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Managing Web server
performance with
AutoTune agents

Managing the performance of e-commerce
sites is challenging. Site content changes
frequently, as do customer interests and
business plans, contributing to dynamically
varying workloads. To maintain good
performance, system administrators must
tune their information technology environment
on an ongoing basis. Unfortunately, doing so
requires considerable expertise and increases
the total cost of system ownership. In this
paper, we propose an agent-based solution
that not only automates the ongoing system
tuning but also automatically designs an
appropriate tuning mechanism for the target
system. We illustrate this in the context of
managing a Web server. There we study the
problem of controlling CPU and memory
utilization of an Apache® Web server using
the application-level tuning parameters
MaxClients and KeepAlive, which are exposed
by the server. Using the AutoTune agent
framework under the Agent Building and
Learning Environment (ABLE), we construct
agents to fully automate a control-theoretic
methodology that involves model building,
controller design, and run-time feedback
control. Specifically, we design (1) a modeling
agent that builds a dynamic system model
from the controlled server run data, (2) a
controller design agent that uses optimal
control theory to derive a feedback control
algorithm customized to that server, and (3) a
run-time control agent that deploys the
feedback control algorithm in an on-line real-
time environment to automatically manage
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the Web server. The designed autonomic
feedback control system is able to handle the
dynamic and interrelated dependencies
between the tuning parameters and the
performance metrics with guaranteed stability
from control theory. The effectiveness of the
AutoTune agents is demonstrated through
experiments involving variations in workload,
server capacity, and business objectives. The
results also serve as a validation of the ABLE
toolkit and the AutoTune agent framework.

The increasing complexity of computing systems and
applications demands a correspondingly larger hu-
man effort for system configuration and performance
management. This manual effort can be time-
consuming and error-prone, and requires highly
skilled personnel, making it costly. Autonomic com-
puting' uses the analogy of the human autonomic
nervous system to suggest the use of a higher level
of automation and self-management capability in
computing systems.

The complexity and importance of developing au-
tonomic computing systems has attracted research
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efforts of a theoretical as well as an applied nature.
In particular, control theory is emerging as a prom-
ising cornerstone to provide a rigorous mathemat-
ical foundation for designing and analyzing auto-
nomic controllers, which can reduce the work of
system administrators and provide guaranteed con-
trol performance. Some applications of control the-
ory to computing systems include flow and conges-
tion control,”” differentiated caching and Web
service,®” multimedia streaming,® Web server per-
formance,’ e-mail server control,'*!! and distributed
resource allocation on the grid.'> These applications
all provide a degree of autonomic behavior by pro-
viding algorithms to automatically control some as-
pect of a computing system’s operation. However,
acommon theme in all this work is that applying con-
trol techniques requires significant modeling and de-
sign work, which is typically a manual process
conducted by the system designer. In the spirit of
reducing all manual intervention, we propose to au-
tomate this phase of the deployment of control sys-
tems as well.

In this paper, we describe an agent-based autonomic
feedback control system that uses high-level inputs
from the human system administrators to not only
control a computing system, but also to automati-
cally design a controller suitable for that system. We
illustrate this in the context of an Apache** Web
server. Using the Agent Building and Learning Envi-
ronment (ABLE), "> AutoTune' agents are built for
(1) modeling the behavior of an Apache Web server,
(2) designing the feedback control law, and (3) in
on-line operation, adjusting the server parameters
in response to workload variations. These agents co-
operate at different phases of the life cycle of the
autonomic control system to achieve the function of
automatically controlling the Web server.

The remainder of the paper is organized as follows.
The next section describes the background of server
self-tuning in the context of Apache Web servers.
The section “Server self-tuning with AutoTune
agents” introduces ABLE-based AutoTune agents
and details the architecture and algorithms used to
automate server tuning. The experimental results are
described in the section “Experimental assessment,”
comparing the performance of the Apache server
controlled by the proposed AutoTune controller and
a heuristic manual controller, particularly when sig-
nificant workload variations exist. Finally, our con-
clusions are presented.
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Apache Web server and performance
tuning

The Apache Web server is the most popular Web
server in use today, '® making resource management
for such a server an important problem. Version 1.3.x
of the server on UNIX** is structured as a master pro-
cess and a pool of worker processes. The master pro-
cess monitors the health of the worker processes and
manages their creation and destruction. The worker
processes are responsible for communicating with
Web clients and generating responses, and one
worker process can handle at most one connection
at a time. The number of worker processes is lim-
ited by the parameter MaxClients, thereby throttling
the Web server’s throughput. Worker processes cy-
cle through three states: idle, waiting, and busy. A
worker is in an idle state if no Transmission Control
Protocol (TCP) connection from the client has been
made to it.

