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Abstract

The current 2.4 Linux network stack is based on a solid multi−processor−threaded implementation, known as
softnet, which has been validated over the last 2 years. 

Linux is also used extensively in Internet packet forwarding services such as firewalls and routers etc. Linux has a
very modular packet processing framework based on the (ingress and egress) Traffic Control Framework as well
as the Netfilter IP firewalling architecture. 

While the Linux framework for "plugging in" packet services is very flexible, and very much proven in the real
world, for Linux to be considered a strong Network Operating System, robustness under all conditions (including
severe overload) is a key requirement that must be met. 

Our work is to further improve Linux to have the following attributes:

� Robustness at any input rate and any number of  input devices.

� Controlled and low Latency. 

� cure packet reordering that is inherent with SMP support. 

� Provide fairness in greedy network when supporting many interfaces under overload

We discuss the problems, solutions and provide experimental results in our attempts to deal with these issues.
While the focus is on using a PC as a router, the solutions provided are applicable to Linux in use in all aspects as
a network device (such as a server).

1. Introduction

Linux is widely deployed for forwarding IPV4 packets
on commodity off−the−shelf PCs in setups such as
home gateways and enterprise networks, as well as in
fairly large setups[routeref]. Linux is also beginning
to be deployed in commercial ASIC based Layer 2 and
3 switches[znyx] in mission critical carrier class
setups. This is attributed to Linux’s stability and
openness and a dynamic array of features that make it
more viable than most commercial offerings.

In this paper, we only talk about Linux’s IP capability.
In passing we would like to mention that Linux boasts
of a lot of other forwarding capabilities, such as frame
relay, ATM, Layer 2 ethernet bridging, and perhaps

the only SMP multi−threaded DECnet implementation
in existence.

1.1. Netfilter

Netfilter[netfilterref] is an IP packet munging
framework that draws its roots in firewalling. It
provides several fixed locations in the IP code (as
well as DECnet), known as hooks, where packet
mungers can be inserted. For example, the IPV4 code
has 5 hook locations. Mungers can steal packets to be
later re−injected; they can also modify, drop or
simply account for something within the packet before
letting it continue. Several mungers may treat the



packet in sequence before it is re−inserted into the
stack.     

Netfilter is very similar to the architecture defined in
ip filter[ip filter], as well as router plugins [plugin].

1.2. IP forwarding capabilities 

Linux provides a very feature rich set for IPV4
forwarding that is in full conformance to RFC 1812
[rfc1812ref]. Linux can do IPv4 routing based not
only on destination IP address, rather also on source IP
address, TOS, and incoming interface. 

The ability to deploy up to 255 IP routing tables in
conjunction with classification on anything on the
header for forwarding rule decisions, makes the policy
routing machinery powerful. The Linux policy routing
is flexible as the ones provided by commercial vendors
[ciscoref].

1.3. Traffic Control Framework

The Traffic Control Framework, introduced in Linux
2.1 days, is an abstraction that allows packet
classification, policing, munging, queuing disciplines,
and hierarchical scheduling algorithms to be
implemented[werner]. The Framework covers both
the ingress and egress  of a router.

Current implementation covers many classifier
algorithms, general QoS(Diffserv[diffref] and RSVP);
congestion control and queuing algorithms, such as
RED, Stochastic Fair Queuing, and just basic FIFO;
scheduling algorithms such as a DRR−based CBQ
implementation, Token Bucket and a strict priority
scheduler.

The Traffic control Framework is very similar to
ALTQ[altqref] (which was recently integrated into
FREEBSD)  but more flexible.

1.4. Netlink

Netlink is a powerful wire protocol that is used as a
messaging system to control and provide asynchronous
event notification amongst the different networking
modules in Linux.

Netlink messages can go from a service controller in
user space (such as a routing daemon) towards the
forwarding path in the kernel (e.g. a command to add a
route after a route computation). Likewise, a service in
the forwarding path can send a multicast message to

multiple listeners to inform them of asynchronous
events (e.g. when a new link is provisioned).

Although netlink started as a mechanism to emulate
BSD route sockets it has evolved into something a lot
more powerful in the form of a service messaging
system.    

1.5. Linux Forwarding path

Figure 1. Linux IP Forwarding path

Figure 1 shows the classical setup used by many
operating systems, including Linux (NT, Solaris and
the BSDs fit here as well).

