
Using Performance Reflection in Systems Software

Robert Fowler†, Alan Cox†, Sameh Elnikety‡, and Willy Zwaenepoel‡

† Department of Computer Science, Rice University, Houston, Texas, USA.

‡ School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Abstract

We argue that systems software can exploit hard-
ware instrumentation mechanisms, such as perfor-
mance monitoring counters in modern processors,
along with general system statistics to reactively
modify its behavior to achieve better performance.
In this paper we outline our approach of using these
instrumentation mechanisms to estimate productiv-

ity and overhead metrics while running user ap-
plications. At the kernel level, we speculate that
the scheduler can exploit these metrics to improve
system performance. At the application level, we
show that applications can use these metrics as
well as application-specific productivity metrics to
reactively tune their performance. We give sev-
eral examples of using reflection at the kernel level
(e.g., scheduling to improve memory hierarchy per-
formance) and at the application level (e.g., server
throttling).

1 Introduction

Traditional processors have real-time clocks and in-
terval timers. Today cycle counters and event coun-
ters are universally available in modern processors
and chipsets. For example, the AMD Athlon pro-
cessor has four performance monitoring counters
(PMC) that can be programmed to count specific
performance-related events such as TLB and cache
misses. Moreover going beyond simple counters, the
Alpha EV67 processor and its successors includes a
ProfileMe [5] facility that can record the execution
history of a single instruction as it passes through
the pipeline. We expect that future processors and
chipsets will have even more hardware instrumenta-
tion mechanisms.

The most common use of these mechanisms is by
programmers to do performance debugging for ap-

plication code. Also, these mechanisms have been
successfully applied to the analysis and tuning of
application code through compiler [8] and link-time
optimizations, and applied to architecture evalua-
tion. Despite the long history of using hardware in-
strumentation mechanisms, few studies focused on
using them to reactively change kernel and applica-
tion behavior.

We advocate using currently-existing hardware in-
strumentation mechanisms as the foundation of a
kernel performance reflection facility designed to
collect real time performance information to reac-
tively modify operating system and application be-
havior.

The rest of the paper is structured as follows: Sec-
tion 2 describes our approach of using performance
reflection. We discuss examples of using perfor-
mance reflection in OS kernels and in applications
in sections 3 and 4, respectively. Section 5 presents
related work. Finally, we present our conclusions in
section 6.

2 Our Approach

We propose adding a performance reflection facility
to the OS kernel to collect performance metrics us-
ing timers, event counters, and some programmed
hooks. These metrics can estimate overhead and
productivity.

First, some metrics represent costs: For example,
the TLB and data cache miss rates measure the
overhead that the system incurs in running the ap-
plications. We use these metrics to estimate over-

head.

Second, some metrics count useful work: For exam-
ple, the number of instructions executed, the float-
ing point operation (FLOP) rate, bytes transferred



to I/O devices, and the percentage of time the CPU
spends in user mode are measures of useful work
done. We use these metrics to estimate productiv-

ity.

We use the relationship between overhead and pro-
ductivity to determine if there is a need to tune the
system. Figure 1 shows three schematic plots that
represent different relationships between overhead
and productivity. In the first plot, both overhead
and productivity are increasing, indicating that the
load on the system is increasing and the system is
behaving well. The second plot shows that the pro-
ductivity is decreasing whereas the overhead is in-
creasing. This corresponds to an undesired condi-
tion, such as thrashing when the system is in over-
load. Finally in the third plot, both overhead and
productivity are decreasing, indicating a normal be-
havior as the system load decreases.

There are different ways of estimating productivity
and overhead. It is not necessary to use any spe-
cific metric for these estimates. It is also possible
to compute some metrics indirectly [1] if they are
not available from the hardware. For example, the
Cycles Per Instruction (CPI), which is a common
measure of processor productivity, can be computed
over some interval by taking the ratio of the number
of cycles to the number of instructions graduated.