Once a TCP connection is accepted, the worker pro-
cess is either waiting for a HyperText Transfer Pro-
tocol (HTTP) request from the client, or is busy in
processing the client request. According to persist-
ent connections in HTTP/1.1,"” the established TCP
connection remains open between consecutive HTTP
requests (which eliminates the overhead for setting
up one connection for each request as in HTTP/1.0).
This persistent connection can either be terminated
by the client or by the master process, if the waiting
time of a worker process exceeds the maximum al-
lowed time specified by the parameter KeepAlive.

The performance of the Apache Web server can be
measured by different metrics, such as end-user re-
sponse times or utilization of various resources on
the server. Selection of appropriate performance
metrics depends not only on management objectives
but also on metric availability. From the point of view
of guaranteeing quality of service, bounding the end-
user response times is desired. However, end-user
response time is a client-side metric, and additional
instrumentation such as a probing station needs to
be added. This would increase server load and raise
other issues, including accuracy and recentness of
the available measurements. (Refer to Reference 18
for a discussion of and control strategies for man-
aging the end-user response time.) In this paper, we
quantify the server performance using server-side
metrics, CPU utilization and memory utilization,
which are easy to measure on the server and asso-
ciated with business needs as well.
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System administrators typically maintain a certain
utilization level on the server, high enough to effi-
ciently utilize system resources but not so high that
it causes thrashing and failures as a result of over-
utilization. Good end-user response times are en-
sured by reserving sufficient capacity to handle work-
load surges. However, the system utilization cannot
be directly set in an Apache server. Instead, the ad-
ministrators must operate indirectly by adjusting cer-
tain tuning parameters, among which MaxClients
and KeepAlive are commonly used. A higher Max-
Clients value allows the Apache server to process
more client requests, and increases both CPU and
memory utilizations. Also, decreasing the value of
KeepAlive potentially allows worker processes to be
more active, which directly results in higher CPU uti-
lization and indirectly increases memory utilization,
since more clients can connect to the server.’

In principle, the desired and feasible CPU and mem-
ory utilizations can be achieved by properly select-
ing the tuning parameters MaxClients and Keep-
Alive, but in practice, it is time-consuming, error-
prone, and skills-intensive to adjust these parameters
manually. Moreover, this tuning work has to be re-
peated as the workload changes or the server is re-
configured for more CPU and memory. A change of
Web site contents may also affect the CPU and mem-
ory usage per request and can also require different
MaxClients and KeepAlive settings. We illustrate the
drawbacks of manual tuning using modified versions
of our agents and the testbed, both of which are de-
scribed later. In essence, our modifications to the
Apache server allow us to change the MaxClients
and KeepAlive values without restarting the server,
and the agents provide the graphical user interface
(Gui) for manually setting the values.

Suppose the administrator wants to have the desired
CPU level at 0.5 and memory at 0.6. Manually tuning
the Apache server is a trial-and-error process and
can be quite time-consuming. Due to the interrela-
tionships between the tuning parameters and per-
formance metrics, it may not be easy to find the
proper KeepAlive and MaxClients settings.

In Figure 1, the values for the tuning parameters
KeepAlive and MaxClients are shown in the top two
Inspector windows, and the bottom two Inspector
windows show the corresponding effects on the per-
formance metrics CPU and memory utilization. The
system is running in our testbed and is subjected to
a synthetic workload, both of which are described
in the section “Apache testbed and workload gen-
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erator.” The y-axis shows the measured values, and
the x-axis indicates the time, which is measured by
control intervals (i.e., sampling intervals). The con-
trol interval is five seconds; every five seconds the
tuning parameters (if they are changed) are sent to
the Apache server, and the CPU and memory values
of the Apache server are also provided to the Apache
adaptor for the system administrator to check the
control results.