An incoming packet generates an interrupt. The device
driver does very minimal work and enqueues the
packet on the backlog queue. Later on, a kernel thread
is scheduled to pull packets off the backlog queue and
call the IP protocol handler (in the case of IP). If the
packet is to be forwarded, it is enqueued on the egress
queue of the appropriate interface. At some later point,
a system transmit thread is scheduled. This thread
pulls packets off the egress queue of a scheduled
interface and, if approved by scheduling, sends them
to be transmitted by the device.

1.6. Motivation to scale

In March 1999, Microsoft recruited
Mindcraft(www.mindcraft.com) to carry out a
comparison between NT and Linux. The test systems
included a 4 way SMP and quad network interface
setup. The results[mindcraftref] revealed, what was
already known in the developer community, that Linux
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networking did not scale in an environment as one
used in the testbed.

1.7. Linux SMP support

Linux SMP support was introduced in the 2.0 days by
Alan Cox. It constituted a giant lock that serialized
access to the system. 

By kernel 2.2, most subsystems except for the network
stack were threaded. If you were to look at figure 1,
only one packet at a time could enter the system,
despite the number of processors or interfaces
attached. In the Mindcraft test, Linux would have done
a lot better by having a single huge interface (such as
Gigabit ethernet).  

1.8. Enter softnet and the 2.4 kernel

By August of 1999, after 2.2 was deemed stable,
patches started appearing to address the Mindcraft
scalability problem. By September of 1999, the patch
had found a name−−softnet and massive upgrade of
the drivers in the Linux kernel was initiated in
December of 1999. In February of 2000, the softnet
changes were merged into the development kernel,
2.3.43.

One of the most important changes introduced by
softnet was the concept of a backlog queue per
processor. This, in addition to a round robin interrupt
scheduling in Linux, meant that the Linux network
stack as of 2.3.43 can concurrently process as many
packets as there are processors.

In 2.3.58, IRQ affinity was introduced. This technique
means that in an SMP machine, one can dedicate a set
of processors to do network processing, by attaching
interfaces to the set, while maintaining other
processors for other types of workloads.

2. Old Problems

Under heavy network load, Linux reaches system
congestion collapse.

While investigating issues with how fast Linux 2.3.99
can forward on a Pentium−II based PC [FFref]
revealed that Linux reaches congestion collapse with
input of about 60Kpps. We will refer to this study as
FF. At the collapse point, 60K packets per second
were coming into the system but none were going out.
That study revealed also that the Maximum Loss Free
Forwarding Rate (MLFFR) was around 27Kpps, with

the CPU being used 100% to process networking and
therefore starving any user space processing. In
addition, the study showed that any greedy interface,
one which receives at a very fast rate, would starve out
the others due to the shared backlog queue. 

With a feature known as hardware flow control
(HFC), supported by some drivers (the 21x4x and the
8390 based hardware), the collapse level is improved
but not totally healed. HFC, which has been in the
Linux kernel since the 2.1 days, a driver has all its
interrupts disabled as the backlog queue is totally
filled. The hardware is allowed to interrupt again once
the backlog queue is emptied.

FF improves on the HFC solution. A moving window
average estimator that samples the backlog queue to
provide early system congestion warnings is
introduced to improve on the abrupt shutdown that is
provided by HFC. The growth rate of the backlog
queue is used as a congestion watermark is and passed
back to the driver, as a return code, everytime it
attempts to queue a packet. The driver then adjusts its
sending rate to the stack based on the congestion level
fed back to it.

The tulip driver (DEC 21143 chip) is modified to use
the feedback congestion levels to adjust its mitigation1

parameters. As congestion worsens, the hardware is
instructed to generate fewer interrupts (and send less
packets per unit time up the stack). When the feedback
indicates less system load, more interrupts are
allowed. This see−saw adjustment will eventually
adjust to a steady state of the long term packet rate. 

If a driver does not adjust according to the congestion
level, the backlog queue is overflown. At that point,
hardware flow control kicks in as a last resort.

With this combination, the MLFFR was brought up to
80Kpps and remained constant2.

