
TCP connection level, and (b) HTTP transaction level. If the time for which the TCP connection
remains open is well-bounded, a connection level control is not only adequate but also highly
desirable. However, if a single TCP connection is left open for an entire user session, a connec-
tion level control is clearly flawed. The increasing use of secure HTTP protocol for safeguarding
sensitive transactions at e-commerce sites illustrates both of these extremes. Secure HTTP trans-



actions typically use secure socket layer (SSL) which involves 3-4 rounds of message exchanges
between the client and the server for mutual authentication and key exchange, followed by one
or more data transfers [7]. In some environments, such as on-line retailing, a secure channel is
needed only for purchase related transactions and therefore the duration of a secure HTTP session
is well-bounded. A connection level control would work the best in this case. However, in certain
other applications such as on-line banking, the entire user session is secured by going through
the handshake process only in the beginning and then keeping the TCP connection open. In such
cases, it may be unreasonable to keep additional users out until those already in are done.

In order to do transaction level control, the intelligent NIC needs to examine the IP header of
the packets and recognize packets belonging to the same message. Thus dropping all packets of
a request is straightforward. However as stated earlier this interferes with the normal TCP func-
tioning and the only way to handle this situation is for the intelligent NIC to be able to generate
special type of acknowledgements that are treated by TCP as true acknowledgements, but deliv-
ered to the application layer as indications of packet drops. In situations where certain classes
of requests involve only a few transactions whereas other involve many, it may be desirable
to implement both connection and transaction level controls simultaneously. If no such a priori
classification exists and the number of transactions per connection varies widely, transaction level
controls would have to be implemented.

The discussion above indicates that overload control for exchanges in a connection oriented
environment is difficult and would require changes to the transport layer so that proper feedback
can be generated by the intelligent NIC and acted upon properly on the receive end. The feedback
itself can be provided using a UDP channel and is easy to handle. Given a wide deployment of
TCP, any changes to it need to be evaluated carefully. Also, in more general internet servers that
use both TCP and UDP for data exchange (e.g., streaming media servers), the impact of overload
control (or more appropriately admission control) must be examined on both types of transport.
A related issue is of how feedback should be used by the ultimate clients (or browsers), where
a direct traffic throttling makes no sense. The browsers could either transparently convert the
feedback into a “server-too-busy” message to the user, or attempt to filter attempts by the user in
repeatedly hitting the same site under overload conditions.

3 Experimental Methodology and Setup

This section describes the experimental setup that was used for performing overload control ex-
periments, including such essential components as packet classification, overload detection, feed-
back mechanism, and traffic throttling policies used. It may be noted that the main purpose of
this paper is to demonstrate the advantages of overload control in web-servers and to highlight
the need for appropriate O/S and protocol support, rather than to explore the policy or parameter
space for optimal overload performance. The latter issues need to be examined for each applica-
tion environment and are beyond the scope of this paper. Also, the experiments address only the
simple environment where each connection carries just one request, and thus there is no need to
distinguish between connections and the request within a connection.
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Figure 1: Experimental Setup

3.1 System Configuration

Our experimental setup consists of a few clients and a web server as illustrated in Figure 1. The
web server was running Microsoft Internet Information Service 4.0 (Web server) on Windows
NT 4.0 and equipped with 4 NICs (Network Interface Cards) designed to operate on 100 Mbps
ethernet. In order to allow targeting a desired amount of load on each NIC, each of them was
configured on a separate subnet. The clients were partitioned into two categories calledcon-
trolled anduncontrolled. The controlled clients made requests to the web server and responded
to information about overload on the server. In contrast, the uncontrolled clients did not respond
to changing load on the web server, and can be considered to be given preferential treatment.
This treatment was introduced to understand the impact of overload control mechanisms in the
presence of QoS constraints. The uncontrolled clients can be considered to be users that have
paid a higher subscription rate to the service provider, revenue-generating traffic (e.g., purchases
transactions in e-commerce), or others.