While many different kinds of events can be counted,
the number of distinct measures of productivity
counted either by hardware counters or the OS is
small, perhaps including instructions, FLOPs, and
bytes/packets transferred over I/O devices. Simi-
larly, a small set of cost/overhead measures (cycles,
L2 cache misses, TLB misses, interrupts) is suffi-
cient. The kernel can use its own heuristics, or it can
be guided by application advice provided through
an interface similar to madvise(3).

Productivity estimates can be enhanced with appli-
cation cooperation. A variable shared between the
application and kernel can be used by the applica-
tion to inform the kernel of its rate of progress [6].
For example, a multi-threaded network server, such
as a Web server or a file server, can use the num-
ber of requests served as its measure of progress and
requests per unit time as its productivity metric.

3 Use of Performance Reflection in

OS Kernels

The OS kernel can use the overhead and produc-
tivity metrics to reactively change its policies, such
as changing the quantum size or the scheduling pol-
icy. In this section, we discuss a few applications of
performance reflection in scheduling.

3.1 Memory Hierarchy Performance

Memory hierarchy performance can be very sensi-
tive to competition on shared resources. For ex-
ample, the standard configuration of IBM Regatta
node has modules containing two Power4 processors
that share a common cache and interface to main
memory. Since it is known that many large scien-
tific programs are memory-bandwidth bound, there
is also an HPC variant of the hardware that contains
only a single processor per module. For bandwidth-
limited applications the second processor adds lit-
tle or no additional performance and eliminating it
saves cost while further eliminating possible cache
interference. While it would not save the cost of
the extra processors, monitoring miss rates of the
shared cache of a standard node would enable the
system to either schedule only one thread per mod-
ule or to possibly identify “compatible” threads to
co-schedule.

Similar scheduling strategies [9, 11] have been pro-
posed for use with Simultaneous Multi-threading
(SMT) [13].

The performance of non-uniform memory access
(NUMA) machines is dependent on the assignment
of threads to processors. The kernel can monitor
memory behavior by, depending on the level of ar-
chitectural support, measuring remote references,
cache miss behavior, or cycles per instruction (CPI).
Thread rescheduling decisions can then be based on
this feedback.

4 Use of Performance Reflection in

Applications

Applications can use the overhead and produc-
tivity metrics provided by the kernel, as well as



Figure 1: The relationship between overhead and productivity.

application-specific productivity metrics to reac-
tively change their policies.

4.1 Server throttling

To demonstrate the feasibility of using reflection
in applications, we show that our techniques can
be used to do server throttling. Our experimen-
tal setup contains a MySQL database server run-
ning under Red Hat Linux 7.0 with the 2.4.18 ker-
nel on an AMD Athlon 1.3 GHz processor. We
used the shopping mix of the TPC-W [12] work-
load to drive the database server. Under this work-
load, the database server is the bottleneck. The
database server thrashes when the number of con-
current queries is too high.

We developed a simple controller that uses the over-
head and productivity metrics to dynamically deter-
mine the concurrency level of the database by con-
trolling the number of active database connections.
The controller receives all requests for database con-
nections. It queues excess requests if the demand
exceeds the number of available connections. When
connections are released or more connections be-
come available, queued requests are satisfied. The
controller uses the PerfCtr [10] kernel module to
read the number of L1 DTLB misses, L2 DTLB
misses, and L1 and L2 data cache misses from the
Athlon AMD processor [4].

The controller uses feedback from the kernel includ-

ing the DTLB and data cache miss rates to esti-
mate the overhead metric. It uses the percentage of
user-mode CPU utilization and the throughput rate
to estimate the productivity metric. The controller
reads the input values every second, and keeps an
exponential moving average of these metrics that
spans the last 60 seconds to prevent transient os-
cillations. The controller uses a simple heuristic: It
increases the number of database connections when-
ever both the productivity and overhead metrics in-
crease, which corresponds to the situation where the
CPU has idle time and low DTLB and data cache
miss rates. The controller decreases the number of
connections whenever the overhead metric increases
and the productivity metric stagnates, which corre-
sponds to the situation where the CPU is saturated
and the DTLB and data cache miss rates are high.

