
TCPoffloadis adumbideawhose timehascome

JeffreyC. Mogul
Hewlett-Packard Laboratories

Palo Alto, CA, 94304
JeffMogul@acm.org

Abstract
Network interface implementors have repeatedly at-

tempted to offload TCP processingfrom the host CPU.
Theseefforts met with li ttle success,becausetheywere
basedon faulty premises.TCPoffloadper se is neither
of much overall benefitnor free from significant costs
and risks. But TCPoffloadin theserviceof very specific
goalsmight actually beuseful. In thecontext of the re-
placement of storage-specific interconnect via commod-
itized network hardware, TCP offload (and more gen-
erally, offloading the transport protocol) appropriately
solvesanimportant problem.

1 Intr oduction
TCP[18] hasbeen themain transport protocol for the

Internet Protocol stack for twenty years. During this
time,therehasbeenrepeated debateover theimplement-
ation costsof the TCP layer.

Onecentral question of thisdebatehasbeen whetherit
is moreappropriate to implementTCPin hostCPUsoft-
ware, or in the network interface subsystem. The latter
approach is usually called “TCPOffload” (the category
is sometimesreferredto asa “TCP OffloadEngine,” or
TOE),although it in fact includesall protocol layers be-
low TCP, aswell. Typical reasonsgivenfor TCPoffload
includethereduction of hostCPUrequirements for pro-
tocol stack processing and checksumming, fewer inter-
rupts to the hostCPU,fewer bytescopied over the sys-
tembus, and thepotential for offloadingcomputationally
expensive featuressuchasencryption.

TCP offload posessomedifficulties, including both
purely technical challenges(either generic to all trans-
portsor specific to TCP),andsomemoresubtle issuesof
technology deployment.

In somevariants of the argument in favor of TCPof-
fload, proponentsassertthe need for transport-protocol
offloadbut recognizethedifficulty of doingthis for TCP,
and have proposeddeploying new transport protocols
that support offloading. For example, the XTP pro-
tocol[8] wasoriginally designed specifically for efficient
implementation in VLSI, although later revisionsof the
specification [23] omit this rationale.

To this day, TCP offload hasnever firmly caughton
in thecommercial world (exceptsometimesasastopgap
to addTCPsupport to immature systems[16]), andhas
beenscornedby the academic community andInternet
purists. This paperstarts by analyzing why TCP offload
hasrepeatedlyfailed.

The lack of prior successwith TCP offloaddoes not,
however, necessarily imply thatthisapproach is categor-
ically without merit. Indeed,the analysisof pastfailures
points out that novel applications of TCP might benefit
from TCP offload, but for reasonsnot clearly anticip-
atedby early proponents. TCP offload doesappear to
be appropriately suited whenusedin the larger context
in which storage-interconnecthardware, such as SCSI
or FiberChannel,is on the verge of being replaced by
Ethernet-basedhardwareandspecific upper-level proto-
cols(ULPs),such asiSCSI. Theseprotocols canexploit
“RemoteDirectMemory Access”(RDMA) functionality
provided by network interface subsystems.This paper
endsby analyzinghow TCPoffload (andmoregenerally,
offloading certain transportprotocols) canprove useful,
not as a generic protocol implementation strategy, but as
a component in an RDMA design.

This paper is not a defenseof RDMA. Rather, it ar-
gues that thechoice to useRDMA more clearly justifies
offloading the transportprotocol than hasany previous
application.

2 Why TCP offload is a dumb idea
TCP offloadhas beenunsuccessfulin the past for two

kindsof reasons: fundamentalperformance issues,and
difficultiesresulting from thecomplexities of deploying
TCPoffloadin practice.

2.1 Fundamental performanceissues
Although TCPoffloadis usually justified asaperform-

anceimprovement, in practice the performance benefits
areeitherminimizedor actually negated, for many reas-
ons:

Limi ted processing requirements: Processing TCP
headers simply doesn't (or shouldn' t) take many
cycles. Jacobson[11] showed how to use“header



prediction” to processthecommon casefor a TCP
connection in very few instructions. The overhead
of theTCPprotocol per sedoesnot justify offload-
ing. Clark et al. [9] showed more generally that
TCP should not beexpensive to implement.

