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Abstract

Policy-based management provides a means for IT systems to operate accord-
ing to business needs. Unfortunately, there is often an “impedance mismatch” be-
tween the policies administrators want and the controls they are given. Consider
the Apache web server. Administrators want to control CPU and memory utiliza-
tions, but this must be done indirectly by manipulating tuning parameters such as
MaxClients and KeepAlive. There has been much interest in using feedback con-
trol to bridge the impedance mismatch. However, these efforts have focused on a
single metric that is manipulated by a single control and hence have not considered
interactions between controls such as those that are common in computing systems.
This paper shows how multiple-input, multiple-output(MIMO) control theory can
be used to enforce policies for interrelated metrics. MIMO is used both to model the
target system, Apache in our case, and to design feedback controllers. The MIMO
model captures the interactions betweenKA andMC, and can be used to identify
infeasible metric policies. In addition, MIMO control techniques can provide con-
siderable benefit in handling trade-offs between speed of metric convergence and
sensitivity to random fluctuations while enforcing the desired policies.
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1 Introduction
The wide-spread exploitation of information technology (IT) has motivated the need

for policy-based management of IT resources. For example, a business may have poli-
cies that limit the memory and CPU consumed by web servers. These policies originate
from several business needs, including: (a) providing sufficient capacity to co-located
applications (e.g., file server, database server); (b) avoiding thrashing and failures as
a result of overutilization; and (c) ensuring that there is sufficient capacity remaining
to handle workload surges and/or server failures. Herein, we describe a control-theory
based approach to enforcing policies for interrelated metrics, and we apply this ap-
proach to the Apache [1] web server.



Frequently, there is an “impedance mismatch” between the policies administrators
want and the controls they are given. For example, in an Apache web server, adminis-
trators want to control the CPU and memory utilizations (hereafter denoted byCPUand
MEM) associated with the Apache application, but there is no way to do this directly.
Rather, administrators must operate indirectly by adjusting various tuning parameters.
The operations staff must conduct experiments to determine how desired utilizations
can be achieved with the controls that are available. Two widely used parameters are
MaxClients (MC), the maximum number of clients that can connect to an Apache
server, andKeepAlive Timeout (KA), which determines how long an idle connec-
tion is maintained in HTTP 1.1.
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Figure 1: Effect of Static Settings withKA= 6 andMC= 450. Note thatCPUincreases
from 35% with the light workload to 50% with the heavy workload.

Not surprisingly, it is time-consuming, error-prone, and skills intensive to manually
adjustMCandKA to achieve desired settings ofCPUandMEM. Even worse, this effort
has to be repeated as the workload changes. This is illustrated in Figure 1, which shows
how CPUand MEMare affected as the workload changes from light to heavy. (The
precise definition of light and heavy are discussed later.) WhileMEMchanges little,
CPUincreases from 35% in the light workload to 50% in the heavy workload.
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Figure 2: Block Diagram of Feedback System for Control of CPU and Memory Uti-
lizations

We propose using feedback control to bridge the gap between administrative goals
and IT controls. The specifics are shown in Figure 2. We assume that there are policies
for CPUandMEM, in terms of the desired values of these metrics, denoted byCPU*
andMEM* respectively. The controller reads measured values1 of CPUandMEM, and
computes thecontrol error. TheCPUcontrol error is denoted byECPU = CPU∗−CPU.
EMEM is defined analogously forMEM. The controller uses current and past values of

1We use time-averaged values to reduce measurement overhead and also because the inherent variability of
the metrics (CPU utilization in particular) makes instantaneous control impractical.
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Figure 3: Architectures for Feedback Control of Apache

control error to adjustMCandKAwith the goal of achieving the desired target utilization
values (i.e.,ECPU ≈ 0 ≈ EMEM ).

Control theory provides sound and rigorous mathematical principles to analyze dy-
namical systems, and design controllers for them. While it is widely used in mechan-
ical, aeronautical, and chemical engineering [2], there is concern with applying stan-
dard linear control techniques to computer systems, a domain in which non-linearities
abound. Although there is a well-developed theory of non-linear control, it is much
more difficult to apply, does not generalize across systems, and provides much less
insight than linear control theory. Hence, we adopt a pragmatic perspective. Can we
construct and analyze the properties of real-life closed-loop computer systems using
linear control theory?