As Figure 1 indicates, arbitrarily selecting Keep-
Alive = 2 and MaxClients = 100 will not yield cPU
and memory utilization close to the desired values.
The tuning parameters and the performance met-
rics are interrelated; for instance, increasing Max-
Clients to 150 causes increases in both CPU and mem-
ory utilizations. Manually tuning the Apache Web
server using these controls is possible by using the
following heuristic. If we increase MaxClients, both
CPU and memory utilization will increase. If we in-
crease KeepAlive, CPU utilization will decrease.
Thus, we can use MaxClients to adjust utilization un-
til the memory is at the desired level, and then get
the desired CPU utilization by adjusting KeepAlive.
Using these tuning heuristics, in order to achieve CPU
= 0.5 and MEM = (.6, after several tries the values
MaxClients = 400 and KeepAlive = 10 are found,
which drive CPU and memory close to the desired
values.

As mentioned earlier, a variation in workloads may
affect this relationship between the tuning param-
eters and system utilizations, and thus change the
“optimal” values for KeepAlive and MaxClients. For
example, as shown in Figure 2, when additional work-
load (requests for dynamic Web pages) is included
around the twentieth control interval, we observe
that the previous setting of tuning parameters causes
both CPU and memory utilizations to deviate from
the desired levels. Therefore, the system adminis-
trator will need to tune the server parameters again,
and this can become quite tedious if the workload
is changing frequently.

It is worth mentioning that in this paper we use a
desired CPU level of 0.5 and memory of 0.6 simply
for the purpose of illustrating the tuning process.
How to choose the desired utilization level practi-
cally depends on business needs and system config-
urations, and thus is out of the scope of this paper.
In this paper, we focus on how to automatically con-
struct quantitative models and conduct tuning con-
trol. This is important, since the relationship between
the performance metrics and tuning parameters is
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Figure 1 Results of manually tuning the Apache Web server
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only qualitatively known, and extensive manual tun-
ing is required and needs to be repeated when work-
load changes. In other words, the proposed Auto-
Tune agents increase the automation level of server
tuning by automating the lower-level tuning (e.g., ad-
justing server parameters MaxClients and Keep-
Alive). This will not eliminate the role of the system
administrators, but can reduce their work and help
them focus on higher-level performance metric goals
(e.g., desired CPU and memory utilization).

Server self-tuning with AutoTune agents

Based on the previous section, it is clearly desirable
to automate the adjustment of the MaxClients and
KeepAlive values, both at system startup and on an
ongoing basis in response to changing workload.
More broadly, we would like to reduce the work of
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the system administrator by performing such tuning
work with an autonomic agent. Rather than construct
a special-case agent for this particular set of tuning
controls and this particular software system, we pro-
pose amore general architecture that can be applied
to many other systems as well. We use the Apache
server as an illustration for this general framework.

Our solution consists of multiple agents that auto-
mate the entire methodology of controller design and
also perform the on-line system control. These agents
are implemented using the Agent Building and
Learning Environment (ABLE), and in particular by
implementing specialized AutoTune agents. Below,
we present an overview of ABLE and the basic Au-
toTune architecture, followed by a description of our
agents and the control-theory-based algorithms that
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Figure 2  Effects of dynamic workloads on manually tuned Apache server
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are essential to exploit the learning and control abil-
ities of the autonomic agents.

ABLE framework and base AutoTune agent. The
Agent Building and Learning Environment (ABLE)
is a Java™*-based toolkit for developing and deploy-
ing hybrid intelligent agent applications. " It provides
a comprehensive library of intelligent reasoning and
learning components packaged as Java beans (known
as AbleBeans) and a lightweight Java agent frame-
work to construct intelligent agents (known as Able-
Agents). The AbleBean Java interface defines a set
of common attributes (name, comment, state, etc.)
and behaviors (standard processing methods such as
init( ), reset( ), process( ), and quit( )), which allows
AbleBeans to be connected to form AbleAgents. A
Java Swing-based GUI, AbleEditor, is also provided
for creating and configuring AbleBeans, and for con-
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structing and testing the Able Agents built from them.
For most AbleBeans, the user-interface is through
a GUI component known as a “Customizer” that al-
lows the user to set and view parameters related to
the bean.