Moore's Law: Adding a transport protocol implement-
ation to a Network Interface Controller (NIC)
requires considerably more hardware complexity
than a simple MAC-layer-only NIC. Complex-
ity increases time-to-market, andbecauseMoore's
Law rapidly increases the performanceof general-
purposeCPU chips, complex special-purposeNIC
chips canfall behind CPU performance. TheTOE
canbecome the bottleneck, especially if thevendor
cannot afford to util ize the latestfab. (On theother
hand,usingageneral-purposeCPUasaTOEcould
lead to a poor tradeoff betweencostandperform-
ance [1].)
Partridge [17] pointed out that the Moore's Law
issuecould be irrelevant once each NIC chip is
fast enough to handle packets at full line rate;
further improvements in NIC performancemight
not matter (except to reducepower consumption).
Sarkar et al. [21], however, showed that current
protocol-offload NIC systemproducts are not yet
fast enough. Their results also imply that any
extra latency imposed by protocol offload in the
NIC will hurt performance for real applications.
Moore'sLawconsiderationsmay plagueeven“ful l-
line-rate” NICs until they arefast enough to avoid
adding muchdelay.

Complex interfaces to TOEs: O'Dell [14] has ob-
served that “ the problemhas alwaysbeen that the
protocol for talking to the front-end processor and
gluing it onto the API was just ascomplex (often
more so,in fact) as theprotocol being`offloaded'.”
Similarly, Partridge [16] observed that “The idea
was that you passedyour dataover the bus to an
NIC thatdid all the TCPwork for you. However, it
didn't give a performanceimprovementbecauseto
a largedegree, it recreated TCPover thebus. That
is, for each write, you hadto adda bus header, in-
cludingcontext information(identifying theprocess
and TCP connection IDs) andthenship the packet
down to theboard. On inbound, you had to passup
the processandTCP connection info andthenthe
kernelhad to demuxthebusunit of data to theright
process (and do all that nastymemory alignment
stuff to put it into the process's buffer in the right
place).” While better approachesarenow known,
in generalTOE designershadtrouble designing an
efficienthostinterface.

Suboptimal buffer management: AlthoughaTOEcan
deliver a received TCP data segment to a chosen

location in memory, this still leaves ULP protocol
headers mingled with ULP data, unlesscomplex
featuresareincluded in theTOE interface.

Connection management: The TOE must maintain
connectionstate for eachTCPconnection, andmust
coordinate this statewith the host operating sys-
tem. Especially for short-lived connections, any
savings gained from less host involvement in pro-
cessing datapacket is wasted by this extra connec-
tion management overhead.

Resourcemanagement: If the transport protocol
residesin the NIC, the NIC and the host OS must
coordinateresponsibili ty for resourcessuchas data
buffers, TCP port numbers, etc. The ownership
problem for TCP buffers is more complex than the
seemingly analogous problem for packet buffers,
becauseoutgoing TCP buffers must be held until
acknowledged, and received buffers sometimes
must be held pending reassembly. Resource
management becomeseven harderduringoverload,
whenhost OS policy decisions must besupported.
None of these problemsare insuperable,but they
reducethebenefitsof offloading.

Event management: Much of the cost of processinga
short TCPconnection comes from the overheadof
managing application-visible events [2]. Protocol
offload doesnothingto reducethefrequencyof such
events,andsofails to solveoneof theprimarycosts
of runninga busyWebserver (for example).

Much simpler NIC extensionscan beeffective:
Numerousprojectshave demonstrated that instead
of offloading the entire transport protocol, a NIC
can be more simply extended so as to support
extremely efficient TCP implementations. These
extensions typically eliminate theneedfor memory
copies,and/or offload theTCPchecksum (eliminat-
ing the need for theCPU to touch thedata in many
cases,andthusavoiding data cache pollution). For
example, Dalton et al. [10] described a NIC sup-
porting a single-copy host OS implementation of
TCP. Chaseetal. [7] summarizeseveral approaches
to optimizingend-system TCP performance.

These criticisms of TCP offload apply most clearly
whenonestartswith a well-tuned,highly scalable host
OSimplementation of TCP. TCPoffloadmightbeanex-
pedient solution to the problemscaused by second-rate
host OS implementations, but this is not itself an archi-
tectural justification for TOE.

2.2 Deployment issues
Evenif TCPoffload werejustified by itsperformance,

it createssignificant deployment, maintenance,andman-
agementproblems:

Scaling issues: Some serversmust maintain hugenum-



bersof connections[2]. Modernhost operating sys-
tems now generally place no limits except those
basedon RAM availability. If theTOEimplement-
ation haslower limits (perhapsconstrainedby on-
board RAM), this could limit system scalability.
Scalingconcernsalsoapply to theIP routing table.

