TCPoffloadis adumbideawhos time has come

Jeffrey C. Mogul
Hewlett-Padkard Laboratories
Palo Alto, CA, 94304
Jef f Mogul @cm org

Abstract

Network interface implementos hawe repeatedy at-
tempted to offload TCP processingfrom the hast CPU.
Theseefforts met with little sucess,becaisetheywere
based on faulty premises. TCP offload per seis neither
of much overall benefitnor free from significant costs
and risks. But TCP offloadin thesevice of very spedfic
goalsmight adually be useful. In the context of the re-
placement of stolage-speffic interconned via commod-
itized network hardware, TCP offload (and more gen-
erally, offloading the transport protocol) appropriately
solvesanimportant prodem.

1 Intr oduction

TCP[18] hasbeen the man transport protocol for the
Internet Protocol stack for twenty years. During this
time, there hasbeenrepeded debate over theimplemaent-
ation costsof the TCP layer.

Onecentral question of this debate has been whetherit
is moreappopriate to implementTCPin host CPU soft-
ware or in the network interface subsystem The latter
approad is usually cdled “ TCP Offload” (the categry
is somdimesreferredto asa “T CP Offload Engire,” or
TOE), althoughit in fact includesall protocol layers be-
low TCR aswell. Typical ressonsgivenfor TCP offload
include the reduction of hostCPU requirements for pro-
tocol stack processng and che&ksumming, fewer inter
rupts to the hostCPU, fewer bytescopied over the sys-
tembus, and the potential for offloading compustionaly
expenasre features suchasencrypton.

TCP offload posessomedifficulties, incduding bath
purely technical chdlenges(either geneic to all trans-
ports or spedfic to TCP),andsomemoresubte issue of
technology deployment.

In somevarians of the argumentin favor of TCP of-
fload, proponentsassertthe need for transprt-protocol
offloadbut reacognizethe difficulty of doingthisfor TCR,
and have proposeddeploying new transport protocols
that support offloading. For exanple, the XTP pro-
tocol [8] wasoriginally desigied spedfically for efficient
implementation in VLSI, althoudh later revisionsof the
specification [23] omit this rationale.

To this day, TCP offload hasnever firmly caughton
inthecommerdal world (exceptsometimes as a stopgp
to add TCP support to immature systemd16]), andhas
beenscornedby the academic comrunity and Internet
purists. This paperstarts by analyzirg why TCP offload
hasrepeatedlyfailed.

The lack of prior sucesswith TCP offload does nat,
howvever, necessaily imply thatthis apprachis caega-
ically without merit. Indeed the analysisof pastfailures
points out that novel appications of TCP might bendit
from TCP offload, but for reasonsnat clealy anticip-
atedby early proponens. TCP offload doesappea to
be appreriately suited whenusedin the larger conext
in which starage-interconnecthardware such as SCSI
or FiberChanneljs on the verge of being replacel by
Ethernet-basd hardware and specific upperlewel proto-
cols (ULPs),such asiSCSI. Theseprotocols canexploit
“Remote Direct Memory Access”(RDMA) functionality
provided by network interface subsystems.This paper
endsby andyzing how TCP offload (and more geneally,
offloading certain transportpratocols) can prove useul,
nat as ageneric protocol implementation strategy, but as
acomporentin an RDMA design.

This paperis not a defenseof RDMA. Rather it ar
gues that the choice to useRDMA more clealy justifies
offloading the transportprotocol than hasany previous
appication.

2 Why TCP offload is adumb idea

TCP offload has beenunsuccessfulin the past for two
kinds of reasors: fundamentalperformance issuesand
difficulties resuting from the complexities of deploying
TCPoffloadin practice.

2.1 Fundamental performanceissues

Althouch TCPoffloadis ustally justified asaperfam-
anceimprovement, in practice the performance bendits
areeitherminimized or adually negated, for many reas-
ors:

Limited processng requirements: Pracessing TCP
heades simply doesn't (or shaildn't) take many
cycles. Jambson[11] shaved how to use*“header

predicton” to processthe comnon casefor a TCP
connedion in very few instructions. The overhead
of the TCP protocol per sedoesnotjustify offload-
ing. Clark et al. [9] showed more geneally that
TCP shaild nat be expensive to implenent

Moore's Law: Adding atranspet protocolimplement-

ation to a Network Interface Contoller (NIC)
requires consderably more hardware compkexity
than a simple MAC-layer-only NIC. CompEkx-
ity increases time-to-market andbe@auseMoore's
Law rapidly increases the performance of general-
purpose CPU chips, comple specal-pumposeNIC
chips canfall behind CPU performance. The TOE
canbemme the bottlened, especially if thevendor
cannd afford to utilize the latestfab. (Ontheother
hand,using ageneral-purppseCPUasa TOE coud
lead to a poor tradeof betweencostand perform-
ance[1].)