Figure 2 shows the performance of the baseline sys-
tem (without the controller) and of the system using
reflection (through the use of the controller). The
performance of the baseline system increases with
the load until it reaches the peak plateau. Then, the
performance degrades because of thrashing due to
DTLB misses and data cache misses. As for the con-
figuration that uses reflection, the database server
is able to sustain peak throughput throughout the
overload region by controlling the number of active
connections to prevent thrashing.

Although, the controller prevented thrashing in the
overload region, the dynamic behavior of the sys-
tem is still not satisfactory. The controller uses that
simple heuristic in an ad-hoc manner rather than a



0

200

400

600

800

1000

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

nu
m

be
r 

of
 in

te
ra

ct
io

ns
 p

er
 m

in
ut

e)

Load (number of clients)

baseline
using reflection

Figure 2: Server throttling for MySQL database server under TPC-W workload.

control-theoretic approach, which would guarantee
stability and responsiveness. We believe that it is
feaible to apply a control-theoretic approach that
prevents thrashing and substantially improves the
dynamic behavior of the system as the load changes.

5 Related Work

In this section we briefly mention representative
work in areas where similar approaches are used.

Long term schedulers in batch systems have used
page fault frequency (PFF) as the objective func-
tion for decisions to increase or decrease the multi-
programming level.

Our approach is complementary to Morph [17]. In-
stead of optimizing the performance by rewriting
the binary code, we change the behavior of the sys-
tem software without rewriting its binary code. We
argue that it possible for both approaches to ap-
plied simultaneously because Morph-like optimiza-
tions optimize the code for a specific hardware or
end-user pattern, whereas our approach addresses
other performance issues, such as thrashing, which
should be handled by specific policies (e.g., limiting
the level of concurrency or changing the scheduling
policy) rather than binary code optimization.

Douceur and Bolosky [6] used similar techniques to
regulate low-importance processes. Our approach
strives to maintain maximal performance by adapt-
ing the system behavior using both productivity and
overhead metrics. This is in contrast to their ap-
proach where only productivity (progress) metrics
are used to regulate low-importance processes such
that they do not affect the execution of other pro-
cesses.

SEDA [15, 14] presents a staged architecture for In-
ternet servers. Our approach is another point in
the design space of building systems that change
their behavior adaptively to improve performance.
SEDA offers greater control within each stage of a
server; however, it requires a complete rewrite of
the software. In contrast, our approach gives less
control and requires far fewer modifications to the
software.

The MAGNET [7] tool tracks OS events and ex-
ports information on them to user level. It has been
used to identify Linux kernel problems (e.g., Eth-
ernet driver, scheduler anomalies, overheads) and
it has been used to analyze and tune applications,
including creation of a reflective application.

In the Atlas [16] project, empirical techniques are
used to tune the performance of some BLAS and
LAPACK routines to provide portable performance.



Bershad et al. [3] used feedback from special hard-
ware to dynamically avoid conflict misses in large
direct-mapped caches by reassigning the conflicting
virtual memory pages.

In the AppLeS [2] project, an application-level
scheduler is used to adaptively and dynamically
schedule individual applications on distributed, het-
erogeneous systems.

6 Summary and Conclusions

We discussed the use of hardware instrumentation
mechanisms that are universally available on mod-
ern processors and chipsets as a basis for a perfor-
mance reflection facility. Using this facility, it possi-
ble to estimate productivity and overhead metrics.
Systems software can use these two metrics to im-
prove its performance. We showed several potential
uses: The OS kernel can use the metrics to tune
its scheduling decisions. Applications can use these
metrics to determine the concurrency level. Finally,
we provided a working example for using reflection
in server throttling to prevent thrashing.

