A Case Study of Web Server Benchmarking
Using Parallel WAN Emulation

Carey Williamson, Rob Simmonds, Martin Arlitt

Department of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, AB, Canada T2N1N/

Abstract

This paper describes the use of a parallel discrete-event network emulator called
the Internet Protocol Traffic and Network Emulator (IP-TNE) for Web server
benchmarking. The experiments in this paper demonstrate the feasibility of high-
performance WAN emulation using parallel discrete-event simulation techniques
on a single shared-memory multiprocessor. Our experiments with an Apache Web
server achieve up to 8000 HTTP/1.1 transactions per second for static document
retrieval across emulated WAN topologies with up to 4096 concurrent Web/TCP
clients. The results show that WAN characteristics, including round-trip delays,
packet losses, and bandwidth asymmetry, all have significant impacts on Web server
performance, as do client protocol behaviours. WAN emulation using the IP-TNE
enables stress testing and benchmarking of Web servers in ways that may not be
possible in simple LAN test scenarios.

Key words: Network emulation, Web performance, TCP/IP, WAN emulation

1 Introduction

Network emulation is a hybrid performance evaluation methodology that com-
bines aspects of experimental implementation with aspects of simulation (or
even analytical) modeling. This approach has received increasing research at-
tention in recent years [14,16,25], as researchers address large, complex, and
challenging Internet performance problems [3,4,6-8,10].

Email address: {carey,simmonds,arlitt}@cpsc.ucalgary.ca
(Carey Williamson, Rob Simmonds, Martin Arlitt).

Preprint submitted to Elsevier Science 3 October 2002

The network emulation approach offers a flexible, controllable, and repro-
ducible environment for performance experiments. It enables controlled exper-
imentation with end-user applications (e.g., Internet gaming, video streaming)
without facing the transient behaviours of the Internet. More importantly, em-
ulation enables experimentation with a wide range of network and workload
configurations. As indicated by Nahum et al. [25], the properties of a Wide-
Area-Network (WAN) environment can have significant impact on Internet
protocol behaviours and Web server performance. Testing in a wide range of
WAN scenarios can provide greater confidence in the robustness of a server or
application prior to Internet deployment [19].

In this paper, we focus on Web server benchmarking using the Internet Proto-
col Traffic and Network Emulator (IP-TNE) [30]. The IP-TNE is built using a
parallel discrete-event simulation (PDES) kernel, enabling high-performance
WAN emulation. The IP-TNE provides a detailed simulation model of an ar-
bitrary IP internetwork WAN topology. Internet hosts can send IP packets to
other hosts, whether real (on the Internet) or virtual (within the simulated
WAN), via the emulator. Similarly, virtual hosts within the emulator can send
(real) IP packets to other (real) hosts on the Internet. The translation of pack-
ets between real and simulated Internet environments is accomplished through
a technique similar to “IP masquerading”, carefully implemented to provide
high-performance packet reading and writing at Gigabit Ethernet rates [13].

The purpose of this paper is to demonstrate parallel network emulation us-
ing the IP-TNE. We use Web server benchmarking as a case study, for three
reasons. First, it demonstrates the packet-handling and throughput capabil-
ities of the IP-TNE as a Web server workload generator. Second, it serves
to validate prior results [25] highlighting the impacts of WAN conditions on
Web server performance. Third, our study demonstrates that WAN emulation
using a single computer is feasible for Web server benchmarking.

Figure 1 provides an illustration of our approach to WAN emulation for Web
server benchmarking. Rather than following the traditional “centralized” ap-
proach in Figure 1(a), or the “shim” approach [25,29] in Figure 1(b), we use the
approach in Figure 1(c), wherein the clients themselves are emulated within
the IP-TNE. This approach has several advantages. First, it reduces the equip-
ment required in the experimental setup, and eliminates the need for elaborate
synchronization of multiple client machines in the experiments. Second, it pro-
vides complete control over the client workload: we can model homogeneous
or heterogeneous clients, and we can completely specify their HT'TP and TCP
behaviours [18,22,23]. Finally, this approach provides a fuller demonstration
of the performance capabilities of the IP-TNE. Nahum et al. [25] argue that
the approach in Figure 1(a) is not scalable for Web server benchmarking, and
thus recommend the approach in Figure 1(b). We demonstrate via the IP-
TNE example that the (more aggressive) approach in Figure 1(c) is feasible

) Client1
Client1

Client?2 Client2

Web
Web Server

Server
() Clent
Qe C‘m ¢

(b) WAN Emulation

WAN Emulation
@

W(%SV Emulation

Fig. 1. Possible Approaches to WAN Emulation: (a) Traditional “Centralized” Ap-
proach; (b) “Shim” Approach; (¢) Our Approach Using IP-TNE

(and scalable enough) for Web server benchmarking. This is one of the main
contributions of our paper.

The remainder of this paper is organized as follows. Section 2 briefly discusses
related work on Web server performance and network emulation. Section 3
describes the IP-TNE. Section 4 presents the experimental methodology for
our WAN emulation experiments, and Section 5 presents the results from our
experiments. Finally, Section 6 concludes the paper, and describes ongoing
work.

2 Related Work

This section provides a brief discussion of related work on network emulation
and Web server benchmarking.

2.1 Network Emulation

IP-TNE is not the first system to provide network emulation. NISTnet [16],
DummyNet [29], and ns-2 [14] all provide network emulation functionality.
NISTnet works by adding random delays, losses, or reordering to an IP packet
stream en route from its source to its destination. Similar functionality is pro-
vided by DummyNet, which serves as a “shim” layer in the protocol stack
to alter the structure of inbound and outbound packet streams. The ns-2 ap-
proach, like IP-TNE, models interactions between packets routed through the
emulator and simulated packet events in the emulator. However, the execution-
time performance of ns-2 often suffers on large networks.

The primary advantage of the IP-TNE approach to network emulation is fast
execution-time performance, due to efficient implementation of the simula-
tion kernel. Furthermore, IP-TNE can run in parallel on a shared-memory
multiprocessor. While there are efforts underway to make ns-2 run in paral-
lel [27,28], to the best of our knowledge these projects are aimed primarily at

improving scalability of network models that can be simulated [27], and the
inter-operability of multiple simultaneous simulations (e.g., federated simula-
tions [28]). Our focus is on the execution-time performance for modest-sized
network models, which are still of practical interest to the users of an emulator.
We believe that the IP-TNE offers significant advantages for WAN emulation,
which we demonstrate through a “case study” of Web server benchmarking.

2.2 Web Server Benchmarking

There are many tools available for Web server benchmarking: ApacheBench [1],
GEIST [20], httperf [24], s-client [7], SPECWeb [32], SURGE [8], WebBench [34],
and WebStone [35], to name a few. These tools are often used on commodity
client workstations to generate synthetic request streams to a Web server in a
captive test environment. By varying the client workload, these benchmarks

can stress different aspects of the Web server implementation, and identify
performance bottlenecks.

Many of these Web benchmarking tools are used primarily in local-area net-
work (LAN) environments. A LAN typically offers a dedicated test environ-
ment, enabling reproducible and controllable experiments. Such a LAN en-
vironment often consists of homogeneous clients, each with high-bandwidth,
low-latency access to the Web server.

Many interesting Web server performance problems manifest themselves only
in a heterogeneous wide-area network (WAN) environment [3,4,6,10,11]. This
observation highlights the need for WAN testing of Web servers for robustness
and performance. Nahum et al. [25] applied WAN emulation in their WASP
(Wide-Area Server Performance) test environment, by using a DummyNet [29]
“shim” layer in the protocol stack of the client machines to model WAN delays
and packet losses. Their results demonstrate the effects of round-trip delays
and packet losses on Web server performance, and identify performance issues
that are not apparent in simple LAN test scenarios (e.g., advantages of TCP
SACK [25]).