Bugs: Protocol implementations have bugs.Mature im-
plementations have fewer bugs, but stil l require
patchesfrom timeto time. Updating thefirmwareof
a programmable TOE could be more difficult than
updating a host OS. Clearly, non-programmable
TOEsareeven worsein this respect [1].

Quali ty Assurance(QA): System vendors must test
complete systemsprior to shipping them. Use of
TOEincreasesthenumber of complex components
to betested, and (especially if theTOEcomesfrom
a different supplier) increasesthe difficulty of loc-
ating bugs.

Finger-pointing: When a TCP-relatedbugappearsin a
traditional system,it is not hardto decide whether
theNIC is at fault, becausenon-TOENICsperform
fairly simple functions. With a systemusing TCP
offloading, deciding whether the bug is in theNIC
or thehostcould be much harder.

Subversion of NIC software: O'Dell has argued that
the programmabili ty of TOE NICs offers a target
for malicious modifications [14]. This argument
is somewhat weakened by the reality that many (if
not most) high-speedNICs are already reprogram-
mable, but the extra capabil ities of a TOE NIC
might increasetheoptionsfor subversion.

System management interfaces: System administrat-
ors prefer to use a consistent set of management
interfaces (UIs and commands). Especially if the
TOEand OScome from dif ferentvendors, it might
behardto provide a consistent, integrated manage-
ment interface. Also, TOE NICs might not provide
as muchstate visibil ity to system managersas can
beprovidedby hostOSTCPimplementations.

Concernsabout NIC vendors: NIC vendors have typ-
ically been smaller than host OS vendors, with
lesssophistication about overall systemdesign and
fewer resources to apply to support and mainten-
ance. If aTOENIC vendor fails or exits themarket,
customers can beleft withoutsupport.

While noneof these concerns are definitive arguments
against TOE, they have tended to outweigh the limited
performancebenefits.

2.3 Analysis: mismatched applications
While it might appear from the preceding discussion

that TCP offload is inherently useless,a moreaccurate
statementwould bethatpastattemptsto employ TCPof-
fload weremismatched to theapplicationsin question.

Traditionally, TCPhasbeenusedeitherfor WAN net-
working applications (email, FTP, Web)or for relatively
low-bandwidth LAN applications(Telnet, X/11). Often,
asis the casewith email and theWeb,the TCPconnec-
tion lifetimesarequiteshort, andtheconnection count at
a busy (server)systemis high.

Becausetheseareseen asthe importantapplications
of TCP, theyareoftenused astherationale for TCPof-
fload. But theseapplicationsare exactly thosefor which
the problems of TCP offload (scalabili ty to large num-
bersof connections, per-connection overhead, low ratio
of protocol processingcost to intrinsic network costs)
are most obvious. In other words, in most WAN ap-
plications,theend-hostTCP-relatedcostsare insignific-
ant,except for theconnection-managementcoststhat are
eitherunsolvedor worsenedby TOE.

The implication of this observation is that the sweet
spot for TCPoffload is not for traditional TCP applica-
tions, but for applications that involve high bandwidth,
low-latency, long-duration connections.

3 Why TCP offload's timehascome
Computers generatehigh data rates on three kindsof

channels(besides networks): graphics systems, storage
systems, and interprocessor interconnects. Historically,
theserates have beenprovided by special-purposeinter-
facehardware,which tradesflexibil ity andprice for high
bandwidth andhigh reliabili ty.

For storage especially, the cost and limitations of
special-purpose connection hardware is increasingly
hard to justify, in the face of much cheaper Gbit/sec
(or faster) Ethernet hardware. Replacing fabrics such
asSCSIand Fiber Channelwith switched Ethernetcon-
nections between storage andhostspromises increased
configuration flexibility, moreinteroperability, andlower
prices.

However, replicating traditional storage-specific per-
formance using traditional network protocol stacks
would be difficult, not becauseof protocol processing
overheads, but becauseof data copy costs– especially
sincehostbussesarenow oftenthemain bottleneck. Tra-
ditional network implementations require one or more
datacopies,especially to preserve thesemantics of sys-
tem calls suchas read()andwrite(). TheseAPIs allow
applications to choosewhen andhow databuffersappear
in theiraddressspaces. Even with in-kernelapplications
(suchasNFS),complete copy avoidanceis noteasy.