The base AutoTune agent is a function-specific Able-
Agent for autonomic computing. Inspired by human
biology, the AutoTune agent is based on an archi-
tecture that combines several elements that are use-
ful in building systems to react to a dynamic envi-
ronment. The AutoTune agent contains two basic
building blocks (AbleBeans): the AutotuneCon-
troller bean and the AutotuneAdaptor bean, as
shown in Figure 3. The AutotuneController bean de-
fines control strategies (such as learning the behav-
ior of the target system or providing actions to amend
abnormal situations). Its Customizer GUI allows the
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Figure 3  Architecture of the base AutoTune agent
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system administrator to configure the control strat-
egy in advance or on the fly. The AutotuneAdaptor
bean interfaces with the target system to get the ser-
vice level metrics and to set the tuning parameters.
Another Customizer GUI is provided for the system
administrator to manually set the tuning parameters
(for example, for testing purposes, or when the Au-
totuneController is inactive). This decoupling allows
the same AutotuneController to be used with a va-
riety of systems, simply by choosing the appropriate
AutotuneAdaptor to interface with the respective
system.

The execution of the AutotuneController and Au-
totuneAdaptor beans is managed by the AutoTune
agent through the Agent Administrator. In partic-
ular, the Agent Administrator handles the timer fa-
cility and asynchronous event processing function
that allow the AutotuneController and Autotune-
Adaptor to run autonomously, by periodically pro-
cessing control functions and communicating with
the target system. The AutoTune agent-level Cus-
tomizer allows the system administrator to separately
set the control interval (used by the AutotuneCon-
troller bean) and sample interval (used by the Au-
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totuneAdaptor bean), which can be different from
each other. A set of AutotuneMetric classes is de-
fined to represent the state/performance of the tar-
get system (service-level metrics), the tuning param-
eters of the target system (tuning control metrics),
and the parameters of the control strategy (config-
uration metrics). These metrics can be read or writ-
ten by the AutotuneController or AutotuneAdap-
tor. They are managed as a collection by the
AutoTune Metric Manager for interactions between
the two component beans, and can also be selectively
saved to a historical data repository.

ABLE and the AutoTune architecture were designed
to be extensible and to allow rapid deployment of
agent-based solutions. Our experience with using this
infrastructure validates the usefulness of this archi-
tecture and the ABLE toolKkit.

AutoTune agents for server self-tuning. For auto-
matic tuning of server configuration parameters, an
algorithm is needed. A complete self-tuning solution
both automates the algorithm design and includes
an executable on-line algorithm for doing the param-
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Figure 4  Architecture of the AutoTune agents
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eter adjustments. We follow a standard control-the-
oretic methodology for the design process, consist-
ing of (1) system modeling and (2) controller design.
Thus, our solution consists of three AutoTune agents
that implement the phases of automatic feedback
controller design and deployment: modeling, con-
troller design, and run-time control, as shown in Fig-
ure 4. The modeling and design phases are per-
formed in a “testing” (or nonproduction) mode,
whereas the run-time control is active when the sys-
tem is “live” (or in production mode).

In order to gain understanding of the dynamic be-
havior of the server, a modeling agent is first applied.
The modeling agent varies the tuning parameters
MaxClients and KeepAlive of the Apache Web
server and records the resulting server performance
metrics (CPU and memory utilization). The collected
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UTILIZATION

time-series data contain information about the dy-
namic relationship between the tuning parameters
and the performance metrics. Using this modeling
data, a first-order dynamic model is automatically
built by utilizing system identification techniques (see
the section “Modeling agent,” below).

The system model is passed to the controller design
agent to conduct model-based controller design.
Based on this model, a linear quadratic regulation
(LQR) controller is synthesized using design criteria
that are specified through the Customizer GUI. The
output of the controller design agent is a set of con-
troller parameters that are passed to the run-time
control agent.

These controller parameters are used by the run-time
control agent to dynamically adjust the MaxClients
and KeepAlive tuning parameters to achieve the de-
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sired utilization levels. These desired levels are spec-
ified by the system administrator (through the run-
time agent’s Customizer GUI).