Our work complements that of Nahum et al. in several ways. First, we demon-
strate that a “centralized” approach to WAN emulation is feasible, through
parallel simulation techniques. Second, the IP-TNE provides a more detailed
approach to WAN emulation that can more faithfully reproduce wide-area In-
ternet behaviours (e.g., queueing, congestion, packet reordering, packet losses,
and IP fragmentation). Third, we confirm several of their observations about
the impacts of WAN conditions on Web server performance. Finally, we ex-
tend their work by considering several scenarios not explicitly studied in their
paper (e.g., heterogeneous RTTs, asymmetric networks, HTTP/1.1).

3 IP-TNE: Internet Protocol Traffic and Network Emulator

The Internet Protocol Traffic and Network Emulator (IP-TNE) [30] is a com-
puter network emulator that uses a fast parallel discrete-event simulation
(PDES) kernel called TasKit [37]. This section provides a very brief overview
of the IP-TNE and its key components. Additional details regarding IP-TNE
and TasKit are provided in earlier papers [13,30,33,37].

3.1 Architectural Overview

IP-TNE is based on an IP network simulator called the Internet Protocol Traf-
fic and Network (IP-TN) simulator, which uses the TasKit parallel simulation
kernel [33,37]. IP-TN models network events at the IP packet level. For use
with IP-TNE, methods have been added to IP-TN to handle real packet data
within the modeled network. Also, TasKit was extended to enable real-time
interaction, and an I/O module added to read packets from and write packets
to a real network.

Figure 2 shows the main components of the IP-TNE. The IP-TN network
simulator (on the left in Figure 2) supports parallel execution on a shared-
memory multiprocessor. The middle part of the diagram in Figure 2 shows
the I/O module. This module handles the translation of IP packets between
the simulated network within IP-TN and the real network (on the right in
Figure 2). An address mapping table is used to convert between physical IP
addresses on the real network and the internal IP addresses used for endpoint
hosts. Each endpoint host represents one physical host on the real network.
Only the TP packets sent to and from the endpoint hosts require handling by
the emulator; packets exchanged between simulated hosts stay within IP-TN,
and packets exchanged between real hosts stay on the real network. A separate
thread is used for reading packets from the physical network. On computers
with multiple network interfaces a separate thread can be used to read packets
from each interface.

3.2 IP Packet Handling

In order to read packets into the simulator, a socket needs to be opened for
each interface connecting IP-TNE’s host computer to a network. This may be a
packet socket or a packet filter socket, depending on the operating system, and
requires superuser access privileges on Unix systems. The portable PCAP [26]
library could be used for packet reading, though we currently use a simple
packet reader that just performs the tasks required by IP-TNE [13].

IP-TN / TasKit I/O Module LAN Workstations/Servers

Simulated Host O .~

Simulated Router] ’/ b Reader D C]
Network Link —_— 1 1
ework Address Mapping Thread .

Cluster Task [Table I

o Input Event
7 cupon () e O

' Hosts Generator 1 1
f O I '|
O He -~

| l G
I ouou .
3 pacing(clj)ck L~ - ﬁ

]

RT-Task

Fig. 2. Architecture of Internet Protocol Traffic and Network Emulator (IP-TNE)

The packet reader can read from interfaces set to promiscuous or non-promiscuous
mode. One advantage of running with the interface in promiscuous mode is
that a virtual router address and fictitious MAC address can be used. Filter-
ing packets based on the fictitious MAC address can be faster than filtering
for packets routed to particular networks. This also avoids the host operating
system attempting to route packets if routing is enabled.

Writing packets back to the network requires the use of a raw socket. This
allows packet headers to be written directly by IP-TNE rather than being
added by the operating system. This is important since IP-TNE needs to
make packets appear as if they were from real hosts other than the computer
running the emulator. Before a packet is written out, a checksum has to be
computed and inserted into the header. For packets that are generated within
the emulator, additional checksums may have to be computed and inserted

into the header. For example, a TCP packet generated within the emulator
requires a TCP checksum to be added to the TCP header.

Further details on the implementation of packet reading appear in an earlier
paper [13]. That paper also includes a performance comparison of four possible
approaches to packet reading. For the experiments performed for this paper,
a kernel packet filter socket was used with the network interface running in
promiscuous mode.

3.8 IP Model

The IP-TNE has detailed modeling of the IPv4 protocol. Each host and net-
work interface is assigned its own virtual IP address, to provide the most
efficient routing. Within the IP-TNE, the IP packet headers carry virtual ad-
dresses in both the IP source address and the IP destination address fields.
The endpoint object provides the translation between real TP addresses and
virtual IP addresses, using the [P address mapping table. At each router, the

TTL field in the IP packet header is decremented. Packets that traverse net-
works with different Maximum Transmission Unit (MTU) sizes undergo IP
fragmentation, if necessary, at the router between these networks. Checksums
are computed for each new fragment generated.

The IP-TNE also supports ICMP (Internet Control Message Protocol) gener-
ation. The ICMP error messages (e.g., “host unreachable”, “network unreach-
able”) are useful for debugging an emulated WAN topology. The “echo reply”,
“T'TL timeout”, and “port unreachable” messages enable the use of ping and
traceroute, which are useful for verifying that the emulated WAN topology
is defined and working properly. Also, the “fragmentation required but DF
set” message enables path MTU discovery, such as performed by tracepath,
as well as more complex analysis of the modeled network using pathchar [17].

3.4 TCP Model

The TCP clients in the IP-TNE use a socket-based BSD TCP model. The
model includes TCP’s three-way handshake for connection setup (SYN and
SYN/ACK handshake) and close (FIN and FIN/ACK). The client models
support full bi-directional exchange of data and ACKs, using TCP’s sliding
window flow control and congestion control mechanisms (e.g., slow start, con-
gestion avoidance), sequence numbers, acknowledgments (ACKs), and retrans-
mit timers for the detection and retransmission of lost packets. Each host uses
a new (sequentially assigned) port number for each new TCP connection.
Up to 8 concurrent (parallel) TCP connections from each client are currently
supported.

3.5 HTTP Model

The HTTP model in IP-TNE supports both HTTP /1.0 and HTTP/1.1 [9,23].
The model is flexible to allow either open-loop (as in httperf [24]) or closed-
loop workload generation. In this paper, we use the closed-loop version: upon
the successful completion of one HTTP “GET” transaction, clients initiate the
next transaction. A random think time (set to 0 in most of our experiments)
can be used before initiating the next transaction with the server.

The HTTP /1.1 model provides additional functionality beyond the basic HTTP /1.0
protocol model, such as persistent connections and pipelining [23]. Multiple
HTTP transfers are permitted over the same TCP connection, either serially
(persistent connection) or in a pipelined fashion (pipelined persistent connec-
tion). A parameter to the model specifies the maximum number of HTTP

requests allowed before the TCP connection is closed. Either endpoint can
initiate closing of the persistent connection.

For space reasons, the experiments in this paper focus on HTTP/1.1 only.
Experiments with a simplified HTTP/1.0 model are described in an earlier
(unpublished) technical report [31].

4 Experimental Methodology

This section describes the methodology for the network emulation experi-
ments, including the experimental setup, network model, experimental design,
performance metrics, and validation of the IP-TNE.

4.1 Experimental Setup

The experiments in this paper were conducted using two Compaq ES40 en-
terprise servers. Each ES40 has four Alpha 667 MHz Ev67 processors. Each
computer is configured with 4 GB RAM and an 18 GB disk (though the disk
is not central to the experiments). The host operating system is Compaq’s
Tru64 (version 5.1A).