Several OSdesignshavebeenproposedto support tra-
ditionalAPIsand kernel structureswhile avoidingall un-
necessary copies. Forexample, Brustoloni [4, 5] hasex-
ploredseveral solutions to theseproblems.

Nevertheless, copy-avoidance designs have not been
widely adopted, due to significant limitations. For ex-
ample, when network maximum segment size (MSS)



valuesaresmaller than VM pagesizes,which isoften the
case, page-remapping techniques are insufficient (and
page-remapping often imposesoverheads of its own.)
Brustoloni also points out that “many copy avoidance
techniques for network I/O are not applicable or may
even backfire if applied to file I/O.” [4]. Other designs
thateliminateunnecessary copies,suchas I/O Lite [15],
require theuseof newAPIs(andhenceforceapplication
changes). Dalton et al. [10] list someother difficulties
with single-copy techniques.

Remote Direct Memory Access (RDMA) offers the
possibil ity of sidestepping the problems with software-
based copy-avoidanceschemes. The NIC hardware(or
at any rate, software resident on the NIC) implements
theRDMA protocol. Thekernel or application software
registersbuffer regions via the NIC driver, and obtains
protectedbuffer reference tokenscalled region IDs. The
software exchanges theseregion IDs with its connection
peer, via RDMA messages sentover the transport con-
nection. Special RDMA messagedirectives (“verbs”)
enable a remote system to reador write memory regions
named by the region IDs. The receiving NIC recog-
nizesandinterprets thesedirectives,validatestheregion
IDs, andperformsprotecteddatatransfersto or from the
namedregions.1

In effect,RDMA providesthesamelow-overheadac-
cessbetween storageand memory currently providedby
traditionalDMA-based diskcontrollers.

(Somepeoplehaveproposedfactoringan RDMA pro-
tocol into two layers. A Direct DataPlacement (DDP)
protocol simply allows a sender to causethe receiving
NIC to placedata in theright memorylocations.To this
DDPfunctionality, a full RDMA protocoladdsaremote-
readoperation: systemA sends a messageto system B,
causing theNIC at B to transferdatafrom oneof B'sbuf-
fers to oneof A's bufferswithout waking up the CPUat
B. David Black [3] arguesthata DDP protocol by itself
canprovidesufficient copy avoidance for many applica-
tions. Most of thepoints I wil l make about RDMA also
apply to aDDP-only approach.)

An RDMA-enabled NIC (RNIC) needsitsown imple-
mentation of all lower-level protocols, sinceto rely on
the host OS stack would defeat thepurpose. Moreover,
in order for RDMA to substitute for hardwarestoragein-
terfaces, it mustprovidehighly reliabledatatransfer, so
RDMA mustbelayered over a reliabletransport such as
TCP or SCTP[22]. This forcesthe RNIC to implement
thetransport layer.

Therefore, offloading the transport layer becomes
valuable not for its own sake, but rather because that
allows offloading of the RDMA layer. And offloading
the RDMA layer is valuable because,unlike traditional
TCPapplications,RDMA applicationsarelikely to usea
relatively small number of low-latency, high-bandwidth

transportconnections, precisely the environment where
TCP offloading might be beneficial. Also, RDMA al-
lows the RNIC to separate ULP data from ULP con-
trol (i.e., headers)andthereforesimplifies the received-
buffer placementproblemsof pureTCPoffload.

For example, Magoutis et al. [13] show that the
RDMA-based Direct AccessFileSystemcanoutperform
even azero-copy implementation of NFS,in partbecause
RDMA alsohelpsto enableuser-level implementationof
the file system client. Also, storage accessimplies the
useof largeULP messages,which amortize offloading's
increased per-packetcostswhile reapingthereducedper-
byte costs.

Although muchof the work on RDMA hasfocussed
on storagesystems, high-bandwidth graphics applica-
tions (e.g., streaming HDTV videos) have similar char-
acteristics. A video-on-demand connection might use
RDMA both at theserver (for accessto thestored video)
andat theclient(for rendering thevideo).

4 Implicat ions for operating systems
BecauseRDMA is explicitly a performanceoptimiza-

tion, not a sourceof functionalbenefits, it canonly suc-
ceedif its design fits comfortably into many layersof a
completesystem:networking,I/O,memory architecture,
operating system, andupper-level application. A misfit
with anyof theselayerscould obviateany benefits.

