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Abstract

Previous research has shown that the strategy chosen by server applications for managing multiple simulta-
neous connections may have a significant impact on a server’s behavior. This thesis examines commonly used
mechanisms for communicating state and event information between the kernel and application and their
effect on application structure and behavior. From this examination we find that there is potential for im-
proving application scalability characteristics through the use of an improved event delivery and notification
mechanism.

We propose a new mechanism for event delivery and notification in Linux that is designed with efficiency
and scalability in mind. We proceed to apply this new mechanism to a web-server and present a series of
experiments demonstrating that our web-server is capable of nearly doubling the throughput of a similar
server based on polling mechanisms when the request rate exceeds what the server can handle.
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Chapter 1

Introduction and Motivation

1.1 Problem Statement

The aim of this thesis is to improve the ability of an operating system and web-server to effi-
ciently handle a large number of simultaneous client connections through the use of a preemptive
event-notification mechanism.

1.2 Motivation

Many applications are referred to as being “event-driven” by virtue of the fact that they perform actions
in response to changes in their environment, that are often presented to them by the operating system.
However, many such applications rely on a kernel-polling mechanism to learn of events of interest. Such
applications are not truly driven by events, since events in the operating system and hardware do not
trigger the application to respond immediately. In this thesis, we consider the design of a new mechanism
in Linux for communicating event information from the kernel to an application that includes preemptive
event-notification. Our goal is to enable truly event-driven applications with a mechanism that does not
suffer from the limitations of existing mechanisms (e.g., POSIX signals and its limitation of delivering events
one at a time).

This thesis presents and evaluates a new mechanism for propagating event information through the Linux
kernel into applications. There are several types of applications that may benefit from a better event prop-
agation mechanism such as garbage collectors [8, 19], persistent storage systems [32] and distributed shared
memory [23]. We focus our discussion on the Linux operating system and simple “event-driven” web-servers
and the kinds of events of interest to them (events providing information of activity on TCP/IP sockets).
Such web-servers present a natural opportunity to evaluate our mechanism and despite the significant inter-
est within the research community that this specific problem domain has generated [9, 10, 27, 18], we still
see room for improvement.

1.2.1 Multiplexing Connections in Web-Servers

The Internet has seen phenomenal growth since its creation. This growth has seen systems initially designed
to work in small academic or corporate environments being pressed into use in a world-wide public network
with millions of users. The majority of today’s Internet servers run on UNIX [24], an operating system
originating in the 1970’s. There is evidence to show that the mechanisms and interfaces of UNIX systems for
managing multiple connections scale poorly with respect to the number of clients served by Internet-server
applications [9, 10, 27].

Web-servers are essential to the World-Wide-Web [12]; their role being to service the requests of remote
clients using the Hyper-Text Transfer Protocol (HTTP) [16]. Each client conducts an HTTP dialog with the
server, requesting and receiving data over a TCP/IP connection. Each TCP/IP connection is represented



in the web-server application with a file-descriptor that the web-server uses to communicate with the client
machine [29].

As the rate of client requests increases, a web-server must deal with an increasing number of simultaneous
connections. In order to handle these connections efficiently, the web-server must use some mechanism
provided by the operating system to determine which connections (file-descriptors) require attention. We
refer to such mechanisms as “multiplexing mechanisms”! since they enable the multiplexing of numerous
connections within a single thread. A multiplexing mechanism allows for an application to switch among
connections in order to avoid blocking and waiting for the completion of an I/O operation. The choice and
performance of the multiplexing mechanism for a web-server has a significant impact on the web-server’s
ability to handle a large number of simultaneous connections [18].

In particular, it has been argued that web-servers based on an event-driven architecture have the best
potential for scaling with higher client loads [18, 27, 7]. Such servers may use a small number of kernel-
threads to take advantage of multiple processors, but otherwise eschew kernel-based multi-threading in favor
of multiplexing multiple connections within a single kernel-thread. Event-driven application architectures
have been implemented using a variety of Linux kernel mechanisms; select () [29], pol1() [29], /dev/poll
[27] or POSIX Real-Time Signals [21]. We examine these mechanisms and identify the advantages and
disadvantages each presents in a web-server attempting to handle a large number of simultaneous client
requests.

Even though POSIX Real-Time Signals [21] have been considered for use in web-servers [4, 27], they
have not been used in a preemptive manner due to the inefficiencies of preemptive signal delivery on a
large-scale. In this thesis, we develop a new event-notification mechanism designed to efficiently deliver large
numbers of events to applications using preemptive notification. To examine the utility of this mechanism,
we investigate the potential benefits of preemptive event-notification in web-servers since this seems to be
a natural fit with an event-driven application architecture. Surprisingly little attention has been given to
preemptive notification schemes in this problem domain [27, 10].

Our interest in preemptive event-notification arises from the fact that such a scheme is required to support
a truly “event-driven” application. The alternative to preemptive event-notification is polling the kernel,?
which requires that the application must explicitly recognize that it needs new events and ask the kernel to
provide them. Such an approach is not truly event-driven since an operating system event does not drive
the application; the application responds to the event but only of its own discretion.

1.3 Contributions

This thesis makes the following contributions:

e We present a new mechanism for event notification, called Scalable Event Notification and Delivery
(SEND) for use in applications relying on frequent event notifications (we refer to scalability with
respect to the frequency and number of events). SEND allows the operating system to deliver multiple
events to an applications simultaneously in an efficient manner along with providing a preemptive
notification. The efficiency of this mechanism arises from the use of special shared memory regions
(shared between the kernel and application) that eliminate the need for system calls to perform frequent
configuration operations (e.g., enabling and disabling of preemptive event notification) or obtaining
new event data.

e In the process of developing the SEND mechanism we define the concepts of “event-delivery” and
“event-notification”. We show that it is beneficial to distinguish between these two concepts whenever
we consider any mechanism that is used by applications to obtain event information. We demonstrate
that by treating these concepts separately we are able to design mechanisms and applications capable
of handling large numbers of events simultaneously.

IThe term “concurrency strategy” is sometimes associated with this concept though we refrain from its use since we wish
to include other mechanisms that may not necessarily include concurrency.

2Unless otherwise specified further references to “polling” refer to polling the operating system with a system call.
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e Creating truly event-driven applications requires more of the operating system than simply providing
an event notification mechanism. We identify problems in the Linux sockets interface that make it
difficult for us to create a truly event-driven application. To solve these problems, we present an
event-driven mechanism as a replacement for the accept () system call. With our mechanism we avoid
certain race conditions and can remove all polling from our web-server thereby always maintaining
purely event-driven semantics. We use this mechanism in conjunction with SEND to demonstrate
that the manner in which an application schedules accept operations (e.g., calls to accept()) has a
significant impact on web-server performance.

e In order to demonstrate the benefits of our mechanism, we compare the behavior of a web-server using
the most efficient polling-based multiplexing mechanism available in Linux to the behavior of the same
web-server modified to use our purely event-driven interface and mechanism. Qur results show that
when compared to a polling-based strategy, a purely event-driven web-server is capable of handling
substantially higher client request rates without a substantial degradation in performance.

1.4 Outline

Chapter 2 discusses a variety of polling and event-driven multiplexing mechanisms, focusing on the scalability
issues concerning each mechanism. From these discussions we arrive at a set of guidelines for use in our design
of SEND, which is presented in Chapter 3. We discuss the approach to interactions between the operating
system and applications that this mechanism presents and how we address potential system-security issues
arising from the kernel allowing direct access by applications to some data structures. Chapter 4 describes
the modifications required of an existing web-server to use SEND and present a series of experiments to show
that this web-server is better suited to gracefully handling a high rate of client requests. Finally, Chapter 5
presents several potential avenues for future research.
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Chapter 2

Background and Related Work

This chapter considers the characteristics of the multiplexing mechanisms available in Linux, beginning
with a discussion of the traditional UNIX file-descriptor polling mechanisms found in Linux: select() and
poll() [29]. This discussion is followed by an examination of relevant research into the characteristics and
potential improvements to these mechanisms. Our belief is that a polling-based application design faces
scalability concerns not present in applications based on purely event-driven multiplexing mechanisms with
some form of preemption. The existing preemptive event-notification mechanism in Linux (POSIX signals)
is not designed to process large numbers of events and thus, faces significant scalability concerns of its own.
In response to these issues, in Chapter 3, we propose a generic, preemptive event-notification mechanism
that avoids many of the problems associated with select(), poll() and POSIX signals.

2.1 Application Design Using Polling Mechanisms
This section discusses the basic principles of designing Internet server applications using polling-based multi-

plexing mechanisms. Using a polling mechanism, one would write an application similar to the pseudo-code
depicted in Figure 2.1.

Figure 2.1 Pseudo-Code for a Polling-Based Web-Server

0
1 define interest_set // file descriptors the
2 // application is interested in
3
4 define active_set // set of active file descriptors
5 loop
6 active_set = poll_0S_for_state( interest_set )
7 for each x in active_set
8 work_on_file_descriptor( x )
9 end loop
end loop

[y
[e=)

There are three different mechanisms available in Linux to write such applications: select () [29], po11()
[29] and /dev/poll ! [27, 5]. Using each of these mechanisms requires the following three basic steps:

1. The application informs the operating system which file descriptors it is interested in and for what
purposes (reading and/or writing).

I This mechanism is not currently available with the standard Linux kernel, but is available as a separate patch.
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2. The application utilizes a system call provided by the polling mechanism to query the operating system
about the status of the file descriptors that the application has declared interest in.

3. The operating system communicates to the application the results of the query.

Although these steps are presented individually, the different mechanisms may combine them in various
ways. The sample pseudo-code in Figure 2.1 combines all three steps on line 6. Of the three mechanisms
available in Linux, only the /dev/poll mechanism separates these steps.

Before proceeding further we would like to point out a very important aspect of the application structure
presented in Figure 2.1 that is crucial in understanding the behavior of such an application. Note that after
the polling operation the application goes into a loop processing the file-descriptors that have been identified
as being active by the operating system. After the polling operation the application has a “batch” of work
to do and it proceeds to do it before polling again. Applications may use various strategies for deciding when
to poll again, but once a polling operation has completed the application’s course of action is determined
up to the time of the next polling operation. We refer to the work that a polling-oriented design performs
between polling operations as a “batch”.

2.1.1 Polling with select()

The select() system call is the traditional polling mechanism in UNIX systems [29]. This call takes as
parameters three bit-maps that indicate file descriptors the application is interested in and for what purposes.
Fach bit-map corresponds to one of three file-descriptor states identifying whether the file-descriptor is
readable without blocking, writable without blocking or has an exception pending. When the k’th bit of a
bit-map is asserted, it identifies the application’s interest in the condition associated with that particular
bit-map as it applies to file-descriptor k.

After select() returns, the bit-maps that were passed to the operating system as arguments have been
modified to reflect the state of the file-descriptors that the application has declared interest in. If the k’th bit
of a bit-map has been set by the application, the operating system keeps the bit set if the condition associated
with the particular bit-map holds true, otherwise the operating system clears the bit. In this manner the
application receives answers to the queries of file-descriptor state that it has posed to the operating system
when making the select () call.

The select() system call blocks until the bit-maps it would return have at least one bit set among
them. This behavior may be controlled through the specification of a time-out value that sets an upper
bound on how long the call may block for. The application may specify a time-out of 0 to prevent the call
from blocking. An additional parameter specifies the number of bits that the kernel must scan from each
bit-map.

Figure 2.2 outlines the basic structure of a server application that using select(). In this example,
as with the others presented throughout this chapter, we are not concerned with the specific actions the
application performs on each file descriptor. Instead we focus on how the various file descriptors are managed.
There are several points in this regard worth noting:

e Lines 20-22 show how we must copy the file-descriptor bit-maps prior to every select() call, since
select () modifies its arguments. The copying costs may be substantial, growing with the size of the
interest set (i.e., the number of connections) and are responsible for a significant amount of overhead
associate with select() [9)].

e Lines 28-33 show how new connections are created; by performing an accept () call when a listening
socket is marked as readable. Note that we do not know how many accept() calls we can make
without blocking at any time. As a result a web-server may set the socket on which accept() is to
be called to be non-blocking and repeatedly call accept() until there are no more new connections
(and accept () thus returns with the EWOULDBLOCK error condition). This is good practice because it
empties the kernel’s queue of accepted connections allowing new connection requests to succeed while
we perform lines 34-39 (which may take some time).

13



Figure 2.2 Outline of a select()-Based Web-Server

0  /* Declare and initialize file-descriptor sets */

1 fd_set readable, writable, exception;

2 FD_ZERO(&readable); FD_ZERO(&writable); FD_ZERO(&exception);
3  int max_fd;

4

5 /* Configure a socket to accept new connections */

6 sock = socket(...);

7  bind(sock, ... );

8 listen(sock, ... );

9

10 /* Indicate interest in reading/accepting on ‘‘sock’’ */
11  FD_SET( &readable , sock );
12 max_fd = sock;

13

14  while (1) {

15 int i;

16 fd_set r,w,e;

17

18 /* Prepare query parameters */

19 memcpy(&r, &readable, sizeof(fd_set));
20 memcpy(&w, &writable, sizeof(fd_set));
21 memcpy(&e, &exception, sizeof(fd_set));
22

23 /* Execute query , infinite timeout*/
24 select (max_fd+1, &r, &w, &e, NULL);

25

26 /* First check for new connections */
27 if (FD_ISSET(&r,sock)) {

28 new_sock = accept(sock, ...);
29 FD_SET(&readable, new_sock);
30 FD_SET(&writable, new_sock);
31 max_fd = MAX(max_fd, new_sock);
32 T

33

34 for (i=0; i<max_fd+1; ++i) {

35 if (FD_ISSET(&r, i))

36 do_read_action(i);

37 if (FD_ISSET(&w, i))

38 do_write_action(i);
39 T

40 3}

Note this is a simplified outline and does not address issues such as how completed connections are cleaned
up (in which case max_fd shrinks).

14
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2.1.2 Polling with poll1()

The poll() system call performs the same function as select() though it provides a different interface.
When using poll(), the process’s interest in file descriptors is not described with bit-maps. Instead the
caller specifies an array of struct pollfd objects, one for each file descriptor that it is interested in. Figure
2.3 shows the interface presented by poll().

Figure 2.3 Definition of struct pollfd and the poll() Interface

struct pollfd {
int £4; /* file descriptor */
short events; /* bit-map of conditions polled for */
short revents; /* bit-map of query results */

};

int poll(struct pollfd *fds, /* query parameters and results */
unsigned int num_fds, /* number of elements in ‘‘fds’’ */
int timeout); /* wait at most
* ‘‘timeout’’ milliseconds */

When a call to pol1() is made, the operating system examines the object represented by the file-descriptor
of each element of fds to see if the conditions being queried for by the events field are met. The results of
each of these queries are expressed as a bit-map and placed in the corresponding revents field. If the query
result is empty, the call blocks for at most the amount of time specified by the timeout parameter or until
the state of the operating system changes and the query result is non-empty. Figure 2.4 presents a re-write
of the example shown in Figure 2.2 using pol1() instead of select ().

