
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Understanding Gigabit Ethernet
Performance on Sun Fire™
Systems

Jian Huang, Performance/Availability Engineering

Sun BluePrints™ OnLine—February 2003

Part No. 817-1657-10
Revision A, 1/8/03
Edition: February 2003

Please
Recycle

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/
patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Fire, Sun Enterprise, UltraSPARC, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the US and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

U.S. Government Rights —Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les
autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Fire, Sun Enterprise, SUltraSPARC, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Understanding Gigabit Ethernet
Performance on Sun Fire™
Systems

Network-centric computing exercises significant pressure on the network
performance of servers. With the increasing popularity of gigabit Ethernet, especially
the availability of lower-cost, copper-based gigabit Ethernet adapters, the question of
how Sun’s servers perform in this area is one of the most important issues being
addressed by Sun’s engineering team.

This article presents an overview of the performance of the Sun™ GigaSwift
Ethernet MMF adapters hardware on a Sun Fire™ system in terms of TCP/IP
networking. Most of the previous effort on TCP/IP network performance focused on
bulk transfer traffic, which imposes on servers a continuous flow of packets with
sizes equal to the maximum transfer unit (MTU) of the underlying carrier. In the
client-server computing environment, however, not all requests from clients nor all
replies from the servers are large. Frequently, the traffic contains packets that are
smaller than the MTU of the carrier. Hence, this article investigates the performance
of both bulk transfer and small packet traffic on a Sun Fire 6800 server.

This article discusses the network performance of Sun servers and examines the root
cause of the network behavior of Sun servers by describing some of the
implementation details of the Solaris™ operating environment (Solaris OE). Also, a
set of tuning parameters that affect TCP/IP network performance is discussed and
some tuning recommendations are made.

Many customers are not familiar with the capability of gigabit Ethernet on the Sun
Fire servers. The amount of resource to support gigabit networking on a Sun Fire
server is also unknown. In addition, the best practice to tune sun servers for gigabit
networking needs to be promoted.
1

The article presents three levels of detail. The highest level discusses the throughput
numbers. The mid-level discusses the amount of resources consumed by gigabit
cards and the best practice to tune some of the network parameters. The lowest level
discusses the TCP protocol and explains why the system behaves in a certain way.

The audience for this article is primarily Sun resellers, Solaris administrators, and
Sun service engineers. The throughput numbers and resource consumption
information will help some corporate infrastructure operators (CIOs) and corporate
infrastructure architects.

This article covers the following topics:

■ Overview

■ Categorizing TCP Traffic

■ Gigabit Ethernet Latency on a Sun Fire 6800 Server

■ Bulk Transfer Traffic Performance

■ Small Packet TCP Traffic Performance

■ Summary

Overview
Sun servers have been used extensively in the net economy and are powering many
popular web sites. Requests from HTTP clients, database clients, mail clients,
directory-query clients, and other network service clients exert great pressure on Sun
servers through the attached network. The responses from the server also go out
through network interfaces. This client-server model of computing depends heavily
on the networking performance of the client and the server to provide optimal
overall performance.

Current popular network interface cards (NICs) include the fast Ethernet (hme) and
quadfast Ethernet (qfe) cards. These interfaces are only capable of sending and
receiving at the 100 megabit-per-second (Mbps) range for each link, which exerts
little pressure on the PCI bus bandwidth in a system. However, the newer and faster
gigabit Ethernet (GBE) interface cards are gaining momentum. The adoption of GBE
has been simplified because the category-5 copper cables, which many of the
existing local area networks (LANs) are using, can now carry the gigabit traffic.

Since the major revolution brought by gigabit Ethernet is in throughput (measured
in Mbps), this article first focuses on studying bulk transfer type of traffic on Sun
Fire servers. However, even though bulk transfer traffic is a major consumer of
network bandwidth, a traffic type with a different distribution of packet sizes is
more commonly seen when client-server applications are run. Studies show that the
sizes of the packets on the World Wide Web (WWW) are trimodal [8]. They can be
2 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

about 64 bytes, about 540 bytes, or 1518 bytes (including the four-byte checksum).
The maximum Ethernet frame size is 1518 bytes. Hence, restricting the network
performance study only to the bulk transfer traffic is insufficient, so this article
evaluates the performance of both bulk transfer and small packet traffic.

This evaluation was conducted on the Sun Fire 6800 platform using the Sun™
GigaSwift Ethernet MMF adapters hardware. The article discusses how the network
throughput delivered by Sun Fire servers varies with the selected socket buffer sizes,
how this throughput scales with the number of CPUs, how the packet rate changes
with the application of Nagle’s control flow algorithm (discussed in“Small Packet
Traffic Issues,”) how deferred acknowledgment works, and how long it takes to
transmit and receive a packet.

The rest of the article is organized as follows: “Categorizing TCP Traffic” describes
the characteristics and performance issues of bulk transfer and small packet traffic
and “Gigabit Ethernet Latency on a Sun Fire 6800 Server,” presents an evaluation of
gigabit network latency. “Bulk Transfer Traffic Performance” and “Small Packet TCP
Traffic Performance” discuss the performance of bulk transfer and small packet
traffic, respectively. “Summary” concludes the article.

Categorizing TCP Traffic
The maximum frame size of the Ethernet is 1518 bytes. Since Sun uses the version 2
format of Ethernet frame, the Ethernet header is always 14 bytes. Excluding the last
four bytes of cyclic redundancy check (CRC) code, the maximum payload for each
Ethernet frame, or packet, is 1500 bytes. This is called the MTU size of the Ethernet
interface. Since the IP and TCP headers require 20 bytes each when the TCP network
is used, the actual payload perceived by the user application is 1,460 bytes for each
packet. This 1,460-byte payload is called the TCP maximum segment size (MSS)
when Ethernet is the underlying carrier1. Based on the MSS, TCP network traffic can
be categorized into two types:

■ Bulk transfer traffic—The payload size of most segments from the sender to the
receiver is 1,460 bytes.