The described core changes are in the 2.4 kernel. Only
the tulip driver currently supports these changes with
only two adjustment levels instead of the dynamic
levels. The feature is still, unfortunately, not being
used as widely as was hoped.

1 Some literature refers to this technique as interupt batching.
Interupts are allowed either after a grace period is exceeded or
when a certain number of packets are received in the hardware.
The 21143 can wait a maximum of 16 packets.

2Note that these numbers have improved dramatically since 2.3.99−

pre8 after some memory management issues were resolved. 



2.1. Congestion collapse

The main contributor to congestion collapse is
interrupt livelock. Interrupt livelock was first coined
and documented in [JMKKR96]. Given the interrupt
rate coming in, the IP processing thread (in figure 1)
never gets a chance to remove any packets off the
system. Essentially, there are so many interrupts
coming into the system such that no useful work is
done. Packets go all the way to be queued, but are
dropped because the backlog queue is full. The result
is that all system resources are being abused
extensively but no useful work is accomplished. It
takes a substantial amount of resources in the form of
CPU computation, memory allocation, and the PCI bus
bandwidth to discover that a packet needs to be
dropped. Note that CPU cache locality also gets
heavily trashed by these kind of activities3.     

2.2. Analysis of mitigation solution

The HFC and FF solutions both introduce early
dropping. When interrupts are delayed or shut down,
the DMA ring on the 21143 is filled. Subsequent
packets when the ring is full get dropped without
generating any interrupts. The result is that no system
resources are used when the system is not ready to
process packets. To the end to end observer, as the
system becomes congested, the latency increases and
some packets are lost.

There are still problems with the FF and HFC solution:

1. It is very hardware specific. It depends on the
ability of the system to have some mechanism for
slowing down, as well as shutting off, interrupts.
As far as the authors know, the only 10/100 Mbps
ethernet chip capable of this is the 211434.
Because this is not a general solution, it becomes
difficult to widely deploy.

2. As the number of NICs is increased, a threshold
point is reached where regardless of how far away
you mitigate, the overall system effect would still
result in a collapse. So with an increase number of

3 Under normal conditions, the standard Donald Becker Linux
network driver ammortizes cache locality by sending a batch of
packets up the stack. The number of packets is configurable via a
parameter that is passed to the driver known as
max_interrupt_work.

4 All the gigabit ethernet interfaces that have Linux drivers are

known to be capable of mitigating, however the current deployed

base is mostly 10/100Mbps.

NICs that are capable of mitigating, the collapse is
delayed, but not totally avoidable.

2.2.  Greedy interfaces

FF attempted several techniques to solve the fairness
issue. None was deemed sufficient as a general
solution without introducing extra complexities such
as adding a lot of overhead in maintaining per device
state knowledge. 

One solution that was found to improve fairness was to
emulate RED[redref]. A scheme known as Random
Lie was introduced. Random Lie observed the average
queue length, as measured by the estimator. When a
threshold is exceed, the feedback sent to the driver is
made to provide information that there was a slightly
higher congestion than was really being experienced
by the system. This feedback forces the interface to
slow down its sending rate. The assumption is that the
interface that is sending at a higher rate is most likely
going to be hit by the lie. This theory was also proven
by experimental data collection.  

Under the condition that the system has many
interfaces, Random Lie relatively improves the
fairness value. A problem was found in the case of a
single interface which attempts to send at the system
MLFFR. Random Lie slows down the single interface
case. 

At the moment, the random lie code is in 2.4 but
commented out because it does not solve the general
case.

3.  New Problems: Packet re−ordering

Parallelization, as introduced by softnet, is always
challenging when done without early demuxing and/or
stateful classification. For example, [BPS99] points
out that the MAE−East exchange point DEC
Gigaswitch FDDI scales by adding more parallel ports
to increase perceived bandwidth. The Gigaswitch
parallelization setup results in head−of−line blocking,
which does not guarantee that packets arriving at the
switch will leave in the same sequence that they
arrived. As far back as 1998, up to 90% of connections
had re−ordering problems.

Reordering provides false information to end to end
TCP connections (which make 95% of the internet
load) that there is network congestion. TCP flows back
off and the result is underutilization of the network.