Prior work in applying control theory to computing systems has focused on single-
input, single-output(SISO)techniques in which there is a single control and a single
metric to regulate. Examples include flow and congestion control [3], [4], differentiated
caching [5], multimedia streaming [6], differentiated web services [7] and control of an
email server [8]. In some cases [7], [5], where the system is multiple-input, multiple-
output(MIMO), the approach taken is to decompose into multiple simpler, independent
SISO control loops. However, in many cases, complex systems cannot be decomposed
because of interactions between the controls.

The main contribution of this paper is the use of the more general MIMO techniques
in the design and analysis of feedback control to enforce policies in the presence of such
interactions. The two approaches to controlling a MIMO system are shown in Figure 3.
As seen in Figure 3(b), MIMO is used in two ways: (1) to model and predict the behav-
ior of the Apache server and (2) to design the controller. We show that SISO models
are not able to accurately modelCPUbecause of the interaction betweenKA andMC;
a MIMO model works better. Further, we show that having an accurate model ofCPU
andMEMis particularly useful for accurately determining the space of feasible policies
for these metrics. In terms of control, it turns out that for our system using indepen-
dent, simpler SISO controllers (Figure 3(a)) works surprisingly well inspite of the SISO
modeling inaccuracies. This is due to the limited nature of the interactions betweenKA
andMC. However, we show that MIMO techniques such as linear quadratic regulation
(LQR) can provide considerable benefit in terms of balancing the trade-off between
speed of convergence to the desired result and sensitivity to random fluctuations.

We also note that in many of the aforementioned studies, the focus has been on using
first principles models for which little empirical validation is done. By contrast, we
proceed along the lines of the work in [8] in which empirical models are developed and



validated for an email server. Other research on improving web server performance is
in the areas of admission control schemes [9], adaptive content delivery [10], caching
[11] and other mechanisms [12]. In these, the focus has been on client-perceived metrics
such as response time. To the best of our knowledge, ours is the first work that discusses
the tuning of server parameters for goals related to administrative policies.

The remainder of this paper is organized as follows. Section 2 provides background
on the Apache architecture and our modifications for enabling feedback control. Sec-
tion 3 details our approach to MIMO modeling and compares the results to the models
obtained with a SISO model. Section 4 presents and evaluates several controller de-
signs. Our conclusions are contained in Section 5.

2 Apache Architecture and Enabling Dynamic Control
Apache v1.3 on Unix [1] is structured as a pool of worker processes monitored and

controlled by a master process, as shown in Figure 4. The worker processes are re-
sponsible for handling the communications with the Web clients, including the work
required to generate the responses. A worker process handles at most one connection
at a time, and it continues to handle only that connection until the connection is termi-
nated. Thus, the worker is idle between consecutive requests from its connected client.

TheMCparameter limits the size of this worker pool, thereby imposing a limitation
on the processing capacity of the server. A higherMCvalue allows Apache to process
more client requests. But ifMCis too large, there is excessive resource consumption
that degrades performance for all clients.
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Figure 4: Apache architecture and session flow

Figure 4 contains a state transition diagram for worker processes. In the “Idle” state,
a worker is waiting for a client connection, at which point it enters the “User Think”
state and waits for an HTTP request. The worker is in “Busy” for processing the request
and sending a reply. The time between sending an HTTP reply and the receipt of the
next request (for HTTP/1.1 persistent connections [13]) is spent in the “User Think”
state and is known asuser thinktime. The ApacheKA tuning parameter controls the
maximum time a worker can remain in the “User Think” state before its client TCP
connection is closed, thus allowing the worker to handle other clients. IfKA is too
large, CPU and memory are underutilized since clients with requests to process cannot



connect to the server. Reducing the timeout value means that workers spend less time
in the “User Think” state, andCPUincreases. If the timeout is too small, however, the
TCP connection terminates prematurely and reduces the benefits of having persistent
connections.