■ Small packet traffic—The payload size of most segments from the sender to the
receiver is below 1,460 bytes.

In the real life, network traffic is a mixture of both, however, this article presents
them separately because they are treated differently in the Solaris OE according to
the TCP specifications [5].

1. When TCP options, for example, time stamp, are used, the MSS can be reduced to 1448 bytes.
Categorizing TCP Traffic 3

Typically, bulk transfer traffic is seen when the amount of data to move from one
computer to another is far larger than 1,460 bytes. Traffic generated by FTP transfers,
network-based backup, and downloading web pages with large amount of graphics
fall into this category. Small packet traffic, however, is usually generated by the
client/server type of applications. These kinds of applications typically see short
requests from the client (for example, a database query), and short replies from the
server. (for example, a selected row in the database). Although bulk transfer traffic is
the bigger consumer of the two for network bandwidth, both types of traffic require
a large amount of system resource to process packets. A system must perform well
for both types of traffic to satisfy the demands of the end users, but these two types
of traffic exert different types of pressure on the system, and hence behave very
differently. The following section describes this behavior.

Bulk Transfer Traffic Performance Issues
The performance of bulk transfer traffic is commonly measured by throughput
because the goal is to move as much data as possible in as little time as possible. The
overall performance, however, depends on many factors:

■ Size of the TCP window
TCP uses the sliding-windows protocol [4] to control the flow of data and to assist
reliable delivery. There are two types of windows. One is the send window, the
other is the receive window. The send window, together with the sender’s
congestion window [4], helps the sender to avoid congestion. The receive window
prevents the sender from overwhelming the receiver with packets by enforcing a
limit on how much data can be sent without waiting for acknowledgment. In a
switch-based LAN environment, congestion is usually not an issue. Hence, the
window typically refers to the receive window. The size of the receive window
can be thought of as the size of a pipe between two water-delivering sites. Once a
window is negotiated, data from the sender can start to fill the pipe while it flows
from the sender to the receiver. When the pipe is full, the sender will stop sending
for a while until the receiver drains the pipe to make room. Ideally, in the steady
state, data flows at a constant rate from the sender to the receiver. This rate is
determined by the slower party between the receiver and the sender. Suppose the
rate is X bps, and the latency from sender to the receiver is T seconds (includes
the time the sender takes to send a packet, the time the packet travels in the pipe,
and the time the receiver takes to process the packet), the pipe must hold at least
X ∗ T/8 bytes at any given time to ensure that the size of the pipe is not a
performance bottleneck. To get one gigabit per second (Gbps) on Ethernet
(including the headers), the system must deliver 1,000,000,000/8/1518 = 82,345
packets per second. This is equivalent to delivering one full-sized packet every 12
microseconds. If the latency is 100 microseconds, the size of the window needs to
be at least 1,000,000,000 ∗ 0.0001/8 = 12,500 bytes.
4 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

■ Overhead to move data from the sender to the receiver
The significance of this issue is two fold. First, if the sender and receiver are
incapable of handling 82,345 packets-per-second, reducing overhead helps to
improve throughput and packet rate. Second, if the sender and receiver are
capable of handling 82,345 packets- per-second, reducing overhead makes the
CPUs more available to run other tasks instead of handling the network traffic.
The TCP parameters that affect the overhead include, but are not limited to—
tcp_maxpsz_multiplier, tcp_deferred_acks max, and
tcp_deferred_ack interval.

■ Quality of the link
The quality of the link determines the frequency of dropped/erroneous packets,
which leads to retransmitted TCP segments and duplicated acknowledgments
(DUP-ACKs). Retransmission and DUP-ACKs waste the effective bandwidth. This
article, however, does not evaluate the impact of link quality.

Hence, the general approach to have the best available performance of TCP bulk
transfer traffic is to set up a TCP receive window that is sufficiently large and to
make the data movement as efficient as possible. Some example mechanisms are
selecting the appropriate size for socket buffers, minimizing the number of system
calls to send the same amount of data, moving as much data as possible in kernel
with each action, and minimizing the number of acknowledgment (ACK) packets
from the receiver. “Bulk Transfer Traffic Performance” discusses the details of these
mechanisms.

Small Packet Traffic Issues
Request-reply types of applications typically generate small packet traffic. Thus, the
latency resulting from packet processing is more important than the throughput
delivered. This network latency is usually calculated as measurement time over the
number of packets transferred. Hence, if the measurement time is one second,
latency is the reciprocal of packet rate-per-second. Since packet rate also shows a
server’s capability to process packets besides latency, this article uses this metric for
the studies on small packet traffic.

Similar issues such as TCP window size and transfer overhead, discussed previously,
also affect the performance of small packet traffic. However, small packet traffic
faces other challenges too:

■ Nagle’s control flow algorithm
In RFC 896[5], Nagle’s algorithm is proposed to control congestion and reduce the
amount of small packets in the Internet traffic. Small packets are not the most
efficient way to transfer data, and, hence, the bandwidth hungry Internet
backbone should avoid them as much as possible. Nagle’s algorithm says: “The
sender should not transmit the next small packet if it has already one
unacknowledged small packet outstanding. Instead, the sender should
accumulate small packets until the amount of data to be transferred exceeds the
Categorizing TCP Traffic 5

MTU or when the receiver sends the acknowledgment for the outstanding
packet.” Hence, applications that send small packets continuously from systems
that adopt Nagle’s algorithm may observe unwanted delay if the receiving
systems enable deferred acknowledgment. However, subsequent sections of this
article show that applications can disable Nagle’s algorithm on a per connection
basis.