One of the four server NICs were targeted by uncontrolled clients and did not need any
packet classification capability. All others required such a capability and intelligent NIC’s from
NetboostTM were used. Apart from the functionality of ordinary NICs, these NICs consist of
two major components calledclassification engineandpolicy engine. The classification engine
understands an imperative language through which one could specify what fields in the packet
headers (IP header, TCP header, or HTTP header) or even arbitrary strings in the message body
(e.g., URL) are to be examined for packet classification. The policy engine deals with treatment
of the packets (dropping, forwarding, sending them up the host stack, etc.). For our purposes,
incoming packets were classified into two categories: (a) connection request packets destined to
port 80 (HTTP) and (b) all other packets. Connection request packets were sent to the policy
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engine, while all the other packets were directly passed to the host networking stack. In order
to drop connection packets under overload, functionality was developed within the policy engine
using intelligent NIC’s APIs. The host application monitored the load on the system (via NT’s
Perfmon utility) and activated selective dropping of packets within the policy engine when the
system got overloaded. This mechanism avoids the overhead of protocol stack processing for
dropped packets. The flow of packets as implemented using the intelligent NIC is illustrated in
Figure 2.

3.2 Traffic Generation

All clients generated HTTP GET requests resulting in the execution of a single active server
page (ASP) script on the server that generated the web page to be sent out dynamically. The
traffic was generated by a locally developed tool that generates aggregate traffic seen by the web-
server without necessarily having to individually emulate each user. The generator has two parts:
request parameter generator and actual request generator. The request parameter generator gen-
erates the time, size, target web page and other characteristics of the requests and could even
be run offline to generate a trace. The request generator then formulates actual HTTP requests
that accurately reflect these parameters. In order to achieve correct timing, successive requests
are generated by a round-robin scheme between all the O/S threads on a client. When multiple
client machines are used for load generation, a round-robin scheme is used between the clients as
well. The traffic generator is capable of generating traffic with complex behavior (e.g., asymp-
totic self-similarity and multifractality at intermediate time scales for the arrival process, flexible
description of skewness in web-page accesses, etc.), but most of those features were not used in
the experiments reported here.

The uncontrolled client made 30 requests per second for all runs. In order to study the impact
of the arrival process on the performance, two extreme cases were considered: (a) determinis-
tic inter-arrival times, and (b)M=G=1 traffic [3], which is known to be extremely bursty and
asymptotically self-similar. Overload situations were simulated by providing the web server with
additional load from the controlled clients. Each controlled client generated an average of 20
requests per second. Each experimental run was for about 5 minutes and the controlled clients



were started up after the load from the uncontrolled clients had stabilized at the server.

3.3 Data Collection

During each experimental run, the clients collected data about each request sent. The parameters
monitored were the latency for the response and the type of the response. In addition, aggregate
parameters for each test were collected which gave information about the total number of OK
(HTTP 200) responses received and the total number of Server Error (HTTP 500) responses re-
ceived. The aggregate data was collected in the time window that the overload occurred. Separate
data was collected to determine the length of the tail until the load returned to normal.

During the experiments, data collection on the web server was done using the performance
monitoring utility of the host O/S (PERFMON). This utility provides access to various perfor-
mance counters pertaining to several system objects such as the processor, active server page
(ASP) statistics, TCP and UDP related counters, etc. In particular, processor utilization, the ASP
queue length, connection requests per second and connection requests rejected and UDP packets
sent during the experiment were used to analyze the performance of the proposed mechanisms.
One limitation of this utility is that it can update performance parameters at most every second.
For a large server, 1 second updates may be too slow. For certain metrics, such as the number
of queued requests, this limitation can be easily overcome by explicitly monitoring the desired
parameter.

4 Proposed Mechanisms

4.1 Overload Detection

Although a high processor utilization is a good indicator of server load, it is not very useful for
overload control since it does not indicate the severity of the overload beyond 100%. The real
measure of interest is, of course, the unfinished work, often also referred to as virtual waiting
time [5]. However, because a direct estimate of unfinished work is either infeasible or expensive,
simple approximations (e.g., number of unserved requests) are typically used. In our experiments,
every request targets an ASP file (actually the same ASP file), therefore, a good metric is the ASP
queue length. It is important to note here that if the requests invoke a number of ASP scripts with
widely different characteristics, the ASP queue length alone may not be a good measure of the
unfinished work. The host operating system provides access to the registry from where data
regarding queue length for the ASP requests can be obtained by an application. The ASP object
from the Windows registry facilitates monitoring of various parameters related to ASP requests.
Using the API related to this object the queue length of outstanding ASP requests was monitored
via an application thread on the web server.

The following subsections describe three simple overload control schemes that were used to
demonstrate potential performance gains due to overload control. Optimization of the schemes
or their parameter values is beyond the scope of this paper.