Partidge [17] pointed out tha the Moore's Law
issue could be irrelevant once each NIC chip is
fast enowgh to hande padets at full line rate;
further improvemens in NIC performancemight
not matter (except to reducepower consumpton).
Sakar et al. [21], however, shaved that current
protocol-offload NIC system prodicts are not yet
fast enowgh. Their results also imply that any
extra latency imposel by pratocol offload in the
NIC will hurt performane for real appications.
Moore's Law considerationsmay plagueeven“ful I-
linerate” NICs until they arefast enowgh to awoid
adding muchdelay

Complex interfacesto TOEs: O'Dell [14] has ob-

saved that “the problem has alwaysbeen that the
protocol for talking to the front-end processr and
gluing it onto the APl wasjust ascomplex (often
more so,in fad) as the protocol being offloaded"”
Similarly, Partridge [16] obsered that “T he idea
was that you passedyour dataover the bus to an
NIC thatdid all the TCPwork for you. Howeer, it
didn't give a performancemprovement becauseto
alargedegee, it recreded TCP over the bus. That
is, for each write, you hadto adda bus healer, in-
cluding context informaton (identifying theproces
and TCP connedion IDs) andthenship the packet
down to theboard. Oninbourd, you had to passup
the processand TCP conrection info andthenthe
kernelhad to demuxthebusunit of data to theright
process (and do all that nasty memory alignment
stuff to put it into the process's buffer in the right
place.” While better appr@chesare now known,
in generalTOE desgnershadtrouble desigring an
efficient hostinterface.

Suboptimal buffer management: AlthoughaTOEcan

deliver a received TCP data segnent to a chcsen

location in memory this still leaves ULP pratocol
heades mingled with ULP daa, unlesscomplex
featuresareincluded in the TOE interface

Connedion managemert: The TOE must maintain
connectdn stak for eachTCPconnetion, andmust
coordnate this statewith the host operating sys-
tem. Egpecially for shat-lived conrections, any
savngs gaired from less hostinvolvementin pro-
cessirg datapacket is waded by this extra connec-
tion mangement overhead.

Resourcemanagemernt: If the transport protocol
residesin the NIC, the NIC and the host OS must
coordnaterespasibiity for resoucessuchas data
buffers, TCP pot numbes, etc. The ownership
problem for TCP buffersis more complex than the
seemingly analogous problem for packet buffers,
becaise outgoing TCP buffers must be held untl
adknowledged, and received buffers sometines
must be hdd pending reassenbly. Resouce
management becomeseven harderduring overload,
whenhost OS pdicy dedsiors must be suppoted.
Nonre of thes problemsare insuperableput they
reducethe benefitsof offloading.

Event management: Much of the cost of processinga
shat TCP conrection comes from the overhead of
managing appgication-visible events [2]. Praocol
offload doesnathingto reducethe frequencyof such
events, andsofailsto solve oneof the primary costs
of running abusyWebsener (for exanple).

Much simpler NIC extensims can be effedive:
Numerousprojectshave demonstated that insteal
of offloading the entire transpat protocol, a NIC
can be more simply exendedso as to support
extremdy efficient TCP implementations. These
extensiors typicaly eliminate the needfor memory
copies, and/or offload the TCP chedsum (eliminat-
ing the nea for the CPU to touch the data in many
cases,andthusavoiding data cache palution). For
example, Dalton et al. [10] descibeda NIC sup
porting a single-copy host OS implementation of
TCR Chaseetal. [7] summaize se\erd appoaches
to optimizing end-sgtem TCP performance.

These criticisms of TCP offload appy most clearly
whenone startswith a well-tuned, highly scdable host
OSimplemetation of TCP. TCPoffload mightbeanex
pedient solution to the problemscausel by secord-rate
host OS implemengtions, but this is not itself an archi-
tectural justification for TOE.

2.2 Deployment isues

Evenif TCP offload werejustfied by its performance
it createssigrificant deployment, mainenance,andman-
agenentproblems:

Scalingissues: Sorre seversmust maintain huge num-

bersof connetions[2]. Modernhaost operating sys-
temms now generdly place no limits except those
basdon RAM awailability. If the TOE implement-
ation haslower limits (perhapsconsteined by on-
board RAM), this could limit sysem scalabilty.
Saling concernsalsoapply to thelIP routing table.