In order to dynamically control Apache, we needed to (1) have programmatic access
to performance metrics and (2) be able to set the tuning parameters on-line. To facilitate
these capabilities, we have implemented a control module that provides a GET/SET in-
terface over a special TCP port. Metrics are stored in the Apache scoreboard (a shared
memory area common to all the Apache processes) and updated asynchronously. For
control, we converted theMCandKA static configuration parameters into variables ac-
cessed through the scoreboard, and changes to them are picked up asynchronously by
the affected components at some convenient time in their processing.

Another major change to Apache for dynamic control concerns the effect ofMC. The
unmodified Apache incorporates a heuristic to dynamically change the server pool size
based on the two parametersMinSpareServers andMaxSpareServers . Since
we would like our controller to replace this heuristic, we modified the effect ofMCso
that it directly controls the size of the worker pool. The master process creates or kills
worker processes to ensure that the total pool size matches theMCvalue specified by
the controller. Note that although we have slightly changed the semantics ofMC, this
does not affect Web Administrators since they do not have to setMCanymore.

3 Modeling Apache
This section describes our approach to modeling Apache, which is based on statistical

(“black box”) models to quantify the relationship between the tuning parameters (KA
andMC) and metrics (CPUandMEM). We first describe the experimental environment
used to obtain the data from which the models are constructed. Then we describe our
models, and briefly evaluate them. In Section 3.4, we show how the models can be used
to determine feasible policies (e.g., realizable combinations ofCPUandMEM) and to
predict the dynamic behavior of the system.

3.1 Experimental environment
Our testbed consists of one server running Apache connected through a 100Mbps

LAN to one or more clients running a synthetic workload generator. The server is a
Pentium III 800 MHz with 256MB RAM, running Linux. Each client machine runs
a synthetic workload generator described below that simulates the activity of many
clients.
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Figure 5: Depiction of Workload Model. Two sessions are displayed as indicated by
the solid and dashed arrows. The long arrows denote clicks, and the short arrows
indicate the objects in a burst.

Our workload generator uses the publicly-availablehttperf [14] at its core to gen-
erate HTTP/1.1 requests and manage user sessions. We have written wrapper scripts



to emulate a stochastic user behavior as described by the WAGON model of Liu et al
[15]. As shown in Figure 5, WAGON structures the workload into multiple sessions
(which represent a series of user interactions) during which there are multiple clicks
(end-user requests), each of which generates a burst of HTTP requests (which repre-
sents web pages with multiple objects). Thus, the workload parameters are: session
arrival rate, number of clicks in a session, burst size (number of objects in a burst), and
think time (distribution of time between clicks). Table 1 summarizes the parameters
we used, which is based on the data reported in [15]. The file access distributions we
use are from the Webstone 2.5 reference benchmark [16]. Based on the findings in
[15], our session arrivals are Poisson with a rate which simulates either a heavier (20
sessions/sec) or a lighter (2 sessions/sec) workload.

Table 1: Workload Parameters

Parameter Name Distribution Parameters
Session Length (# clicks) LogNormal µ = 8, σ = 3
Burst Length (# URLs) Gaussian µ = 5, σ = 3
User Think Time (s) LogNormal µ = 30, σ = 30
Session Inter-arrival time (s) Exponentialµ ∈ {0.05(heavy), 0.5(light)}

Under the heavier workload, the serverCPUcan be 100% utilized with a few hundred
server processes. Hence, for our experiments, we have increased the default Linux
process limit to 1024 and our control code ensures thatMCis always an integer value
in the range[1, 1024]. KA values are in integral seconds with a minimum value of 1
second. There is no maximum, butKA values larger than 20 are found to have only a
small effect. For theCPUandMEMmetrics, we use time-averaged values. The choice
of averaging interval, commonly calledsample timein control theory, can affect the
performance of the controller. We chose (experimentally) a sample time of 5 seconds in
order to balance the competing goals of reacting quickly to changes, and yet avoiding
excessive measurement overhead as well as reaction to random fluctuations,

3.2 System Identification
There are two steps in black-box system identification: (1) determining the experi-

ments to run and collecting the data; and (2) constructing the model from the data. Our
experiments varied the tuning parameters for the heavy workload, as described below.
A first-order linear time invariant (ARX) model was fit to the data using least squares
regression. The form of the model is shown in Equation 1, with parametersA andB
estimated using least squares regression:

yk+1 = A · yk + B · uk, (1)

wherek indexes time;y is ann× 1 vector;A is n×n; u is m× 1; andB is n×m. For
a SISO model, we use scalarsa andb instead ofA andB. Although the Apache system
is stochastic and nonlinear, we have found that the first-order linear model is sufficient
for control design.