4.2 Dropping Incoming Requests

This is the “baseline” scheme that simply drops new connection requests under overload. As
stated earlier, most web-servers currently use a similar scheme (except that they incur a higher
overhead by generating the “server too busy” response). Thus, to be useful, more sophisticated
schemes have to provide better overload performance than this simple scheme.

In this scheme, two thresholds are defined for the ASP queue length: abatement and discard.
Whenever discard threshold is crossed, the host software makes a down call into the policy engine
on the intelligent NIC so that all new connection requests arriving from the controlled clients are
dropped. This dropping continues until the ASP queue goes below the abatement threshold.
(Once again, the crossing of abatement threshold requires a down call to the intelligent NIC so
that its policy engine can start redirecting traffic to the local TCP stack).

One important consideration in such a scheme is how the requests are dropped. As discussed
earlier, in current web-server architectures, there is no real dropping of the request; instead, either
the web-server or a front-end load balancer responds to the HTTP request by a “server-too-busy”
response. When done by the web-server itself, this approach obviously results in a lot of wasted
work and thus will not perform well under heavy overload. In our scheme, the connection request
is actually dropped by the NIC without even the TCP layer knowing about it. Consequently, the
TCP on the other end considers this as a “lost packet” situation and reattempts the connection with
increasing gaps (1.5 seconds initially, and doubling every time thereafter for a certain number of
attempts). This puts additional burden on the clients and the network, which is undesirable.

4.3 Traffic Throttling

In this scheme, two thresholds are defined for the ASP queue length: abatement and onset. When-
ever onset threshold is crossed, a feedback message is sent by the application towards the proxy
server. The feedback mechanism is implemented by using UDP because of its lightweight nature.
The server does not discard any packets in this case.

Upon receiving the feedback indicating overload, the proxy server needs to reduce the rate
at which it sends requests to this web server. It can accomplish this by forcing a minimum time
gap between successive requests served from its queue. This introduces the risk of queue buildup
at the proxy, a possible performance bottleneck. Since most proxy servers have the ability to
send back custom messages to the web clients, a queue length threshold can be introduced to
protect the proxy server from overload. When the proxy server queue length exceeds beyond this
chosen threshold value, it can send a “Server Too Busy” (STB) message directly to the user, thus
saving the additional overhead of establishing a connection with the web server and receiving this
response from the server. This also saves the server from performing wasted work (processing
STBs).

4.4 A combined mechanism for overload control

A third mechanism involving the use of both the above mentioned methods is described here. In
this method, three thresholds are defined to classify the load on the server (in increasing order): an
abatement threshold, an onset threshold and a discard threshold. The proxy server starts gapping



Table 1: CPU utilization and ASP queue length without overload control

Offered Processor Avg Queue
Load Utilization Length

(requests/s) (%) (Reqs)
32.58 73.67 0.043
43.97 99.95 105.02
71.42 99.87 249.52
99.55 99.82 252.68

the requests when the onset threshold is crossed. If the load does not increase further, this mech-
anism acts exactly like the throttling mechanism presented earlier. However, if the load increases
further and the discard threshold is crossed, subsequent connection requests are dropped. When
the server load falls below the onset threshold, dropping is disabled and all subsequent connec-
tions are accepted. When the load eventually drops below the abatement threshold, a feedback
message is sent to the clients to resume full traffic.

5 Results and Analysis

5.1 Performance without Overload Control

We start by analyzing the impact of varied levels of load on throughput, utilization and response
time. Figures 3 and 4 present the gathered results from this experiment. The offered load (re-
quests to active server pages) is varied from approximately 30 requests per second to roughly 100
requests per second. If the connection is accepted by the server, the request is typically processed
by the web service (IIS 4.0) in two ways depending on the number of requests already queued at
the server. If the number of requests are below a certain threshold, IIS processes the request and
sends back an OK response code to the client. If the number of queued requests has crossed the
threshold, then the web service rejects the request and sends a “Server Too Busy” (STB) response
to the client. This threshold, called “RequestQueueMax”, is a O/S registry parameter that can be
configured based on the observed performance of the server.

Figure 3 presents the number of OK and STB responses as the offered load increases from
32 requests per second (leftmost) to 100 requests per second (rightmost). From the figure, it is
found that the web server is capable of sustaining approximately 45 requests/s without generating
STBs at approximately 100% processor utilization. As the offered load increases to 71 requests/s
(160% of optimal load), almost half the requests experience STB responses, thus lowering the
OK throughput to 39 requests/s (86% of server capacity). Furthermore, when the offered load
increases to 100 requests/s (225% of server capacity), the OK throughput reduces to 32 requests/s
(71% of server capacity).