Modeling agent. A good design for the feedback con-
troller relies on a mathematical model of the target
system. One approach to building this model is to
use first principles (e.g., creating a queuing model
of the Apache server). However, this approach re-
quires considerable sophistication as well as detailed
knowledge about the inner working mechanism of
the server. Instead of proceeding from first princi-
ples, an empirical approach is taken in the model-
ing agent for quantifying the relationship between
the tuning parameters and performance metrics. This
empirical modeling approach is referred to as the
system identification technique,® also known as the
“black box” approach, and is particularly suitable for
use with autonomic agents. Since the model is built
from the collected input/output data without requir-
ing knowledge of the internals of the target system
(i.e., the Apache server), this technique is easily ap-
plied to a wide variety of systems.

To perform system identification, the tuning param-
eters are varied in a deliberate, predetermined pat-
tern so that the dynamics of the systems (i.e., the re-
lationship between the tuning parameters and system
utilization) are “excited” and represented in the
input/output data pairs. This means that the param-
eter variations should satisfy two properties: uniform
coverage (covering the space of possible variation
of tuning parameters) and persistent excitation (con-
taining enough frequency components to excite all
of the system modes).?* Our experience shows that
a first-order model constructed by varying the tun-
ing parameters in a (discrete) sinusoid pattern is usu-
ally sufficient for modeling the dynamics of queuing-
based computing systems. Note that sine wave signals
are used because any signal can be approximated
with a combination of sine waves of different mag-
nitude and frequency. Also note that in order to build
the model correctly, the number of frequencies in
the exciting signal should be at least equal to the or-
der of the model (this is referred to as “persistent
excitation” in control theory, and the necessity of ex-
citing all the modes and dynamic behaviors of the
system has been proven?®).

We can build the system model by fitting the
input/output data into the following model form:
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where CPU, and MEM, denote the values of CPU and
memory utilizations at the k-th time interval, and
KeepAlive, and MaxClients, denote the values of
KeepAlive and MaxClients at the k-th time inter-
val. The 2 X 2 matrices A and B include modeling
parameters and can be identified using the least
squares method.? Note that this model is a linear
model and, moreover, that the modeling work is only
conducted once for a representative workload.
Whereas the assumption of linearity can affect the
model’s accuracy, using linear models reduces mod-
eling complexity and is easier to extend for model-
ing high-dimension systems with more metrics.
Moreover, using linear models also facilitates the de-
sign of robust controllers, which can better tolerate
model inaccuracy (as shown in the section “Exper-
imental assessment”), so that there is no need to re-
build the model once the workload changes.

CPU,,
MEM,,

The above modeling procedure is wrapped into the
modeling agent for automatically building the sys-
tem model. The user is only required to answer two
system-related questions (via the Customizer GUI):
(1) the effective ranges of the tuning parameters, and
(2) the maximum delay required for the tuning pa-
rameters to take full effect on the performance met-
rics. Generally, the effective range is known from
server parameter definitions. The maximum delay
refers to how long it will take for the performance
metrics to reach the new steady state if the tuning
parameters are changing from one end of the effec-
tive range to the other end. This can be easily mea-
sured by conducting a test run. The answers to these
two questions are used to determine the magnitudes
and time periods of the sinusoid variation pattern.
The magnitudes are chosen to cover the effective
ranges of the tuning parameters, and the time pe-
riods are chosen to be greater than twice the max-
imum delay, to ensure the coverage of the tuning
parameter space. The answers to these questions
need not be very accurate in order to get a good
model. This is because the model’s inaccuracy can
be compensated for by a good feedback control
scheme, which will be discussed in the next section.
The modeling agent will automatically run the tar-
get system (the Apache server in our case) under a
given workload, vary the parameters according to this
pattern, collect the performance metrics from the
server, and construct the model from the data.
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Due to the process limit of the operating system of
our server, MaxClients can only take an integer value
in the range of [1, 1024]. The tuning parameter Keep-
Alive is in integral seconds with a minimum of 1 sec-
ond. No maximum value is enforced for KeepAlive,
but KeepAlive values larger than 50 have very small
effects on system utilization. Thus, the range of Keep
Alive can be specified as [1, 50]. The maximum time
for the tuning parameters to take effect is roughly
estimated from test run results; we use 10 minutes
for MaxClients and 20 minutes for KeepAlive. Since
the Apache server model is a second-order model,
two sine waves are constructed for varying these pa-
rameters.