The two Compaq ES40’s are directly connected by a dedicated 1 Gbps! Eth-
ernet link. The default MTU size for the physical network interface is 9000
bytes (the “jumbo frame” size supported by Gigabit Ethernet), though we
set the MTU to 1500 bytes. The TCP clients in IP-TNE negotiate a smaller
Maximum Segment Size (MSS) to use as part of TCP connection setup. An
MSS of 536 bytes is used in most of our experiments.

The Internet Protocol Traffic and Network Emulator (IP-TNE) runs on one of
the Compaq ES40 computers. The IP-TNE is configured to run using between
2 and 4 threads depending on the workload model. One thread is used to
read packets from the network interface. The network simulator runs using
1 to 3 threads, with more threads being employed for larger models. These
threads handle all packet-level events (e.g., client request generation, packet
creation, checksumming, transmission, packet arrival, queueing, routing, ACK
generation) as well as handling the job of writing packets out of the emulator.

I In this paper, network capacity and network throughput are expressed in bits per
second (bps). Note that 1 Kbps = 102 bps, 1 Mbps = 10° bps, and 1 Gbps = 10?
bps. Storage sizes, on the other hand, are expressed in bytes (B). For example, 1
kilobyte (KB) = 1024 bytes, 1 Megabyte (MB) = 1,048,576 bytes, and 1 Gigabtye
(GB) = 1,073,741,824 bytes.

The Web server in our experiments runs on the other ES40, and makes use
of all four available processors. The Web server software is Apache (version
1.3.23), which is widely used on today’s Internet [1,25]. We have conducted
preliminary experiments with the Flash and TUX Web servers on Linux as
well, but for space reasons, we restrict our discussion to the Apache experi-
ments in this paper.

Apache is a process-based HTTP server, which uses child processes to serve
incoming HTTP requests. The number of processes is configurable, though
processes can be created or destroyed dynamically based on incoming request
load. The parent HT'TP server process runs as a root-owned process, so that it
is not subject to the per-user constraints on the maximum number of processes
created or file descriptors used by the server.

There are many configuration parameters for the Apache Web server. These
parameters include the minimum and maximum number of processes to create,
and the maximum number of requests to dispatch to each child process. Max-
Clients was set to allow 128 connections to be served simultaneously. MinS-
pareServers, MaxSpareServers and StartServers were also set to 128 to avoid
dynamic process creation during each experiment. MaxRequestsPerChild was
set to 0, representing “infinity”. These configuration choices were made simply
to make results as repeatable as possible; we have not yet had the chance to
evaluate the ability of Apache to react dynamically to sudden changes in load.
Support for memory-mapped files (mmap) was enabled. The Web server was
restarted between each experiment.

4.2 Network Model

In this paper, we use the IP-TNE to model an internetwork of Web clients
accessing an Apache Web server. For simplicity, we focus on a regular topology
that is easy to parameterize and use for workload generation. The network
topology definition is generated automatically using a simple script written
in the ANML network modeling language [21]. Other network topologies can
easily be constructed in a similar fashion.

A representative example of our emulated WAN topology appears in Figure 3.
The internetwork consists of N (1 < N < 16) subnetworks, where each sub-
network consists of H (1 < H < 1024) hosts (clients) connected to a switch
(S) via a 100 Mbps link. The switch in turn is connected to a router (R) on
the backbone network.

The routers along the backbone network are connected in series, as shown in
Figure 3 for N = 4. The emulated backbone network capacity is 1 Gbps, the
same as the physical link capacity to and from the Web server. The leftmost

EMULATED WAN TOPOLOGY

N SUBNETWORKS

Apache 1 Ghps 1 Ghps
Web
Server

Compaq ES-40

H CLIENT HOSTS
PER SUBNETWORK

Compaq ES-40
Fig. 3. Emulated WAN Topology for Web Server Benchmarking Experiments

router in the modeled backbone network connects to the external Internet
(i.e., the Web server, in our experiments). An endpoint object (not shown in
the diagram) is used in IP-TNE to represent this point of attachment to the
external network.

The simple, linear topology in Figure 3 makes it easy to control the round-trip
time (RTT) for each client in the network. The RTT value has an important
influence on the TCP protocol, and thus on Web server performance. The
regular topology also makes it easy to control the number of hops between
each client and the Web server. Each data packet received by the IP-TNE
traverses one or more of the simulated routers on the way to the destination
client, and each ACK generated by the client traverses the reverse path on its
way to the Web server. The number of simulation events per IP packet sent
or received thus increases with the number of subnetworks in the modeled
topology.

In all the experiments in this paper, each subnetwork is identical (though
the IP-TNE does not require this). That is, each subnetwork has the same
number of clients, the same access link capacity, the same low propagation
delay (0.1 millisecond) on local links, and the same MTU size. All clients
within a subnetwork have the same network access configuration. However,
clients in different subnetworks may have different distances from the Web
server, and thus different round-trip times. Clients farther from the Web server
are at a disadvantage for Web data transfer performance, because of the RTT
dependencies in the TCP protocol.

4.3 FExperimental Design

We consider seven main factors in our WAN emulation experiments: number of
clients, number of subnetworks, link capacity, propagation delay (i.e., round-

10

Table 1
Experimental Factors and Levels for WAN Emulation Experiments

Factor Levels
Number of Clients H 1,2,4,8...1024
Number of Subnetworks N 1,2, 4,8, 16

Client Access Link Capacity C (Mbps) | 1, 10, 100, 1000

Link Propagation Delay D (sec) 0.001, 0.002, 0.004 ... 0.032
MTU Size (bytes) 296, 576, 1500

Router Queue Size Q (KB) 2,4,8 ... 256

HTTP Protocol Version HTTP/1.0, HTTP/1.1
Concurrent TCP Connections 1,2, 4,8

HTTP Requests per Connection 1,2,4,8

Pipelining no, yes

trip time), MTU size, router queue size, and HTTP protocol model. Table 1
summarizes the factors and levels used in the experiments. Values shown in
bold font are the default values used.

A multi-factor experimental design is used, though only a subset of the ex-
periments are presented in this paper. The number of clients and the number
of networks are used to change the workload generated by the IP-TNE. The
RTT, link capacity, and MTU factors are used to assess the impacts of dif-
ferent WAN configurations and protocol models on Web server performance.
Finally, the router queue size factor is used to assess the impact of packet
losses on Web server performance.

4.4 Performance Metrics

The metrics used to quantify the performance of the Apache Web server fall
into three categories: server-centric metrics, network-centric metrics, and user-
centric metrics. The server-centric metric is HT'TP transaction completion
rate. The network-centric metrics include network throughput and packet loss
rate. The user-centric metrics include mean and median response times for
Web document transfers.

Within the IP-TNE, the client models are instrumented to record the times-

tamps for significant events at the TCP (e.g., SYN, SYN/ACK, FIN) and
HTTP layers (e.g., request issued, first byte of response received, last byte of
response received), as well as the sizes of requests and responses, including

11

HTTP header overhead. We also record information regarding the success or
failure of TCP and HTTP transactions (e.g., client close, server close, server
reset).

The statistics are stored in memory until the end of the emulation experiment,
to avoid undue interactions with the host operating system (e.g., network
traffic, disk I/O) [12]. Post-processing of this data is used to determine network
throughput, transaction rate, and mean and median document transfer times.
A subset of this information is usually available from the Web server access
log, but we disabled logging at the server (after our preliminary validation
experiments) to maximize Web server performance.

4.5 Validation

The validation of the IP-TNE in our Web benchmarking experiments focused
on the functional validation of the Apache Web server, the IP-TNE emulator,
and the Gigabit Ethernet network in between them. A primary focus was on
validating the performance statistics reported by the IP-TNE. Validation of
the IP-TN simulator itself is a separate ongoing process.