The primary advantage of poll() over select() is that it copies back to the application information
about a file-descriptor only if the file-descriptor is active (i.e., read or write operations can be made without
blocking). Thus the application is presented with information concerning only those file descriptors that are
ready. On the other hand, applications using select () must check the state of each file-descriptor after a
select() call.

The disadvantage of using poll() is that under certain circumstances it may require more copying of
data than select (). This depends on the number of file descriptors in the interest set and the proportion
of those that are active; poll() performs fewer copies if the application’s interest set is large but the
number of file-descriptors that are active is small. The reason for this is that with select() each file
descriptor is represented by 3 bits, whereas each struct pollfd is (on 32-bit architectures) 64-bits. It is
up to programmers to determine which of these calls is more efficient for their program. Applications may
be written to dynamically select which call to use based on an estimate of the copying overhead that each
would incur (e.g., the thttpd web-server [26]).

2.2 Scalability of Polling Mechanisms

In the previous section, we outlined two closely related polling mechanisms; select() and poll(). These
mechanisms have been shown to scale poorly with the number of file descriptors they are handling [9, 10, 27].
The fundamental problem with these mechanisms is that as the number of file descriptors being used by an
application increases so does the amount of time taken by the application to configure the polling queries
and interpret the results. Likewise, the amount of time required by the operating system to perform the
query increases as well. The fundamental cause is that the work required on each polling operation by an
application is proportional to the number of file descriptors instead of the number of useful results (that
provide new data to the application) [9]. The overhead associated with these mechanisms is significant
as Banga et al. [10] observe: two-thirds of the time spent executing inside an operating system may be
spent performing select () operations on behalf of a web-proxy server. By understanding the causes of this

15
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Figure 2.4 Outline of a pol1()-Based Web-Server

/* Declare and initialize file-descriptor sets */

struct pollfd fds[MAX_NUM_FDS];
int max_fd = 1;

/* Configure a socket to accept new connections */

sock = socket(...);
bind(sock, ... );
listen(sock, ... );

/* Indicate interest in reading/accepting on ‘‘sock’’ */
fds[ 0 ].fd = sock; fds[ O ].events = POLLIN;
while (1) {

int i;

/* Execute query, infinite time-out value */

poll(fds, max_fd, -1);

/* First check for new connections */

if (£ds[0].revents & POLLIN) {
new_sock = accept( sock,

++max_£fd;

}

/* Perform appropriate actions on other file-descriptors */

for (i=1; i<max_fd+1; ++i) {

- )
fds[ max_fd ].fd = new_sock;
fds[ max_fd ].events = POLLIN | POLLOUT ;

if (fds[ i ].revents & POLLIN)
do_read_action(i);
if (fds[ i ].revents & POLLOUT)
do_write_action(i);

}

Note this is a simplified outline and does not address issues such as how completed connections are cleaned

up (in that case max_fd shrinks).
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scalability problem we can explain how these concerns are overcome by mechanisms such as SEND.

The first concern raised by Banga et al. [9, 10] is that select() and pol1() are memory-less; they do
not remember (between calls) what file descriptors the application is interested in. The costs incurred by
the application to configure the input arguments, by the kernel to scan the query parameters, copying data
between the kernel and application (in both directions) and the application to scan the results are incurred
regardless of whether or not the application’s interest set has changed.

Another more fundamental problem is that these mechanisms provide a means of querying the state of file
descriptors rather than informing the application of events that have occurred that affect the file-descriptor
state. Banga et al. [10] recognize this point and in response develop terminology to describe the differences.
Under this terminology select() and poll() are referred to as being state-based mechanisms as opposed
to event-based mechanisms. The distinction between the two is made as follows:

event-based: Informs applications that events have occurred on file-descriptors (e.g., informs the applica-
tion that a packet of data has arrived on a socket). An event-based mechanism tells an application
which file-descriptors have undergone a change in state since the last notification.

state-based: Tells the application the state of a file-descriptor (e.g., a socket has data that may be read
by the application immediately). A state-based mechanism tells an application which file-descriptors
match certain criteria, regardless of their state at the time of the last query or notification.

The difference between these two kinds of notification mechanisms is that a state-based mechanism
provides an application with all of the information about its file-descriptors with each notification (e.g.,
call to select()). On the other hand, an event-based mechanism tells the application what changes have
occurred to its file-descriptors since the last notification. The advantage of the event-based based approach
is that if the application’s interest set is large it incurs less overhead within the kernel and application since
all of the work goes toward providing the application with information it does not have.

There are two subtle points to recognize about this terminology; it does not refer to how information
is conveyed between the kernel and application and it does not specify the form in which information is
conveyed. This terminology is used only to characterize how a mechanism determines whether it should or
should not report a file-descriptor to an application. Thus, it is possible for an event-based mechanism to be
a polling mechanism that conveys state information to an application, provided that it conveys information
about only those file-descriptors for those events that the application is not yet aware of.

There is a important inefficiency in state-based multiplexing mechanisms that needs consideration. Oper-
ating systems such as Linux function in an event-driven environment: system calls, exceptions and interrupts.
In order to provide a state-based mechanism for applications, the operating system must translate its own
event-based view of its environment into a state-based view. As shown in Figure 2.5, this calls for a substan-
tially different flow of information through the operating system. An “event-driven” web-server must then
translate the state-based view of the multiplexing mechanism back into its own event-based semantics [10].

The translation of event-based semantics to state-based semantics and back serves no purpose except
to conform to state-based polling interfaces. In this thesis, instead of accepting the inefficiencies of such
mechanisms and interfaces, we consider event-based mechanisms that are not burdened by these inefficiencies.
In developing SEND our goal is to develop a mechanism that allows for efficient propagation of event
information through the operating system and into the application.

We also consider other event-based mechanisms; in the following sections we present another event-based
mechanism proposed by Banga et al. [10] and a semantically equivalent mechanism known as /dev/poll. We
also discuss POSIX signals, the standard event-based event-notification mechanism in UNIX/Linux. These
discussions argue that despite the fact these are event-based mechanisms, there is room for improvement in
these interfaces that we can exploit with our SEND mechanism.

2.3 Event-Based Polling

In light of the observations made in the previous sections, Banga et al. [10] have developed an event-based
mechanism as an alternative to select () and poll(). This mechanism addresses the key problems pointed
out in the preceding section; it is event-based and not memory-less (not requiring the application to re-specify
its entire interest set with each query).
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Figure 2.5 Data Flow in State-Based Polling and Preemptive Event Notification Mechanisms
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This new mechanism (which was not given a name) consists of two system calls, declare_interest()
and get_next_event (), that perform the following functions:

declare_interest(): This system call allows a process to create and manage an interest set within the
kernel. An interest set is a set of file-descriptors and particular state changes for the descriptors that
the application is interested in. For example, an application may use this call to inform the operating
system that it is interested in being told when file-descriptor “5” may be read without blocking.

get_next_event (): This system call provides the application with a list of file-descriptors in a particular
interest set along with bit-maps identifying the changes to their states that have occurred since the
last invocation of
get next_event().

The mechanism proposed by Banga et al. is event-based and alleviates the key scalability concerns
associated with select() and poll(). However, it is still a specialized polling mechanism. Banga et al.
recognize this and argue that their approach is preferable to the preemptive POSIX signals mechanism [10]
because

1. signal delivery is expensive due to kernel entry/re-entry costs,

2. preemptive notification requires a locking mechanism (that may introduce inefficiencies),

3. signals cannot be delivered in batches,

4. (as a consequence) applications lose the ability to schedule their responses to operating system events,

5. and memory requirements for storing event information are proportional to the event rate.

What these arguments illustrate is that the POSIX signals mechanism is not an appropriate mechanism
on which to base a web-server’s multiplexing strategy. What this thesis shows is that we can develop a
generic, preemptive event-notification interface that does not suffer from these limitations.

Banga et al. implemented their mechanism in Digital UNIX. Unfortunately, the source code of this
operating system and mechanism is unavailable to us for further examination, discussion and comparison.
Provos and Lever [27] implement an improved form of the /dev/poll mechanism in Linux (the original
implementation was for Solaris [5]). The /dev/poll mechanism is nearly equivalent functionally to the
interface proposed by Banga et al. [27] and since /dev/poll is available for study, we consider the /dev/poll
mechanism in its place. We discuss the details of how the /dev/poll mechanism functions in Section 2.3.1.
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In the remainder of this section we discuss the high-level aspects of Banga et al.’s mechanism (and by
implication Provos and Lever’s /dev/poll implementation).

For completeness we should note that Windows N'T implements a mechanism similar to the one proposed
by Banga et al. [10] called “I/O Completion Ports” (IOCP) [17, 31]. This mechanism allows for threads to
de-queue I/O completion events from a queue (a port) one at a time (instead of multiple events at a time).
Although this is similar to the mechanism proposed by Banga et al. it is primarily intended for dispatching
asynchronous I/O completion events among multiple (heavyweight) threads.

2.3.1 The /dev/poll Mechanism

/dev/poll is a mechanism very similar to poll(), however it remembers the set of file-descriptors an
application is interested in inside the kernel, not requiring it to be repeatedly re-specified as with select ()
and poll(). As depicted in Figure 2.6, when an application opens /dev/poll it may write struct pollfd
records to the resulting file descriptor, thus building up a file-descriptor interest set. A special ioct1()
call (Figure 2.6, line 20), which resembles pol11(), is used to query the operating system about the state
of file-descriptors in the interest set associated with the particular /dev/poll file-descriptor. In essence,
/dev/poll performs the same functionality as poll() but with the application’s file-descriptor interest set
being remembered by the operating system between queries by the application.

/dev/poll as originally implemented in Solaris as an improvement to pol1() (a poll() mechanism that
remembers the interest set between queries), though it is still a state-based mechanism. However, /dev/poll
as implemented by Provos and Lever in Linux is an event-based mechanism when applied to file-descriptors
for sockets (which is sufficient for our purposes). In this thesis, interest in the /dev/poll mechanism stems
from the fact that it is an approximation of the mechanism proposed by Banga et al. and that it has been
shown to be arguably the most efficient multiplexing mechanism for use in web-servers [27].

We say that /dev/poll is an approximation of Banga et al.’s mechanism because of the details of its
implementation. /dev/poll as implemented by Provos and Lever scans the objects belonging to an interest
set to see if a bit has been set indicating that an event has occurred for that object. If the bit is set, then
the “poll” function (inside the kernel) particular to that file-descriptor is called, and this calculates the
file-descriptor state to be reported back to the application. Since this implementation performs a “poll”
call only if an event has occurred, the overhead of potentially thousands of calls to “poll” is avoided (unlike
select() and poll() which always “poll”).

A more appropriate implementation would maintain a list of all events, or of all file-descriptors that
had events pending and this list, and only this list, would be scanned in the processing of a query from
the application. This is how Banga et al. implement their mechanism and this avoids the need to check
the flags of every file-descriptor. This difference in implementation of these mechanisms leads us to refer
to /dev/poll as an approximation of Banga et al.’s mechanism. However, our experience with /dev/poll
leads us to believe that the effect of this implementation issue is negligible.

2.4 POSIX Signals

The standard event-notification interface and mechanism found in Linux (and UNIX systems in general) is
the POSIX Signals interface as specified by the POSIX.1b standard [21]. Signals were developed to provide
an interrupt-like environment for user processes [24, 29]. The motivation behind the development of this
interface is to provide a means for applications to be informed of exceptional conditions (such as changes
in tty state) [24]. However, it is not intended to be used as the primary means by which an application
(especially a large-scale, I/O intensive one) learns about changes in its environment.

2.4.1 Signals Basics

Signals are notifications of events within the operating system, which are delivered to the application via
the interface defined by the POSIX standards. Signals are typically delivered to an application through
the invocation of a signal-handler function, specified to the operating system with the sigaction() system
call [29, 1]. An application may register a signal for each signal type defined by the operating system
(with the exception of SIGKILL and SIGSTOP). Once handlers have been registered, an application uses
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Figure 2.6 Outline of a /dev/poll-Based Web-Server

/* Declare and initialize file-descriptor sets */
struct pollfd fds[MAX_NUM_FDS];

struct dvpoll dp = {fds, 1, -1};

struct pollfd tmp;

int max_fd = 1;

int devpoll = open(‘‘/dev/poll’’, O_RDWR);

int i;

/* Configure a socket to accept new connections */
sock = socket(...);

10  bind(sock, ...);

11 1listen(sock, ...);

QOO WN RO

13 /* Indicate interest in reading/accepting on ‘‘sock’’ */
14  tmp.fd = sock; tmp.events = POLLIN;
15 write(devpoll, &tmp, sizeof(struct pollfd));

16

17  while (1) {

18 /* Execute query, infinite timeout value */

19 dp.dp_nfds = max_fd;

20 ioctl( devpoll, DP_POLL, &dp );

21

22 /* First check for new connections */

23 if (£ds[0].revents & POLLIN) {

24 new_sock = accept(sock, ...);

25 /* Register interest in new file-descriptor */
26 tmp.fd = new_sock;

27 tmp.events = POLLIN | POLLOUT ;

28 write(devpollfd , &tmp, sizeof(struct pollfd));
29 ++max_£d;

30 }

31

32 /* Perform appropriate actions on other file-descriptors */
33 for (i=1; i<max_fd+1; ++i) {

34 if (fds[i].revents & POLLIN )

35 do_read_action(i);

36 if (fds[i].revents & POLLOUT)

37 do_write_action(i);

38 T

39 1}

Note this is a simplified outline and does not address issues such as how completed connections are cleaned up (in that case
max_fd shrinks).
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the sigprocmask() [29, 1] system call to specify which signal handlers may or may not be invoked by the
operating system (those that may not be delivered are considered “blocked”). If a signal is not blocked, the
operating system may preempt the application and invoke the corresponding signal handler at any time.

When a signal handler is invoked, the set of blocked signals changes to the set associated with the signal
handler when it was registered (via sigaction()) [1]. The modification of the set of blocked signals upon
invocation of a signal-handler is necessary to avoid arbitrarily deep nesting of signals that could result in
stack overflows. Furthermore, unless there is a means for the application to disable and enable preemption,
there is little the application can do to deal with the concurrency issues raised by the preemptive invocation
of its signal-handling code except to make system calls to change the set of blocked signals.

Consequently, this interface typically necessitates a system call be made each time a signal is delivered.
These system calls impose extra overhead since each kernel entry requires the kernel to modify the processor’s
protection level, save and restore application context state and perform various checks for its own security.
The goal of SEND is to reduce the number of kernel entries required in a preemptive event notification and
delivery interface by amortizing the overhead of a preemptive event-notification over multiple events. We
now demonstrate how and why this overhead is incurred by POSIX signals in Linux.