Another important metric to measure performance is the response time as seen by the client.
Figure 4 presents the impact of increasing load on the average response time. It is clear from
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(dropping only)
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Figure 8: Response time for 160% overload
(dropping only)

the figure that when the system is running at 75% processor utilization (32 requests/s load), the
average response time seen by the client is very small (about 170 ms) and a negligible average
queue length. However, when the system is almost 100% utilized (at roughly 44 requests/s),
the response time increases to over 3.3 seconds. The increase in response time is attributed the
time spent in the request queue (average queue length of 105 requests) waiting to be serviced.
Furthermore, as the load increases beyond 45 requests/s, the average response time increases to
7.3 seconds corresponding to an average queue length of 249 requests (at 160% load) and to 8.8
seconds corresponding to an average queue length of 252 requests (at 225% load). Table 1 shows
the processor utilization and queue length at various loading levels.

The results above used deterministic interarrival times. Figures 5 and 6 show the results for
theM=G=1 self-similar request arrival process. Here the average offered load is varied from
approximately 27 requests per second to roughly 85 requests per second. It is seen that the
web server is still capable of sustaining approximately 45 reqs/sec without generating STBs at
approximately 100% processor utilization. As the offered load increases to 70 reqs/sec (150%
of optimal load), almost half the requests experience STB responses, consequently lowering the
OK throughput to 38 reqs/sec (85% of server capacity). Furthermore, when the offered load
increases to 85 reqs/sec (190% of server capacity), the OK throughput reduces to 36 reqs/sec
(80% of server capacity). As to the response time, Figure 5 shows that when the web server is
loaded to 88% processor utilization (corresponding to a load of 38 req/sec) the average response
time is close to 500 ms. At 150% overload however, the response time increases to 6.2 seconds
even though the throughput is 38 requests/sec.

It can be seen from this discussion that the overload behavior does not differ much even
though the nature of the traffic changes drastically (from deterministic to self-similar). This is
not surprising because if the ASP queue is running close to being full, the nature of the traffic
hardly matters.



5.2 Dropping Incoming Requests

This section studies the performance improvement obtained by simply dropping excess new con-
nection requests at server. For this, two controlled clients were used so that it is possible to
choose different dropping percentages for them. Figures 7 and 8 present the performance of this
scheme under 160% overload. Three different cases are shown here: (a) base case (i.e., no over-
load control), (b) control triggered at onset threshold of 20 and a 100% drop, for both controlled
clients, and (c) control triggered at onset threshold of 20 and (50%,100%) dropping at the two
controlled clients. Note here that requests from the uncontrolled client are not dropped and thus it
can be considered a preferred client. The results indicate that this mechanism raises the through-
put close to the server capacity (an improvement of 9%). Also, the change in response time is
different for controlled vs uncontrolled clients. The average response time for controlled clients
goes up significantly since dropping the connections results in several TCP retransmissions until
the connection is accepted or the number of retries exceeds a predefined maximum. The control
increases the response time of controlled clients by a factor of almost 20 whereas the response
time of the uncontrolled client decreases substantially.

For brevity, detailed results for the self-similar traffic are omitted here. The overall behavior
is similar to that for the deterministic traffic except that the highly bursty nature of the traf-
fic precludes achieving the optimum throughput of 44 requests/sec. Instead, the best achieved
throughput is only about 41 requests/sec. As in the deterministic case, the response time of the
controlled clients increases substantially, but that of the uncontrolled client drops by about 30%.

5.3 Impact of Traffic Throttling

This section studies the performance improvement obtained by detecting the overload and send-
ing the feedback. Ideally, the feedback should be sent to a control node (e.g., proxy server) as
described in Section 4.3. However, this scenario was simulated by sending a UDP message di-
rectly to the controlled clients. Upon receiving the message, the controlled clients increase the
time gap between their consecutive requests. In the future, we intend to incorporate this mecha-
nism into a proxy server (e.g., Squid). Here we analyze the performance of this mechanism and
its relation to the following parameters: level of overload, queue length thresholds and time gap.

Note that in these experiments, an explicit feedback is sent out to the clients whenever the
ASP queue size falls below the abatement threshold. This is different from the more traditional
approach where the control node chooses a time-interval for traffic throttling. An explicit feed-
back certainly gives more accurate information and thus will work better; however, it suffers from
the weakness that if the feedback message is lost or excessively delayed, an overcontrol will re-
sult. It is possible to rectify this by using probe messages, but this aspect has not been explored
at this stage.