Our validation effort involved several steps. First, the netperf tool was used to
determine the network performance capabilities of the computers in our exper-
imental setup. The TCP_STREAM tests with netperf showed that user-user
throughputs of 990 Mbps were possible using one processor on each ES40,
for large transfers with a 9000-byte MTU and 1 MB send and receive socket
buffer sizes. The REQUEST_RESPONSE tests showed that 3900 transactions
per second were possible (100-byte request, 1024-byte response, 9000-byte
MTU, 600,000-byte send and receive socket buffer sizes, one processor on each
ES40). Second, the ApacheBench tool was used to assess the Web server’s per-
formance. These experiments showed that sustained loads approaching 4000
HTTP/1.0 transactions per second were achievable, for fixed-size 1 KB Web
document transfers, using all 4 processors. Finally, the tcpdump tool was used,
in concert with the IP-TNE, to study the network packet workload generated
to and from the emulator. This utility was vital in verifying the correct oper-
ation of the TCP and HTTP client models (e.g., three-way handshake, MSS
negotiation, TCP options processing, slow-start). Traces were collected for
fixed-size 1 KB Web document transfers. These results confirmed the max-
imum transaction rates identified by the httperf and ApacheBench exper-
iments. The network throughput results computed from the IP-TNE client
data were consistent with those calculated from the tcpdump trace.

These preliminary experiments establish confidence in the operation of the
IP-TNE, its Web workload generation process, and the client-side statistics

12

Time Series for 1 KB Web Document Transfers (H = 1) Time Series for 1 KB Web Document Transfers (N = 1)

700 T T T T T T 4000

o0 1 asoo | [/ e NN AT TN
3000 [/}
500 [i
2500 i}
400 | IH
2000 i

300 | 4 1500 Hi:

HTTP Transactions per Second
HTTP Transactions per Second

: i
200 1000 i/ |

100 |

0 [500 ff [

{ L L L L ~ L
0 L L L L L 0 20 40 60 80 100 120

0 20 40 60 80 100 120 Time in Seconds
Time in Seconds
H=128 —— H=32 H=8 ——— H=2 -
[N=16 —— N=8 ——— N=4 ——— N=2 N=1 -—-—-] Y — H=16 H=4 ---- H=1-

(a) (b)

Fig. 4. Illustration of Warmup and Steady-State Period for Emulation Experiments:
(a) Transaction Rate vs. Time (H = 1); (b) Transaction Rate vs. Time (N = 1)

reported by the IP-TNE.

5 Experimental Results

This section presents the results from our Web server benchmarking experi-
ments using WAN emulation. Section 5.1 discusses preliminary issues regard-
ing the warmup period and run-length for our emulation experiments. Sec-
tion 5.2 focuses on the impacts of the Web workload model on server per-
formance. Section 5.3 focuses on the impacts of the client model, including
concurrent and persistent connections. Section 5.4 focuses on the impacts of
WAN conditions on Web server performance. Section 5.5 summarizes our re-
sults.

5.1 Preliminaries: Warmup and Run-Length Issues

A preliminary set of experiments was conducted to determine appropriate
choices for warmup period and run-length for emulation experiments. These
experiments used a simple Web workload model with fixed-size 1 KB document
transfers.

Figure 4 presents the performance results for these experiments, using time
series plots of the HT'TP transaction rate achieved in each one second interval
of the experiment. Each line on the graphs presents results for a different
number of subnetworks (V) or clients (H) in the emulated WAN topology.

13

Figure 4(a) shows the HTTP transaction rate achieved using 1 KB transfers
when each of the N subnetworks (1 < N < 16) has a single client. The results
in this graph represent very light load on the Web server. The transaction
rate increases steadily from 160 per second to 640 per second as the number
of subnetworks is increased from N =1 to N = 16, since the total number of
clients increases.

Figure 4(b) shows how the transaction rate changes as the number of clients
is increased, for a WAN topology with a single subnetwork (N = 1). As the
number of clients is increased from H = 1 to H = 128, the transaction rate
increases from 160 per second to 3800 per second. The transaction rate grows
linearly with the number of clients, up to H = 32, but grows slowly thereafter
as the load begins to saturate the HT'TP server. The transaction rate is similar
for H = 64 and H = 128, representing server saturation.

The graphs in Figure 4 show that the warmup period required to reach steady-
state is brief (about 10 seconds), and that performance is fairly constant ?
beyond this point. These preliminary experiments suggest that a 2-minute
duration for emulation experiments is adequate ® for assessing Web server per-
formance. The remaining experiments in this paper use a 20-second warmup
period and 100 seconds for measurement data collection.

2 Two anomalies are evident in Figure 4(a). The first is the sharp dip at time
86 seconds in the plot for a single host on a single subnetwork. We have traced
this anomaly to an occasional packet reordering problem in a particular vendor’s
network interface card. The packet reordering confuses the TCP client, causing a
TCP timeout and retransmission after 800-900 milliseconds, and thus the drop in
transaction rate. The throughput dip is only evident for the single client case, since
it is unlikely that multiple clients encounter this problem at the same time. The
second anomaly is a periodic dip in transaction rates every 30 seconds. Analysis with
tcpdump shows unexplained delays of 30-40 milliseconds in packet activity every 30
seconds. We suspect either the network card or the smoothsync_age parameter in
the Tru64 operating system, but have not yet been able to pinpoint this. These
anomalies highlight the importance of running experiments long enough (e.g., more
than 30 seconds) to get a clear picture of server behaviour. They also highlight
the importance of fine-grain measurement of server behaviour (e.g., every 1 second
interval).

3 A shorter run length would eliminate the periodicity anomaly, but could miss
other phenomena such as memory leaks or running out of socket file descripters
(neither of which we have observed). The current choice of run length allows us to
generate all the data points for a graph like Figure 5(a) in about 2 hours.

14

Transaction Performance for 1 KB Web Document Transfers

Transaction Performance for 64 KB Web Document Transfers

4000

3500 -

3000

2500 -

2000

1500 -

HTTP Transactions per Second
(301
HTTP Transactions per Second

1000

500 -

I I I I I I I I
1 4 16 64 256 1024 4096 1 4 16 64

Total Number of Web Client Hosts Total Number of Web Client Hosts

I
256

[N=1 —=— N=2 —=— N=4 o N=8 —» N=16 ——a-—-] [N=1T —=— N=2 —=— N=4 o - N=8 =

(a) (b)
Fig. 5. Results for Fixed-Size Transfers: (a) 1 KB Transfers; (b) 64 KB Transfers
5.2 Effect of Web Workload Model

The experiments in this section focus on the performance impacts of the Web
workload model used. In particular, the experiments consider fixed-size and
variable-size Web document transfers. For simplicity, the experiments in this
section allow only a single HT'TP transaction on each TCP connection. The
discussion of persistent connections is deferred to Section 5.3.

5.2.1 Fixed-Size Transfers

The first set of experiments assesses the HI'TP transaction rate for fixed-
size Web document transfers. The number of clients (H) and the number
of subnetworks (N) are varied, to understand the relationship between the
emulated WAN model and the Web server workload.

Figure 5 presents the performance results from these experiments. Figure 5(a)
shows the average HT'TP transaction rate sustained over the duration of the
emulation experiment for 1 KB document transfers, as a function of the total
number of clients in the emulated WAN. Each data point in Figure 5(a) is
computed as the average transaction rate for the steady-state portion (i.e.,
ignoring the warmup period) of each experiment, as illustrated in Figure 4.
The results in Figure 5(b) are computed similarly, but for 64 KB document
transfers. Each line on the graphs presents results for a different number of
subnetworks in the emulated WAN topology.