■ Distinguish the end of a transmission and the traffic generated by small packets
For example, a transfer of 1470 bytes results in a full-sized packet (MTU packet)
and a packet with 10 bytes of payload is a small packet. Hence, some algorithms
targeting quick resolution of end-of-transfer issues may potentially work against
the performance of small packet traffic. This issue is not well understood.

Later sections of this article discuss the performance issues of bulk transfer and
small packet traffic separately. But before the packet rate and throughput numbers
are discussed, how long does a packet travel from the sender’s application to the
receiver’s application?

Gigabit Ethernet Latency on a Sun Fire
6800 Server
As discussed in “Bulk Transfer Traffic Performance Issues,” the latency determines
the minimal size of the TCP window to achieve one Gbps for bulk transfer traffic.
This latency also affects the user-perceived response time. This section discusses the
latency for processing packets on the Sun Fire 6800 platform. The TCP Request-
Response (TCP RR) tests were conducted using MC-Netperf [3], an extended version
of the popular Netperf [2] tool.

The metric for the TCP RR test is transaction rate. A transaction includes these
processes—client sending a packet to server (similar to a request), server processing
the packet, server sending the client a packet of the same size (similar to a reply),
and the client processing the packet. Both the client and the server deal with one
request at a time. In this case, both the server and the client are domains of a Sun
Fire 6800 server with identical hardware configuration. Both domains use the same
driver for the network interface card and the same release (02/02) of the Solaris 8
OE. As a result, assume that the packet processing time is the same for both
domains. Hence, a transaction includes two symmetric operations. Each operation
includes sending a packet in software, sending a packet in hardware, receiving a
packet in hardware, and receiving a packet in software. The latency of one such
operation is defined as the latency of gigabit networking on Sun Fire servers. For
this article the following data points were collected using one card and one TCP
connection for a comprehensive evaluation:
6 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

■ Latency when the system is conducting bulk transfer. The payload size is 1,460
bytes.

■ Latency when the system is handling small packets. Payload size varied from four
bytes to 1,024 bytes.

Since the highest transaction rate for the preceding data points indicates the
minimum latency, the goal should be to tune the system until it delivers the highest
transaction rate. As discussed in the previous section, the setting for deferred
acknowledgment, that is, the value of tcp_deferred_acks_max2, may impact the
transmission overhead, and hence may impact the transaction rate. However, the
unit for tcp_deferred_acks_max is in TCP MSS3. If the tests only have messages
no larger than 1,460 bytes, setting this parameter to one disables deferred
acknowledgment, while setting this parameter to any value larger than one enables
it. It is intuitive to think that Nagle’s algorithm should also have an impact on the
transaction rate. However, this algorithm does not govern the timing to send the first
small packet, and the TCP RR test will only have one small packet outstanding at
any time, thus the impact of Nagle’s algorithm can be ignored in this case.

Different settings of Nagle’s algorithm and deferred acknowledgment were tested.
TABLE 1 shows the results.

The transaction rates peak at 6,978 transactions-per-second and the transaction rates
for 4-byte, 40-byte, and 100-byte payloads are very close. Disabling deferred
acknowledgments lowers transaction rates for most cases. Using the snoop utility
shows that both parties in the communication lose the opportunity to piggy-back the
ACK in this case. As a result, both parties must process one additional ACK packet
for each transaction. Enabling deferred acknowledgment is preferred for this type of
traffic. The minimum latency for processing any packets is 6,978 transactions-per-
second, which is 140 microseconds round-trip and about 70 microseconds one-way.

2. In Solaris 9 OE, tcp_local_dacks_max is used for LAN.

3. In Solaris 9 OE, the unit is in packets.

TABLE 1 TCP RR Transaction Rates (One Card, Single Connection, Four CPUs)

Payload (bytes)
Deferred
ACK off

Deferred
ACK on

4 6972 6978

40 6990 6885

100 6714 5358

250 5452 5634

536 4973 5157

1024 4196 4302

1460 3104 3244
Gigabit Ethernet Latency on a Sun Fire 6800 Server 7

For packets with a payload of 1,460 bytes, the transaction rate stays about 3109 to
3244 per second. This is roughly 150 microseconds one way. Hence, the latency for
gigabit Ethernet on the Sun Fire 6800 is between 70 and 150 microseconds.

Bulk Transfer Traffic Performance
This section investigates the performance of bulk transfer traffic using the Sun
GigaSwift Ethernet MMF adapters hardware (driver name ce). The goal is to
achieve maximum throughput and reduce the overhead associated with data
transfer.

Experiment Setup
Before the data is discussed, let’s look at the hardware and software environment for
this study. The system under test (SUT) is a domain of a Sun Fire 6800 midframe
server. It is configured as follows:

■ CPU Power—Eight 900 MHz UltraSPARC® III+ processors. Eight gigabytes of
memory

■ Operating System—Solaris 8 OE Release 02/02

■ Network Interface—Sun GigaSwift Ethernet MMF adapters hardware using 66
MHz PCI interface

Five client machines equipped as follows drive the workload:

■ Client 1—A second domain of the Sun Fire 6800 server with eight 900 MHz
UltraSparc III+ processors using Sun GigaSwift Ethernet MMF adapters
hardware.

■ Client 2—A Sun Enterprise 6500 with twelve 400 MHz UltraSPARC II processors
using Sun Gigabit™ Ethernet adapters P2.0 hardware

■ Client 3—A Sun Enterprise 4500 server with eight 400 MHz UltraSparc II
processors using Sun Gigabit Ethernet adapters P2.0 hardware

■ Client 4—A Sun Enterprise 4500 server with eight 400 MHz UltraSparc II
processors using Sun Gigabit Ethernet adapters P2.0 hardware

■ Client 5—A Sun Enterprise 450 server with four 400 MHz UltraSparc II processors
using Sun™ Gigabit Ethernet adapters P2.0 hardware

All of the gigabit Ethernet cards on client machines use the 66 MHz PCI bus
interface. Solaris 8 OE Release 02/02 is running on all of the client machines. Clients
are connected to the server using a gigabit switch. MC-Netperf v0.6.1 [3] developed
8 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

internally is used to generate the workload. MC-Netperf extends the publicly
available Netperf [2] to handle synchronous multiconnection measurements using
multicast-based synchronization. Two types of experiments were conducted:

■ Single-connection test. The second domain of Sun Fire 6800 (Client 1) is used as
the client.