Bugs: Protocol implementtions have bugs. Mature im-
plementations have fewer bugs, but sill requie
patchefrom timeto time. Updating thefirmware of
a progammable TOE could be more difficult than
updatng a host OS. Clealy, non-programnable
TOEsareeven worsein this respet [1].

Quality Assurance(QA): Sysem vendas must test
complete systemsprior to shipping them. Use of
TOE increaesthe number of compkx components
to beteded, and (especialy if the TOE comes from
a different suppler) increasesthe difficulty of loc-
ating bugs.

Finger-pointing: When a TCP-relatecug appearsin a
traditional system,it is nat hardto decide whether
theNIC is at fault, be@usenon-TOE NICs perfom
fairly simple functions. With a systemusing TCP
offloading, decidng whether the bug is in the NIC
or thehostcould be much harder.

Subwersion of NIC software: O'Dell has amgued that
the progammability of TOE NICs offers a tamget
for mdicious modfications [14]. This agument
is somavhat wedkened by theredity that many (if
not most) high-speed NICs are alrealy reprogam-
mable, but the extra capdilities of a TOE NIC
mightincreasethe optionsfor subversian.

Systan management interfaces: System administrat-
ors prefer to usea corsistentsd of manaement
interfaces (Uls and commands). Especaly if the
TOE and OS come from differentvendas, it might
be hardto provide a consisent, integiated manage-
mentinterface. Also, TOE NICs might not provide
as muchstate visibility to sysem managerss can
be providedby hostOS TCPimplementations.

Concernsabout NIC vendors: NIC vencbrs hawe typ-
ically been smdler than host OS vendas, with
lessshistication about overall systemdesign and
fewer resources to apply to support and mainten-
ance. If aTOENIC vendorfails or exitsthe marlet,
custome's can beleft withoutsupport

While none of these concens are definitive aguments
against TOE, they hawe tended to outweigh the limited
performane benefits.

2.3 Analysis: mismatchel applications

While it might appear from the preeding disaussion
that TCP offload is inherenty usdess,a more acarate
statenentwould be thatpastattempts to employ TCP of-
fload weremismatchd to the applicationsin queston.

Traditionally, TCP hasbeenusedeitherfor WAN net-
working applcations (email, FTP, Web) or for relatively
low-bandwidth LAN applications(Telnet, X/11). Often,
asis the casewith email and the Web, the TCP connec-
tion lifetimesarequite short andtheconnetion court at
abusy (server) systemis high.

Becausethese are seen asthe importantappications
of TCR theyareoften usal asthe rationae for TCP of-
fload. But theseapplcations are exactly thosefor which
the prodems of TCP offload (scalablity to large num-
bersof connedions, per-connedion overhea, low ratio
of protocol processingcost to intrinsic network coss)
are most obvious. In other words, in most WAN ap-
plications, the end-tost TCP-relatedcostsare insigrific-
ant,except for the connedion-managemntcoststhat are
eitherunsolvedor worsenedby TOE.

The implication of this obsevation is that the swee
spd for TCP offload is not for traditional TCP applica-
tions, but for applcations that involve high bandwidth,
low-latency, long-duation comections.

3 Why TCP offload stime hascome

Compugers generate high data rates on three kinds of
channelgbesias networks): graphts sysems, storage
sysems, and interpra@es®r interconnets. Histoically,
theserates hawe beenprovided by special-purposeinter-
facehardwarewhich trades flexibility andprice for high
bandvidth and high reliahili ty.

For stolage espeially, the cost and limitations of
spedal-purpose connectim hardware is increasingly
hard to justify, in the face of much cheaper Gbit/sec
(or fader) Ethernet hardware. Replacing fabrics such
asSCSland Fiber Channelwith switched Ethernetcon
nectons betweea stolage and hosts promises increasel
configuation flexibility, moreinteroperabity, andlower
prices.

However, replicating traditional storage-spefic per
formance using traditional network protocol stacks
would be difficult, not beauseof protocol processing
overheals, but beauseof daa copy costs— especially
since hostbussesarenow oftenthemain bottlened. Tra-
ditional network implemengtions require one or more
datacopies, especially to presene the semanics of sys-
tem cdls suchas read()andwrite(). TheseAPIs allow
appicationsto choosewhen andhow data buffersappear
in their addressspaces. Even with in-kernelappications
(suchas NFS),complee copy awidances noteasy

Sewerd OSdesignshawe beenproposedo suprt tra-
ditionalAPIsand kernel structureswhile awiding all un-
necessay copies. Forexanple, Brustdoni [4, 5] hasex
ploredse\erd solutions to theseproblemns.