Figure 9 and 10 show the effect of traffic throttling on transaction throughput and response
times when the offered load is 225% of the server capacity. The base case (leftmost bars), rep-
resenting 225% overload with no control, shows a throughput of roughly 33 requests/s and a
response time of approximately 9 seconds. In this situation, the average queue length was ap-
proximately 252 (close to the maximum value). Thus, the overload control was studied with onset
thresholds of both 200 and 150. The gapping interval used by the clients was also varied (50 ms,
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Figure 9: Throughput for 225% overload
(throttling only)
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Figure 10: Response time for 225% overload
(throttling only)

150 ms & 250 ms respectively). From Figures 9 and 10, it may be seen that the performance
gains are significant up to a time gap of 150 ms. Since the three controlled clients each generate
a uniform load of 20 requests/s under no control, increasing the time gap by 150 ms reduced
the traffic during overload to roughly 5 requests/s (a total of 15 requests/s from the three uncon-
trolled clients). Since the uncontrolled client generated roughly 30 requests/s, the overall load
to the server was about 45 requests/s. Since this is the capacity of the server, the queue length
remains constant and the performance improvement achieved by throttling traffic at a gap 150 ms
is close to optimal. As the time gap was increased further to 250 ms, the gains in performance
were minimal. We hypothesize that using a lower onset threshold to activate the overload control
mechanism can further reduce the average queue length and correspondingly reduce the average
response time. The data shown in the figure not only supports this hypothesis but also shows that
the overall throughput does not change significantly when the onset threshold is reduced.

The impact of the queue length threshold and time gap values on throughput and average
response time was illustrated in the above. However, the service provider may also be interested
in the level of service provided to the incoming web traffic during overload. One way of quan-
tifying the level of service is by looking at the overall distribution of latencies observed for all
request-response pairs during the overload. Figures 11 and 12 plot the cumulative distribution of
requests (y-axis) versus the response time (x-axis). In other words, a given point (X, Y) denotes
that Y% of the requests experienced a service time of X milliseconds or less. In the figure, there
are eight different curves corresponding to the 225% overload and the throttling mechanism run
with different values for (time gap, queue length) as indicated by the labels. The case of no
overload contro is depicted byNo controland shows the highest average response time due to
the largest queue buildup (about 260 reqs). As the threshold queue-length is reduced , the curves
shift to the left. Similarly, as the time gap is increased under a fixed queue length threshold, the
response time decreases. Also, for a large time gap of 250 ms, the curves increase very gradually
from left to right. This can be attributed to the high fluctuations in the queue length caused by
periods of underload and overload.

The results above are for deterministic arrival process. With self-similar process, the throt-
tling scheme is able to acheive a throughput of 43.5 requests/sec, which is very close to the
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Figure 11: Uncontrolled client resp. time dist. for 225% overload (throttling only)

optimal value of 44 requests/sec. The response time also decreases substantially as in case of the
deterministic traffic.

Figures 13 and 14 compare the performance of traffic throttling and dropping mechanisms for
deterministic traffic under 160% overload. At this loading level, throttling achieves a throughput
improvement of roughly 12% and response time reduction by a factor of 3.6. As expected,
throttling incoming traffic is more effective than dropping connection requests since the former
can better control the number of requests sent to the overloaded web server. In terms of response
time, the average response time including controlled and uncontrolled clients is lower for the
throttling mechanism. However, the average response time for the uncontrolled clients is much
lower with dropping mechanism since dropping affects the controlled clients severely by causing
several retransmissions.

5.4 Impact of combining the two schemes

In this case, the onset threshold is chosen as 150 and discard threshold as 200. Figures 15 and 16
show the performance improvement of this scheme under 225% overloaded and deterministic
arrivals. While the improvement in throughput is not significant when compared to the throttling
mechanism, the average queue length is lower by 40% resulting in a lower response time for
the uncontrolled clients as shown in Figure 16. This is an important result since it shows that
revenue-generating traffic can be supported even when the server is heavily overloaded. The
combined scheme performs better than the throttling only scheme for self-similar traffic as well.