■ 10-connection test. Each of the five clients drive two connections.

Runs of 10 minutes are carried out to obtain the numbers discussed in the following
section.

Getting an Appropriate Window Size
As described in “Bulk Transfer Traffic Performance” in a switch-based LAN the size
of the TCP receive window determines the amount of unacknowledged data the
pipe can hold at any given time. The bandwidth delay product determines the pipe
size. Since the bandwidth is known to be one Gbps, and the minimal latency is
calculated to be 70 to 150 microseconds in “Gigabit Ethernet Latency on a Sun Fire
6800 Server,” a pipe must hold at least 1000000000 ∗ 0.000150/8 = 18,750 bytes in
transit to achieve one gigabit per second (or 964 Mbps excluding Ethernet, IP, and
TCP headers) for packets with a 1,460-byte payload. However, whether or not this
964 Mbps number can be achieved depends on a lot of other factors, and the issue of
the receive window size is definitely one of the first that needs to be addressed.

TCP Receive Window Tuning Parameters
When a TCP connection is established, both parties advertise the maximum receive
window. The current receive window, which is the actual receive window during the
middle of a transmission, is adjusted dynamically based on the receiver’s capability.
The current send window, although initially small to avoid congestion, ramps up to
match the current receive window after the slow start process [4] if the system is
tuned properly. A few parameters should be considered in the tuning process. These
parameters are considered for the transmit side:

■ tcp_xmit_hiwat—This parameter is the high watermark for transmission flow
control, tunable by using the ndd command. When the amount of unsent data
reaches this level, no more data from the application layer is accepted until the
amount drops to below the tcp_xmit_lowat (also tunable by using the ndd
command). The default value for this parameter is 24,576 in Solaris 8 OE.

■ Sending socket buffer size—The sending socket buffer is where the application
puts data for the kernel to transmit. The size of the socket buffer determines the
maximum amount of data the kernel and the application can exchange in each
attempt.
Bulk Transfer Traffic Performance 9

For the reception side, these parameters are considered:

■ tcp_recv_hiwat—The is the high watermark for reception flow control, tunable
by using the ndd command. When the application starts to lag behind in reading
the data, data starts accumulating in the streamhead. When TCP detects this
situation, it starts reducing the TCP receive window by the amount of incoming
data on each incoming TCP segment. This process continues until the amount of
accumulated data drops to below tcp_xmit_lowat (also tunable by using the
ndd command). The default value for this parameter is 24,576 in Solaris 8 OE4.

■ Receiving socket buffer size—Similar to what the sending socket buffer is for on
the transmission side. The receiving socket buffer is where the kernel puts data
for the application to read.

The parameter tcp_xmit_hiwat determines the default size for the sending socket
buffer, so does tcp_recv_hiwat for the receiving socket buffer. However,
applications can overwrite the default by creating socket buffers of different sizes
when calling the socket library function. Essentially, tuning for the receive window
is equivalent to selecting socket buffer size.

At the first glance, it appears that the size of socket buffers should be set to the
largest possible value. However, having larger socket buffers means more resources
are allocated for each connection. As discussed earlier, a windows of 18,750 bytes
may be sufficient to achieve 964 Mbps. Setting socket buffers beyond a certain size
will not produce any more benefit. Furthermore, socket buffer sizes determine only
the maximum window size. In the middle of TCP data transmission, the current
receive window size is the available buffer space in the receiver, and the current
send window size is equal to MIN (receive window, send socket buffer). Hence, the
size of the send socket buffer should be no smaller than the receive socket buffer to
match the sizes of send window and receive window. In the experiments, the sizes of
send socket buffer and receive socket buffer are equal.

The window size only applies to each individual connection. For multiple
simultaneous connections, the pressure on window size may not be as large as for a
single connection. But what exactly is the value needed for the gigabit Ethernet on
Sun Fire servers?

Impact of Socket Buffer Size on Single and 10-
Connection Throughput
Socket buffers from 16 kilobytes to one megabyte (note that the size of send socket is
always matched with that of receive socket) were investigated using the ce interface
card. Throughput numbers for both one TCP connection and 10 TCP connections
were measured. As FIGURE 1 shows, for a 10-connection sending operation, socket
buffers of 48 kilobytes to one megabyte have a significant throughput advantage (up

4. In Solaris 9 OE, the default values for tcp_xmit_hiwat andtcp_recv_hiwat are 49,152.
10 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

to 20 percent improvement) over socket buffers of smaller sizes. However, for a 10-
connection receiving operation, only the 24-kilobyte socket buffer is an under
performer. Although 16 kilobytes is quite small, the deficiency in individual
connections is more than covered by the existence of multiple connections. For the
single connection situation, it appears that 48-kilobyte or larger buffers are needed,
but 128-kilobyte or larger buffers do not seem to bring additional benefit. In
summary, socket buffers of 64 kilobytes appear to be the best compromise to
accommodate both single-connection and 10-connection traffic. Future experiments
will use 64-kilobyte socket buffers.

FIGURE 1 Impact of Socket Buffer Size On the Throughput of a ce Card

Reducing Transmission Overhead
Assuming the reception side can receive as fast as the sender can transmit, the
sender must minimize the overhead it takes to transmit packets. The associated
overhead is mostly in moving data between the socket buffer and the kernel
modules, and the number of acknowledgment packets the sender needs to process
for smooth pumping of data.