Run-time control agent. The run-time control agent
implements a state feedback controller®' that makes
control decisions based on feedback of error, which
is defined as the difference between the desired and
measured system utilization. The accumulated er-
ror over previous time intervals is also used to in-
crease the robustness of the controller. The feed-
back control law is of the following form:

k K, eCPU,k K, - 2: eCPU,j
MaXClientSk P eMEM,k ! i—1 |:E I\/IEI\/I,f:|
j=

where e cpy, and ey, are the differences between
the desired CPU and memory utilizations and the
measured values at the k-th time interval. This con-
trol law is characterized by the controller parame-
ters, the 2 X 2 matrices K (proportional control gain
for fast response) and K; (integral control gain for
removing steady-state error). These matrices are au-
tomatically derived by the controller design agent
discussed in the next section. The performance of
the controller, such as the settling time (the time to
recover from a disturbance) can be determined an-
alytically from the closed loop system model (a model
composed of both the system model generated by
the modeling agent and the feedback control law).?'

Controller design agent. The controller design agent
uses the linear quadratic regulator approach from
optimal control theory? to design the parameters
Kp and K; of the run-time control agent. This de-
sign relies on the system model obtained from the
modeling agent. In particular, the controller design
agent chooses the controller parameters based on
minimizing the following quadratic cost function,
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subject to the dynamic system model in Equation 1
and the control law in Equation 2. The variables
vepu.x and vygy . are defined as the accumulated er-
ror of CPU (vepux = 2/ ecpy,) and memory
(vmems = 251" emew;) utilizations, respectively. A
numerical algorithm for solving the Riccati equation
is included in the controller design agent, and it al-
lows us to compute the “optimal” K, and K; that
minimize the above cost function. This raises the
question as to what values to use for the weighting
matrices Q and R of the above cost function. In prin-
ciple, O and R perform some scaling functions in ad-
dition to determining a trade-off between control er-
ror and control variability.

Since it is not very intuitive or user-friendly to have
the system designer specify these O and R matrices
directly, we use some more meaningful inputs to de-
rive the proper Q and R matrices. The system de-
signer is required only to answer two system-related
questions through the Customizer GUI: (1) what are
the valid ranges for the tuning parameters and per-
formance metrics (e.g., [0, 1] for CPU and memory,
[1,50] for KeepAlive, and [1, 1024] for MaxClients),
and (2) what are the ranges of random fluctuations
for the performance metrics (e.g., 10 percent for CPU
and 2 percent for memory). Like the two questions
asked for the modeling agents, the answers to the
above two questions need not be very accurate, due
to the robustness of the controller. We use the fol-
lowing heuristics to determine Q and R.

First, it is sufficient to use only the diagonal forms
of the 4 X 4 weighting matrix Q and the 2 X 2 ma-
trix R to define the above trade-off; that is Q =
diag(q., g2, 93, q4) and R = diag(r,, r,). Second,
specify the error weights ¢, ¢, and tuning param-
eter weightsr,, 7, in such a way that the errors e cpy
and ey 4 and tuning parameters (KeepAlive, and
MaxClients, ) have the same order of magnitude in
the cost function. For example, since the ranges for
CPU and MEM are both [0, 1], for KeepAlive [1, 50],
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and for MaxClients [1, 1024], we choose g, = 1,¢q, =
2,r, = 1/50% and r, = 1/10002. Third, determine
the accumulated error weights g3, g4 according to
the variability of the performance metrics: the higher
the variability of the metrics, the lower the accuracy
of their control effects. Since the CPU utilization usu-
ally has 10 percent random fluctuation and the fluc-
tuation for the memory utilization is usually quite
small (less than 2 percent), we choose g; = 1/102
and g, = 1/22. Although these rules of thumb for
determining Q and R may be a little involved, we
have wrapped them into the controller design agent,
so that the system designers are not exposed to them.