For data collection, the tuning parameters must be varied in a manner so that two
properties are satisfied. First, there should be sufficient variability (frequency content)
to excite all of the dynamics of the system [17]. In addition, there should be dense and
uniform coverage of the range of possible values of the parameters. The parameters
should be varied so as to cover as much as possible of the input space in which the
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Figure 6: The inputs used for system ID, and the coverage of the input space when both
inputs are used concurrently. (KA,MC) pairs are plotted with diamonds.

model will be used. Care is required to avoid highly non-linear regions since a poor
model fit will result, although separate models can be constructed for these regions.

In the case of the Apache server, the input space is constructed by considering the
saturation limits of the tuning parameters (KA andMC). Discrete sine waves are used
for bothMCandKA. This is done so that there are both high frequency components (in
the form of the steps) and low frequency components (the frequency of the sine wave)
that are sufficient to identifyA andB. TheMCsine wave has a period of 500 seconds, a
mean of 600, and an amplitude of 500; values ofMCgreater than 1024 are saturated to
this value by the control implementation as noted in Section 3.1. TheKAsine wave has
a period of 1200 seconds, a mean of 11, and an amplitude of 10. Figure 6 shows both
input signals plotted versus time and the coverage they provide of the input space when
used together.

3.2.1 Multiple SISO Identifications
We begin by modeling Apache using two SISO models as in Figure 3(a). One SISO

model captures the relationship betweenKA andCPUand is used to design controller
C1. The other model quantifies the relationship betweenMCandMEMfor the design of
C2.

When identifying the model betweenKAandCPU, the sine wave of Figure 6(a) was
used. For the model betweenMCandMEM, the sine wave of Figure 6(b) was used. An
important factor that affects the outcome of the SISO identification is the value of the
other tuning parameter during the run. Because the two SISO models should be valid
in the same operating region,MCis set to 600 (the mean value of the sine wave used to
construct the model betweenMCandMEM) when identifying the model betweenKAand
CPU. Similarly, KA is set to 11 when identifying the model betweenMCandMEM.

Figure 7(a) and (b) plot the data from testbed runs using the inputs just described.
Equation 2 displays the resulting model in time series form. Note that theb term in this
model is negative as a result of the inverse relationship betweenKAandCPU. Because
the range ofCPU is [0,1] whereas the range ofKA is [1,20], theb term includes a
scaling factor that makes it an order of magnitude smaller than thea term. Similarly,
the data in Figure 7(b) are used to identify the relationship betweenMCandMEM, which
is displayed in Equation 3. Again, theb term includes a scaling factor since the range
of MEMis [0,1] whereas the range ofMCis [100,1100].

CPUk+1 = 0.595 · CPUk − 0.0138 ·KAk (2)
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Figure 7: Experimental input-output data used for system ID.

MEMk+1 = 0.485 ·MEMk + 3.63× 10−4 ·MCk (3)

As mentioned earlier, when performing two separate SISO identifications, it is as-
sumed that the two tuning parameters do not interact. However, from Figure 7(b), we
can see that theMCsine wave has a significant effect onCPU. Hence, our assumption is
invalid. This motivates the need for MIMO techniques in system identification.

3.2.2 MIMO Identification
Next, we consider the Apache MIMO models shown in Figure 3(b) and Figure 3(c).

Identifying a MIMO model requires simultaneously varying bothKAandMCin order to
capture interactions between the parameters. As before, discrete sine waves are used.
However, their frequencies should be relatively prime so that good coverage of the input
space is obtained (as in Figure 6).

Figure 7(c) plots the results of the MIMO identification experiments. Using this data,
a first-order linear MIMO model is constructed, as shown in Equation 4. Note thatA
andB are matrices instead of scalars. The matrix approach provides a way to model
the combined effect of tuning parameters on utilizations. Specifically, all elements of
the second matrix (B) are non-zero (although the effect ofKAonMEMis much less than
its effect onCPU).