Reducing Overhead to Move Data
Since the Solaris OE must copy the data from the application area to the kernel area
for transmission, there is an overhead related to the copy operation. The ndd-
tunable parameter tcp_maxpsz_multiplier helps to control the amount of data
each copy operation can move (FIGURE 2). Since the TCP module in the kernel needs
to process all the pending data before it passes the data down to IP module, this
amount should not be too large to prevent the packets from arriving at the hardware

1000
900
800
700
600
500
400
300
200
100

0

T
h

ro
u

g
h

p
u

t
 (M

b
p

s)

1-conn 10-conn-send 10-conn-recv

Socket buffer size (bytes)

16384 24576 49152 65536 131072 262144 1048576
Bulk Transfer Traffic Performance 11

in a continuous flow. The default value for this parameter is two in the Solaris 8 OE
and the unit is in TCP MSS. But what exactly is the best value for this parameter to
support bulk transfer traffic?

FIGURE 2 Effect of tcp.maxpsz Multiplier on Sending Side Performance

To answer this question, 1, 2, 4, 8, 10, 12, 16, 22, and 44 were tried for this parameter
using 64-kilobyte socket buffers. Although the maximum allowed value for this
parameter is 100, the tests stopped at 44 due to the fact that 64 kilobytes (the socket
buffer) divided by 1,460 (the MSS) yields roughly 44.88. As shown in FIGURE 2, this
parameter has almost no effect when there are ten connections. For the single-
connection case, values of eight or larger deliver about 25 percent higher
performance than values of 1, 2, and 4. The best throughput is reached when this
parameter is set to 10, so this value is recommended.

Potential Impact of ACK Packets
Another important factor that affects the transmission overhead is the number of
acknowledgment (ACK) packets the sender receives for every data packet sent. Each
ACK packet is no different than a regular data packet until it reaches the TCP
module. Hence, a system must invest a considerable amount of resource to process
the ACK packets. The larger the amount of ACK packets, the higher the overhead
per data packet.

The ratio of data packets over ACK packets is used to measure this overhead. In
Solaris 8 OE, the parameter tcp_deferred_acks_max controls the initial maximal
amount of data the receiver (in the same local subnet as the sender) can hold before
it must emit an ACK packet. Although the unit of this parameter is in TCP MSS, it is
equivalent to the number of packets in the bulk transfer traffic. Hence, setting
tcp_deferred_acks_max (use ndd) to eight says the receiver can send one ACK
packet for every eight data packets it receives, provided that the timer set by

900
800
700
600
500
400
300
200
100

0

1-connection 10-connection

tcp-maxpsz-multiplier (in MSS)

T
h

ro
u

g
h

p
u

t (
M

b
p

s)

1 2 4 8 10 12 16 22 44
12 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

tcp_deferred_acks_interval5 does not time-out. The effect of
tcp_deferred_acks_max also depends on the link quality and the status of the
network. If ACK packets get lost for some reason, the sender will eventually
retransmit data. When the receiver sees this, it will adapt itself to send ACK packets
more frequently by reducing the amount of data it can hold without ACKing by one
MSS. This process will be triggered for every retransmitted segment. However, in the
worst case, the receiver will send an ACK packet for every other data packet it
receives, as suggested by RFC 1122.

FIGURE 3 shows how the data packet rate changes when the number of ACK packets
gets higher in the first 38 seconds of a connection with poor link quality. This
experiment uses the default value of eight (MSS) for the parameter
tcp_deferred_acks_max and 100 milliseconds for the parameter
tcp_deferred_acks_interval. The packet rate is the highest when the
connection first starts (due to the resolution of one-second the behavior of slow-start
phase cannot be observed). Even though eight data packets are desirable for each
ACK packet, this figure started with a ratio of four. This ratio is also due to the low
resolution of this graph. The packet rate reported is the average packet rate during
the past second. Using the snoop utility, four retransmitted segments can be
observed, which forces the receiver’s Solaris 8 OE to adjust four times the amount of
data it can hold without ACKing. Two more jumps of the ACK packet rate can be
observed in the 6th and the 7th seconds. The ratio of data packets to ACK packets
remains about 2.0 for the rest of the connection.

FIGURE 3 Impact of ACK Packets on Data Packet Rate

5. In the Solaris 9 OE, tcp_local_dack_interval is used for LAN.

Run time in seconds

P
ac

ke
ts

 p
er

 s
ec

on
d

60000

50000

40000

30000

20000

10000

0
0 5 10 15 20 25 30 35 40

Data packet rates ACK packet rates
Bulk Transfer Traffic Performance 13

CPU Utilization
Data transfer is only a part of any running user application. To have an application
running fast, the CPU time spent in data transfer must be minimized. Hence,
knowing how much CPU time is dedicated to data transfer helps to plan the
capacity requirement.

The CPU utilization for ce cards when the number of CPUs goes from one to eight
was evaluated (FIGURE 4 through FIGURE 7). The utilization numbers shown in these
figures are reported as the percentage of time that all available CPUs are engaged. A
single number can have different meanings when the underlying number of CPUs is
different. For instance, 50 percent utilization for a system with four CPUs means two
CPUs are busy on average. Fifty percent utilization for a system with eight CPUs
means four CPUs are busy on average.