If the set of blocked signals change upon invocation of a signal-handler, it is most likely that the change
is temporary for the duration of the execution of the signal-handler. However, the operating system cannot
determine whether or not an application is running a signal-handler and hence must be told explicitly that
a signal-handler has terminated. This is accomplished through a system call made upon completion of the
signal-handler. When an application enters the kernel to reset the set of blocked signals, it gives the kernel
the opportunity to deliver the next signal (if it is allowed to by the application’s new signal mask).

2.4.2 Real-Time Signals and phhttpd

We now describe some advanced features of signals in Linux making them signals more suitable for file-
descriptor management in web-servers. These features are usually referred to as “Real-Time Signals” (RT
signals) defined by the POSIX.1b standard [21]. The use of these features is demonstrated in phhttpd [27, 4].
phhttpd is a web-accelerator, a simple web-server used to handle requests for static web-pages, handing-off
other requests to a more robust server such as Apache [22].

RT signals provide an alternative mechanism for an application to receive signals. The sigtimedwait ()
system call [6] allows an application to poll the kernel’s signal queue for signals and receive them without
a preemptive signal-handler invocation. Retrieving signals in this manner does not affect the kernel-entry
overhead since we must still make a kernel-entry per signal. However, it makes the application somewhat
easier to write since this method eliminates preemption and thus, eliminates the associated concurrency
issues. The phhttpd web-accelerator uses this system call instead of preemptive signal-handlers for these
reasons.

Another significant feature of RT signals in Linux is that signal identifiers not reserved by the POSIX
standard may be bound to file-descriptors (via a special ioct1() call). Once a file-descriptor is bound to
an RT signal, a state change on that file-descriptor triggers that signal. The kernel then delivers to the
application the equivalent of a struct pollfd describing the state of the file-descriptor when it delivers the
signal. This binding is meant to be used as a form of interest sets, where multiple file-descriptors are bound
to the same signal number that identifies the interest set. Furthermore, when that signal is delivered to the
application it is delivered with a data-structure describing what file-descriptor is affected and what events
occurred on that file descriptor (e.g., file-descriptor has been made readable).

2.4.3 Scalability of Signals-Based Applications

Signals were added to UNIX to provide a mechanism for informing applications of exceptional conditions
and not as a primary means of communications between the kernel and applications [24]. As interest has
grown in developing more sophisticated applications making use of event notification on a regular basis, the
shortcomings of this interface have become apparent[30]. There are several issues that hamper the suitability
of signals for use in large-scale Internet server applications:

e Only one signal can be delivered at a time (due to the definition of the signal-handler interface). Thus,
delivering multiple signals requires that the kernel be entered to retrieve each signal. On the other
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hand, the select (), pol1() and /dev/poll mechanisms we have previously considered allow for kernel
entry overhead to be amortized over the notification concerning multiple file-descriptors.

In order for the application to obtain an accurate view of the state of its environment when only one
signal is delivered at a time, it must ensure receipt of all signals queued in the kernel [27]. The time
to process all queued signals from the kernel may be significant, due to the overhead associated with
handling each signal. As a result, an Internet server application using this approach has less time to
handle client requests.

If all signals are not immediately delivered to the application, some tricky situations may arise. Con-
sider a situation where the operating system sends a signal to the application indicating that file-
descriptor “6” is now readable without blocking. Let us suppose the signal is queued for delivery
and before it is delivered the application closes file-descriptor “6” and performs an accept () call that
re-allocates file-descriptor “6”. If the signal is delivered to the application at this point the application
has no way of knowing if the signal is for the old or the new file-descriptor.

e Modifying signal delivery behavior requires using a system call for each change. The actions performed
by these system calls are essentially manipulations of a bit-map and so the need for system calls to
perform these operations imposes a lot of overhead relative to the amount of real work done. As
described in the preceding sections, modifying the set of blocked signals is an action that is performed
frequently (usually on each signal-handler invocation).

e Kernel sub-systems do not usually keep track of signals once they issue them, having no way of knowing
whether or not they have signals queued within the kernel for delivery to the application. This is
because the signal mechanism takes control of the signal and becomes responsible for it. Suppose that
a TCP/IP socket is communicating events about itself to an application using signals. Each packet
that arrives for this socket generates a signal since the socket implementation does not know if past
signals are queued or already delivered. The socket must assume that the signal it generates does in
fact provide new information to the application. As a consequence, the number of signals queued for
delivery depends on the rate at which events are generated in the kernel and is limited by the amount
of memory available to the global signal buffer. This makes it likely that a high rate of events consumes
all available signals from the kernels global signal pool.

We approach this issue differently with SEND, by having sockets maintain ownership of the generated
events as they are processed by SEND. Consequently, SEND acts on events rather than taking over
responsibility for them; the kernel sub-systems that generate events may revoke or modify events after
they have been posted. By making kernel sub-systems such as sockets responsible for their own events,
we can coalesce events that provide duplicate information into one event and thus, allocate all memory
for a socket’s events at the time of socket creation.

The effect of the scalability concerns associated with signals is illustrated by Provos and Lever [27] in
their comparison of the scalability of phhttpd with that of the thttpd web-server modified to use /dev/poll.
In their experiments, Provos and Lever observe that the signals based phhttpd could only handle a client
request rate of 85% of the request rate that a /dev/poll based thttpd could handle [27]. They provide two
fundamental explanations for the observed behavior of phhttpd [27]:

e a high rate of client requests imposes significant overhead due to the inefficiencies of the signals mech-
anism and interface and thus;

e when the signal queue within the kernel overflowed (and no more signals could be queued) phhttpd
resorted to using poll(), thus taking on the performance characteristics of a po11() based application.

These results demonstrate that it is crucial for such a server to be able to process events as quickly as
they are generated. With SEND we present a mechanism that allows an application to have efficient and
immediate access to event data. Internally, management of events with SEND keeps memory requirements
proportional to the number of sockets, rather than the event rate, and therefore memory requirements are
known at the time of socket creation. Since we know memory requirements in advance we do not run out of
available events as events are generated.
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2.5 The Exo-Kernel Approach

In recent years an alternative approach to operating systems design has been proposed in the form of the
“exo-kernel” [15, 14, 3]. The exo-kernel philosophy is about reducing an operating system to a mechanism
for multiplexing hardware and providing minimal support for abstractions on which applications are built.
However, the exo-kernel approach does in fact provide an abstraction: since its goal is to multiplex hard-
ware, it provides to applications a virtual machine environment within which applications (using libraries)
implement specific interfaces and abstractions (e.g., UNIX emulation).

One of the features of an exo-kernel operating system is the notion of exception handling by applications.
An application in an exo-kernel system can handle its own page-faults by having exception-handlers called
by the exo-kernel. The mechanisms for supporting exception handling in exo-kernels are designed to be
lightweight, allowing for efficient implementations of systems such as garbage collectors and persistent storage
systems that rely on handling the hardware exceptions generated by an application due to memory operations.

The SEND mechanism proposed in this thesis aims toward implementing such a notification mechanism.
SEND too has major design points in common with exo-kernel systems; the application is always responsible
for restoring its previous execution state after it finishes handling an event-notification [15, 14, 3] and the
kernel is able to directly manipulate data in an application’s memory to aid in informing it of events. The
challenge in this endeavor is to apply these exo-kernel-like principles into a traditional monolithic kernel.
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Chapter 3

Design and Implementation

This chapter presents in detail the design of the Scalable Event Notification and Delivery (SEND) mechanism.
The previous chapter discusses several mechanisms that applications may use to learn of operating system
and external events of interest to them. SEND is a generic preemptive event-based mechanism that addresses
the scalability concerns of POSIX signals to provide an efficient event-based mechanism to be used in place
of traditional polling mechanisms (such as select(), poll() and /dev/poll). We begin with an overview
of the major design features, why they are necessary, how they differentiate SEND from POSIX Signals and
how one could write an application using SEND. This is followed by a discussion of the SEND interface
illustrating how the SEND interface handles synchronization issues between kernel and application. Finally,
we discuss how SEND is used to implement operating system functionality not otherwise available in Linux;
an alternative event-driven mechanism for the accept() system call.

A Note About Terminology

Before going further, it is necessary to establish some of the terminology that used throughout the rest
of this thesis. It is common among UNIX/Linux developers to refer to the POSIX Signals interface (and
underlying implementation) simply as “signals”. With this term, one usually associates the mechanism and
interface being used to send certain events (called signals) to an application. Thus the term “signals” has a
dual meaning; it is a specific set of events that an application may be notified of and it is the interface and
mechanism by which this notification occurs. Using the first meaning, SEND delivers “events” to applications
and some of these events may be “signals”.

3.1 Overview of the SEND Design

In the previous chapters, we identify several problems with POSIX Signals, the standard preemptive event-
notification interface in Linux (and UNIX). We use these concerns to define the design objectives of the
design of our new preemptive event-notification mechanism, called Scalable Event Notification and Delivery
(SEND).

As the name suggests, we make a distinction between the terms “event notification” and “event delivery”,
as follows:

event delivery: The process of copying event data into an application’s address space, thus making the
data available to the application. The process of copying signal information (when using the POSIX
signals mechanism) onto the application’s stack is an example of event-delivery.

event notification: The process by which an application’s execution state becomes aware of event informa-
tion delivered to it. An example of an event notification is a preemptive event-handler invocation, or an
application making a system-call (such as sigtimedwait()) to extract event data from the operating
system. Note that in both examples, event notification and event delivery occur at the same time.
Also event notification need not be preemptive; polling is an event notification process as well.
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Unlike POSIX signals, SEND allows for event delivery to occur without immediate event notification.
The capability to control notification and delivery separately is an important feature of SEND, allowing for
greater flexibility in application design. In particular, allowing for delivery to occur without notification is
a surprisingly useful feature (as will be demonstrated Section 3.3).

Our primary goal in designing SEND is to develop a mechanism to deliver multiple event notifications
simultaneously. In doing so, we make the most use out of each switch between kernel and user mode; each such
transition being an opportunity to deliver multiple events to an application. By delivering multiple events
per transition between the kernel and application, SEND reduces the overhead associated with delivering
each event (relative to the signals mechanism) and allows the system to spend more time executing useful
application code.

SEND delivers all data describing events to an application via a ring buffer (whose size, and therefore
event capacity, is set by the application). Event data is communicated in the form of struct event objects,
which are a modified form of struct siginfo objects used to communicate event data via the POSIX signals
mechanism. When events are delivered into this buffer, the operating system may preemptively invoke an
event-handler function within the application to notify it of the fact that events have been delivered to
the application. There is only one event-handler function that the operating system calls and thus, unlike
the signals mechanism, it is the responsibility of the application to de-multiplex the delivered events. This
approach allows SEND to deliver multiple events to an application with one preemption. Since the stack
is not used to deliver event data, the process of event delivery need not be tied to event notification (as is
the case with the signals mechanism). As a consequence, it is possible to deliver events without immediate
notification, allowing the application to handle events at a time convenient for it.

Applications using SEND control the key elements of SEND’s behavior by manipulating a data structure
shared between the application and the kernel, which is mapped into the address spaces of both. This data
structure is called the “Event Control Block” (ECB) and contains fields that define the state of the ring
buffer, the event-handler function, a pointer to the saved state of the application prior to event-handler
invocation, bit-maps specifying what event types may be delivered to the application and which event types
may trigger an event-handler invocation. A new system call for controlling SEND called evtctl() (similar in
nature to ioct1()) is used to ask the kernel to create this mapping and return its address. The ECB allows
the application to control the most frequently modified aspects of SEND (enabling and disabling delivery
and notification) behavior without making system calls. In particular, SEND allows for an application to
re-enable event notification upon completion of execution of the event-handler function without entering the
kernel. With the application able to restore its prior state, in circumstances where applications are faced
with high event rates, we have an expected cost of less than one kernel entry per event delivery. (The ECB
is described in detail in Section 3.2.)

Our research has uncovered only one other type of application where kernel activity is affected by an
application directly manipulating data in its own address space as is done with the ECB: providing a scheduler
with hints as to what state a user-space thread is in to more effectively deal with lock contention issues [33].
Consequently, the ECB, is a rare example of a data structure that is shared between applications and the
kernel. A promising avenue of future research is to investigate other operating system facilities that may
benefit from such a shared-memory based interface.

This design overview addresses two of the key scalability concerns associated with POSIX signals (by
reducing costs of controlling the mechanisms behavior and allowing delivery of multiple event simultaneously).
However, it also raises some important issues that we devote most of the remainder of this chapter to:

Kernel Security
The SEND design exposes a kernel data structure (the ECB) to direct manipulation by an applica-
tion. We must ensure that this does not threaten the stability and security of the operating system
as a whole. Protection is guaranteed since the data within the ECB only affects the behavior of the
operating system with respect to the current application, and only affects the behavior the operating
system already allows the application to modify. (Consider that an application using POSIX signal is
free to set the blocked signals mask to whichever value it chooses to.)

Concurrency Issues
Even though it may be safe for an application to modify the ECB with respect to the kernel’s security,
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direct access by the application to the ECB raises the question of whether or not ECB modifications
can be performed safely in an environment where the kernel may preempt the application at any time
(to handle interrupts). To share the ECB between the kernel and application safely, each field of
the ECB may be modified by the kernel or the application (and not both). In this manner we can
ensure that data written by one of these entities is not lost by being overwritten by the other. The
only requirement is that each field be modified atomically so that all read and write operations are
performed consistently. If this requirement is not achieved, the kernel may not see the ECB the way the
application intends it to be seen. Thus, it is in the application’s best interest to respect this restriction.
We discuss the particular details of these issues in Section 3.2.2.

Controlling Preemption Behavior

As mentioned above, all ECB fields manipulated by the application must be modified atomically. Thus,
there needs to be a mechanism that allows the application to modify the set of blocked events with one
operation. This capability is achieved by using two 32-bit bit-map within the ECB to specify the set of
events that may be delivered and which trigger an event-handler invocation. (Events that may trigger
an event-handler invocation may always be delivered.) We use a 32-bit bit-map since this is the largest
size of bit-map that we can manipulate atomically on the x86 architecture, which we are working on
(this may vary for other architectures with different word sizes). During the initial configuration of
SEND, the application defines the set of events that are controlled by each bit in the bit-maps. This
detail is discussed in Section 3.2.1.