Figure 5(a) shows that a single client (H = 1, N = 1) can generate a (rather
modest) sustained rate of 160 transactions per second to the Web server, for
1 KB transfers. This workload represents a network throughput of approxi-
mately 1.7 Mbps, including HTTP protocol overhead. The elapsed time for

15

each 1 KB transfer is approximately 6 milliseconds. This value includes the
overhead of TCP connection setup and termination for each transfer, plus
the request-response HTTP exchange (i.e., three round-trip times of approx-
imately 2 milliseconds each, on our emulated WAN topology). Figure 5(b)
shows the corresponding results for 64 KB transfers.

For a single subnetwork (N = 1) in the emulated WAN topology, the trans-
action rate roughly doubles as the number of clients is doubled (note the
logarithmic scale on the horizontal axis in these figures), up to about H = 32
clients. Beyond this point, the transaction rate flattens, reflecting a saturation
of the Web server at a rate of approximately 3800 transactions per second for
1 KB transfers. As the number of clients is increased further, the transaction
rate tends to decrease. For larger numbers of emulated subnetworks, a similar
trend occurs, with a performance plateau near 64 total clients, and a dropoff
in transaction rate after that point. Queueing delay at the server is the main
reason for the dropoff in transaction rate: the queueing delay increases the
response time for each transaction, which reduces the per-client transaction
rate in our closed-loop model. Similar observations apply for 64 KB trans-
fers, where the peak transaction rate achieved is 220 transactions per second,
representing a network throughput of 115 Mbps. The dropoff in performance
beyond 64 clients is less severe, since queueing delay is a small component of
the total transfer time for 64 KB documents.

One additional observation from Figure 5 is that the HT'TP transaction rate
decreases when a given number of clients is distributed across more and more
emulated subnetworks. For example, 16 clients on 1 network produce 2400
transactions per second for 1 KB transfers, while 16 networks each with 1 client
produce 600 transactions per second. The reason for this decrease in server
and network throughput is a combination of queueing delay and round-trip
time effects. The linear topology of the emulated WAN (see Figure 3) means
that the average client round-trip time increases as N grows larger. Larger
round-trip times increase the latency of a Web transaction; thus there are
fewer transactions completed per second by the closed-loop client models. In
addition, the linear topology of the emulated WAN tends to produce a bursty
request arrival process, particularly if the clients are synchronized initially,
and have similar transfer sizes. This burstiness contributes to queueing delays
at the server.

5.2.2 Variable-Size Transfers

This section studies the performance of the Apache Web server when presented
with a more general Web workload, with variable-size document transfers.
The workload for these experiments approximates that observed in real Web
server workloads [2]. We model a rather modest Web site with a total of 3000

16

Transaction Performance for Variable-Size Document Transfers Throughput Performance for Variable-Size Document Transfers

1400

©
o

©
=}

1200

~
o
T

1000 -

=}
=}

800

o
=}

IS
o
T

600

W
S

400 -

HTTP Transactions per Second

20 -
200

Throughput in Megabits per Second (Mbps)

10

I I I I I I I I
1 4 16 64 256 1024 4096 1 4 16 64

I I
256 1024 4096

Total Number of Web Client Hosts Total Number of Web Client Hosts
[N=1 —=— N=2 —=—- N=4 o N=8 . N=16 ——4--] [N=1T —=— N=2 —=— N=4 o N=8 - N=16 ——a-—]

(a) (b)

Fig. 6. Results for Variable-Size Transfers: (a) Transaction Rate; (b) Network
Throughput

Web objects, totalling approximately 30 MB of document storage space. The
median document size is 3600 bytes, the mean document size is 9963 bytes,
and the largest document size is 1.4 MB. The Web content is allocated in the
server file system using a hierarchical directory structure. The Web content is
created once, and used repeatedly in all experiments.

The synthetic workload is generated using the ProWGen proxy workload gen-
eration tool [15], but appropriately parameterized to model Web server work-
loads [2] rather than Web proxy workloads. The document sizes are modeled
using a log-normal body for the distribution, and a Pareto heavy tail (o = 1.2,
k = 10,000 bytes). File popularity follows a Zipf-like distribution, with a Zipf
slope of -0.8. Only static Web content is modeled.

Each client in the emulated WAN generates requests from the aggregate work-
load file, with clients mapped to requests using a simple modulo arithmetic
technique. Each client cycles through its assigned requests continuously during
an emulation experiment, with zero think time between requests.

Figure 6 presents the performance results from the experiments with variable-
size transfers. Figure 6(a) shows HTTP transaction rates, while Figure 6(b)
shows the corresponding network throughput results.

Figure 6(a) has the same general shape as Figure 5, though the vertical scales
are different. When the number of subnetworks is small, the HT'TP transac-
tion rate increases proportionally with the number of clients in the network,
until the Web server is saturated. The primary difference from Figure 5(a) is
that the peak occurs near 1200 HTTP transactions per second, rather than
3800 transactions per second for 1 KB transfers. The explanation for this
lower rate is the larger average document size in this workload. As a result,

17

HTTP transactions take longer to complete (on average), and there are fewer
completed transactions per second.

Two other observations are evident from Figure 6(a). First, the transaction
performance tends to decrease when clients are distributed across more sub-
networks. As observed earlier, this effect is due primarily to increasing average
round-trip times as the WAN topology grows with N. Second, the dropoff in
server and network throughput for the N = 16 subnetwork topology is less
pronounced than it was for 1 KB transfers. The larger average transfer size
is the primary reason for this. In addition, the randomness of transfer sizes
reduces the synchronization effects among client requests, leading to more
consistent transaction performance as load is increased.

Figure 6(b) shows the corresponding throughput results for the variable-transfer-
size experiment. For each number of subnetworks considered, the average net-
work throughput increases initially with the number of clients, and reaches a
peak of 90 Mbps. This throughput is roughly double that observed for the ex-
periments with 1 KB transfers, since the average transfer size is larger. TCP
can increase its congestion window to achieve higher throughput for larger
transfers.

5.3 FEffects of Client Model

The experiments in this section focus on the impacts of the client workload
model on Web server performance. In particular, we consider the impacts of
client think times, concurrent (parallel) TCP connections, persistent connec-
tions, and pipelining.

5.3.1 Think Time

A simple experiment was conducted to assess the impact of client think times
on the HTTP request workload. Intuitively, the use of a random think time
between HTTP requests will simply reduce the effective workload generation
rate from each client, thus requiring a larger number of clients to drive the
Web server to full load.

Figure 7 confirms this intuition. This experiment uses 1 KB transfers for clients
with a single HT'TP transaction per TCP connection, on a WAN topology with
N = 4 subnetworks. Exponentially distributed think times are used, with a
mean of 1 second. For comparison, the results for the default (zero think time)
model are also shown. These results demonstrate that the use of a non-zero
think time between requests dramatically reduces the client request generation
rate. For this reason, we use zero think time in remaining experiments to

18

Transaction Performance for 1 KB Web Document Transfers
3000

2500 -

2000 -

1500 [

1000 -

HTTP Transactions per Second

500 -

- P - I L
1 4 16 6 256 1024 4096
Total Number of Web Client Hosts

[think_time =0 sec —&5— think_time = 1 sec_—=—]

Fig. 7. Effect of Think Time in Client Model

maximize the workload generated per client. This choice means that we may
overestimate server performance in some scenarios, particularly with persistent
connections. However, this design choice simplifies our presentation of results.

5.3.2 Concurrent Connections

The TCP client models in IP-TNE allow multiple TCP connections to be
used simultaneously between the same client and server. This support for
concurrent (parallel) TCP connections is similar to that provided in most
Web browsers. A parameter in our model determines the maximum number
of concurrent TCP connections allowed per client.