FIGURE 4 Throughput and Amount of Kernel Mode CPU Time Required To Support
One TCP Sending Operation By One ce Card

900

800

700

600

500

400

300

200

100

0

120%

100%

80%

60%

40%

20%

0%
1 2 3 4 5 6 7 8

Number of CPUs

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

K
e

rn
e

l-
m

o
d

e
 C

P
U

 t
im

e

Throughput Utilization
14 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

FIGURE 5 Throughput and Amount of Kernel Mode CPU Time Required To Support
One TCP Receiving Operation By One ce Card

FIGURE 6 Throughput and Amount of Kernel mode CPU Time Required To support
10 Simultaneous Sending Operations By One ce Card

1 2 3 4 5 6 7 8
Number of CPUs

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

K
e

rn
e

l-
m

o
d

e
 C

P
U

 t
im

e

Throughput Utilization

800

700

600

500

400

300

200

100

0

80%

70%

60%

50%

40%

30%

20%

10%

0%

900

800

700

600

500

400

300

200

100

0

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
1 2 3 4 5 6 7 8

Number of CPUs

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

K
e

rn
e

l-
m

o
d

e
 C

P
U

 t
im

e

Throughput Utilization
Bulk Transfer Traffic Performance 15

FIGURE 7 Throughput and Amount of Kernel mode CPU Time Required To support
10 Simultaneous Receiving Operations By One ce Card

One-Card, One-Connection CPU Utilization
In the one-connection case6 (FIGURE 4 and FIGURE 5), two CPUs are sufficient to drive
one ce card to its maximum capacity for send-only operations. For reception, three
CPUs are necessary to have one ce card deliver 600 Mbps, and five CPUs are needed
to deliver 700 Mbps. The best reception performance is achieved with six CPUs (736
Mbps); seven or eight CPUs do not seem to bring additional performance benefit.
Even though the overall CPU utilization drops to 15 percent when there are eight
CPUs (FIGURE 4), it takes about 8 ∗ 0.15 = 1.2CPUs to handle network traffic. When
there are five CPUs, the number of CPUs to handle network traffic is 5 ∗ 0.26 = 1.30,
not far from the 1.2 CPUs needed in the 8-CPU case. In summary, two CPUs are
necessary to obtain good performance for one ce card. Diminishing returns are
observed for three or more CPUs.

One-Card, Ten-Connection CPU Utilization}
For the 10-connection scenario (FIGURE 6 and FIGURE 7), each additional CPU brings
higher sending performance, with eight CPUs achieving 830 Mbps. About 8 ∗ 35% =
2.80 CPUs are dedicated to network traffic. For receiving, ce can reach close to line
speed (920 Mbps) with six CPUs, utilizing the power of 6 ∗ 70% = 4.2CPUs.
Diminishing returns are observed when four or more CPUs are added, indicating a
recommendation of three CPUs for one ce card.

6. The /etc/systemparameter ce_taskq_disable is set to one to disable the task queues.

1000

 900

800

700

600

500

400

300

200

100

0

120%

100%

80%

60%

40%

20%

0%
1 2 3 4 5 6 7 8

Number of CPUs

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

K
e

rn
e

l-
m

o
d

e
 C

P
U

 t
im

e

Throughput Utilization
16 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

Note that the preceding numbers are measured using ce driver version 1.115. The
Sun engineering team devotes continuous effort to improving both the throughput
and utilization. You can expect to observe better than what is reported in your future
experiments.

Small Packet TCP Traffic Performance
This section studies the gigabit performance of TCP with small packet network
traffic. The ce interface cards are used for the evaluation. The same set of hardware
and software configurations that were used for “Bulk Transfer Traffic Performance”
is the test bed. Note that a request/response type of traffic is not investigated, but
rather a continuous unidirectional flow of small packets.

Effect of Nagle’s Algorithm and Deferred
Acknowledgment
As discussed in “Small Packet Traffic Issues,” Nagle’s algorithm plays an important
role in the transmission of small packets. Since Nagle’s algorithm asks the sender to
accumulate packets when there is one unacknowledged small packet outstanding,
packets sent from the application may not be put on the wire as soon as they arrive
in TCP. In the meantime, systems at the receiving end typically enable deferred
acknowledgment in the hope of having optimal throughput in the bulk transfer case.
Hence, if an application is trying to send a series of small messages (less than 1,460
bytes), these messages may not be delivered immediately. Instead, these messages
may be delivered with visible delays.

TABLE 2 Performance Of Small Packet Traffic When The Sender Turns On Nagle’s
Algorithm and the Receiver Enables Deferred Acknowledgment

Message (bytes)
On-wire packet payload

(bytes) Packet rate Throughput (Mbps)

60 60, 1440 13198 79.20

100 100, 1400 15224 91.35

250 250, 1250 26427 181.56

536 536,1072 36548 235.09

1024 1024 42417 347.49

1460 1460 57146 667.48
Small Packet TCP Traffic Performance 17

This section explains what may be happening, but first looks at the raw packet rate
the ce interface is capable of delivering when the sender adopts Nagle’s algorithm
and the receiver activates deferred acknowledgment. Note that the receiver sets
tcp_deferred_acks_max to eight in this case. TABLE 2 lists the packet rate and
throughput for a ce card when the server only sends packets. The throughput and
packet rate goes up as the message size increases. However, the packet rate of a 60-
byte payload is only about one-fifth of the packet rate of a 1,460-byte payload. To
understand what causes the low packet rate for small packets, the snoop utility in
the Solaris 8 OE was used. FIGURE 8 shows what was found in the 100-byte payload
case. After the network ramps up, that is, beyond the slow start [4] phase, a cycle
like this is seen. First, the server (Machine S) sends the client (Machine C) a packet
with 100 bytes of payload. Machine S cannot continue sending without waiting for
an ACK packet from machine C because the last packet it sent had less than 1,460
bytes of payload. Machine C, however, is waiting for more packets from S to reduce
the number of ACK packets per data packet. In the mean time, machine S
accumulates data from the application. Finally, the amount of unsent data in
machine S reaches 1500 bytes (15 packets of 100 bytes), that is, above the 1,460-byte
MSS, and sends out a packet with 1400 bytes of payload. Note that machine S will
not fragment packets to have a packet with a 1,460-byte payload. When machine C
gets the packet with 1400-byte payload, it immediately sends machine S an ACK
packet, then this cycle restarts.