In particular, anRNIC design done without any con-
sideration for thestructuresof realoperatingsystemswill
not deliver goodperformanceandflexibility. Experience
from an analogouseffort, to offloadDEScryptography,
showed that overlooking the way that software wil l use
thedevice can eliminatemuch of thepotential perform-
ancegain [12]. Good hardwaredesign is certainly not
impossible, but it requiresco-development with the op-
erating systemsupport.

RDMA aspects requiring such co-development in-
clude:

Getting the semantics right: RDMA introduces many
issues relatedto buffer ownership, operation com-
pletion, and errors. Members of thevariousgroups
trying to designs RDMA protocols (including the
RDMA Consortium [19] and the IETF's RDDP
Working Group [20]) have had difficulty resolving
many basic issuesin thesedesigns. Thesedisagree-
ments might imply the lack of sufficiently mature
principles underlying the mixed use of remotely-
andlocally-managedbuffers.

OS-to-RDMA interfaces: Theseinterfaces include, for
example, buffer allocation; mapping andprotection
of buffers;andhandlingexceptionsbeyondwhat the
RNIC can deal with (such as routing andARP in-
formation for anewpeer address).

Application-to-RDMA interfaces: These interfaces



include, for example, buffer ownership; notification
of RDMA completion events; and bidirectional
interfacesto RDMA verbs.

Network configuration and management: RNICs
wil l require IP addresses, subnet masks, etc.,
and wil l have to report statistics for use by net-
work management tools. Ideally, the operating
systemshould provide a “single system image”
for network management functions, even though
it includes several independentnetwork stack
implementations.

Defensesagainst attacks: an RNIC acts as an exten-
sion of the operating system's protection mechan-
isms,andthusshould defendagainstsubversionsof
thesemechanisms. The RNIC could refuseaccess
to certainregionsof memoryknown to store kernel
codeor data structures,except in narrowly-defined
circumstances(e.g., bootstrapping).

SincetheRNIC includesaTCPimplementation,there
wil l betemptationto usethatasapureTOEpath for non-
RDMA TCP connections, instead of the kernel's own
stack. This temptation mustbe resisted,becauseit wil l
lead to over-complex RNICs, interfaces, and host OS
modifications. However, an RNIC might easily support
certain simple featuresthat have been proposed[5] for
copy-avoidance in OS-based network stacks.

5 Difficult ies
RDMA introducesseveral tricky problems,especially

in theareaof security. Prior storage-networking designs
assumeda closed,physically secure network, but IP-
basedRDMA potentially leaves a hostvulnerable to the
entire world.

Offloading the transport protocol exacerbatesthe se-
curity problem by adding more opportunities for bugs.
Many (if not most)security holesdiscovered recently are
implementation bugs,not specification bugs. Even if an
RDMA protocol design canbe shown to besecure,this
doesnot imply that all of its implementationswould be
secure. Hackersactively find and exploit bugs,andan
RDMA bug could be muchmoreseverethantraditional
protocol-stack bugs, because it might allow unbounded
and uncheckedaccessto hostmemory.

RDMA security therefore cannot be provided by
sprinkling someIPSec pixie dust over the protocol; it
wil l require attention to all layers of thesystem.

The useof TCP below RDMA is controversial, be-
causeit requires TCP modifications (or a thin interme-
diatelayer whoseimplementation is entangled with the
TCP layer) in order to reliably mark RDMA message
boundaries. While SCTPis widely acceptedas inher-
ently better than TCP as a transport for RDMA, some
vendors believe that TCP is adequate, and intend to
shipRDMA/TCPimplementationslongbeforeoffloaded

SCTPlayers are mature. This paper's main point is not
that TCP offload is agood idea, but rather that transport-
protocol offload is appropriate for RNICs. TCP might
simply represent the best available choice for several
years.

6 Conclusions
TCP offloadhas been“a solution in searchof a prob-

lem” for several decades. This paperidentifies several
inherent reasons why general-purposeTCP offload has
repeatedly failed. However, ashardwaretrendschange
the feasibili ty andeconomicsof network-based storage
connections, RDMA wil l becomea significant and ap-
propriate justification for TOEs.