Figure 8 shows the performance results for 4 concurrent connections per client,
for fixed-size transfers. Compared to the baseline case with a single TCP
connection per client (Figure 5), the results in Figure 8 show that there is
a general leftward shift of the performance curves. In other words, the peak
transaction rate is achieved with fewer clients than previously, since each client
has multiple concurrent TCP connections. For a single host on a single network
(H =1, N = 1), the transaction rate has increased by about a factor of 4
(e.g., from 160 transactions per second to 600 transactions per second, for
1 KB transfers). However, the peak throughput for the server is the same
as before: about 3800 transactions per second for 1 KB transfers, and 220
transactions per second for 64 KB transfers. These results show (as expected)
that adding concurrent TCP connections to our client models is essentially
equivalent to increasing the number of clients per subnetwork in the emulated
WAN topology.

19

Transaction Performance for 1 KB Web Document Transfers (4 Concurrent)

Transaction Performance for 64 KB Web Document Transfers (4 Concurrent)

4000 T T T T T

3500

3000

2500

2000

1500

HTTP Transactions per Second
HTTP Transactions per Second

1000
40 |-

500 I I I I I 20 I I I
1 4 16 64 256 1024 4096 1 4 16 64

Total Number of Web Client Hosts Total Number of Web Client Hosts

I
256

I
1024

4096

[N=1 —=— N=2 —=— N=4 o N=8 —» N=16 2] [N=1T —=— N=2 —=— N=4 o - N=8

.

N=16 -

—a——]

(a) (b)

Fig. 8. Results for Concurrent TCP Connections: (a) 1 KB Transfers; (b) 64 KB
Transfers

5.3.8 Persistent Connections

The next experiment varies the number of HT'TP requests that can be sent on
a T'CP connection before it is closed. The default in prior experiments was one
HTTP transaction per TCP connection. We now increase this limit, though
we maintain the restriction that the requests are sent serially (i.e., one after
the other, as HT'TP transactions complete). For simplicity, we consider only
fixed-size transfers.

Figure 9 presents the results when 8 requests are allowed on each persistent
connection. The results here show a dramatic increase in performance for 1 KB
transfers: transaction rates and network throughputs are 70% higher than in
the baseline case in Figure 5. The peak transaction rate is approximately 6500
transactions per second, and performance degrades slowly as the number of
clients continues to increase. Because the use of persistent connections avoids
the repeated setup and close of TCP connections, clients are able to achieve
much higher transaction rates for 1 KB transfers. There is no significant per-
formance advantage to persistent connections for 64 KB transfers, since TCP
connection setup time is a small component of the total transfer time.

5.3.4 Pipelining

The next experiment considers the pipelining feature of HT'TP/1.1. Multiple
requests can be sent on the same TCP connection before it is closed, and the
requests can be sent asynchronously with respect to the responses. Again, we
only consider fixed-size transfers.

Figure 10 presents the results for 8 pipelined requests on each persistent con-
nection. The results here show a further increase in performance for 1 KB

20

Transaction Performance for 1 KB Web Document Transfers (8 Regs/Conn)

Transaction Performance for 64 KB Web Document Transfers (8 Regs/Conn)

7000 T T T T T 250 T T T

6000

N
=}
s}

5000

-
o
=}

4000

3000

i
o
=1

2000

HTTP Transactions per Second
HTTP Transactions per Second

o
=}

1000

0 I I I

0 I I I I
1 4 16 64 256

I
256

I
1024

4096

4096 1 4 16 64
Total Number of Web Client Hosts Total Number of Web Client Hosts
[N=1 —=— N=2 —=—- N=4 o N=8 . N=16 ——&— | [N=1T —=— N=2 —=— N=4 o N=8 - N=16 —4- |

(a) (b)
Fig. 9. Results for Persistent Connections: (a) 1 KB Transfers; (b) 64 KB Transfers

Transaction Performance for 1 KB Web Document Transfers (8 Pipelined Regs)

Transaction Performance for 64 KB Web Document Transfers (8 Pipelined Regs)

4096

9000 T T T T T 250 T T T T T

8000 1
= 7000 B g 200 1
o o
O Y A e ——— . g
@ 6000 e 3
= . s
a . g 150]
@ 5000 g 2
8 E=]
S k=]
2 4000 b § 100
s s il
—= 3000 41 =
a o
= =
T 2000 g I 5 i

1000 1

0 I I I I I 0 I I I I I
1 4 16 64 256 1024 4096 1 4 16 64 256 1024
Total Number of Web Client Hosts Total Number of Web Client Hosts
[N=1 —=— N=2 —=—- N=4 o N=8 . N=16 ——&— | [N=1T —=— N=2 —=— N=4 o N=8 - N=16 —4- |

(a) (b)

Fig. 10. Results for Pipelined Persistent Connections: (a) 1 KB Transfers; (b) 64
KB Transfers

transfers: transaction rates and network throughputs are roughly double those
from the baseline case in Figure 5. While the qualitative shape of the curves in
Figure 10 is the same as before, the peak transaction rate for 1 KB transfers
is approximately 8000 transactions per second. The corresponding network
throughput is 80 Mbps.

These results show that the pipelining feature of HTTP /1.1 offers significant
performance advantages, particularly for short transfers across large WAN
topologies. The pipelining feature lessens the RT'T dependencies in the closed-
loop workload model, ameliorating the dropoff in server and network through-
put for 1 KB transfers as the number of clients is increased. The performance
benefits of pipelined persistent connections for 64 KB transfers are negligible.
In fact, pipelined connections degrade performance when the number of clients
is large.

21

Transaction Performance for Variable-Size Document Transfers (4 Regs/Conn)
1400

1200 -

1000 -

800 -

600

400 -

HTTP Transactions per Second

,A, »»»»»

200

0 PO S S | | 1
1 4 16 64 256 1024
Total Number of Web Client Hosts
delay = Ims —&— delay =4ms ----o-- delay = 16ms --4--
delay = 2ms ---#-—- delay = 8ms e delay = 32ms ---+--

(a)

Throughput in Megabits per Second (Mbps)

Throughput Performance for Variable-Size Document Transfers (4 Regs/Conn)

-
o
S

©
o

©
o

~
[S]
T

@
=}

o
=}

N
o

W
=}

20

e i L L
1 4 16 64 256

4096
Total Number of Web Client Hosts
delay = Ims —=— delay =4ms ----o-- delay = 16ms --4--
delay = 2ms ---m-—- delay = 8ms e delay = 32ms ---+--

(b)

Fig. 11. Effect of WAN Propagation Delay: (a) Transaction Rate; (b) Network

Throughput

5.4 Effects of WAN Characteristics on Web Server Performance

This section studies the performance of the Apache Web server as different
characteristics of the emulated WAN topology are changed. In these exper-
iments, clients use persistent connections with 4 HT'TP requests per TCP
connection. The Web workload with variable-size transfers is used.

5.4.1 Effect of Round-Trip Time

The first WAN experiment focuses on the impact of round-trip time (RTT) on
Web server performance. We choose the WAN topology with N = 4 subnet-
works (Figure 3) as a representative example, and vary the propagation delay
between subnetworks to study the impact on performance. Six values of link
propagation delay are considered: 1, 2, 4, 8, 16, and 32 milliseconds. For the
modeled WAN topology with N = 4 subnetworks, this results in client base
RTT values ranging from 2 milliseconds to 256 milliseconds.

Figure 11 presents the results from this experiment. As the link propagation
delay is increased, the curves for transaction rate and network throughput tend
to move downward, as expected. Again, the results show that the peak trans-
action rate achieved depends on the round-trip time in the emulated WAN,
and that the number of clients at which the transaction rate is maximized
depends on the RTT as well. In general, more clients are needed to drive the
Web server to its capacity as the RTT increases. These results are similar to
those reported by Nahum et al. [25], and are not discussed further here.