FIGURE 8 Sending Process Of Packets With 100-byte Payload When Nagle’s Algorithm
is Enabled at the Sender (S) and Deferred Acknowledgment is Enabled at the
Receiver (C)

Throughput = Packet rate *(1400+100)/2
Note 1400 = floor (1460/100)*100
Packet rate decided by syscall capability

* Use 100 Byte Socket-Write as an Example

* Dotted-Line means the action is not taken

Sends 100B and waits

ACK is delayed

Sender Receiver
Sender accumulates 1500B

of data, but sends only 1400B

ACK delivered after the
second packet arrives

Repeat steps 1 to 4

1

2

3

4

5

18 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

Now one question pops up. Why doesn’t C wait until it receives an amount of data
no smaller than eight MSS before it sends out an ACK? Obviously, this could have
made the interlocking scenario worse, since machine S would have to accumulate
another 1500 bytes before it could send out a packet with 1400 bytes of payload.
Solaris 8 OE actually takes care of this situation gracefully by enforcing the following
rules. In summary, the receiver will send out an ACK packet immediately if both of
the following conditions are true:

■ A non-MSS segment arrived.

■ The amount of unacknowledged data is not a multiple of MSS.

Note that Solaris OE is trying to address the end-of-connection issue here, but it also
affects the experiment.

After this scenario is explained, you can see that the relationship of the packet rate
and throughput is as follows:

Throughput = Packet_Rate ∗ (floor(1460/message_size) + 1) ∗ message_size/2

where the floor function trims the decimal part of its parameter. The packet rate is
mostly determined by the system’s capability to execute system calls for moving
data from user address space to the kernel address space. Obviously, to obtain better
performance for small packets, the system must disable Nagle’s algorithm or disable
deferred acknowledgment. However, disabling deferred acknowledgment may
negatively affect the performance of bulk transfer. Also, the opportunity to piggy-
back acknowledgments with data packets from machine C to machine S, if machine
C has any, may be lost. Hence, the preferred approach is to disable Nagle’s algorithm
only in the sender. The two ways to achieve this goal are:

■ Set tcp_naglim_def to one using the ndd command. TCP sends the packet
downstream immediately when it receives a message from the application. If the
communication involves only Sun servers and workstations, an ACK packet will
be delivered after the server transmits two packets.

■ In the application, use the TCP_NODELAY option in the socket function call to
create a socket. Only the application can know whether it will be communicating
using small packets. Hence, it makes sense to ask the applications that use small
packets to disable Nagle’s algorithm for the particular sockets that they need.
Disabling Nagle’s algorithm in a system-wide manner is not preferred.

TABLE 3 shows the new packet rate for the same list of message sizes in TABLE 2 after
Nagle’s algorithm is disabled. The value of tcp_maxpsz_multiplier is set to 10 to
produce the numbers in this table. The new packet rates for payloads of 60 bytes to
1,024 bytes increase by up to three times to a level close to the packet rate of the
1,460-byte payload (packets with Ethernet MTU size). Note that even though the
packet rates are higher, the actual throughput is lower than the numbers shown in
TABLE 2 because each packet now only carries the same amount of payload as the
message size. However, no visible pauses will be observed during the transmission.
The throughput and packet rate do not change much whether deferred
Small Packet TCP Traffic Performance 19

acknowledgments are enabled or not. Since disabling deferred acknowledgment
means higher overhead per data packet and the loss of opportunity to piggyback
acknowledgment, disabling this feature is not recommended.

Packet Rate Versus Message Size
Traditionally, the packet processing cost is divided into two parts, the cost associated
with processing a packet of minimal size, and the cost associated with moving data
from the kernel buffer to the user buffer [7]. The former is called per-packet cost and
the latter is called per-byte cost. Under this model, larger packets always take longer
to process. This model was developed when the bandwidth of the system backplane
was low. However, the current Sun™ Fireplane interconnect can support 9.6
gigabytes per second sustained throughput. This may make the per-byte cost trivial.
As a result, the per-packet cost can dominate in processing each packet, which
makes the processing time for packets of different sizes very close.

To see the new relationship between packet size and packet rate, the following
experiment was conducted:

■ Measure packet rates with payload ranging from one byte to 1,460 bytes.

■ Tune the system so that one system call from the user application to send a packet
corresponds to one packet on wire.
This is done by disabling the Nagle’s algorithm (setting tcp_naglim_def to 1).

■ Tune the system so that only one packet is moved between kernel components
and between kernel and user applications.
This is done by setting tcp_maxpsz_multiplier to 1 on the sending side
(server) and setting tcp_deferred_acks_max to 1 on the receiving side (client).

■ The server only transmits and only one CPU is enabled.

TABLE 3 Performance Of Small Packet Traffic When the Sender Turns Off Nagle’s Algorithm

Payload (bytes)
Deferred-ack on
packet rate

Throughput
(Mbps)

Deferred-ack off
packet rate

Throughput
(Mbps)

60 37224 25.90 39010 26.36

100 41987 38.15 43736 41.15

250 41297 102.87 42193 99.76

536 43724 188.66 41861 180.15

1024 42576 348.78 41024 336.07

1460 57527 671.92 57554 672.24
20 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

FIGURE 9 shows how the packet rates change when the payload varies from one byte
to 1,460 bytes. The numbers shown in this figure are expected to be lower than those
shown in TABLE 2 due to the special setting used previously. The packet rates for
message sizes of 180 bytes and smaller stay very close for the ce card. The packet
rates for message sizes of 250 bytes and beyond are very close also. However, the
packet rate for message size of 1,460 bytes (the packets on wire will be full-size
Ethernet frames) is only 25 percent lower than those of 180-byte or smaller messages.
TABLE 3 shows the percentage of CPU time for user- mode and user-to kernel copy in
some of the preceding test cases. Not surprisingly, copy cost is below 10 percent
across the board.7 These findings indicate that the cost associated with copying data
in the operating system (which increases more than 350 times from four bytes to
1,460 bytes) is not dominant on Sun Fire 6800 platform. It is the cost associated to
process each packet that affects performance most.