Softnet does, in fact, introduce packet re−ordering.
Think of two packets that are going to a client socket
arriving back−to−back in a two processor machine.
The interrupt scheduler assigns CPU0 to pick that
packet, which then sits on the CPU0 backlog queue.
The second packet heading towards the same client
socket comes in and the interrupt scheduler gives the
processing to CPU1. There is no guarantee which of
the two CPUs IP processing threads will execute first.
It depends on many factors, such as CPU load. If
CPU1’s thread executes first, it would mean that the
second packet will arrive at the TCP and socket level
before the first (which came in via CPU0). 

Linux has in fact alleviated this problem by
implementing RFC 2883[rfc2883ref]. As far as Linux
TCP is concerned, as long as the remote end is
implementing SACK, this problem is highly
alleviated, but not totally removed.

One can totally remove this problem by statically
attaching interfaces to single CPUs via IRQ Affinity.

4. NAPI

Given the issues with the FF solution and the need to
be more generic, a new design was put in place. For
the lack of a better name we call it NAPI (New API).

4.1. NAPI design goals

The authors laid out a set of goals that needed to be
met.
1. Maintain the parallellization and scaling benefits of

softnet
2. Remove packet re−ordering in SMP.
3. Reduce interrupts on overload to allow the system

to peak to a flat curve at MLFFR.
4. Drop Early on overload. 
5. Remove or reduce the unfairness issues 
6. Balance between latency and throughput.
7. Should not be dependent on any hardware specifics

4.2. NAPI SOLUTION

The general overview of NAPI is described in figure 2.
It constitutes a mixture of interrupts and polling
mechanisms. While polling is useful under heavy load,
it does end up introducing more latency under light
load as well as abusing the CPU by polling devices
that have no packets to offer. On the other hand,
interrupts improve latency under low load, but make
the system vulnerable to livelock as the interrupt load
exceeds the MLFFR. 

NAPI offers a middle ground inspired by
[JMKKR96]. Interfaces are allowed to interrupt on
the arrival of the first packet in a batch. They then
register to the system that they have work. The
interfaces subsequently turn off any interrupts that
might be caused by receiving an incoming packet or
by running out of receive buffers in a DMA ring. Any
arriving packets after the DMA ring is filled will be
dropped without disturbing the system. This approach
meets design requirement 4.

At some later point, a softirq is activated to poll all
devices that registered to offer packets. All interfaces
are given an opportunity to send up to a (configurable)
number of packets known as quota. Once this quota is
exceeded, the device is returned to the end of the work
queue, if it still has packets to offer, else the device is
taken off the work list and allowed to interrupt again.
The quota concept allows for cache amortization and
is inherited from the max_interupt_work concept in the
case of a standard Donald Becker Linux network
driver. The quota also enforces fairness which meets
design requirement 5. 

Figure 2. NAPI data path

Under heavy load, the system takes its time to poll
devices registered. In this sense, requirement 3 is met,
in that the MLFFR is dependent on the system
capacity and that interrupts are allowed as fast as the
system can process them. The only hardware
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requirement is that an interface is able to own DMA
hardware. This ability is a given these days and
therefore requirement 7 is met. However, in order to
accommodate devices not capable of DMA, the old
interface is still available for drivers. A new API is
added to the driver interface. Note: this also allows for
gradual migration of drivers5.
 
As is observed from figure 2, the backlog queue has
disappeared. Instead packets are left on the hardware’s
DMA ring. This enforces serialization of the packet to
the system and meets requirement 2. of the design
goals.

Requirement 6 is met because NAPI switches between
interrupt and poll mode. Under low load before the
MLFFR is reached, the system converges towards a
system that is interrupt driven (like in the current
kernels), so the packets/interrupt ratio is much lower
and latency is reduced in the system. In the case of a
system under heavy load, the packets/interrupt ratio is
higher and the latency is increased. 

Requirement 1 is verified experimentally as discussed
in the next section.

5. Experimental setup

Figure 3 shows the experimental setup used. An IXIA
hardware traffic generator[IXIAref] is sending from
one of its ports to the PC on eth0. Linux routes the
packet out eth1 back to the IXIA.

Figure 3. Experimental setup

The IXIA is capable of measuring throughput, latency
and packet reordering.