References

[1] Jennifer M. Anderson, Lance M. Berc, Jeffrey
Dean, Sanjay Ghemawat, Monika R. Henzinger,
Shun-Tak A. Leung, Richard L. Sites, Mark T. Van-
devoorde, Carl A. Waldspurger, and William E.
Weihl. Continuous Profiling: Where Have All the
Cycles Gone? In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997.

[2] Fran Berman and Rich Wolski. The AppLeS
Project: A Status Report. In Proceedings of the
8th NEC Research Symposium, Berlin, Germany,
May 1997.

[3] Brian N. Bershad, Dennis Lee, Theodore H. Romer,
and J. Bradley Chen. Avoiding Conflict Misses
Dynamically in Large Direct-Mapped Caches. In
Proceedings of the 6th International Conference on
Architectural Support for Programming Languages
and Operating Systems, 1994.

[4] AMD Corporation. AMD Athlon Processor x86
Code Optimization Guide. www.amd.com.

[5] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger,
William E. Weihl, and George Chrysos. ProfileMe:
Hardware Support for Instruction-Level Profiling

on Out-of-Order Processors. In Proceedings of the
30th Annual Symposium on Microarchitecture, Re-
search Triangle Park, North Carolina, December
1997.

[6] John R. Douceur and William J. Bolosky. Progress-
based Regulation of Low-importance Processes. In
Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles, 1999.

[7] Mark K. Gardner, Wu chun Feng, M. Broxton,
A Engelhart, and G. Hurwitz. MAGNET: A Tool
for Debugging, Analysis and Reflection in Comput-
ing Systems. In Submitted to the third IEEE/ACM
International International Symposium on Cluster
Computing and the Grid, Tokyo, Japan, May 2003.

[8] John Mellor-Crummey, Robert Fowler, and Gabriel
Marin. HPCView: a tool for top-down analysis
of node performance. In Proceedings of the Los
Alamos Computer Science Institute Second Annual
Symposium, Santa Fe, New Mexico, October 2001.

[9] Sujay Parekh, Susan Eggers, and Henry Levy.
Thread-Sensitive Scheduling for SMT Processors.
Technical report, University of Washington, 2002.

[10] Mikael Pettersson. PerfCtr home page. http://

user.it.uu.se/\~{}mikpe/linux/perfctr.

[11] Allan Snavely and Dean M. Tullsen. Symbiotic Job-
scheduling for a Simultaneous Multithreading Pro-
cessor. In Architectural Support for Programming
Languages and Operating Systems, pages 234–244,
2000.

[12] The Transaction Processing Council (TPC). TPC-
W. http://www.tpc.org/tpcw.

[13] Dean Tullsen, Susan Eggers, and Henry Levy. Si-
multaneous Multithreading: Maximizing On-Chip
Parallelism. In Proceedings of the 22rd Annual In-
ternational Symposium on Computer Architecture,
Santa Margherita Ligure, Italy, June 1995.

[14] Matt Welsh and David Cluller. Adaptive overload
control for busy Internet servers. In Proceedings of
the USENIX Symposium on Internet Technologies
and Systems (USITS), San Francisco, CA, March
2003.

[15] Matt Welsh, David Cluller, and Eric Brewer.
SEDA: An architecture for well-conditioned, scal-
able Internet services. In Proceedings of the
18th Symposium on Operating Systems Principles
(SOSP), Banff, Canada, October 2001.

[16] R. Clinton Whaley, Antoine Petitet, and Jack Don-
garra. Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Computing,
27(1-2):2–35, January 2001.

[17] Xiaolan Zhang, Zheng Wang, Nicholas Gloy,
J. Bradley Chen, and Michael D. Smith. System
Support for Automatic Profiling and Optimization.
In Proceedings of the 16th ACM Symposium on Op-
erating Systems Principles, 1997.