[
CPUk+1

MEMk+1

]
=

[
0.537 −0.109

−0.0256 0.630

]
·
[

CPUk

MEMk

]
+

[
−84.5 4.39

−2.48 2.81

]
×10−4·

[
KAk

MCk

]

(4)

3.3 Model Evaluation
Two model evaluations are done. The first is one-step prediction in which the value

of a metric at timek + 1 is predicted based onmeasuredvalues at timek. The second
is multi-step prediction in which the value atk + 1 is predicted based on theprediction
at timek. Throughout, we focus onCPUsince the low variability ofMEMmakes it
relatively easy to predict.

Figure 8 plots predicted versus measured values for one-step predictions ofCPU. A
perfect model would have all observations (the diamonds) on the line of unit slope. Part
(a) plots the SISO results using the SISO data. The fit is quite good;R2 = 0.934. Part
(b) does the same for the MIMO model with the MIMO data. The fit here is also quite
good,R2 = 0.915, although not as good as the SISO model.
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(a) SISO model, SISO data (b) MIMO model, MIMO data (c) SISO model, MIMO data
R2 = 0.934 R2 = 0.915 R2 = 0.783

Figure 8: Results of one-step ahead predictions for the CPU utilization. In each plot, the
x-axis is the actual value and the y-axis is the predicted value. The line indicates
when the actual value equals the predicted value, which occurs when the model is
perfect.
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Figure 9: Results of Multiple Step Prediction. In each plot, the solid line is the exper-
imental data and the dashed line is the model prediction. Both tuning parameters
are varied in the experiment.

Why does the SISO model provide a (somewhat) better fit than the MIMO model?
The answer is that SISO identification does not varyMCand so it really tells us much
less than the MIMO model. Indeed, if we use the SISO model on the MIMO data (in
which bothKAandMCvary), the SISO model does considerably worse. This is shown
in part (c) of Figure 8, whereR2 = 0.783.

Next we consider multiple step predictions, using a different data set. Figure 9 plots
the response of both the real system and the SISO and MIMO models to a series of
changes inKA and MC. It is clear from Figure 9(a) that the SISO model is not able
to account for the interaction effect fromMCon CPU. In contrast, the MIMO model
(Figure 9(b)) provides much more accurate predictions ofCPU. However, there are
regions in which the accuracy of the MIMO model degrades, namely whenKA= 6 and
MC= 800. This is a limitation of the linear model, which is most accurate near the
center of the operating region (KA= 11 andMC= 600) and less accurate near the edges
or outside of this region.



0 5 10 15 20
0

200

400

600

800

1000

1200

KeepAlive

M
ax

C
lie

nt
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CPU

M
em

or
y

(a) Range of inputs (b) Predicted range of feasible outputs

Figure 10: Determining Feasible Regions for Steady State Values of Metrics. The
markers on the rectangle and parallelogram indicate their correspondance to input
values.

3.4 Model Predictions and Feasible Policy Settings
A common problem in practice is determining the feasibility of interrelated policies.

Consider utilization policies forCPUandMEM. For a given workload, there may well
be combinations ofCPUandMEMthat cannot be achieved, at least not using the tuning
parametersKA andMC. Thus, it is desirable for administrators to know whether or not
a policy is feasible using the available controls.

Using Equation 2, Equation 3 and Equation 4, we can predict feasible steady-state
values of the metricsCPUandMEMbased on valid ranges of the tuning parametersKA
andMC. This is illustrated in Figure 10. Part (a) displays the range ofKAandMCused,
and part (b) shows the range of the predicted steady-state values from the SISO models
(dashed rectangle) and the MIMO model (solid parallelogram). The bold x’s represent
candidate (CPU, MEM) policies for the Apache system, and the actually feasible ones are
circled. While all four x’s fall within the rectangle predicted as being feasible by the
SISO models, only two of the x’s are predicted as being feasible by the MIMO model
for the inputs in Part (a).