Newertheless, copy-awidane designs have not been
widely adoped, dueto significant limitations. For ex
ample, when network maximum segment size (MSS)

valuesaresmaller than VM pagesizes,which is often the
case page-remaping techniques are insufficient (and
pageremappirg often imposesoverheads of its own.)
Brusbloni also points out that “mary copy awidance
tedhniques for netwak 1/0O are not applicable or may
even badfire if appled to file I/0.” [4]. Otherdesgns
thateliminateunnecessay copies,suchas /O Lite [15],
reguire theuseof new APIs (andhenceforce application
changes). Dalton et al. [10] list someother difficulties
with single-copy techniques.

Remote Direct Memory Access (RDMA) offers the
possilility of sidestepping the problems with software-
based copy-avoidance schemes. The NIC hardware (or
at any rate, software resident on the NIC) implements
the RDMA protocol. Thekernd or appli cation software
registersbuffer regons via the NIC driver, and obtains
protectedbuffer referene tokenscalled region IDs. The
software exchanges theseregion IDs with its conrection
pee, via RDMA messags sentover the transpot con-
nedion. Sped¢al RDMA mesagediredives (“verbs’)
enable a remote system to read or write memory regions
naned by the region IDs. The recdving NIC recog-
nizesandinterprets thesedirectives,validatestheregion
IDs, andperformsprotecteddatatransfergo or from the
namedregions?

In effect, RDMA providesthe sameow-overhead ac-
cessbetweea storageand menory currently providedby
traditional DMA-basel disk controllers.

(Same people have proposedactoringan RDMA pro-
tocol into two layers. A Direct DataPlaemet (DDP)
protocol simply allows a sender to causethe receiving
NIC to placedat in theright memorylocations. To this
DDPfunctionality, afull RDMA protocoladdsaremote-
read operation: systemA sends a mesageto sysem B,
causirg the NIC at B to transferdatafrom ore of B's buf-
fersto oneof A's bufferswithou waking up the CPU at
B. David Black [3] arguesthata DDP protocol by itself
canprovide sufficient copy awidance for many applica-
tions. Most of the points| will make abou RDMA also
apply to aDDP-only approad.)

An RDMA-enabkd NIC (RNIC) needsits own imple-
menttion of all lowerlewvel pratocols, sinceto rely on
the host OS stak would defeat the purpose Moreover,
in order for RDMA to substitute for hardware storagein-
terfaces, it mustprovide highly reliable datatransfer so
RDMA mustbelayered over areliabletransport suc as
TCP or SCTP[22]. This forcesthe RNIC to implement
thetranspor layer.

Therdore, offloading the transpat layer becomes
valuabk not for its own sgke, but rather because that
allows offloading of the RDMA layer And offloading
the RDMA layer is valuable because,unlike traditional
TCP applcations,RDMA applcations arelikely to usea
relatively small numbe of low-latency high-bandwidth

transportconnections, preciséy the ervironment where
TCP offloading might be beneficial. Also, RDMA al-
lows the RNIC to separate ULP data from ULP con
trol (i.e., headers)andthereforesimpifies the recaved-
buffer placementproblems of pure TCP offload.

For example, Magodis et al. [13] shov tha the
RDMA-baseal Direct AccessFile Systentanoutperform
even azero-copy implemaentation of NFS,in partbeause
RDMA alsohelpsto enable use-levelimplementation of
the file sysem client. Also, storage accessimplies the
useof large UL P messgeswhich amortize offloading's
increasel perpadetcosts while reapingthereducedper
byte costs.

Although muchof the work on RDMA hasfocussel
on storagesystems high-bandwidth graphcs applica-
tions (e g., streaning HDTV videos) have similar char
aderistics. A video-ondemand connet¢ion might use
RDMA both atthesener (for accessto the stared video)
andat the client(for rendenng thevideo).

4 Implicationsfor operating systens

BecauseRDMA is explicitly a performanceptimiza-
tion, not a sourceof functional benefits, it canonly suc-
ceedif its design fits comforibly into mary layersof a
completesystem:networking, 1/0, memory architecture,
operating sysem, andupper-level appication. A misfit
with anyof thesdayerscould obviate any benefis.