5.5 Multiple Congestion Thresholds

Section 2.1 mentioned the use of congestion priorities in implementing multiple grades of service.
In order to demonstrate this, the controlled clients were divided into two classes such that one
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Figure 12: Controlled client resp. time dist. for 225% overload (throttling only)
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Figure 13: Throughput for 160% overload
(dropping vs. throttling)
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Figure 14: Response time for 160% overload
(dropping vs. throttling)
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Figure 15: Throughput for 225% overload
(dropping and throttling)
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Figure 16: Response time for 225% overload
(dropping and throttling)
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Figure 17: Throughput for 150% overload
(throttling w/ multiple thresholds)
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Figure 18: Response time for 150% overload
(throttling w/ multiple thresholds)

class had higher congestion thresholds than the other (and hence given a preferential treatment
under overload conditions). The uncontrolled clients were still retained and obviously received
the best treatment during overload. In these experiments, self-similar input traffic was used and
overload control was achieved by traffic throttling. The experiments were run with traffic loads
of 120% and 150%.

Figures 17, and 18 presents the data for 150% overload. The client with the lowest threshold
for overload control has a reduction in the overall throughput by about 22% while the other clients
see an improvement in the throughput. It can be seen that the overall throughput is not affected
much by the control, however, the impact of different congestion thresholds is clear. Similarly, the
response time for the client with no control (corresponding to the client being given the highest
QoS) shows an improvement of 55% as compared to an improvement of 35% for the client with
the lowest threshold for overload control (corresponding to the lowest quality of service). Thus,
multiple thresholds can be used to tune the performance according to the QoS requirements for
various classes of traffic.

6 Conclusions and Future Work

This paper proposed several simple overload control mechanisms to improve the performance of
heavily stressed web servers. One such mechanism is to use an intelligent NIC at the web server
to selectively drop connection request packets when overload occurs. Another mechanism is to
send load feedback backwards towards the traffic source (another native server, a proxy server,
or the ultimate client) to enable traffic throttling at or closer to the source. Through extensive
experimental runs, it was shown that the performance improvements using these mechanisms
can improve the throughput by as high as 40% and reduce the response time by 70% when the
web server is 225% overloaded. The two mechanisms can also be combined and help reduce the
response time further while maintaining the improvement in throughput. These results demon-
strate how intelligent NICs can be exploited for an effective overload control without requiring a
separate dispatcher node for the web-server.



In order to judge the true worth of an overload scheme, it is necessary to repeat experiments
for a wide variety of scenarios in terms of arrival process characteristics, level of overload, dura-
tion of overload, and type of overload. Also the parameter space for the overload control scheme
(e.g., monitored congestion index, location of various thresholds, etc.) needs to be explored in
order to find suitable operating regions. This paper has not concentrated on these issue since
the purpose was simply to demonstrate the usefulness of more sophisticated overload control
schemes than simply returning “server-too-busy” message to the client.

As mentioned in section 2.1, application level overload feedback messages (e.g., ACC or
ACG) used in telecommunications systems go only back to the previous application node. This
is done because retracing the path backwards and directing feedback to them is expensive (in
fact, not even possible according to the current standards). Reference [9] proposes a scheme for
a more general and unified congestion control mechanism. A similar problem occurs in case of
web-servers as well. If a proxy server receives overload feedback, a considerable extra work
would be needed to direct it back to the originating client (e.g., additional UDP channel back
to each client and maintenance of the context so that the feedback can be pushed backwards).
It remains to see if the overhead of such a scheme is worthwhile. It appears that effectively
combating DoS attacks would require such a capability.

Transaction level overload control was mentioned in section 2. Efficient implementation of
such controls would require some protocol support so that it is possible to drop individual requests
and not have them retried. In certain situations, successive requests on a TCP connection are
strongly dependent on previous ones — a prime example of this is the SSL handshake required
by a secure HTTP transaction where the SSL handshake itself requires 3-4 request-response pairs.
In such a situation, either the entire handshake should be allowed to go through or it should not
be allowed to start at all. However, once the secure connection is established, a transaction level
control might be used for individual requests. An appropriate use of congestion priorities can
achieve such a behavior; however, the difficulty arises in recognizing congestion priorities at the
NIC level. Again, a protocol support (e.g., congestion priorities encoded in HTTP headers) would
help greatly in implementing such schemes.

Identifying precisely what protocol changes are required at TCP and HTTP level to support
feedback overload control is a major issue for further work on the topic. It is important to actually
make these changes, do an extensive testing under a variety of loading conditions, and use that
as a basis for proposing changes to existing standards. As mentioned earlier, the browsers also
should be able to deal effectively with feedback messages. Demonstrating the usefulness of such
changes to browsers is also a topic for further work in the area.
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