For the point (CPU= 0.3,MEM= 0.7), if we invert the MIMO model, we can determine
that the inputs should be (KA = 30,MC = 800). That is, the model predicts that
this point cannot be realized within the range of inputs considered in Part (a). Our
experimental results confirm this, and they also show that it can be realized if larger
values ofKA are used. For (CPU= 0.8, MEM= 0.4), the MIMO model determines that
(KA = −10, MC = 450), which cannot be achieved sinceKAcannot be negative. Our
experimental results confirm that (CPU= 0.8,MEM= 0.4) is not a feasible combination
of metric values. The three feasible x’s are used in the test profile in Section 4.

Our models can also be used to make predictions about dynamic behavior. Consider
the scalar version of the time-series model given in Equation 1; its solution is given in
Equation 5.

yk = ak · y0 +
k−1∑

i=1

b · ak−i−1 · ui (5)

It is apparent that the parametera plays a large role in determining the response of the
system to the input,u. In control theory, This parameter is called apoleof the system.



Referring to the SISO models, note that the pole for theCPUmodel in Equation 2 is
0.595, and the pole for theMEMmodel in Equation 3 is 0.485.

The first property that can be determined from the pole is stability. If|a| > 1, then the
system is unstable;yk grows without bound (theaj terms will explode ask approaches
infinity). When |a| < 1, the system is stable and theaj terms will remain bounded
regardless ofk. As noted above, the model can predict steady-state values of the output
y for constant inputsu by finding fixed-points of Equation 5.

Another dynamic property that can be determined by the pole is speed of response.
As |a| approaches zero, the speed of response to changes in the input becomes faster. If
a = 0, thenyk+1 = b · uk. Hence, it takes one time step for the output,y, to converge
after changes in the input. As|a| approaches one, it takes more time steps for the output
to converge to a steady-state after changes in the input. This can be seen in Figure 9 in
whichaCPU = 0.595 > 0.485 = aMEM , andMEMsettles faster thanCPU.

The final property that can be determined by the pole is whether the system will
respond in an oscillatory manner to changes in the input. Ifa < 0, then the behavior
of the system will be oscillatory due to theaj terms in Equation 5; whenj is even, the
term is positive, and whenj is odd, the term is negative.

In the vector case, the scalar parametersa andb in Equation 5 are replaced by matri-
ces,A andB. The solution to this vector time-series equation is similar to Equation 5.
In this case, the response of the system is governed by the eigenvalues ofA, which are
thepolesin the vector case. Note that in the vector case, the poles can be complex (with
both real and imaginary parts). The presence of an imaginary part can cause oscillations
even if the real part is positive. With multiple poles, the “slowest” ordominantpoles
(i.e., those whose magnitude is closest to one) determine settling times. The poles of
the MIMO model of Equation 4 are0.513 and0.654, indicating that this model predicts
a slower response than that predicted by the SISO model.

4 Control Design
This section describes our methodology for designing feedback controllers and ap-

plies it to Apache for the architectures shown in Figure 3. Section 4.1 introduces the
methodology. Section 4.2 applies this methodology to designing SISO controllers, and
Section 4.3 to MIMO design with LQR. Section 4.4 discusses controller robustness to
changes in workloads.

4.1 Design Methodology
Our methodology for controller design uses a proportional integral (PI) controller.

Because of its robustness, PI control is widely used in mechanical engineering and
process control. PI control operates according to the following control law

uk = KP ek + KI

k−1∑

j=1

ej , (6)

whereuk is a tuning parameter, andek = rk − yk is the control error. For the Apache
system,rk is the desired policy (CPU∗ and/orMEM∗), andyk is the measured metric
(CPUand/orMEM). For SISO control, the policies (CPU∗, MEM∗) are considered indi-
vidually; for MIMO control they are considered together.

PI control has two parameters:KP , the proportional gain, andKI , the integral gain.
As a rule of thumb, the proportional term is used to increase the speed of response and



Table 2: Closed Loop Models

Magnitude of Settling
Controller KP KI Dominant Pole time (s)

SISO (stable)
[
−7

503

] [
−13

669

]
0.80 92

SISO (unstable)
[
−7

10000

] [
−13

13400

]
1.26 unstable

MIMO (LQR)
[
−20 22

118 555

] [
−12 9

75 335

]
0.80 91

the integral term is used to eliminate any steady-state error [2]. For SISO control,ek,
uk, KP , andKI are scalars. For MIMO control,ek anduk are vectors, andKP and
KI are matrices.