Application State Restoration

One of the ways we reduce the number of system calls when using SEND is to have the application
restore its own state after a preemptive event-handler invocation. In the course of doing so, one must
not only restore the application’s registers, but typically one needs to reset the bit-maps in the ECB
controlling event delivery and notification behavior. In order to do this safely, one must ensure that the
event-handler is not invoked in the midst of this restoration procedure. To deal with this situation, we
allow the application to define a range of addresses within its code (referred to as the “critical-section”).
When the application executes within the critical-section invocation of the event-handler is disabled,
regardless of the settings of the ECB. The specific details of this mechanism are presented in Section
34.

Ring Buffer Overflow

Since we are using a ring buffer to deliver event data, we must consider what happens when the buffer
is full and the operating system still has more events to deliver. SEND addresses this issue by defining
a special event type (EVT-OVERFLOW) that is controlled with ECB bit-maps just as any other event,
but delivery of which never consumes a ring buffer entry. The EVT_OVERFLOW event simply triggers
the invocation of the event-handler when the ring buffer is full. The ECB also contains a field that
informs the application how many events are queued for delivery within the operating system, allowing
applications to determine inside the event-handler whether or not they should restore the application’s
state or extract more events from the kernel.

SEND Configuration

SEND allows for an application to control most of its behavior, blocking and unblocking event noti-
fication and delivery, without system calls. However, we provide a system call interface for some less
frequently performed actions (where delay is not an issue). These actions include performing initial
SEND configuration and defining the meaning of the event-controlling bit-maps. These are all actions
that are performed rarely (usually only as the application is initializing itself) and so we are not greatly
concerned about the overhead associated with performing such actions. To perform these tasks, SEND
defines a new system call (evtct1()) that is similar in nature to the ioctl() system call and is used
to perform all actions related to SEND that may require a system call.

The design outlined in this section addresses most of the concerns raised by Banga et al. with regards
to POSIX signals as an event delivery mechanism for web-servers (Section 2.3). In particular, this design so
far addresses all but item 5 (memory requirements being proportional to event rate). We address this last
item in Section 3.6 by proposing alternative (kernel-internal) semantics for managing file-descriptor-related
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Figure 3.1 Event Control Block Definition

struct event_control{
u32 notify; /* 132 == unsigned 32-bit integer */
u32 deliver;
u32 head;
u32 tail;
void (*handler) (struct event_control *ecb);
void* stack;
struct evt_regs *regs; /* struct evt_regs contains
* saved values of all registers
* prior to invocation of ’handler’
*/
struct event eventbuf[]; /* each ’struct event’ contains
* individual event information
* —-- analogous to ’struct siginfo’

*/

events. These new semantics give sub-systems such as sockets more control over the events they generate,
addressing the concerns about event managements (revocation) raised in Section 2.4.3.

In summary, with SEND we have an efficient mechanism for propagation of event information from the
operating system into applications. In continuing our discussion, we first discuss the ECB, the key component
of the SEND interface to be followed by the presentation of a sample application that uses SEND. Having
presented SEND in sufficient detail we then address the particular issues and concerns about SEND that we
have identified in this section.

3.2 The Event Control Block

The most important interface feature of SEND is the “Event Control Block” (ECB). The ECB defines the
region of memory in which the application places the parameters that define SEND’s behavior and provides
a ring buffer that is used by the kernel to pass event information to the application. The structure of the
ECB is determined by operating-system provided header files (Figure 3.1). The fields of the ECB serve the
following purposes:

deliver:
Each event type is bound to an event group (see Section 3.2.1) and each event-group is represented by
a bit in this 32-bit bit-map. This bit-map specifies the event groups for which events may be delivered
to the application. If an event group’s deliver bit is set, the events from that group are copied into the
ECB’s ring-buffer without triggering preemption of the application. The application can then check
the ECB at a more convenient time to see if events have been delivered. This field is modified only by
applications though it is initially set to 0 by the kernel.

notify:
This field is a 32-bit bit-map that identifies the events that may trigger a preemption (call to the
event-handler by the operating system).

If an event group has its corresponding bit set in the notify bit-map, the bit for that group in the
deliver bit-map is ignored. When a set of events is delivered to the application by the operating
system, the operating system invokes the event handler function if any of the delivered events belong
to a group whose bit in the notify bit-map is set. This field is modified only by applications though
it is set to 0 by the kernel when the ECB is initialized, thus disabling all notifications.
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stack:
This is the stack pointer that used when the event-handler is invoked in a preemption. If this field is
set to NULL then SEND uses the application’s current stack (as is done with the signals mechanism).

handler:

The address of the event-handler function invoked by the kernel when performing preemptive notifica-
tions. Since the kernel is delivering multiple events simultaneously, it does not know which specific han-
dler to invoke (as in POSIX signals). Thus, a single handler is used and this handler must de-multiplex
the single notification to event-specific handlers if it wishes to emulate a signals-like interface. This
field is set by the application and is initialized by the operating system to NULL, thus disabling all
preemption. The event-handler function is given one argument when invoked by the kernel: a pointer
to the kernel-thread’s ECB. This argument allows the function to identify its ECB, which is necessary
in multi-threaded programs where each kernel thread must have its own ECB.

regs:
This is a pointer to a structure defining the register-state of the application prior to preemption. Once
the application’s event-handler function has finished, it can restore the application’s state prior to
preemption with the data pointed to by this field. The operating system sets this field just before
invoking the event-handler function in the application.

eventbuf, head, tail:

The eventbuf array is used as a ring buffer to hold event information (Figure 3.2). The elements of
this array are divided into two groups; those elements into which the kernel may deposit new event
information and those from which the application will read that information. The head and tail field
identify the range of array elements which are yet to be processed by the application. The head field
identifies the ring-buffer entry where the next event will be delivered into and the tail field identifies
the last event processed by the application. As new events are delivered, the kernel increments (and
wraps around if necessary) the head field. Likewise, as the application consumes events it increments
tail. Using this mechanism the kernel knows which elements of the buffer are free for delivery of
events. Each element of the eventbuf buffer is a struct event object, which is an extension of
struct siginfo object used in the signals mechanism (allowing us to easily deliver signals using
SEND).

3.2.1 Event Groups

The POSIX signals implementation in x86 Linux also uses a bit-map to determine which signals should or
should not be delivered. Each bit in this bit-map controls the behavior of the operating system with respect
to one signal type. Each signal type has a signal number associated with it and thus, delivery of signal k is
controlled by the value of the k’th bit of the bit-map. However, unlike the ECB bit-maps, this bit-map is
maintained within the kernel and must be manipulated with system calls.

SEND uses two bit-maps inside the ECB to control the operating system’s event notification and delivery
behavior: notify and deliver. These bit-maps are both 32-bits in size, coinciding with the x86 architecture’s
word-size thereby allowing for the bit-maps to be read and set in their entirety with a single (atomic)
instruction (see Section 3.2.2). If the application ensures that all manipulations of these bit-maps occur
atomically, then no interrupt can occur in the midst of a manipulation and thus the kernel can never read a
bit-map in an inconsistent state.

In SEND, event types (or signal numbers) are also mapped to bits in the bit-maps, but this is a mapping
that is determined by the application. Each bit in a bit-map represents an “event group”, which is a set
of events (possibly signals) whose delivery or notification behavior is controlled by that bit. Event groups
are identified by the bit that controls them, thus event group 0 is controlled by the lowest order bit in the
bit-map. Allowing applications to define event groups in this manner accomplishes two things: it allows the
application to prioritize different event types and usually makes a 32-bit bit-map sufficient.

It is because of this ability to dynamically set the meanings of the bits in these bit-maps that a 32-
bit bit-map is sufficient. Applications such as web-servers are primarily interested in a small handful of
event types and thus, need only a small number of bits to control these events. Of the other events (that
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Figure 3.2 Ring Buffer of Event Data
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an application is only marginal interest in), empirical evidence suggests that notification of these events is
toggled simultaneously for all such events. SEND allows all such marginally interesting events to be assigned
to the same event group (or to none at all, thus disabling them).

Unlike POSIX signals, SEND does not treat all bits in the bit-mask equally. Event types represented by
low-order bits are delivered first by SEND and thus, the bit-maps provide a basic prioritization mechanism.
Providing a prioritization mechanism allows for an application to give priority to exceptional events. This
is important because SEND is designed for use in applications relying on the event-notification mechanism
as the primary means of learning about changes in the environment. If we have a server application that
processes thousands of file descriptors, there is a danger that a warning of an exceptional event would have
to wait for thousands of file-descriptor events to be processed. The prioritization mechanism provided by the
configurable bit-map mappings allows for the application to decide for itself which events are exceptional.
This structure allows, for example, a server application using an advanced memory management system
(garbage collection or persistent storage) to give higher priority to events related to memory management
(e.g., SIGSEGYV signals) than to events on sockets. Such prioritization is necessary since memory related
events need to be dealt with immediately to allow the application to finish what it is doing with the current
client connection it is handling (before it is able to deal with others).

Configuration of event groups is performed with the evtctl () system call. Figure 3.3 provides an example
of how this is accomplished. In this example, we bind SIGINT and SIGTERM signals to event group 0, and
SIGIO to event group 31.
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Figure 3.3 Using evtctl() to Define Event Groups

int group;
/* SIGINT and SIGTERM should be processed with high priority,
* assign to group O
*/
group = 0;
evtct1(SEVTGROUP, SIGINT, &group, sizeof(int));
evtctl(SEVTGROUP, SIGTERM, &group, sizeof (int));

/* SIGIO is low priority */
group = 31;
evtct1(SEVTGROUP, SIGIO, &group, sizeof (int));

3.2.2 ECB Manipulation Issues

SEND relies on the operating system and application manipulating a shared data-structure (the ECB;
Section 3.2). In this section we describe how this can be accomplished in a manner that is safe for both the
application and operating system.

The signals mechanism relies on sigprocmask() [29, 1] to enable or disable the delivery of signals. One of
the reasons for modifying the operating system’s behavior using a system call is to ensure that the operating
system’s data structures are modified in a safe manner. In Linux, the kernel is not concerned with what
signals an application wishes to block or unblock (applications are free to make mistakes in this regard), the
only concern is that in modifying the blocked signal set the application does not corrupt other kernel data
structures or cause synchronization problems. If these problems can be addressed, then we can make this
kernel data available for direct manipulation by user-space programs.

The ECB exposes only data that may be manipulated safely by an application, addressing the first
concern. However, this still leaves us with the issue of whether or not this can be done safely in an environment
where the kernel may preempt the application at any time (to handle interrupts). To understand how this is
possible, we need to first examine the relationship between application and the kernel and how they interact.

A typical Linux kernel-thread within the Linux kernel runs in one of two modes: in user mode ,in which
application code runs, and kernel mode, in which the kernel executes system calls, exception handlers and
interrupt handlers. An entry into kernel mode, for whatever reason, never switches the current thread; it
only switches the mode of the current thread. We are thus guaranteed that only one of a thread’s kernel and
user-space components may be executing at any time. Thus, when a thread is running in kernel mode it can
safely modify and examine the ECB, knowing that the user mode code is not running. This restriction on
when the kernel can look at the ECB is not a problem for us since the only time we need to access ECB fields
is just prior to switching from kernel mode to user mode; at a time when the current thread’s ECB is in the
current virtual address space (of the kernel code). A thread in user-mode may be interrupted (and switched
to kernel-mode) at any time and as a consequence the user-mode component of a thread must ensure that
the ECB is always in a valid state by using atomic instructions to manipulate it. Typically, this atomicity
is accomplished by relying on the atomicity of word-size load and store operations of the CPU.

If an application using SEND fails to ensure that the ECB is in a consistent state at all times, then the
ECB as perceived by it or by the kernel may not be what is intended. The effect of such mis-perceptions
is equivalent to the application specifying the wrong set of signals to be blocked, if it were to use POSIX
signals. In summary, it is the application’s responsibility to ensure the ECB is managed properly and thus,
must ensure that it obeys the following rules:

1. The head, num queued fields and eventbuf ring-buffer are the only fields that are modified by the
kernel (the kernel considers these to be write-only). These parts of the ECB should not be modified
by the application. The kernel keeps a private copy of these fields and does not rely on the values in
user-space, which may be corrupted by the application.
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2. Applications may modify all other fields, however, all modifications must be made atomically since the
operating system may preempt the application at any time due to an interrupt or exception. Strictly
speaking, the atomicity requirement is that “load” and “store” operations performed on the ECB fields
are performed atomically in order to ensure that fields are never partially set or partially read. (This
requirement is typically met by using standard word load and store instructions.)

3. In cases where one wishes to modify several fields at once, all preemptive event notification must be
disabled during the course of these operations. If notification is disabled, there is no need for the
kernel to look at these other fields. (For example, if one wishes to modify handler and stack together,
disable notification first.)

4. If an application is running with multiple kernel-threads, each thread must have its own ECB; an ECB
may be modified only by the thread that configured it. The operating system does not make any
guarantees as to the state of the ECB when observed by other threads.

3.3 SEND Example Application

This section presents an annotated example of a program using SEND. This application loops printing the
message “In loop...” indefinitely. When the program receives a “SIGINT” signal, the signal is delivered
via the SEND mechanism and the application prints “Received SIGINT” before resuming its original loop.
Using SEND in such an application makes the application more complicated than it needs to be, but the
goal of this example is to demonstrate how one would configure SEND without issues associated with more
complicated applications (such as web-servers) to obscure the example. We discuss how to apply SEND in
an Internet server application in Section 4.3.

Example SEND Application

Section 3.4 describes a mechanism called “critical-sections” that provides another mean of controlling appli-
cation preemption. In this example, the impact of this mechanism is that if the application is executing code
between begin cs() and end cs(), the kernel may not preemptively notify the application of any events.
The role of this mechanism becomes apparent in the discussions following the presentation of this example.

/* Empty function to define start of critical section. */
void begin_cs({};
void event_handler (struct event_control *ecb) {

/* Notification is off due to critical section. */

int old_notify = ecb->notify;

/* Explicitly turn off notification to allow calls
* to other functions x*/

ecb->notify = 0;

/* Delivery is on, kernel may be changing ‘‘head’’ */
while ( ecb->head > ecb->tail) {
struct event * ce =
&ecb->eventbuf [ecb->tail % EVENTBUF_SIZE];
/* Invoke handler for specific type of event.
* We are jumping out of critical section, must
* rely on notify field for preemption control

*/

/* evt_type specifies what kind of event it is.
* Traditional signal events are identified by their
* signal number

*/
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(*handle_event[ curr_event->evt_type 1) (ce);
ecb->tail = ecb->tail+1 % EVENTBUF_SIZE ;

ecb->notify = old_notify;
/* Notification is off due to critical section. */

/* Restore previous register state, thus jumping out
* of the critical section, re-enabling notification
* control via the notify field
*/

restore_state(ecb->regs);

/* This point never reached. */

}

/* Empty function to define end of critical section. */
void end_cs(){};

void sigint_handler (const struct event xe){
printf (¢ ‘Received SIGINT\n’’);
}

int main () {

/* Define ECB holding 100 events. */
ecb = evtctl(DEF_ECB, 100);

/* Define event handler stack.