Implementation of self-tuning agents. Note that all
of the above three agents have the same basic struc-
ture, and that they are constructed by extending the
base AutoTune agent discussed earlier. In the mod-
eling agent, the exciting signal generator bean is ex-
tended from the AutotuneController bean in
Figure 3, by overriding the process( ) method to
implement the specific exciting signal function and
the system identification function (discussed in the
section “Modeling agent”). Similarly, the Apache
Adaptor bean is an extension of the AutotuneAdap-
tor bean, and it implements the socket connection
(see the section “Apache testbed and workload gen-
erator”) with the Apache Web server being used both
for setting the tuning parameters and getting the per-
formance metrics. We use the Customizer GUI fa-
cility to allow the system designer to specify the ex-
perimental parameters (for details, see the section
“Modeling agent”). The run-time control agent has
its own extension of the AutotuneController and a
correspondingly different Customizer GUI. This agent
can, in fact, reuse the exact same ApacheAdaptor
bean for communicating with the Apache server. For
the controller design agent, the AutotuneController
implements the design automation, and it uses a dif-
ferent Adaptor to read the model parameters from
the modeling agent.

The ABLE framework and Autotune Agent architec-
ture have thus proved to be general and sufficient
to have allowed us to easily construct all three agents
from the same framework. Further, by allowing re-
use of the ApacheAdaptor bean between the mod-
eling and the run-time agents, it reduces the amount
of work that needs to be done. The server self-tun-
ing agents increase the automation level of server
tuning and require minimal human intervention,
from the system designer or from the system admin-
istrator. The system designer must provide some
high-level information to guide the design process:
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the experiment parameters and the controller de-
sign criteria. The system administrator needs only
to specity the control objective (the desired system
utilization levels). Once this information is given, the
agents can automatically build the system model, de-
sign the feedback controller, and apply the control-
ler to dynamically tune the server.

Experimental assessment

In this section, we describe our testbed and synthetic
workload generator and present our experimental
results.

Apache testbed and workload generator. Our
Apache testbed consists of one server machine run-
ning Linux** (kernel v2.2.16) and the Apache HTTP
server v1.3.19, and one or more client machines run-
ning synthetic workload generators. The Apache
server code was modified in order to enable dynamic
control. In particular, the tuning parameters Max-
Clients and KeepAlive were moved from the static
variables (read from a configuration file at startup)
into the in-memory scoreboard so that they could
be modified on the fly and picked up by the master
process. Further, a metric access functionality was
implemented as a separate process that communi-
cates with other Apache processes through an in-
memory scoreboard (to minimize Apache source
code changes and performance overheads). Also, a
GET/SET interface over a socket connection was
added to receive the tuning parameters and send per-
formance metrics to the external autonomic agents
(so as not to compete with normal HTTP traffic).

The synthetic workload generator simulates the ac-
tivity of many clients. The workload model used to
generate synthetic transactions was based on the
WAGON (Web trAffic GeneratOr and beNchmark)
model,? which has been validated in extensive stud-
ies of production Web servers. The “httperf” pro-
gram?* was used to generate synthetic HTTP requests
that conform to this model. The Web site file access
distributions are from the Webstone 2.5 reference
benchmark.? Both static and dynamic workloads
were used. The static workload clients requested
static Web pages, and the session arrivals followed
a Poisson distribution with a rate of 20 sessions per
second. For the dynamic workload, the clients re-
quested dynamic Web pages generated through CGI
(Common Gateway Interface), and the session ar-
rivals also followed a Poisson distribution but with
arate of 10 sessions per second. (A detailed descrip-
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Figure 5 Results of autonomically tuning the Apache Web server
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tion of the Apache testbed and workload generator
can be found in Reference 9.)

Experimental results. We assess the performance of
the autonomic control system by comparing the per-
formance achieved through automation with that
achieved by manual tuning as presented in the sec-
tion “Apache Web server and performance tuning.”
We use different workload scenarios to validate the
tuning results against workload variations.

First, the modeling agent was deployed under the
static workload to build a dynamic system model.
This was followed by running the controller design
agent to come up with K, and K; for the run-time
controller. Finally, the run-time feedback control-
ler agent was started to dynamically tune the server
parameters. The control interval (adaptation period)
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was 5 seconds. Note that the adaptation period was
much shorter than the maximum times (i.e., 10 min-
utes for MaxClients and 20 minutes for KeepAlive).
Usually, this parameter should be smaller than one-
twentieth of the maximum time, so that the system
dynamics can be captured and the controller can have
time to react. Here, we made it even smaller, in or-
der to achieve faster tuning. Experiments have shown
that changing KeepAlive does not introduce any
performance overhead, but changing MaxClients will
cause a slight increase in CPU utilization, due to the
overhead of adding or removing worker processes.
However, these overheads are negligible, especially
when the change in MaxClients is not large (smaller
than 100). This is usually the case, and is guaran-
teed by putting a bound on the controller output. In
addition, from the perspective of system stability,
having a small control interval will not lead to an
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Figure 6 Performance of the AutoTune controller for the Apache Web server under dynamic workloads
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oscillatory response or cause instability problems be-
cause each adaptation step (the change of tuning pa-
rameters) is calculated based on the model, which
is also obtained at the same control interval, and be-
cause the controller is designed to guarantee the sta-
bility of the adaptation and optimize the adaptation
performance.