22

Transaction Performance for Variable-Size Document Transfers (4 Regs/Conn) Throughput Performance for Variable-Size Document Transfers (4 Regs/Conn)

©
=}

1200

~
=}

1000 -

-}
=}

800

o
=}

600

w
=}

400

HTTP Transactions per Second
N
o
T

200

Throughput in Megabits per Second (Mbps)
B
o

i
o
T

| Ereres L L L . L L L L
1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096
Total Number of Web Client Hosts Total Number of Web Client Hosts
1Mbps/IMbps —&— 256Kbps/1IMbps ----©--- 64Kbps/IMbps --4-- 1Mbps/IMbps —&— 256Kbps/IMbps ----o--- 64Kbps/IMbps --4--
512Kbps/1Mbps ---=--- 128Kbps/1Mbps . 512Kbps/iMbps ---=--- 128Kbps/1Mbps .

(a) (b)

Fig. 12. Effect of Network Asymmetry: (a) Transaction Rate; (b) Network Through-
put

5.4.2 Effect of Network Asymmetry

The next experiment focuses on the impact of bandwidth asymmetry [5] at the
client network access point, for the simple N = 4 subnetwork topology. This
scenario is constructed to model an ADSL (Asymmetric Digital Subscriber
Line) network. The downstream link capacity (to the client) is 1 Mbps, while
the upstream link capacity (from the client) is varied from 64 Kbps to 1 Mbps.

The asymmetric configuration is of interest since in some scenarios the up-
stream link can limit TCP performance [5]. While the packet transmissions by
our TCP clients are simply HTTP requests and TCP ACKs, which should not
stress the upstream link capacity, the delay or loss of an ACK on the reverse
channel can impede TCP congestion window growth for the server [5]. For ex-
ample, with an upstream link capacity of 64 Kbps, the normalized bandwidth
ratio [5] is 2.4 (i.e., if one 40-byte TCP ACK is sent for every 2.4 1500-byte
TCP data packets received, then the upstream and downstream links will be
“equally busy”).

Figure 12 presents the results from this experiment. The results show that
network asymmetry can limit Web server performance. For the asymmet-
ric network cases, the overall throughput of the Web server decreases. The
throughput drop is most pronounced for the asymmetric scenario with the 64
Kbps upstream link: the transmission and queueing delays for ACKs on this
path impede TCP transfer performance, leading to longer transfer times and
fewer transaction completions per second. These results indicate that band-
width asymmetry in a WAN can have a substantial impact on Web server
performance.

23

Table 2
Packet Loss Results for IP-TNE WAN Emulation Experiments (N = 4)

Total Number Router Queue Size
of Client Hosts 2 KB 4 KB 8 KB
4 0.2413% | 0.0666% | 0.0013%
8 0.2218% | 0.1444% | 0.0241%
16 0.2375% | 0.2245% | 0.0448%
32 0.2662% | 0.2769% | 0.1316%
64 0.2920% | 0.3400% | 0.2850%
128 0.4113% | 0.5295% | 0.6459%
256 0.9506% | 1.9817% | 0.9182%
512 6.3393% | 2.2179% | 1.1224%
1024 10.0216% | 2.3915% | 1.1355%
2048 12.4610% | 2.4845% | 1.0854%
4096 18.3911% | 2.4829% | 1.1111%

5.4.3 Effect of Packet Losses

The final experiment focuses on the impacts of packet losses on Web server
performance, for the WAN topology with N = 4 subnetworks. Rather than
define a link-level packet error model, we control packet loss by changing the
router queue size between the Web server and the emulated WAN topology. For
this experiment only, we set the backbone link capacity in the WAN topology
to 100 Mbps, and study packet losses at the outbound interface of the router
between the 1 Gbps physical link and the emulated 100 Mbps WAN backbone
link. This scenario produces temporally correlated packet drops at the router,
similar to the packet loss patterns observed in the Internet [36].

Table 2 summarizes the packet loss results observed for the different router
queue sizes considered in our experiments (2 KB to 8 KB). Packet loss rates
range from 0-18%.

Figure 13 presents the performance results from the WAN packet loss ex-
periment. As the router queue size is decreased, the overall level of packet
loss increases (see Table 2), and the HTTP transaction rate drops, as does
the network throughput. The mean and median client response times increase
when packet loss occurs, since timeouts and retransmissions are required at
the TCP layer to recover from lost packets, increasing document transfer time.
As a result, transfers take longer, and the closed-loop client model produces
lower server and network throughput.

24

HTTP Transactions per Second

1200

1000 -

800

600 -

400 -

200

Transaction Performance for Variable-Size Document Transfers

L L L T
4 16 64 256 1024
Total Number of Web Client Hosts

——————— Q=4KB o Q=2KB —o—|

(a)

Throughput in Megabits per Second (Mbps)

©
=}

~
o
T

=}
=}

o
=}

IN
S
T

w
=}

N
=}

-
o
T

Throughput Performance for Variable-Size Document Transfers

I I I
4 16 64 256
Total Number of Web Client Hosts

1024

——————— Q=4KB —o— Q=2KB

(b)

Fig. 13. Effect of WAN Packet Losses: (a) Transaction Rate; (b) Network Through-
put

Packet losses have a dramatic impact on TCP performance, and thus on the
workload seen by the Web server. These observations are consistent with those
of Nahum et al. [25], though the packet losses in our experiments are gener-
ated differently (i.e., router queue overflows instead of stochastic packet loss
models). Our model produces temporally correlated losses both within and
across TCP connections, improving upon the loss models in [25].

5.5 Summary of Results

This section presented our WAN emulation experiments for Web server bench-
marking. The WAN emulation experiments demonstrate the importance of
WAN characteristics, such as round-trip times and packet losses on Web
server performance. Several of our results confirm those reported by Nahum et
al. [25], though our results were produced using a different experimental ap-
proach. We thus provide independent validation of several of their observations
about wide-area Web server performance. These observations are augmented
with our new results regarding the impacts of HT'TP /1.1, and the asymmetric
network case. All of these factors can have significant impacts on Web server
performance in a wide-area network.

6 Conclusions

This paper has demonstrated the use of IP-TNE, a parallel discrete-event IP
network emulator, for Web server benchmarking. This work demonstrates that
a “centralized” approach to WAN emulation is feasible for Web server perfor-

25

mance testing. The IP-TNE emulator, using a single physical machine and net-
work interface, can generate adequate client workload to stress a production-
quality Web server, while also modeling the packet-level events required for
high-fidelity WAN emulation. The performance capabilities of the IP-TNE
come from a simulation kernel design that is optimized for parallel execution
on shared-memory multiprocessors, and from efficient mechanisms for packet
reading and writing at Gigabit Ethernet rates.

This work also reinforces prior observations that wide-area network conditions
have an important impact on Internet server performance [25]. We demon-
strate the impacts of propagation delays, bandwidth asymmetry, and packet
losses on Web server performance. We quantify these results using server-
centric and network-centric metrics. The results highlight the importance of
WAN testing, or at least WAN emulation, in Web server benchmarking.

Ongoing work focuses on larger-scale validation of the IP-TNE, and on its use
in a geographically-distributed experimental Internet testbed. We believe that
the IP-TNE offers immense potential for WAN emulation and evaluation of
network applications, including Web servers, Web proxies, media streaming,
wireless services, and Internet gaming applications. Our “to do” list of future
work includes testing with higher performance Web servers (e.g., Apache 2.0,
Flash, TUX) to find the upper bound of IP-TNE’s capability, and conducting
experiments with open-loop workloads, dynamic content, and SURGE. Use
of the IP-TNE for robustness testing (e.g., Denial-Of-Service attacks) is also
being considered.