RDMA's remotely-managednetwork bufferscould be
an innovation analogous to novel memory consistency
models:anattemptto focuson necessary featuresfor real
applications, giving up the simplicity of a narrow inter-
facefor thepotential of significant performance scaling.
But as in thecaseof relaxedconsistency, we may see a
period wherevariants areproposed,tested, evolved, and
sometimes discarded. The principles that must be de-
veloped aresquarelyin thedomain of operating systems.

Acknowledgments
I would like to thank David Black, Craig Partridge,

andespecially Jeff Chase, aswell as theanonymousre-
viewers, for their helpful comments.

References
[1] B. S.Ang. An evaluationof anattemptatoffloading

TCP/IP protocol processing onto an i960RN-based
iNIC. Tech.Rep.HPL-2001-8,HPLabs,Jan.2001.

[2] G. Banga and J. C. Mogul. Scalable kernel
performance for Internet servers under realistic
loads. In Proc. 1998 USENIXAnnual Technical
Conf., pages 1–12, New Orleans,LA, June1998.
USENIX.

[3] D. Black. Personalcommunication, 2003.

[4] J. Brustoloni. Interoperation of copy avoidance in
network and file I/O. In Proc. INFOCOM '99,
pages534–542,New York, NY, Mar. 1999. IEEE.

[5] J.Brustoloni andP. Steenkiste.Effectsof buffering
semantics on I/O performance. In Proc. OSDI-II ,
pages277–291,Seattle, WA, Oct. 1996. USENIX.

[6] J. S. Chase. High PerformanceTCP/IP Network-
ing (MahbubHassan andRajJain, Editors),chapter
13, TCPImplementation. Prentice-Hall. In prepar-
ation.

[7] J.S.Chase,A. J.Gallatin, andK. G. Yocum. End-
system optimizations for high-speed TCP. IEEE
Communications, 39(4):68–74, Apr. 2001.



[8] G. Chesson. XTP/PEoverview. In Proc.IEEE13th
Conf. on Local Computer Networks, pages 292–
296, Oct. 1988.

[9] D. D. Clark, V. Jacobson, J. Romkey, and H. Sal-
wen. An analysis of TCP processing overhead.
IEEE Communications Magazine, 27(6):23–29,
June1989.

[10] C. Dalton, G.Watson,D. Banks, C. Calamvokis,
A. Edwards,andJ. Lumley. Afterburner:Architec-
tural support for high performanceprotocols. IEEE
Network Magazine, 7(4):36–43,1995.

[11] V. Jacobson.4BSD TCPheader prediction. Com-
puter Communication Review, 20(2):13–15, Apr.
1990.

[12] M. Lindemann and S. W. Smith. Improving DES
coprocessor throughput for short operations. In
Proc. 10th USENIX Security Symp., Washington,
DC, Aug. 2001.

[13] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremes-
inghe,andE. Gabber. Structure and performance
of theDirect AccessFile System. In Proc.USENIX
2002 Annual Tech.Conf., pages 1–14, Monterey,
CA, June 2002.

[14] M. O'Dell. Re: how bad anideais this? Message
onTSV mailing list,Nov. 2002.

[15] V. S.Pai, P. Druschel, andW. Zwaenepoel. IO-Lite:
a unified I/O buffering and caching system. ACM
Trans.Computer Systems, 18(1):37–66,Feb. 2000.

[16] C. Partridge.Re:how bad anideais this? Message
onTSV mailing list,Nov. 2002.

[17] C. Partridge.Personalcommunication, 2003.

[18] J. B. Postel. Transmission Control Protocol. RFC
793, Information SciencesInstitute, Sept. 1981.

[19] RDMA Consortium.
http://www.rdmaconsortium.org.

[20] Remote Direct Data Placement Working
Group. http://www.ietf.org/html.charters/rddp-
charter.html.

[21] P. Sarkar, S. Uttamchandani,and K. Voruganti.
Storageover IP: Does hardware support help? In
Proc. 2nd USENIX Conf. on File and Storage
Technologies, pages231–244, SanFrancisco, CA,
March 2003.

[22] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang,andV. Paxson. StreamControl Transmis-
sionProtocol.RFC2960,Network WorkingGroup,
Oct.2000.

[23] T. Strayer. XpressTransport Protocol, Rev. 4.0b.
XTP Forum, 1998.

Notes

1Much of this paragraphwasadapted, with permis-
sion,from aforthcomingbook chapter by Jeff Chase[6].