In Figure 5, we show the results of using the run-
time control agent. The tuning parameters start at
MaxClients = 600 and KeepAlive = 60. Without hu-
man intervention, it takes around 50 control inter-
vals for the tuning parameters to converge to the val-
ues which result in 0.5 CPU utilization and 0.6
memory utilization.

The robustness and autonomy of the feedback con-
trol system allows the run-time control agent to adapt
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to different workloads without having to rerun the
modeling and controller design agents to come up
with new run-time controller parameters. Figure 6
shows the scenario where the same run-time con-
trol agent as in Figure 5 is used, but now the dynamic
workload is added around the 20th control interval
(similar to Figure 2). The added HTTP requests for
dynamic Web pages consume more system resources,
causing large increases in CPU utilization, and slight
increases in memory utilization as well. This results
in differences between the desired and observed uti-
lizations and causes the run-time control agent to
start changing the tuning parameters to compensate.
In particular, a larger KeepAlive value is used to de-
crease the CPU level and the MaxClients value is ad-
justed temporarily according to the dynamics of the
server. The CPU and memory utilizations come back
to the desired values after 20 control intervals. (The
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performance of the autonomic feedback control sys-
tem has also been validated through some other ex-
periments such as using different workload patterns,
with different Web server configurations, and hav-
ing different CPU and memory objectives; however,
in the interest of brevity we do not include those re-
sults here.)

Conclusions

Complex information technology (IT) systems that
require manual intervention for configuration and
tuning increase the cost of ownership. Specifically,
managing the performance of e-commerce sites is
challenging, especially with dynamically varying
workloads. To maintain good performance, system
administrators must tune their IT environment on
an ongoing basis. The autonomic computing drive
aims to reduce costs by increasing the level of au-
tomation for such tasks, thereby reducing the man-
ual intervention required.

In this paper, we have proposed an agent-based so-
lution for not only automating the ongoing system
tuning but also for automatically designing an ap-
propriate tuning mechanism for the target system.
We use the ABLE toolkit and the AutoTune agent
framework to facilitate the construction of auton-
omous agents for autonomic performance manage-
ment. These agents automate a control-theoretic
methodology of controller design, that is, the Au-
toTune agents automate the procedure of model
building, controller design, and run-time feedback
control. We described the methodology used to de-
sign a model-based feedback controller, which can
handle the dynamic and interrelated dependencies
between tuning knobs and performance metrics. The
effectiveness of the design automation as well as the
resulting tuning mechanism has been demonstrated
through experiments showing the feedback-driven
controller to be robust and adaptable to situations
other than the one for which it was designed. Our
system thus allows a system administrator to auto-
mate the process of designing a tuning mechanism
and provides a readily available run-time agent to
perform the real-time system monitoring and tun-
ing. Thus, it is clearly preferable to the manual tun-
ing approach that is commonly used today.

The component-based toolkit of ABLE and the gen-
eral framework provided by the AutoTune agent ar-
chitecture were invaluable in allowing rapid construc-
tion of these three agents. In the future, we look to
leverage this plug-and-play capability to automate
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tuning for a variety of systems, ranging from single
database and application servers to distributed server
farms. We would like to verify that the automated
methodology we have incorporated in these agents
is indeed applicable across this wide variety of sys-
tems. Further, we have not yet exploited the hier-
archical and inter-agent capabilities of AutoTune,
and much work remains in designing and automat-
ing effective control mechanisms for enterprise-scale
distributed systems.

**Trademark or registered trademark of Apache Digital Corpo-
ration, The Open Group, Sun Microsystems, Inc., or Linus Tor-
valds.
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