In particular, an RNIC design dore withou any con
sideration for thestructures of real operaing systenswill
nat deliver goodperformance and flexibility. Experience
from an analoguseffort, to offload DES cryptogaphy,
shaved tha overlooking the way tha software will use
the device can eliminatemuch of the potential perfam-
ancegain [12]. Good hardware design is certainly not
impossibk, but it requires co-development with the op-
eratirg systemsuppat.

RDMA aspects requiring such co-development in-
clude:

Getting the semantcsright: RDMA introduces many
isaues relatedto buffer ownership operaton com-
pletion, and errois. Members of the variousgroyps
trying to desigrs RDMA protocols (including the
RDMA Consortum [19] and the IETF's RDDP
Working Grou [20]) hawe had difficulty resoling
many basicissuedn thesedesigrs. Thesedisagree-
ments might imply the lack of sufficiently maure
principles underlying the mixed use of remotely
andlocally-managedbuffers.

OS-to-RDMA interfaces: Theseinterfaceinclude, for
example, buffer allocation; mappng andpratedion
of buffers;andhanding exceptbnsbeyondwhat the
RNIC can ded with (sud as routing and ARP in-
formaton for anewpee address).

Application-to-RDMA interfaces: These interfaces

include, for example, buffer ownership; notification
of RDMA completon evens; and bidirectional
interfacesto RDMA verbs.

Network configuration and management: RNICs
will require IP addreses, sibnet masks, etc.,
and will hawe to report statstics for use by net-
work management tools. Idedly, the operathg
systemshould provide a “single sysem image”
for network management functions, even thouwgh
it includes sewral independentnetwork stack
implementations.

Defenses aganst attacks: an RNIC ads as an exten-
sion of the operatig sysem's protection mechan-
isms,andthus shoutl defendaganstsubversiors of
thesemechanisms. The RNIC could refuseaces
to certainregionsof memory known to stae kernel
code or data structures,exceptin narravly-defined
circumstances(e.g, boostrappng).

Sincethe RNIC includesa TCP implementaton, there
will be temptation to usethatas a pure TOE path for non-
RDMA TCP connectbns, instea of the kernd's own
stadk. This temptation mustbe resisted,becauseit wil |
lead to over-complex RNICs, interfaces, and host OS
modifications. However, an RNIC might easily suppat
certan simple feaurestha have been proposed5] for
copy-awidanein OS-basd network stacks.

5 Difficulties

RDMA introducesseveral tricky problems, espeially
in the areaof security. Prior storagenetworking desgns
assumeda closed, physicdly secure network, but IP-
based RDMA potentally leaves a hostvulnerable to the
entire world.

Offloading the transport pratocol exaerbateghe se-
curity problem by adding more opportunities for bugs.
Many (if nat most)searrity holesdiscovered recently are
implementation bugs, nat spedfication bugs. Even if an
RDMA protocol design can be shown to be secure, this
doesnotimply thatall of its implementatonswould be
secure. Hackersadively find and exploit bugs,andan
RDMA bug could be muchmorese\erethantraditional
protocol-stack bugs, because it might allow unbaunded
and uncheckedaacessto hostmenory.

RDMA searity therefore cannot be provided by
sprirkling somelPSec pixie dust over the pratocol; it
will require attenion to all layers of the system.

The useof TCP below RDMA is conroversial, be-
causeit requres TCP modfications (or a thin interme-
diatelayer whoseimplementaton is entangked with the
TCP layer) in order to reliably mark RDMA messae
bourdaries. While SCTPis widely acceptedas inher
ently beter than TCP asa transpor for RDMA, some
vendors believe tha TCP is adequate, and intend to
shipRDMA/TCP implementatonslongbeforeoffloaded

SCTPlayers are matue. This papers main point is not
that TCP offload is agoad ideg but rather thet transport
protocol offload is appropriate for RNICs. TCP might
simply represat the best available chace for severd
years.

6 Conclusions

TCP offload has been*“a solution in searchof a prob
lem” for several decades. This paperidentifies severd
inherent ressans why general-purposeTCP offload has
repezedly failed. Howevwer, ashardwaretrendschange
the feasibiity andecnomics of netwak-basel storage
conrections, RDMA will becomea significant and ap-
propriate justification for TOESs.