* Note: stack grows down, thus we provide a pointer
* to the top of the memory region.

*/

ecb->stack = malloc(8192) + 8192;

/* Define SEND event handler */
ecb->handler = event_handler;

/* Define critical section. */
evtctl(DEF_CRITSECT, begin_cs, end_cs);

/* Bind SIGINT events to group 0. */
evtct1(SETGROUP, SIGINT, 0);

/* Set handler for SIGINT */
handle_event [SIGINT] = sigint_handler;

/* Enable notification and delivery for group O,

* which is represented by the lowest order bit */
ecb->deliver = 0x00000001 ;
ecb->notify = 0x00000001 ;

while(1){
printf (¢ ‘Looping...\n’’);
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78
79

We now explain the example code:

50: The application asks the kernel to configure SEND by creating a mapping for the ECB. In making
this request the application also tells the kernel what capacity it desires for its ring-buffer. The kernel
performs all memory allocation and mapping as well as checking for potential errors (such as an ECB
already having been configured).

52-69: The application configures the ECB. This involves setting ECB fields to define the event-handler
entry point and the stack pointer to be used by the event-handler.

72-73: The application enables notification and/or delivery by setting the appropriate ECB fields. The next
time the kernel is entered (via system-call, exception or interrupt) it can observe these fields and deliver
events if appropriate as it returns to user-mode. The application now proceeds to perform its intended
tasks (or it may wait until an event is delivered).

In kernel: The kernel delivers an event and preemptively notifies the application. Just before it switches
from kernel-mode to user-mode it sets the stack and instruction pointer to simulate a call to the event-
handler function. The kernel also copies the register state of the application prior to preemption onto
the application’s original stack and sets the ECB field regs to point to this data.

11-25: The application’s event-handler examines the ECB’s ring buffer and handles the events contained
within (however many it chooses). As the event-handler handles events, it increments the tail field
freeing entries in the ring buffer for the kernel to deliver subsequent events into. Note that the kernel
may be delivering more events throughout this loop. This is an important design feature of SEND; by
separating control of notification and delivery we can deliver events to the application as it is handling
other events.

27: The application sets the notify fields to allow the kernel to perform further preemption. At this point
preemption by the operating system is disabled by the critical-section mechanism, allowing application
state to be safely restored.

35: The application restores its state prior to preemption using data pointed to by the regs ECB field. The
restore_state() function ultimately performs a jump out of the event_handler () function in order
to restore the application’s instruction pointer to its state prior to the event-handler being invoked.
This jump causes the application to jump out of the critical-section and re-enables the notify field as
the sole controller of preemptive notification.

The POSIX signals interface is much simpler and better suited to an application such as this. The various
system calls in the POSIX signals interface provide larger functional units; this example application would
require only a few lines of code if written using POSIX signals. SEND on the other hand forces a programmer
using the raw SEND interface to be more aware of and involved in the process of configuring SEND and
handling events. As a consequence, one could think of the distinction between POSIX signals and SEND ags
being analogous to the distinction between CISC and RISC processor architectures (respectively). Just as
the details of a RISC architecture are hidden from the programmer by the use of high-level programming
languages and compilers, it is conceivable that the details of the SEND interface could be hidden from
programmers by a convenient yet efficient wrapper library. In fact, we see no reason why one could not
emulate the POSIX signals interface in user-space on top of SEND.

The example presented in this section establishes most of the application infrastructure necessary to build
an Internet server application using SEND. Note that the examples given in Chapter 2 (Figures 2.2, 2.4,
2.6) attempt to translate the semantics of a polling oriented kernel interface into an event-driven application
architecture. The do_read action() and do_write_action() functions in these examples are essentially
event-handlers called when the application determines that an event of the appropriate type has occurred
on the specified file-descriptor. Thus, to modify the example in this section to present a basic Internet
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server application requires adding the necessary system calls to configure sockets to generate appropriate
events and modifying the event-handler function to properly de-multiplex these events. We discuss issues of
implementing a web-server with SEND in Section 4.3.

3.4 Critical Sections

Given the simple SEND example, the necessity of the “critical sections” mechanism we can now be discussed.
As discussed in Section 2.4.3, applications need some mechanism to prevent nested event-handler invocations
(an event-handler preempting another invocation of the event-handler). There are two situations in which
relying solely on the ECB’s notify field is insufficient:

e When the event-handler is first invoked the notify field must be modified by the application to disable
notification. However, the kernel could receive an interrupt and attempt to notify the application of a
new event before this happens, resulting in a nested event-handler invocation.

e An application executing inside an event-handler wishing to restore its prior state (including the notify
field) can only do so by setting the notify field and then restoring the instruction pointer. Thus,
there exists an opportunity for the kernel to invoke the event-handler function just as it is restoring
application state.

These situations are not a problem when using the signals mechanism. The signals mechanism allows
for an application to specify the set of signals that are blocked during the execution of each signal handler.
The signals mechanism also provides a means for simultaneously restoring application registers and signal
notification behavior with the (implicit) sigreturn() system call [2]. Since SEND aims to eliminate this
secondary kernel entry at the end of a preemption, a specialized mechanism must be developed to allow
applications to safely enable and disable event notification inside the event-handler function.

The mechanism developed for SEND is to allow applications to register a “critical-section” of code. If
the kernel finds the application’s instruction pointer is inside a critical section, it refrains from invoking the
event-handler; the critical section mechanism overrides the ECB’s notify field. If we declare the region
of memory in which the event-handler function resides as the critical section we can guard against nested
invocation of the event-handler in the two situations outlined above.

Since SEND allows for event-delivery without event-notification, the kernel can still deliver events (de-
pending on the setting of the deliver field) even though notification is turned off. Thus, an application need
not worry about having event-delivery delayed because it is executing code that should not be preempted;
applications are always free to check the ECB on their own to see if events have been delivered. This raises
a key distinction between signals and SEND. When using signals applications must enter the kernel to get
the next signal, whereas an application using SEND can check the ECB in a handful of instructions.

As shown in the example in Section 3.3, a SEND event-handler may repeatedly check if it has more
events to handle (by comparing the head and tail fields) and if it determines that there are no further
events to process, it commits itself to restoring the state of the application prior to the invocation of the
event handler. An application may allow the kernel to deliver events while the event-handler is running
and it is possible that an event may be delivered after the application has compared head and tail (and
committed to restoring saved-application state) but before notification is enabled. The application would
then be notified of the event upon the next invocation of the event-handler or if it were to check the ECB
on its own.

Such an event-handler is “edge-triggered”; notifications may be delayed if events are delivered after the
event-handler has committed to restoring the saved registers, but before it exits the critical section. Ideally,
one would like to have a “level-triggered” event-handler that does not restore application state unless all
delivered events have been processed. Such a “level-triggered” event-handler needs to allow itself to be
preempted by itself (and be able to recover from such a situation). Figure 3.4 presents an outline of how
such and event-handler may be written.
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Figure 3.4 Pseudo-Code for a Level-Triggered Event-Handler

begin_critical_section:
void event_handler(){

save notify field;
if ( preempting event handler )
cleanup nested preemption;

do
clear notify field;
process next event in ring buffer;
update tail;
restore notify field;

end_critical_section:
while( head != tail );

restore registers;

3.5 Non-Preemptive SEND

Although SEND has been designed to be used as a preemptive event-notification mechanism it is possible to
use it in a non-preemptive manner. In doing so, we effectively transform SEND to simulate the mechanism
proposed by Banga et al. [10], allowing us to evaluate the effect of preemptive notification in web-server
performance.

One of the commands supported by the the evtct1() system call is the
WAIT_FOR_EVENT command. This command causes the evtctl() system call to block until an event is ready
to be delivered to the application in a manner similar to the sigsuspend() system call [1]. A bit-map whose
bits have the same meaning as the deliver bit-map is passed to evtctl() to identify which event groups
the application wishes to block for and this bit-map overrides the deliver bit-map for the duration of this
system call. Additionally, evtctl() does not block if the ring buffer is not empty and upon completion
of this system call the kernel does not invoke the application’s event-handler. We have found that these
last two properties of this mechanism make it easier to use, by reducing the volatility of application/kernel
interactions. Figure 3.5 demonstrates how this mechanism is used.

This functionality in evtctl () permits us to simulate Banga et al.’s mechanism:

e Event groups are analogous to interest sets. Declaring interest in a particular file descriptor is accom-
plished by assigning the file descriptor to a particular event group.

e The analogue for the get next_event() system call is evtctl() called with the WAIT FOR_EVENT
command, provided that event notification and delivery are otherwise disabled. If this is the case, the
only opportunity for event information to enter the application is when the application calls evtct1()
to wait for the next event.

In a true event-driven application (with preemptive notification), if the application has nothing left to
do, it idles or blocks until the next event arrives. Thus, if we have a web-server that uses preemptive event-
notification, we can transform it into one that uses our simulation of Banga et al.’s mechanism by running
it with notification and delivery disabled and ensuring it blocks waiting for events when it has nothing left
to do.
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Figure 3.5 Waiting For Events

/* Disable delivery and notification. */
int old_deliver = ecb->deliver;

int old_notify = ecb->notify;
ecb->deliver = 0;

ecb->notify = 0;

/* If kernel has changed ‘‘head’’ without us knowing, then
* make an evtctl() call that returns immediately. */
if (ecb->head == ecb->tail) {
/* Wait for any event to be delivered. */
evtctl(WAIT_FOR_EVENT, ~0);

/* Call event handler explicitly to handle events.
* Handler must be smart enough to realize that it is
* being called by the application and not preemptively
* invoked by the kernel.
*/

event_handler(ecb);

/* Re-enable notification and delivery. */
ecb->notify = old_notify;
ecb->deliver = old_deliver;

This example code demonstrates how to wait for events. Note that we disable delivery and notification before
checking the ECB (to see if blocking is necessary). Since the kernel uses the bit-map passed into evtct1() to
determine what events we can deliver, we avoid a potential race condition triggered by the kernel delivering
all of its events as we are about to call evtctl().
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3.6 Related Kernel Internal and Interface Issues

In this section, we discuss some details of the internals of SEND in order to illustrate how kernel sub-systems
(sockets in particular) interact with SEND. We describe how these new interaction semantics can be used to
implement an event-driven alternative to the traditional accept () system call. Additionally, these semantics
address the 5th concern raised by Banga et al. (memory requirements to represent event information —
Section 2.3).

As illustrated in Section 2.4, mechanisms such as POSIX signals must deal with events that are queued,
awaiting delivery to the application. The implementation of POSIX signals in Linux does not allow for
sockets to modify or revoke signals after they have been issued. This limitation allows for the situation
depicted in Section 2.4, where a signal notifying an application that a file-descriptor has data available for
reading arrives after the file-descriptor has been closed.

The implementation of SEND allows kernel sub-systems (such as sockets) to have more control over the
events sent applications. Events handled by SEND within the kernel may be modified or revoked while they
are queued awaiting delivery. When a kernel sub-system generates an event to be delivered to an application
via SEND it passes to SEND a struct event_holder object containing the struct event object for the
event data to be delivered to the application. The struct event is eventually copied into the application’s
ring buffer of event data. The struct event_holder object also contains:

e Flags indicating the status of an event: inactive, queued for delivery or delivered;
e A pointer to a call-back function (within the kernel) that is called as the event is delivered;

e A flag indicating what is done with the struct event_holder object after delivery (nothing or the
memory is to be freed).

In the common case, most of these features are unnecessary; when an event is generated it usually specifies
that the memory is freed automatically by SEND after delivery. However, there are situations in which these
features are useful.

The in-kernel call-back allows the sub-system that generated the event to be made aware when the event
is about to be delivered, and allows it to perform actions with the kernel running in the context (address
space) of the application that receives the event. This last point is important since events are usually
generated inside interrupt handlers, at which time the current address space may belong to a process other
than the one receiving the event. In such a situation, it is impossible to refer to an arbitrary process’s virtual
address space since the currently loaded page tables are for another process’s virtual address space (though
in-kernel addresses are mapped to the same, protected, virtual addresses in all address spaces). The call-back
mechanism allows for the operating system to perform actions associated with an event in the appropriate
process context.

Such functionality may be implemented by modifying the implementation of POSIX signals in Linux, but
only by adding to the signals mechanism specific knowledge of the actions to be performed upon delivery
of each event type. The implementation of this functionality in the SEND mechanism does not require the
implementation to know anything about the particular actions associated with these events, making the
SEND mechanism more general in this respect. The SEND mechanism is a conduit used by various kernel
sub-systems to push events through to applications, unlike the POSIX signals mechanism, which takes full
responsibility for signals once they have been posted. With SEND, sub-systems that generate events may
maintain responsibility for managing them.

Thus, if a socket is using the SEND mechanism to deliver events,q it may update or revoke an event after
it has been queued for delivery. Hence, if something happens to the socket while it has an event queued, it
can modify the queued event to reflect all changes to its state. Furthermore, the socket can be notified by
SEND when events are delivered, and thus, the socket can keep track of what information about is has been
made available to the application. As a result, sockets require memory for only one event inside the kernel.
We allocate the memory for this at the time the socket is configured to use SEND (by being bound to an
event group — Section 3.6.2). Thus, when a new event is to be generated by a socket, allocating memory
ofr the event is not an issue. With POSIX signals memory describing each signal is allocated from limited
global pool. Once this pool is exhausted a server such as phhttpd must resort to polling (see Section 2.4.2)
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since the exhaustion of this resource only becomes apparent at the time a new event is to be generated
(consequently this event information may be lost).

By shifting more responsibility for managing events from the notification and delivery mechanism (SEND)
to the sub-systems (sockets) that generate events, we can more efficiently handle events. As a result, the
number of events (describing socket activity) in the system is proportional to the number of file-descriptors
not the event rate per file-descriptor since pending events may be modified while they are queued. Thus,
the ratio of events to file-descriptors can be held constant.

3.6.1 Event-Driven accept()

In order to demonstrate the functionality associated with the implementation of the SEND mechanism we
have implemented a mechanism called “auto-accept”. In Linux, file-descriptors for new, incoming, TCP/IP
connections are made by calling accept () on a socket that is listening for new connections. When the socket
that is listening for new connections has successfully negotiated a connection, it is flagged as readable by
select(), poll(), and /dev/poll indicating that an accept() call on that socket will not block. There
are two problems with this approach: there is no way to know how many new connections are pending and
the state of the new socket is unknown (and therefore must be polled). The second point is a problem for
an event-driven application that must explicitly specify that it wants a socket to deliver events (via SEND
or POSIX signals). After configuring a socket to generate events, the application must poll for the state of
the socket to learn about what has happened to the socket between the time it was created and the time it
was configured to generate events. If this is not done, the application is not aware of events for the socket
that occurred before it was configured to generate events.