FIGURE 9 Percentage of CPU Time for User-Mode and Kernel-to-User Copy

7. The numbers may be different if throughput varies.

TABLE 4 Percentage of CPU Time for User-Mode and Kernel-to-User Copy

Payload (bytes) Percent user time Percent kernel to user copy

100 9 1

180 9 2

250 9 3

536 8 5

1024 6 5

1460 6 7

40000

35000

30000

25000

20000

15000

10000

5000

0

P
ac

ke
ts

 p
er

 s
ec

on
d

1 4 20 40 60 80 100 180 250 400 536 1024 1460
Payload size (bytes)
Small Packet TCP Traffic Performance 21

Summary
The increasing popularity of gigabit Ethernet brings new challenges to the network
performance. These challenges include both higher bandwidth and higher packet
rates. While bulk transfer traffic is more aggressive in bandwidth consumption,
small packet traffic is not shy of its demand for the amount of system resources
required to process packets. This article discussed the performance for both bulk
transfer and small packet traffic separately to reveal some of the issues and the
possible solutions related to gigabit Ethernet performance on Sun Fire servers.

Based on the measurements, Sun GigaSwift Ethernet MMF adapters (driver name
ce)hardware can achieve 738 Mbps for a single TCP connection using an initial TCP
window of 48 kilobytes or larger. For 10 TCP connections, one ce adapter can
achieve 920 Mbps. With per byte cost lowered by the high bandwidth in the
backplane, per-packet cost dominates the performance of ce cards on Sun Fire
servers. To reduce per-packet transmission overhead, a value of 10 for
tcp_maxpsz_multiplier is recommended in addition to enabling deferred
acknowledgment. For send-intensive applications, systems with one ce card should
have two CPUs. For receive-intensive applications, three CPUs are preferred.
Disabling Nagle’s algorithm is key to having an acceptable packet rate when the
sender is transmitting a series of messages smaller than 1,460 bytes.

About the Author
Jian Huang is currently the lead engineer for the Network Characterization project
within Sun’s Performance and Availability Engineering (PAE) group. He joined Sun
after receiving his Ph.D. degree from the University of Minnesota, based on his
thesis research into microprocessor design and compiler-assisted performance
enhancements.

Jian has various publications in key academic conferences and renowned
international journals within the computer engineering community, including the
highly selective IEEE Transactions of Computers. His work at Sun has focused on
gigabit network performance, commercial workload characterization, and micro
benchmark-based comprehensive network evaluation. He also actively participates
in the design of Sun’s next-generation microprocessors and network interface cards.
Jian has published two papers in the SuperG conference in the past two years.
22 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

References
[1] Adrian Cockcroft and Richard Pettit, Sun Performance And Tuning, Second Edition,
ISBN 0-13-095249-4. Sun Microsystems Press. Also a Prentice Hall Title. Prentice
Hall, 1998.

[2] Rick Jones, ”The Public Netperf Home Page,” http://www.netperf.org.

[3] Jian Huang, Shih-Hao Hung, Gian-Paolo Musumeci, Miroslav Klivansky, and
Keng-Tai Ko, “Sun Fire (TM) Gigabit Ethernet Performance
Characterization,”Proceedings of the SuperG Conference, Sun Microsystems, Oct.,
2001.

[4] Gary R. Wright, and W. Richard Stevens, TCP/IP Illustrated, Volume 1. ISBN
0- 201-63354-X. Addison Wesley, December, 1999.

[5] John Nagle, “Congestion Control in IP/TCP Internetworks,” Request For
Comments: 896. January 6, 1984. Network Working Group, Ford Aerospace and
Communications Corporation.

[6] R. Braden,”Requirements for Internet Hosts Communication Layers,” Internet
Engineering Task Force, Request For Comments: 1122. Oct., 1989.

[7] Hsiao-keng Jerry Chu,”Zero-Copy TCP in Solaris,” Proceedings of the 1996
USENIX Annual Technical Conference, pages 253-264.

[8] K. Chandra and A.E. Eckberg, “Traffic Characteristics of On-Line Services,”
Procedings of the 2nd IEEE Symposium on Computers and Communications,
Alexandria, Egypt, Huly 1997, pages 17-22.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.
References 23

http://www.netperf.org

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html
24 Understanding Gigabit Ethernet Performance on Sun Fire Systems • February 2003

http://www.sun.com/blueprints/online.html
http://docs.sun.com/

	Overview
	Categorizing TCP Traffic
	Bulk Transfer Traffic Performance Issues
	Small Packet Traffic Issues

	Gigabit Ethernet Latency on a Sun Fire 6800 Server
	Bulk Transfer Traffic Performance
	Experiment Setup
	Getting an Appropriate Window Size
	TCP Receive Window Tuning Parameters
	Impact of Socket Buffer Size on Single and 10- Connection Throughput
	Reducing Transmission Overhead
	Reducing Overhead to Move Data
	Potential Impact of ACK Packets
	CPU Utilization
	One-Card, One-Connection CPU Utilization
	One-Card, Ten-Connection CPU Utilization}

	Small Packet TCP Traffic Performance
	Effect of Nagle’s Algorithm and Deferred Acknowledgment
	Packet Rate Versus Message Size

	Summary
	About the Author
	References
	Ordering Sun Documents
	Accessing Sun Documentation Online