The PC is a dual PII 350 Mhz ASUs motherboard with
128M of RAM. The NIC is a Znyx 4−port 32−bit
33Mhz PCI board. Three different variants of kernel
2.4.7 were used: Plain (regular tulip driver), FF (driver

5 Is thus the first time backward compatibility has been done in
Linux? ;−>

responded to feedback), and NAPI (with the changes
described above).

The system was not under any load other than the
described traffic.

When trying to emulate a uniprocessor setup,
interfaces eth0 and eth1 were both tied to one of the
processors using IRQ affinity.

Tests were run to test throughput, latency and packet
reordering for both SMP and uniprocessor setups.

The initial test was to attempt to validate design
requirement 1(refer to section 4.1) . The easiest way to
verify this is to run the system under a variety of loads
and check that each of the processors had received an
even distribution of the packet load6. This proved to
be the case.

Finally, we run several tests (one for each of the
kernels):

1. A single CPU test with the IXIA recording both the
throughput and latency results

2. A repeat of the above with SMP. In both this and
the above test, each trial set constitutes sending 4
Million packets in total.

3. An SMP test for packet reordering. In all the tests
17203 packet were sent in each. 

5.1. Throughput  results

Figure 4 below shows the results with a single CPU
being used. The regular Linux 2.4 without any

Figure 4. Single CPU  throughput results

6 /proc/net/softnet_stat records the appropriate stats.
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spicing appears to perform rather well reaching a
MLFFR at 65% input. The experiments did not
measure the available CPU on the system during the
test period. However, a file listing of a directory took
about 3−4 times longer with the plain setup than it did
with either the FF or the NAPI version. The NAPI
version does better in the single CPU case than FF. 

The SMP results in figure 5 indicate the same behavior
as in the case of the single CPU.

Figure 5. SMP throughput results

5.2. Latency results

The latency results shown in figure 6 were extracted
from the same tests that are shown in the throughput
graph of figure 4.

Figure 6. Latency results  for single CPU

We observe that NAPI does very well, with latencies
of less than 1 ms in the worst case. FF does show a
worst case behavior of over 2 ms and the plain kernel,

as is expected, the highest latencies approaching 4 ms
in the worst case.

We see the same behavior in the case of SMP enabled
system in figure 7. Figure 7 is extracted from the same
test runs as those in figure 5.

Figure 7. SMP latency results

5.3. Packet re−ordering results

In this test 17203 packets with incrementing sequence
numbers are sent. On the receiving side, if any out of
sequence packets are found, they are flagged (and
accounted for.

As was expected there were no packet re−ordering
issues with NAPI. FF does a lot better than the plain
driver.

Figure 8. SMP packet re−ordering results
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In all the tests, the throughput results matched those iu
the SMP throughput tests.

5.4. Other results

With the Znyx 4 port card sending on two of the
interfaces and receiving on the other two, we were
able to reach throughput rates of 200Kpps on the SMP
system used in the testbed. 

Using two Intel e1000 1000Mbps NICS on a single
CPU motherboard. The CPU is PIII at 933 MHz using
a ServerWorks Chipset, we were able to send over
360Kpps.  

None of the above tests were thoroughly analyzed and
should be considered as work that is still ongoing.

5.5. Miscellaneous

A side benefit of reducing the number of interrupts the
system experiences is a huge reduction in the system
load caused by interrupts.

Profiling from a live router[profref] using FF in the
bifrost[bifrostref] indicate that the interrupt setup and
the interrupt code itself was the most CPU intensive. 

6. conclusion

Linux IP packet forwarding is handled with several
mechanisms, such as netfilter, netlink, the traffic
control framework, and softnet.  These tools have been
validated in real networks[routerref], as Linux is
commonly used for tasks such as firewalling and
routing.

However, under heavy load, Linux can encounter a
system congestion collapse.  This limitation was noted
in [FFref], a study that suggested and demonstrated an
improvement to hardware flow control, termed FF.
 Although FF gives a definite advantage, it suffers
several problems.  Notably, it is hardware specific and
it does not scale to an arbitrary number of NICs.

NAPI is a more advanced solution to the issues
addressed by FF.  NAPI features a hardware−
independent design comprising interrupts and polling
mechanisms.  The balance between the two techniques
makes NAPI effective under light or heavy loads.
 NAPI maintains the scaling benefits of softnet,
removes SMP−induced packet re−ordering, and
promotes fairness across interfaces.
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