To design a PI controller,KP andKI must be set to achieve the desired control
specifications, such as zero steady-state error and small settling times. A commonly
used approach to controller design is pole placement, in which theclosed-loopsystem
poles are chosen to meet some desired criteria. The steps in pole placement control
design are outlined below.

1. Specify the desired transient performance (e.g., the settling time) of the closed
loop system.
2. Determine the required closed loop pole locations from the performance specifi-
cations. For a desired settling time ofts with a sampling time ofT , the closed-loop

poles must all have magnitude less thane−4T/ts [18]. For zero steady-state error,KI

must be nonzero.
3. Derive the closed loop system model from the open loop system model (obtained
in Section 3) and the control law.
4. Calculate the control gains by matching the poles of the closed loop system model
with the desired closed loop poles. Since the desired closed loop poles are available
from Step 2 and the poles of the closed loop system model can be found as functions
of KP andKI in Step 3, the control gains can be found by equating these and solving
for KP andKI .
Since the control design is based on a model of the system, which may not exactly

predict the behavior of the true system, the control design should be evaluated experi-
mentally to determine its suitability.

4.2 The Multiple SISO Controller
The first control design we consider is the multiple SISO controller, as shown in

Figure 3(a). There are two control loops:C1 controlsKA to CPU; C2 controlsMCto
MEM. We begin by specifying the settling time of the closed loop system. Our criteria
is that the settling time of the closed loop system should be about the same as the open
loop system. Our experimental measurements suggest that the settling time forCPUis
60 seconds and forMEMit is 40 seconds.

Next, we determine the proportional and integral gains required to achieve these
settling times. ForC1, K1

P = −7 andK1
I = −13. For C2, we haveK2

P = 503 and
K2

I = 669. Refer to Table 2 for a summary of different control gains. For the multiple
SISO controller,KP = diag(K1

P ,K2
P ) andKI = diag(K1

I ,K2
I ).

Figure 11(a) shows the experimental evaluation of the multiple SISO control system.
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Figure 11: Control Performance of the Multiple SISO Controller. The thin and thick
solid lines are the experimental data and the MIMO model prediction (Equation 4)
respectively, and the dashed lines inCPUandMEMindicate the desired policies.
For clarity, the model prediction is omitted from (b) but it shows a similar degree
of oscillation inMCandCPU.

The system is run in open loop for the first 300s, and then the controllers are started.
The heavy workload (20 sessions/sec) is applied for the entire experimental period.C2

does an excellent job of regulatingMEM, andC1 does reasonably well with regulating
CPU, especially considering the stochastic behavior of this metric. Note how the MIMO
model predicts the dip in CPU utilization att = 600s, which occurs due to the inter-
action ofKAandMC. However,C1 is able to reject this “disturbance” and can regulate
CPUback to the desired level.

Was control theory really needed to get the above result? One way to answer this is
to choose arbitrary values for the gains and see if performance is still good. Consider
Figure 11(b), which uses the gainsK2

P = 10000 andK2
I = 13400 (K1

P andK1
I are the

same as before). From Table 2, we see that the magnitude of the dominant pole exceeds
1. Thus, control theory predicts that this choice of gains will cause the controller to
be unstable. This is confirmed in Figure 11(b) where we see large oscillations inMC,
which in turn induces oscillations in bothMEMandCPU.

Considering the MIMO nature of the system and the simplicity of the SISO con-
trollers, the analytically designed SISO controller works surprisingly well. One factor
contributing to this success is unidirectional coupling. That is,MCaffects bothMEMand
CPU, butKAonly affectsCPU. Further, the PI controller is robust enough to achieve the
desired utilization policies without an explicit model of this interaction.

4.3 MIMO Controller Design Using the LQR Approach
We want to control the trade-off between short settling times and overreacting to

random fluctuations. To this end, we take a different approach to controller design by
choosing gains based on a cost function. Specifically, the LQR, orlinear quadratic
regulator, finds the control gains that minimize the following quadratic cost function:

J =
∞∑

k=1

[e>k v>k ]Q
[

ek

vk

]
+ u>k Ruk (7)
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Figure 12: Control Performance of the MIMO Controllers. The thin and thick solid
lines are the experimental data and the MIMO model prediction (Equation 4)
respectively, and the dashed lines inCPUandMEMindicate the desired policies.