Acknowledgements

Financial support for this research was provided by iCORE (Informatics Circle
of Research Excellence) and ASRA (Alberta Science and Research Authority)
in the Province of Alberta, and by the Natural Sciences and Engineering
Research Council of Canada, through NSERC Research Grant OGP0121969.
The authors are grateful to the anonymous reviewers for providing constructive
feedback on earlier versions of this paper.

The network emulation experiments described in this paper would not have
been possible without the Internet Protocol Traffic and Network Emulator (IP-
TNE) developed by the TeleSim research group at the University of Calgary.
Many people contributed to the design and implementation of this emulator,
including Rob Simmonds, Russell Bradford, Brian Unger, Roger Curry, Cam
Kiddle, Mark Fox, Kitty Wong, and others. For these contributions, we are
grateful.

26

References

[1] Apache Software Foundation, www.apache.org

[2] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Characterization
and Performance Implications”, IEEE/ACM Transactions on Networking,
Vol. 5, No. 5, pp. 631-645, October 1997.

[3] M. Aron and P. Druschel, “TCP Implementation Enhancements for Improving
Web Server Performance”, Technical Report TR99-335, Rice University, July
1999.

[4] H. Balakrishnan, S. Seshan, M. Stemm, and R. Katz, “Analyzing Stability
in Wide-Area Network Performance”, Proceedings of ACM SIGMETRICS
Conference, Seattle, WA, pp. 2-12, June 1997.

[5] H. Balakrishnan, V. Padmanabhan, and R. Katz, “The Effect of Asymmetry
on TCP Performance”, ACM Journal of Mobile Networks and Applications
(MONET), Vol. 4, No. 3, pp. 219-241, 1999.

[6] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz, “TCP
Behavior of a Busy Internet Server: Analysis and Improvements”, Proceedings of
IEEE INFOCOMM Conference, pp. 252-262, San Francisco, CA, March 1998.

[7] G. Banga and P. Druschel, “Measuring the Capacity of a Web Server Under
Realistic Loads”, World Wide Web Journal, Vol. 2, No. 1, pp. 69-83, May 1999.

[8] P. Barford and M. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation”, Proceedings of ACM
SIGMETRICS Conference, Madison, WI, pp. 151-160, June 1998.

[9] P. Barford and M. Crovella, “A Performance Evaluation of Hyper Text Transfer
Protocols”, Proceedings of ACM SIGMETRICS Conference, Atlanta, GA,
pp. 188-197, May 1999.

[10] P. Barford and M. Crovella, “Measuring Web Performance in the Wide Area”,
ACM Performance Evaluation Review, Vol. 27, No. 2, pp. 35-46, September
1999.

[11] P. Barford and M. Crovella, “Critical Path Analysis of TCP Transactions”,
Proceedings of ACM SIGCOMM Conference, Stockholm, Sweden, pp. 127-138,
September 2000.

[12] S. Bellenot and M. DiLoreto, “Tools for Measuring the Performance and
Diagnosing the Behavior of Distributed Simulations Using TimeWarp”,
Proceedings of the SCS Multi- Conference on Distributed Simulation, pp. 145-
149, 1989.

[13] R. Bradford, R. Simmonds, and B. Unger, “Packet Reading for Network
Emulation”, Proceedings of IEEE MASCOTS Conference, Cincinnati, OH,
pp. 150-157, August 2001.

27

[14] L. Breslau et al., “Advances in Network Simulation”, IEEE Computer, Vol. 33,
No. 5, pp. 59-67, May 2000.

[15] M. Busari and C. Williamson, “ProWGen: A Synthetic Workload Generation
Tool for Simulation Evaluation of Web Proxy Caches”, Computer Networks
Journal, Vol. 38, No. 6, pp. 779-794, June 2002.

[16] M. Carson, NISTnet. Available at http://snad.ncsl.nist.gov/

[17] A. Downey, “Using pathchar to Estimate Internet Link Characteristics”,
Proceedings of ACM SIGCOMM Conference, Cambridge, MA, pp. 241-250,
August 1999.

[18] S. Floyd, “A Report on Recent Developments in TCP Congestion Control”,
IEEE Communications, Vol. 39, No. 4, pp. 84-90, April 2001.

[19] X. Huang, R. Sharma, and S. Keshav, “The ENTRAPID Protocol Development
Environment”, Proceedings of IEEE INFOCOMM, March 1999.

[20] K. Kant, V. Tewari, and R. Iyer, “GEIST: A Generator of E-Commerce and
Internet Server Traffic”, Proceedings of IEEE ISPASS, Tucson, AZ, November
2001.

[21] C. Kiddle, R. Simmonds, D. Wilson, and B. Unger, “ANML: A Language for
Describing Networks”, Proceedings of IEEE MASCOTS Conference, Cincinnati,
OH, pp. 135-141, August 2001.

[22] B. Mah, “An Empirical Model of HTTP Network Traffic” Proceedings of IEEE
INFOCOM, April 1997.

[23] J. Mogul, “The Case for Persistent Connection HTTP”, Proceedings of ACM
SIGCOMM Conference, Cambridge, MA, August 1995.

[24] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web Server
Performance”, ACM Performance Evaluation Review, Vol. 26, No. 3, pp. 31-37,
December 1998.

[25] E. Nahum, M. Rosu, S. Seshan, and J. Almeida, “The Effects of Wide-Area
Conditions on WWW Server Performance”, Proceedings of ACM SIGMETRICS
Conference, Cambridge, MA, pp. 257-267, June 2001.

[26] PCAP Packet Capture Library, www.tcpdump.org

[27] G. Riley, M. Ammar, and R. Fujimoto, “Stateless Routing in Network
Simulations”, Proceedings of IEEE MASCOTS Conference, San Francisco, CA,
pp. 524-531, August 2000.

[28] G. Riley, R. Fujimoto, and M. Ammar, “A Generic Framework for
Parallelization of Network Simulations”, Proceedings of IEEE MASCOTS
Conference, College Park, MD, pp. 128-135, October 1999.

[29] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network
Protocols”, ACM Computer Communication Review, Vol. 27, No. 1, pp. 31-
41, January 1997.

28

[30] R. Simmonds, R. Bradford, and B. Unger, “Applying Parallel Discrete Event
Simulation to Network FEmulation”, Proceedings of the 14th Workshop on
Parallel and Distributed Simulation (PADS), Bologna, Italy, pp. 15-22, May
2000.

[31] R. Simmonds, C. Williamson, R. Bradford, M. Arlitt,
and B. Unger, “Web Server Benchmarking Using Parallel WAN Emulation”,
http://www.cpsc.ucalgary.ca/ carey/papers/iptne.pdf
(A short 2-page poster version of this paper is to appear in ACM SIGMETRICS
2002).

[32] Standard Performance Evaluation Corporation, www.spec.org

[33] B. Unger, Z. Xiao, J. Cleary, J. Tsai, and C. Williamson, “Parallel Shared-
Memory Simulator Performance for ATM Network Scenarios”, Transactions on
Modeling and Computer Simulation (TOMACS), Vol. 10, No. 4, pp. 358-391,
October 2000.

[34] WebBench, www.etestinglabs.com/benchmarks/webbench/webbench.asp
[35] WebStone, www.mindcraft.com/webstone

[36] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and Modeling
of the Temporal Dependence in Packet Loss”, Proceedings of IEEE INFOCOM,
New York, NY, March 1999.

[37] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary, “Scheduling Critical Channels
in Conservative Parallel Discrete Event Simulation”, Proceedings of the 13th
Workshop on Parallel and Distributed Simulation (PADS), Atlanta, GA, pp. 20-
28, May 1999.

29