With SEND we can address both issues. The auto-accept mechanism is meant to replace the accept ()
system call and essentially amounts to an asynchronous accept() call. The auto-accept mechanism is
enabled by a new ioctl() command (SIOCAUTOACCEPT) applied to the listening socket. Once this has been
done, and listen() has been called on the socket, the negotiation of a new connection by the kernel will
performs an accept operation (the actions usually performed by a call to accept()) and delivers the results
to the application in a new event type (EVT_IPACCEPT). The actual accept operation (creation of the new
socket) occurs at the time of the delivery and is triggered by the in-kernel call-back, which is called at that
time. When an EVT_TPACCEPT event is delivered to an application, it provides the application with the same
data it would have otherwise obtained by calling accept () (the new file-descriptor and the address of the
remote end of the socket). Additionally, the EVT_IPACCEPT event carries along with it information about the
current state of the new socket (e.g., is it readable?).

Section 3.6.2 describes extensions to ioctl() that allow us to have new sockets inherit the event gener-
ation properties of their parents (i.e., the socket used to create this socket via accept()). This capability
avoids the need for us to explicitly configure new sockets to generate events. When combined with the
auto-accept mechanism, new sockets that are created through accept operations are pre-configured to de-
liver event information and we always know their initial state (without polling). This mechanism provides a
solution for both issues identified earlier in this section.

Our experience with the auto-accept mechanism reveal it performs two distinct roles: performing an
accept operation without an explicit system call and altering the timing of this operation to occur at the
time of event delivery. The experimental results and subsequent discussion presented in Chapter 4 reveal
that the timing of the accept operation has a significant impact on web-server behavior when it is overloaded.

3.6.2 Making Sockets Event-Friendly

There are still some minor issues to address with regards to how sockets can interact with the SEND
mechanism. Our goal in addressing these issues is to allow us to write a web-server that is completely
event-driven and never needs to poll the kernel for any information.

Sockets and SEND Events

In applications using SEND, file-descriptors inform applications of events with a new event type called
“EVT_IOREADY”. We use this new event type instead of a SIGIO signal event to implement certain semantics
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not compatible with the semantics associated with SIGI0. An EVT_IOREADY has associated with it a bit-
map describing the state of the file-descriptor (using the same format and meaning as the bit-map used for
poll()). It is up to the application to keep track of socket states in order to identify the actual events that
have occurred. Though it may seem odd to use events to communicate state information, our experience
has been that communicating state as opposed to event information makes the kernel and application code
simpler.

EVT_IOREADY events may be coalesced with other events of the same type (for the same socket) in order
to reduce redundant delivery and notification. This means that if a socket generates two EVT_IOREADY events
indicating that it has data to be read, and these events are generated before the first is delivered, then the
two events are coalesced into one. If the application reads data from the socket buffer and empties it before
a queued EVT_IOREADY event is delivered, that event is revoked by the socket that generated it.

The binding of this event to an event-group is performed by performing an ioct1() operation on the file
descriptor. (ioctl() is used instead of evtctl() since we are manipulating the properties of a particular
socket rather than the properties of the SEND mechanism.) We use the F_SETSIG command to specify the
event-group to which EVT_IOREADY events from a particular file-descriptor are assigned. This ioctl()
command was initially implemented in Linux to bind file-descriptors to specific Real-Time signals.

Inheritance of SEND Configuration

We also have added a new ioct1() command (SIOCEVTCLONE), that when applied to a socket that is accepting
new connections causes the socket to apply to its children sockets the same SEND settings as it has. As a
result, sockets for newly accepted connections inherit the SEND-related configuration of their parent and
thus, do not need to be configured manually.
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Chapter 4

Evaluation and Results

In this chapter, we evaluate our implementation of the SEND mechanism in Linux. We begin by presenting
timing benchmarks that highlight the differences between the POSIX signals mechanism and SEND. We
follow this with a discussion of how SEND can be applied to a web-server. During this discussion, we
identify fundamental architectural semantics that are changed in modifying the web-server to use SEND;
we later use these observations to explain the differences in behavior caused by these changes. We present
a series of experiments that compare the behavior of our SEND-based web-server with the same web-server
based on the /dev/poll mechanism. These experiments demonstrate that basing a web-server on SEND, as
opposed to other mechanisms, dramatically improves its load handling capacity.

4.1 SEND vs. POSIX Signals

One of our goals in the design of SEND is to develop a more efficient and scalable event notification and
delivery mechanism than the signals mechanism. We begin our evaluation of SEND by comparing it to the
signals mechanism to identify any efficiency gains arising strictly from the change in interface (as opposed
to changes in application behavior and semantics). We have designed an experiment that measures the
overhead incurred by the delivery and notification of events to an application. Our experiments consist of
the following steps:

1. An arbitrary number of “SIGINT” signals are queued for delivery and notification (via the signals
mechanism or via SEND). The number of signals is an experimental parameter.

2. Once the signals have been queued, the system time is recorded, indicating the start time of the
experiment.

3. The application runs (in an idle loop) and the operating system delivers events to the application,
preempting the idle loop with the event-handler or signal handler.

4. The application’s handling of each “SIGINT” signal consists of incrementing a counter.

5. When the counter value indicates that all signals have been handled the application breaks out of its
idle loop and records the system time. We then calculate the elapsed time required to handle all of the
queued signals.

In this procedure we measure the amount of time needed to convey information about events from the
operating system to the application. Note that we wish to restrict our timing to encompass only the time
needed to process the signals and notify the application since we want measurements to reflect the difference
in interfaces used by the application. In order to do this properly, we have implemented a special system
call in Linux that performs steps 1 and 2. By implementing a special system call we can be certain that
the measurement of the start time is taken immediately before the first SIGINT signal is delivered to the
application. As a result, we know for certain that no signals have been delivered before the recording of the
experiment’s start time.

40



Theses experiments are conducted using Linux 2.4.0-test7 on a 550 MHz Pentium-III with 256 MB of
RAM. We vary the number of signals to be handled from 0 to 100, repeating each instance of the experiment
1000 times and reporting the average. We find that during any particular experiment, only very rarely is the
observed time to process the events affected by process context-switches, interrupts or page-faults occurring
during the experiment. Thus, most of the time, the only operation measured by the elapsed time is how
long it takes to actually deliver the event information into the application and perform a notification, as is
intended. For these experiments, SEND is configured with a ring-buffer sized to hold 100 events (the entire
ECB was 4096 bytes; 1 page); we find that a larger ring-buffer does not improve SEND’s results any further.
The SEND configuration in this experiment involves running with notification enabled only in the idle loop
and delivery enabled at all times.

Figure 4.1 presents the results of these experiments. As expected, SEND was able to deliver the queued
events in less time than the signals mechanism (requiring approximately one fifth of the time required of
the signals mechanism). We thus deduce that in delivering signals, the POSIX signals mechanism spends
four fifths of its time keeping track of application state (i.e., what signal handler, if any, is running?) and
switching between kernel mode and user mode to de-queue the next signal. On the other hand, the time
spent by SEND was primarily devoted to copying data into the ECB. Our implementation of SEND is not
optimized in this regard; the delivery of each event involves copying approximately 40 bytes of data, the
amount of data necessary to be able to fully describe any event.

Figure 4.1 SEND vs. POSIX Signals De-Queuing Time
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In configuring these experiments, we found that increasing the ECB size to hold more than 100 events
in the ring buffer did not improve the performance of the SEND mechanism. The most likely explanation
for this is that we could not handle more than 100 events at a time before experiencing an interrupt that
would bring the process into kernel mode. With the process in kernel mode, it is able to deliver more events
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to the application prior to switching to user mode and as a result the process cannot make use of a larger
ring-buffer. This is not to say that a larger ring-buffer could not be useful for other applications, instead it
is an indication that programmers using SEND should experiment with ring-buffer sizes to find one suitable
for their application.

4.2 Demonstrating SEND in a Web-Server

Our intention is to evaluate the role of a purely event-driven kernel interface as a means for improving the
behavior of web-servers in serving large numbers of clients (corresponding to a high request rate). In order
to demonstrate the advantages presented by SEND to a web-server, we must have something to compare
it against. To this end we demonstrate the advantages of a SEND-based design by modifying an existing
web-server; thttpd [26]. Our choice of web-server is influenced by several factors:

1. thttpd is designed to work with select () (and pol11()) and thus, is already design to work in an event-
driven manner. (Note that the original design must translate the state-based semantics of select()
and poll() into an event-based view of the world.)

2. The implementation of thttpd is modular and well-suited to the modifications we are interested in.
The original design encapsulates the specific semantics of select() and poll() in an internal API.
The transformation of thttpd to use SEND required only minor modifications to this API and isolated
the majority of the thttpd changes to the implementation of this API.

3. Provos and Lever [27] used thttpd as the basis of their experiments (using /dev/poll). We ported
their /dev/poll implementation to recent development Linux kernels (2.4.0-test7; for which our im-
plementation of SEND was developed). Our port of /dev/poll is largely unchanged from the original
code by Provos and Lever; most of the changes were required to adapt to new or modified kernel-
internal interfaces. Our tests with Provos and Lever’s implementation of /dev/poll for Linux 2.2.14
indicate that thttpd running with /dev/poll on Linux 2.4.0-test7 is capable of handling a higher rate
of client requests than the version for Linux 2.2.14 (due to other improvements in the newer kernels).

We considered using phhttpd, which uses the signals mechanism as its multiplexing mechanism. At
first this may seem like a better combination of application and multiplexing mechanisms against which we
should make our comparison. However, Provos and Lever [27] demonstrate that this particular application is
incapable of handling request rates as high as the /dev/poll-based thttpd can handle. An examination of
the source code to phhttpd reaffirms this conclusion: phhttpd incurs substantial overhead in explicitly de-
queuing signals one at a time (using sigtimedwait()), must configure each new socket to generate signals,
and must poll sockets for information that may have generated signals prior to configuration.

Additionally, phhttpd resorts to using poll() if it cannot keep up with the rate at which events are being
generated and it has been previously shown that the scalability characteristics of select() and poll() are
poor [9, 10, 27]). This is especially important since Provos and Lever observe that phhttpd resorts to polling
at request rates that were easily handled by the /dev/poll-based server, indicating that phhttpd is unable
to extract signals from the kernel as fast as they are being generated. As a consequence, we have a strong
indication that the concerns about the applicability of the signals mechanism that were raised in Section
2.4.3 are evident in this application.

The other alternative mechanism that requires consideration is the one proposed by Banga et al. [10]
(Section 2.3). Their implementation is unavailable to us for direct comparison, however the /dev/poll
mechanism as implemented by Provos and Lever [27] is a close approximation of the mechanism proposed by
Banga et al. [10] (see Section 2.3.1). Furthermore, as described in Section 3.5, we can implement a mechanism
nearly identical to the one proposed by Banga et al. [10] using SEND with preemptive notification disabled.

4.3 SEND in thttpd

Chapter 2 discusses the basic structure of Internet-server applications. Figure 2.1, which presents a pseudo-
code outline of such an application structure, is in fact based on thttpd. Before presenting the application
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structure for a SEND-based web-server, there are two aspects of a polling-based design that we would like
to point out:

e file-descriptors are handled in batches (performing a polling operation upon completion of the current
batch) and,

e the order in which connections are handled is essentially determined before processing of the current
batch begins.

Both of these points arise in a polling-based design new information about connection events or states, for
the most part, enters the application only at the time of the polling operation. Our SEND-based design does
not face this restriction since preemptive notification allows it to receive and incorporate new information
into its activity scheduling as the information becomes available.

Figure 4.2 Outline of a SEND-Based thttpd

0 /* Simplified event-handler */
1 void event_handler () {
2 for each new eventq{
3 if (evt.type == EVT_IOREADY) {
4 add_to_fd_queue(evt.fd, evt);
5 } else if (evt.type == EVT_IPACCEPT) {
6 add_to_newconn_queue(evt.fd, evt);
7 T
8 }
9 3}
10  void main () {
11 configure_send();
12 ecb->notify = ecb->deliver = allow_notif_delivery;
13 while (1) {
14 /* Look at EVT_IPACCEPT event */
15 q = dequeue_from_newconn_queue () ;
16 if (q != NULL) {
17 /* Create data-structures describing the new
18 * connection. No accept() call is needed. */
19 next_conn = config_new_conn(q);
20 if (no_data_to_read(next_conn))
21 continue;
22 } else {
23 /* No new connection, process an old one. */
24 next_conn = dequeue_from_fd_queue();
25 T
26 if (next_conn) {
27 work_on_connection(next_conn);
28 } else {
29 ecb->notify = ecb->deliver = 0;
30 if (ecb->head != ecb->tail) {
31 /* Nothing to do, block until next event.
32 * evtctl will not call event handler.
33 * This call blocks until head!=tail */
34 evtctl(WAIT_FOR_EVENT, ~0);
35 }
36 /* Call handler to process events */
37 event_handler();
38 ecb->notify = ecb->deliver = allow_notif_delivery;
39 T
40 }
41 3

Note that this figure presents an overly simplified view of the web-server. In particular, it excludes mechanisms to delete
connections after they have timed-out and logic for manipulating SEND and the ECB in the event-handler function.

Figure 4.2 shows a pseudo-code outline of our SEND-based thttpd. Working in an event-driven envi-
ronment offers to potential to avoid some inefficiencies introduced by translation between a polling kernel
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interface and event-driven application semantics. In order to explain the differences in behavior between
SEND-based thttpd and /dev/poll-based thttpd observed later in this chapter, we now outline how these
designs differ and how some functionality has been re-implemented in an event-driven environment:

e In the SEND-based version of this server, when the event-handler is invoked, it does not force the
application to immediately handle the connections that triggered the latest events. Instead, the event-
handler performs a scheduling operation (en-queuing the event data) which alters the behavior of the
application once its state is restored. The event-handler in this case functions very much like a low-level
interrupt-handler in an operating system; it does the bare minimum necessary to allow future events
to occur safely and efficiently and leaves most of the computation to another execution context.

e We are using the event-driven alternative to accept() (Section 3.6.1) and thus, when we receive an
event describing an incoming TCP connection, there is no need to perform an accept operation (by
calling accept ()). Consequently, when we de-queue a connection from the queue of new connections
we only need to configure the application-internal data structures defining a connection when calling
config new_conn(). Note that the primary effect of the auto-accept mechanism is to alleviate the
race condition described in Section 3.6.1 without performing a polling operation. The new socket is
produced by the accept operation that occurs at the time of event delivery. This is nearly equivalent
to the application receiving an event telling it that it may call accept () without blocking and then
calling accept () inside the event-handler.

e Note that the first event for a connection is an EVT_IPACCEPT event and all subsequent events are
EVT_TOREADY events and thus, we have two queues in the server; one for new connections and one for
current connections. By using two separate queues we allow the application to give preference to new
connections in order to be consistent with other thttpd variants. In fact, this design accomplishes this
more effectively since we can react to new connections as soon as possible. Crovella et al. [13] have
shown that connections active for some time are more likely to be high-latency connections or requests
for larger files and web-server performance is likely to improve by giving priority to new connections,
which are low latency or for small files.

e There is no concept of a current “batch” of connections to be handled as there is in a polling-oriented
design (note the absence of an inner loop as in Figure 2.1). The event-handler may be constantly
adding elements to the queues as the rest of the application works to remove them. Since there is
no “batch” of work to do, there is no convenient way of keeping track of how long a connection has
existed. Polling-based variants of thttpd keep track of time by checking at the completion of each
batch. Since our SEND-based thttpd doesn’t have a batch of requests to work with, it does not know
when to check the time and thus, in order to avoid excessive polling (and maintain purely event-driven
semantics) our server uses interval timers to keep track of time.