The cost function includes the control errorsek, the accumulated errorsvk (vk =∑k−1
j=1 ej), and the control inputsuk. The matricesQ andR determine the trade-off

between control error and the control gain. The intuition is as follows. IfQ is large
compared toR, there will be larger control gains (smaller poles) and so the controller
will react quickly to deviations from the desired value of the policy metrics. On the
other hand, ifR is large compared toQ, the reverse happens and so the controller
responds slowly to such deviations, thereby avoiding over-reactions to random fluctu-
ations. Efficient numerical methods which solve this optimization problem have been
implemented in many computer-aided design tools [18].

The control design problem has now shifted from determining the desired closed-
loop poles to choosing the weighting matricesQ andR for the LQR problem. A com-
mon approach is to first normalize the terms in the cost function. SinceCPUandMEM
utilization are in the range from 0 to 1, the valid region forKA is from 1 to 50, and
MCcan vary from 1 to 1024, we chooseR = diag(1/502, 1/10002) to scale the in-
puts to be on the same order of magnitude as the control errors. Then, we choose
Q = diag(1, 1, 0.1, 0.2) to weight the control errors more heavily than the accumu-
lated control errors.

Using this method, we have designed a less aggressive controller with smaller control
gains;KP andKI are given in Table 2. Although the LQR design method does not
use the setting time as the design criteria, the transient performance of the closed loop
system can still be inferred from the closed loop pole locations. For example, in our
case, the dominant closed loop pole is located at 0.8, which predicts a settling time of 91
seconds. Moreover, since this closed loop pole has no imaginary part, the closed loop
system should be less oscillatory. The control performance is shown in Figure 12(a),
where we see that variability of the control inputs has been reduced, and theCPUand
MEMutilizations are also less oscillatory than before. At the same time, the controller
is still fast enough to track the desired utilization policies.

It is also interesting to compare the control performance between the multiple SISO
controller (Figure 11(a)) and the MIMO LQR controller (Figure 12(a)). Generally, we
can see that MIMO LQR controller results in less variability for both CPU and memory



utilizations. This is because it can better handle the interactions between the tuning
parameters and metrics in the system.

4.4 Controller Robustness to Changes in Workload
The experimental results presented thus far used only a single workload – the heavy

workload described in Section 3.1. In practice, however, the workload is unknowna
priori and changes over time. To determine how well our feedback control design per-
forms in the presence of these unknowns, we ran an experiment with the lighter work-
load of Table 1. The MIMO LQR controller of Section 4.3 is used without redesign.
The experimental results, shown in Figure 12(b), indicate that even though the model
prediction is not very accurate, the controller still performs well.

5 Conclusions
This paper describes the use of multiple-input, multiple-output (MIMO) techniques

to address policies for interrelated metrics. There are two ways in which MIMO is used.
The first is to model the target system, Apache in our case. In particular, we show that
SISO is not sufficient to obtain an accurate model ofCPUbecause of the interaction
betweenKA andMC. MIMO captures these interactions and thereby provides a more
accurate model. Having an accurate model ofCPUandMEMis of particular benefit
in determining feasible policies. Indeed, we show that the MIMO model can predict
infeasible policies forCPUandMEMwhen the SISO model fails to do so.

Second, MIMO is used for control. It turns out that for our system, having multiple
SISO controllers works surprisingly well because of the limited nature of the interac-
tions betweenKA and MC. Nevertheless, MIMO techniques such as linear quadratic
regulation (LQR) provide benefit in handling the trade-off between speed of metric
convergence and sensitivity to random fluctuations, and this results in a better con-
troller than SISO. In the case of a system with unequal numbers of inputs and outputs,
SISO techniques would not be applicable but the MIMO design techniques we use in
this paper would still apply.

Our future work will extend these results in several ways. In particular, we would
like to understand the limits of the models we employ when dealing with notoriously
non-linear metrics such as response times. Further, we need to adapt the controller and
models as modeling errors are discovered (for example, there may be changes in the
system configuration or the workload).
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