RDMA's remotelymanagednetwork buffers could be
an innovation andogaus to novel memory consistency
models:anattempto focuson ne@ssay featuresfor red
appications, giving up the simplicity of a narrow inter-
facefor the potental of significant performane saling.
But as in the caseof relaxed consstency, we may see a
period wherevariants arepropcsed, tested, ewolved, and
sometimes discaded. The principles that mustbe de-
veloped aresquarelyin thedoman of operding systens.

Acknowledgments

| would like to thank David Black, Craig Partidge,
andegecially Jdf Chase, aswell as the anonymousre-
viewers, for their helgful comnens.

References
[1] B.S.Ang. An evaluationof anattemptatoffloading
TCPIP proatocol processing onto an i960RN-basel
iNIC. Tech.Rep.HPL-20L-8,HP Labs,Jan.2001.

[2] G. Bang and J. C. Mogul. Scalable kernel
performance for Internet servers under redistic
loads. In Proc. 1998 USENIXAnnual Technical
Conf, pages 1-12, New Orleans,LA, Junel1998.
USENIX.

[3] D.Black. Personatomnunication, 2003.

[4] J.Brustoloni. Interoperation of copy avoidance in
network and file 1/0. In Proc. INFOCOM '99,
pages534—-512, New York, NY, Mar. 1999. |[EEE.

[5] J.Brustoloni andP. Steenkiste. Effects of buffering
senanics on I/O peformane. In Proc. OSDHI,
pages277-21, Sedtle, WA, Oct. 19%. USENIX.

[6] J.S. Chase. High PerformanceTCPAP Network-
ing (Mahbub Hassa and Raj Jain Editors),chapter
13, TCPImplementation. Prenice-Hall. In prepaf
ation.

[7] J.S.Chag,A. J.Gdlatin,and K. G. Yocum. End
sysem optimizations for high-sped TCP. IEEE
Communcations 39(4):68—#4, Apr. 2001.

[8] G.Chesson XTP/PEoverview In Proc.IEEE 13th
Corf. on Local Compuer Networks, page 292—
296 Oct. 1988.

[9] D. D. Clark, V. Jacobson J. Romkey, and H. Sal-
wen. An analysis of TCP processng overheal.
IEEE Communcations Magazire, 27(6):23—29
Junel989.

[10] C. Dalton, G.Watson,D. Banks, C. Calamwkis,
A. Edwards,andJ. Lumley. Afterburner: Architec-
tural supportfor high perfamancepratocols. IEEE
Netwak Magazne, 7(4):36-43,1995.

[11] V. Jacobson.4BSD TCP healer prediction. Com-
puter Commuication Review 20(2):13-15 Apr.
1990.

[12] M. Lindeman and S. W. Smith Improving DES
coprocessor throughput for shat operations. In
Proc. 10th USENIX Security Symp, Washington,
DC, Aug. 2001.

[13] K. Magodis, S. Addetia, A. Fedoraa, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremes-
inghe,andE. Gabber. Stucture and perfomance
of the Direct AccessFile System In Proc. USENK
20@ Anrual Tech.Conf,, pages 1-14, Monterey,
CA, Jure 20Q.

[14] M. O'Dell. Re how bad anideais this? Messae
on TSV mailinglist, Nov. 2002.

[15] V. S.Pai, P. Drusché, andW. Zwaengod. |O-Lite:
a unified 1/0 buffering and caching system. ACM
Trans.Compugr Systems 18(1):37-66, Feb 2000.

[16] C.Partridge.Re: how bad anideaisthis? Messaje
on TSV mailinglist, Nov. 2002.

[17] C. Partridge. Personatomnunication, 2003.

[18] J.B. Pastel. Transmissia Control Praocol. RFC
793 Informétion Scieneslinstitute, Sept. 1981.

[19] RDMA Corsortium.
http://www.rdmaonsortum.og.

[20] Renote Direct Data Placement Working
Group http://www.ietf.org/html.chaters/rdip-
charter.html.

[21] P. Sarkar S. Uttamchandani,and K. Voruganti.
Storage over IP: Does hardware suppott help? In
Proc. 2nd USENIX Conf. on File and Sbrage
Technologies, pages?31-24, San Frandsm, CA,
March 2003.

[22] R. Stwart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbeer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang,andV. Paxsmn. SreamContol Transmis-
sion Probcol. RFC 2960, Network Working Group,
Oct.200Q

[23] T. Strayer. Xpress Transprt Probcol, Rev. 4.0h
XTP Forum, 1998

Notes

IMuch of this paragraphwas adapéd, with permis-
sion, from aforthcomingbook chapter by Jef Chase [6].