It is important to remember the last point since we demonstrate in Section 4.7 the switch from a polling
“batch-oriented” design to a continuous, “incremental” approach to scheduling significantly alters the be-
havior of the application. In a batch-oriented design, if the request rate exceeds what the server can process,
then the batch size grows significantly, potentially degrading the web-server’s responsiveness.

4.4 Experimental Design

We now outline the experimental design used to demonstrate how we use our SEND mechanism to build a
web-server that is better able to handle high rates of client requests.

Each experiment we conduct consists of applying a known workload to a web-server and observing the
behavior of that server under the particular load. For the purposes of these experiments, a workload is a
sequence of requests made by a client to a server for some set of files. In these experiments, a workload can
be characterized by the total number of requests, the rate at which requests are made and the files that are
requested. The number of requests is usually fixed and we have a small number of files to be requested.
Therefore, our experiments will primarily focus on how changing the request rate affects the web-server.

44



A server is able to respond to requests at a particular rate (which we refer to as the “response rate”). We
refer to the point beyond which the web-server cannot sustain a response rate equal to the request rate for
a particular set of requested files as the “saturation point”. The saturation point is a indication of the load
bearing capacity of a web-server (under a particular workload). We are also interested in understanding the
behavior of web-servers when the request rate exceeds the saturation point; a better web-server design reacts
gracefully when it is overloaded (i.e., when the request rate exceeds the saturation point). If a web-server is
capable of handling temporary overloads gracefully, we can safely let it run much closer to its saturation point
for long periods of time knowing that a minor fluctuation in client activity does not affect it substantially.

Our basic experimental procedure is to apply a workload to a web-server over a range of request rates
and to observe the results. The software we use to generate requests and measure the results is httperf [25].
We have chosen this particular client software for two reasons; it was used by Provos and Lever [27] in their
experiments with the /dev/poll-based implementation of thttpd and we have found this software to be the
best suited for reliably and predictably imposing very heavy loads on a web-server in our environment.

The request rate is not the only factor determining the intensity of a workload imposed on a web-server.
We also consider the files being requested since this determines how much work the server must do per request
(in particular due to file size). Requests for small files stress the operating system and web-server more than
requests for larger files, which stresses the network and TCP /IP kernel sub-system. This is because the cost
of serving a request consists of a per-request overhead component (e.g., accepting a new connection and
processing the request) and a per-byte cost of transmitting the results back to the client. With smaller files
the cost per byte is higher since the overhead costs are spread over fewer bytes.

We begin by examining simple workloads that request a file of size 1 KB, 2 KB, 4 KB, 6 KB or 8 KB.
The results of these experiments demonstrate the effect of this parameter on web-server behavior and isolate
the differences in web-server behavior caused by the changes in multiplexing mechanisms from the effects
of network congestion. In Section 4.9, these experiments are reevaluated in the context of a more realistic
workload.

With the workload and request rate determined for each experiment we configure our load generator to
make a total of 25,000 requests. This design is similar to the workload of 35,000 requests used by Provos
and Lever [27]. Our preliminary experiments showed that reducing the number of requests per experiment
did not noticeably affect the results. However, running 25,000 requests as opposed to 35,000 requests per
experiment made it easier to manage the complete set of experiments since under very high request rates
host running the /dev/poll server occasionally crashed (apparently due to problems in the TCP/IP stack).
In almost all experiments, 25,000 requests are successfully fulfilled with only small set receiving a small
number of “connection refused” errors. These errors occurred in experiments where network congestion can
be detected; we have no indication that these few errors have any noticeable impact on our results.

Unless otherwise specified, in our experiments the web-server is running on a single-processor Pentium-IIT
at 550 MHz with 256 MB RAM, with an Intel EtherExpress Pro/100 NIC connected to a switched 100 Mbps
network. The client runs on a dual-processor version of the server machine. Aside from the ssh connections
used to monitor and control the experiments, no other spurious network traffic occurred on the network.
The operating system is based on RedHat 6.1 with a version 2.4.0-test6 of the Linux kernel. This kernel has
been modified this kernel by applying patches to upgrade some components to 2.4.0-test7 in order to address
noticeable bugs (particularly virtual-memory issues) and we have added support for SEND and /dev/poll.

Our decision to base this work on a development kernel stems from the fact that it is better able to
tolerate the loads imposed on them by our experiments than the stable 2.2 kernel series. Our preliminary
experiments involving clients running a stable 2.2 series kernel could not successfully complete the same
range of experiments.

We decided to run our experiments with a single client running httperf connecting to our server machine.
Preliminary tests showed that using a single client is sufficient to generate the required loads on our web-
server. We observed that splitting the load generation duties among multiple client machines did not alter
the aggregate measured behavior of the server. Since we could not discern any difference between having
one client or several, we chose to use one in order to simplify the process of automating experiments.
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Figure 4.3 SEND-Based Server Response Rates

SEND-Based Server Response Rates

o T T T T T T
S [ 1KBFiles --o--1 ... et e o e e e S .
2 2 KB Files :---e- - ; i e@?@@@DCD@@D®§®®®®®®®®Q@®®®®®®®®®E
4 KB Files -4 - : 3 .g. L : L
6 KB Files :---a-- - P !“.‘.O..0.’..‘..‘..9¢‘........1I
8 KB Files —v— ‘ ‘ L L SOOI
> .. L ' PAT B ﬁz{xzxaﬁazxmz@mzxﬁ
8 ® A i
o i
N
©
]
Q
el o
o
e 3
=
i)
©
ad
(]
]
c o
o o
o O
[
(&)
©
o
o
o
o i i i i i i

500 1000 1500 2000 2500 3000 3500 4000
Target Request Rate (requests/s)

4.5 /dev/poll vs. SEND: Response Rates

We now present, the results of our experiments in which we examine the behavior of the /dev/poll-based
and SEND-based servers under workloads based on file sizes of 1 KB, 2 KB, 4KB, 6KB and 8 KB. The
response rates of the two servers under these different workloads are presented in Figures 4.3 and 4.4.

These figures indicate the SEND-based server is significantly better suited for handling high client request
rates where network congestion is not a limiting factor, since it does not exhibit significant degradation in
response rate for request rates in excess of the saturation point. The difference in behavior is substantial
and requires explanation. As a starting point we draw the reader’s attention to the following features of
these figures:

e The saturation point of the SEND-based server is slightly lower than that of the /dev/poll-based
server (under 5%). We believe this is due to the fact that the SEND-based server experiences slightly
higher overhead per event delivery than the /dev/poll-based server. This situation is a consequence
of a longer code path within the kernel required to generate and deliver a SEND event as opposed to
a /dev/poll event. Furthermore, the SEND mechanism is apt to be invoked to deliver events more
frequently than the /dev/poll mechanism (the polling semantics associated with /dev/poll force
some events to be queued for delivery, whereas SEND events may be delivered immediately resulting
in fewer events per delivery).

This indicates that the two multiplexing mechanism exhibit comparable efficiency in delivering event
data to applications. In order to explain the differences we must consider differences in application
and system behavior that are introduced by switching from the /dev/poll mechanism to SEND.
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Figure 4.4 /dev/poll-Based Server Response Rates
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With workloads based on 1 KB, 2 KB and 4 KB files the SEND-based server is capable of maintaining a
response rate nearly equal to the saturation point at request rates in excess of the saturation point. On
the other hand, the /dev/poll-based server experiences a substantial degradation in response rates.
We suspect that the factor limiting the server response rate in these experiments is CPU availability. To
test this claim we outfitted the server machine with 2 CPUs and determined the two servers’ saturation
points under the same range of workloads. The addition of a second CPU allows the kernel to split its
execution time between the two CPUs thereby leaving slightly more CPU time for a single-threaded
server. The results of these experiments are presented in Figure 4.5 and indicate that under these
workloads (where we suspect the limiting factor is available CPU time) providing the servers with
more CPU time increases their response rates, thereby confirming our hypothesis.

Having identified that available CPU time is a factor limiting the performance of the web-servers
under these workloads, we see no reason why the /dev/poll server should not be able to sustain its
response rate as the request rate grows in excess of the saturation point. The fact that available CPU
time is at issue, rather than available network bandwidth, leads us to conclude that we must focus
on the differences between the multiplexing mechanisms in the two web-servers. These multiplexing
mechanisms are pivotal in determining how these application use CPU time, and we must thus look
to them to explain the discrepancies in performance profiles. We begin this discussion in Section 4.6.

With workloads based on 6 KB and 8 KB files both server types exhibit a degradation of response
rate when the request rate exceeds the saturation point. Figures 4.6 and 4.7 show the throughput
attained by the servers. From these figures we see that when the workload consists of 6 KB and 8
KB files the saturation points correspond to throughput above 80 Mbps. These throughput figures
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Figure 4.5 Effects of an Additional CPU on Saturation Points
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A comparison of saturation points of the SEND-based and /dev/poll-based servers running on dual-
processor and single-processor hosts (thereby providing the application with more CPU time by running
some kernel processing on the other CPU). We suspect that the degradation in saturation points for the
/dev/poll-based server under 6 KB and 8 KB workloads with 2 CPUs is a result of in-kernel lock-contention
issues.
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are application-level throughput (excluding connection initialization and TCP/IP header overhead)
on a 100 Mbps network. If we account for connection initialization and TCP/IP header overhead,
then in all likelihood, the network is nearly congested at these saturation points. Consequently, if
we attempt to increase the request rate we are attempting to use network bandwidth in excess of
what is available, leading to congestion. Therefore, the factor limiting the saturation point in these
experiments is network bandwidth and it is our belief that the most likely explanation for the drop
in response rates and throughput is an effect of TCP flow-control mechanisms invoked in response to
congestion detection.

Figure 4.6 SEND-Based Server Throughput
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4.6 Response and Connection Times

The results presented in the previous section demonstrate that our SEND-based server is better able to
handle request rates in excess of the saturation point for workloads where network congestion is not an
issue. In this section we present results that illustrate why our SEND-based server is able to out-perform
the /dev/poll-based server under such circumstances.

We begin our investigation by looking at the time required to obtain a response (as observed by the
client). Figures 4.8 and 4.9 present the average connection and response times observed by the client workload
generator. “Connection time” refers to the time needed to establish a TCP connection and “response time”
refers to the time needed to receive a response to a request. Both of these times are measured from the
point at which the request for a connection is first issued to the time all of the data has been received. Note
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Figure 4.7 /dev/poll-Based Server Throughput
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that the results presented in these figures are apt to vary as the total number of connections in the workload
varies (thereby varying queuing delays).

Figures 4.8 and 4.9 show that when the saturation point for a particular workload is exceeded the average
response time observed by the client increases. Generally, the average response times observed for the SEND-
based server are equal to or slightly lower than the average response times for the /dev/poll-based server.
This small discrepancy is not significant enough to explain the wide variation in response rates seen between
Figures 4.3 and 4.4.

The response times observed for the two servers do not differ significantly, even though one may expect
that the higher response rate achieved by the SEND-based server (Figures 4.3 and 4.4) would result in better
response times. This indicates that the SEND-based server does a better job of multiplexing connections;
handling multiple connections at the same time. This is naturally reflected in the throughput observations
of Figures 4.6 and 4.7.

However, if we look at the connection times, we see that the SEND-based server maintains quite low
average connection times for 1 KB, 2 KB and 4 KB workloads (where we have claimed there is no network
congestion). On average, with the /dev/poll-based server connection times are substantially higher. The
reason for this is that the SEND-based server reacts immediately to incoming connection requests (per-
forming an “accept” operation via the auto-accept mechanism) and thus, clears the queue of accepted TCP
connections. In doing so the SEND-based server prevents this queue from overflowing its length limit (its
length is limited inside the Linux kernel to 128 pending connections). Since we are using preemptive event-
notification and delivery, the SEND-based web-server receives delivery and notification of an EVT_IPACCEPT
event describing a new connection as the kernel returns to the application after handling the interrupt that
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Figure 4.8 SEND-Based Server Mean Connection and Response Times
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Note that the connection times for each of the workloads are substantially lower than the corresponding
response times.

We suspect that the fluctuations in mean response time for the 6 KB and 8 KB workloads are a result
of network congestion triggering TCP congestion avoidance mechanisms. Also, note how the fluctuations
in connection time with the 6 KB and 8 KB workloads coincide with fluctuations observed in Figure 4.3.
Our suspicion is that at some request rates some TCP connections back-off sufficiently to allow some other
connections to proceed without experiencing congestions.
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Figure 4.9 /dev/poll-Based Server Mean Connection and Response Times
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received the packet that completed the TCP three-way handshake. As a result, the in-kernel queue of
incoming connections is cleared as soon as possible.

A polling server on the other hand cannot react to events in this manner since it must finish handling
the current batch of events before polling again (and recognizing that it should call accept ()). If a polling
server cannot process requests as fast as it receives them, the number of connections that are waiting to be
accepted at the time the server performs a polling operation grows. Eventually, this causes the queue for
incoming connections (inside the kernel) to overflow. When this overflow occurs, the kernel drops packets
for incoming connection requests, ultimately resulting in TCP congestion control mechanisms being invoked.
This results in a prolonged connection time and consequently, a prolonged response time, thereby reducing
the overall response rate.

To verify this claim, the web-server was run on a kernel modified to print an error message when the
incoming connections queue overflows and a connection request had been dropped. We then ran several
experiments with the /dev/poll-based server and found the kernel reporting these errors almost immediately
when the response rate exceeded the saturation point. On the other hand, the SEND-based server never
resulted in the incoming connections queue reaching its limit. Although printing such a message may
substantially affect kernel behavior, we are only concerned with whether or not any queue overflow occurs at
any time during an experiment. The printing of the first of these diagnostic messages during an experiment
concludes the experiment (since we know a queue overflow has occurred). The resulting change in kernel
behavior due to the need to print such a messages is therefore irrelevant.

One may think that the solution to this problem with the /dev/poll-based server is to increase the upper
bound of the accepted connection queue maintained by the kernel. However, this does not solve the problem
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Figure 4.10 Per-Connection Response Times (/dev/poll vs. SEND)
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because every time the server polls, there are now potentially more connections in this queue than before
and it takes longer to process more connections. The queue still grows and eventually overflows, albeit a bit
later. We experimented with this option and found that increasing the upper bound on this queue resulted
in an even more dramatic decrease in server response rates above the saturation point (presumably since
this increases the batch sizes the server is handling and thus, reduces responsiveness).

Finally, the discussion so far has only considered the average behavior observed over all connections. One
may wonder whether the differences in behavior between the /dev/poll-based and SEND-based servers are
due to the preferential treatment of certain connections (i.e., is the server being fair to all connections?).
To consider this, we present Figure 4.10 illustrating the response times of individual connections from a
specially instrumented httperf for a typical set of experiments (1 KB file workload, 3,000 requests/second).
This figure demonstrates that our SEND-based server is capable of efficiently queuing and handling the
connections it receives. Our SEND-based server does a better job of treating all connection requests equally
whereas the /dev/poll-based server is capable of handling some requests very quickly but is apt to impose
significant delays on other connections and in general appears to be more eratic than the SEND-based server.
We believe the simpler, more well-behaved dynamics presented by our SEND-based approach are indicative
of the fact that we are using a truly event-driven application architecture without the need to deal with
polling semantics.
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Figure 4.11 Differences Among SEND-Based Servers
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“Batched” delivery and notification means that the action is performed in a batch oriented manner when
the application has run out of things to do and polls the kernel or the ECB.

“Immediate” delivery means that events are delivered into the application’s ECB as soon as possible (usually
this means right after they are generated).

4.7 Variations on SEND-Based thttpd

By disabling preemptive event notification, as described in Section 3.5, we can use SEND to emulate the
event-polling mechanism suggested by Banga et al. [10]. This allows us to consider another event-polling-
based variant of thttpd by disabling preemptive event notification in our SEND-based thttpd. This section
considers two new variants of our SEND-based thttpd for investigating the effects of batching of accept
operations:

Polling SEND 1 (PS1): In this server, the notify and deliver fields are set to 0 at all times except
when the application polls the kernel for new events using evtctl() (when it has run out of events
to process). This server simulates the mechanism proposed by Banga et al. since all notification and
delivery occurs when the server runs out of events to process and explicitly polls the kernel.

Polling SEND 2 (PS2): In this server, only the notify field is set to 0. The server is notified of new
events only when it runs out of events to process and decides to look at the ECB on its own. However,
delivery is enabled and thus the server only needs to poll the ECB for events already delivered (while
the server was processing other events).

Our original SEND-based server has delivery and notification enabled for all events (almost all of the
time). This structure means that as events are generated within the kernel they are passed on to the
application as soon as possible and the application is made aware of these events as soon as possible. This is
not so in PS1 and PS2, as summarized in Figure 4.11. In these servers, delivery and notification is potentially
delayed and subject to batching effects. PS1 restricts the opportunity for event delivery to the explicit kernel
polling operation performed via evtct1() (see Fig. 4.2), and all notification is restricted to the associated
explicit call to the event-handler function (as depicted in Figure 3.5). In PS2 we restrict notification as in
PS1, though we allow for event delivery to occur at any time.

What these difference amount to is a change in the timing of accept operations. Since accept operations
(when using auto-accept) are performed at the time of delivery of EVT_IPACCEPT events, our original SEND-
based server and PS2 have these operations performed as soon as possible. On the other hand, in PS1, the
timing of these operations is subject to batching effects of a polling-based design.

It is very important to recognize that the only material difference between PS1 and PS2 is the timing of
these accept operations. Consequently, if we have any differences in the behavior of PS1 versus PS2 these
differences can all be attributed to the difference in timing of event delivery (delivery of EVT_IPACCEPT events
in particular). Note that the difference in delivery timing between these two applications only affects the
timing of the accept operations. Although we are allowing other events (EVT_IOREADY events in particular)
to be delivered at any time, the delivery of such events has no effect on the application until notification
occurs (and we know that PS1 and PS2 use the same semantics for notification). Thus, if we observe any
differences between PS1 and PS2, it is due to the fact that these two applications use different semantics for
scheduling accept operations.

It is important to recognize that PS1 and PS2 may behave differently in other ways that could affect
their performance. In particular, these two servers see different batches of events every time they look for
new events (especially with respect to EVT_IOREADY events). However, any such differences in behavior are
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a side-effect of the difference in timing of accept operations which is the ultimate cause of all differences
between these two servers.

Figure 4.12 PS1 Server Response Rates
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Figures 4.12 and 4.13 demonstrate the response rates attained by both servers (PS1 and PS2 respectively).
Section 4.6 presents the argument that it is beneficial to a web-server to perform accept operations right away
and this is confirmed by Figures 4.12 and 4.13. These figures show that PS2 maintains a performance profile
similar to that of the original SEND-based server, whereas PS1’s performance profile more closely resembles
that of the /dev/poll-based server. Consequently, we believe that the differences in timing of accept ()
operations are the most likely explanation for the differences in behavior between the /dev/poll-based and
SEND-based servers (depicted in Figures 4.4 and 4.3). However, there are too many differences between
these two servers for us to claim this as a fact. (In particular, the /dev/poll-based server does not use the
auto-accept mechanism, but all SEND-based servers do.)

It is interesting to note that the behaviors of PS2 and our original SEND-based server (Figure 4.3) are
essentially identical. These two servers differ only in how they allow notification to occur and the similarity
in their behavior suggests that it is characteristic of their accept operation scheduling semantics (i.e., perform
accept operation as soon as possible). This is something which we do not think is possible with a strictly
polling-based design.

4.8 Limitations of Polling

The issue of proper timing of operations illustrates a fundamental limitation of a polling-based approach to
server design: there is no way for the application to know when it should try to accept new connections. A
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Figure 4.13 PS2 Server Response Rates
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polling server must ensure that there is space in the incoming connections queue to allow for new connection
requests to be queued while it performs other work. In order to do this, it must limit how much time is
spent handling existing connections before polling to see if it should call accept (). Polling too frequently
may be inefficient and polling infrequently results in larger batches, thereby reducing server responsiveness
to events. Determining how often one should poll (or perform accept operations) cannot be done accurately
without knowing in advance when this queue overflows. The fundamental problem is that between polling
operations, a polling-based server cannot incorporate new information about its environment into its decision
making process.

One may try to improve a polling-based server to more efficiently manage the frequency of polling and
accept operations but this is at best only an approximation of the responsiveness attainable by a server using
a mechanism such as SEND. Shortly before completion of this thesis, we were made aware of new results by
Provos et al. [28] which indicating that improving this aspect of a polling-based server is possible. However,
we still consider such techniques to be at best an approximation of the effect that can be attained with a
purely event-driven design. The improvements proposed by Provos et al. [28] call for a web-server to drop
connections if the batch size exceeds a pre-determined value in order to prevent the batch size from growing
excessively. Though this provides a substantial improvement in response rates when the request rate exceeds
the saturation point (and variability thereof), it still does not achieve the over-saturation stability observed
in our SEND-based servers.

A server such as our SEND-based server allows the characteristics of the event being considered for
delivery and notification to determine the behavior of the application and system in the immediate future.
Only by doing so can we make a server truly event-driven. In a polling-based design application behavior in
the present and in the immediate future is determined at the time of the last polling operation.
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Figure 4.14 Response Rates with Sample Real-World Workload
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4.9 Realistic Workload

Our experiments so far have been conducted with workloads based on several different file sizes. However,
within each experiment the file size requested on each request is the same. This situation is not representative
of the environment in which web-servers typically operate. Therefore, it is important to demonstrate that
the behavioral differences among server architectures and multiplexing mechanisms that we have observed
can be applied to a more realistic environment.

In order to create a workload more representative of what a real web-server is likely to see, we sampled a
handful of commercial web-sites to obtain a collection of files of different sizes. We then configured httperf
to cycle through this list of files to generate its request sequence. We examined our sample of files and
found that the file-size distribution closely resembled the file-size distribution observed by Barford et al.
[11] in their study of WWW traffic. Therefore, we believe that our sample is reasonably representative of a
real-world distribution of requests with respect to file-size.

Figure 4.14 presents the results of these experiments and demonstrates behavior similar to that observed
under synthetic workloads in the preceding sections. Consequently, we believe that the results we presented
in this chapter can be applied to real-world situations.

Our series of experiments demonstrate that our SEND mechanism is an efficient means of propagating
event information into applications. Although it makes little difference in determining the saturation point
whether one uses /dev/poll or SEND as a basis of a web-server, there are nonetheless significant advantages
to using SEND. A web-server based on SEND benefits from the ability to learn of and react to operating
system events immediately. This property is unfeasible in a polling-based design and affirms our initial
claims that a polling-based application cannot be truly event-driven.
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Chapter 5

Conclusions and Future Work

In this chapter we present the conclusions drawn from the work presented in this thesis. In the process of
developing the ideas and experiments in this thesis we have identified several avenues for potential research
that are outlined in Section 5.2.

5.1 Conclusions

In this thesis we propose and implement a new mechanism (in Linux) for communicating information about
events within the operating system to applications in a potentially preemptive manner. Qur motivation is to
create an efficient framework for truly event-driven applications. We believe existing mechanisms available
in Linux (and UNIX in general) are inefficient, require polling semantics and/or provide state and not event
information [10, 9, 27]. We believe our mechanism provides a novel approach to the design of interfaces
for communicating event information between an operating system and applications and the interactions
between the two.

We apply our mechanism to the problem of building a web-server that is better suited to handling high
client request rates. In the process we demonstrate that:

e SEND is an efficient means of communicating event data from an OS to an application. We have shown
that SEND presents substantially lower overhead costs when compared to the POSIX signals mecha-
nism. These gains can be attributed to the fact that SEND requires substantially fewer kernel entries
in the course of the application processing events (since it may deliver multiple events simultaneously
and system calls are not required to enable or disable preemptive notification).

e In our experiments with the SEND-based web-server, we demonstrate that a similar saturation point is
observed as with the /dev/poll-based server. However, the SEND-based server exhibited significantly
better behavior when the server is overloaded (i.e., the request rate exceeds the saturation point). This
demonstrates that the two mechanisms have comparable overhead costs and thus, the cost of using a
generalized mechanism (SEND) as opposed to a specialized one (/dev/poll) is not significant.

e The SEND-based server is better suited to handling request rates in excess of the saturation point than
web-servers based on a polling mechanism. Our experimental investigation reveals that the reason
for this discrepancy is due to the ability of our server to force the system to react immediately to
events within it. In particular, our SEND-based server is able to perform accept operations to create
new sockets as soon as negotiation of an incoming TCP connection is completed. The differences
in performance we observe between polling-based servers and truly event-driven servers demonstrate
the potential hidden costs of translating between the semantics of polling mechanisms and those of
event-driven application architectures.

e The SEND mechanism can function in several modes; ranging from preemptive event-notification to
simulation of event-polling mechanisms. This flexibility demonstrates the robustness and generality
of this mechanism and arises from the fact that we no longer depend on the stack and system calls
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for communication between the application and kernel. This in turn stems from our recognition and
separation of the functionality of event-delivery and event-notification.

In conclusion, we believe that a truly event-driven mechanism is a key component of applications designed
to be “event-driven.” We have demonstrated that applications (web-servers) can benefit from avoiding kernel-
polling semantics in favor of having events drive application and operating system behavior.

5.2 Future Work

This section details possible future directions for this work. The SEND mechanism as described in this thesis,
and the corresponding implementation is a first attempt at developing such a mechanism and interface. As
we find more applications and place different demands on the mechanism, we expect to find it needs some
fine-tuning. The following are some areas that should be given some further consideration:

Further Uses For Preemptive Notification:
We have chosen to demonstrate SEND in the context of a web-server and have thus focused our
attention on two event types (EVT_IPACCEPT and EVT_IOREADY). However, we also see potential for
other uses of this mechanism, with other specialized event types. In particular, we think that SEND
would be useful for advanced user-space memory management systems; garbage-collection, persistent
storage and distributed shared memory. The lower overhead of preemptive notifications presented by
SEND may substantially improve the performance of such systems.

The basic prioritization mechanism provided by SEND (via event groups) may be of great value in
such systems as it allows for memory-related events to be delivered ahead of other events. This would
prevent a memory-related event, that must be processed immediately, from being delayed while the
application handles other events of lesser importance.

Research in this area would involve identifying other kinds of operating system and hardware events
that applications may be interested in. For example, we may want to consider having the operating
system deliver events telling an application which pages have been paged in an out. Such information
could be used by user-level threading systems or garbage collectors to adjust execution given the
absence of certain pages from core memory. (One could extend this slightly to allow for asynchronous
page-faults.)

Kernel/Application Shared Data Structures

In this thesis we demonstrate that it is possible for a kernel to share some data structures with its
applications. The ECB is not simply data that is made available for applications to modify, but rather
it is a control structure that affects the kernel’s behavior. We have found little use of such techniques
(shared kernel/application data structures) and consequently believe that such techniques have not
been given the serious scrutiny they may deserve. We believe that our reliance on this technique as the
basis of SEND demonstrates that a shared-memory based approach to operating system interface design
bears further investigation, with the potential to significantly improve the performance, functionality
and programmability of operating system interfaces and mechanisms.

One area where such an approach may be used is to provide applications with images (read-only) of
their own page-tables, which can be provided with minimal expense. This would allow applications to
potentially schedule their activity in a manner that reduces delays due to paging activity. Applications
could use such information to advise the operating system of their interest in certain pages of memory
in advance if these pages are not in core memory and could avoid touching those pages until they
have been paged in. Such a technique would be of interest to writers of garbage collectors, persistent
storage systems, distributed shared memory systems and user-level threading packages, which could
schedule application activity to avoid blocking the application while it waits for the completion of
paging activity.

POSIX-Signals Compatibility Library:
We claim that we could implement the POSIX signals interface on top of SEND. However, until we
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actually develop such a library we cannot be certain that this can be done with the exact interface as
described in Chapter 3; some minor adjustments may be necessary.

Once such a library has been completed, it would be interesting to re-examine the viability of the
POSIX signals API. While SEND is designed to address inefficiencies in the POSIX signals binary
interface we have not concerned ourselves with providing an easy to use programmer interface. If
we have applications that rely on the SEND binary interface, while allowing programmers to develop
applications conforming to the POSIX signals API (translating between the two via the compatibility-
layer library), we may be able to see most of the performance improvements seen by applications
that use the raw SEND API Such a library may allow applications written using POSIX signals
and programmer familiar with POSIX signals (but not SEND) to take advantage of some of SEND’s
features.
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