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This thesis presents a hardware implementation of the SoftRate bit-rate adaptation

protocol. SoftRate is a new bit-rate adaptation protocol, which uses per-bit confidence

hints generated by the convolutional decoder to estimate the channel bit-error rate.

Implementing SoftRate requires changes to both the physical and media access

control layers. which precludes using existing commodity 802.11 hardware. This

project developed a SoftRate implementation on top of Airblue, an FPGA platform

for developing wireless protocols. We present a hardware implementation of SoftRate

which neets 802.11 timing requirements.
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Chapter 1

Introduction

Many wireless networks, including 802.11, can operate at multiple bit-rates. Higher

bit-rates allow for higher data rates on high quality channels, but result in more

packet losses on noisy channels. Bit-rate adaptation protocols attempt to select the

bit-rate that maximizes overall throughput depending on channel quality estimates.

The performance of protocols that select too high a bit-rate will suffer due to frame

losses, while protocols that select too low a bit-rate will waste available bandwidth.

Accurate bit-rate selection is important to fully utilizing modern wireless local area

networks.

SoftRate is a new bit-rate adaptation protocol that uses per-bit confidence hints

to estimate channel bit-error rate at the receiver. Compared with earlier bit-rate

adaptation protocols, SoftRate is able to adapt more quickly to changing channel

conditions and is able to better estimate conditions in fading channels [12].

Previous work [12] evaluated a software implementation of SoftRate offline using

recorded traces and simulation. Evaluating SoftRate in a real-world environment will

require hardware support due to the strict latency requirements of wireless networks.

For SoftRate to be useful, it must be implemented efficiently on hardware.

The aim of this project is to develop and evaluate a hardware implementation of

the Soft Rate protocol that is able to meet the performance constraints of wireless local

area networks. The hardware implementation is developed on Airblue, an FPGA-



based platform for developing wireless protocols. Airblue is described in detail in

[7].

A hardware implementation of SoftRate is necessarily an approximation of the

software implementation, due to the need to reduce hardware complexity and pro-

cessing latency. The hardware implementation therefore serves two goals. First, it

demonstrates that implementing SoftRate is feasible in hardware. with the approxi-

mations that such an implementation requires. Second, it serves as a stepping-stone

towards a real-world evaluation of the SoftRate protocol.

This project contributes an FPGA-based implementation of the SoftRate protocol.

We implemented a SoftRate medium access control (MAC) and tested two methods of

efficiently computing the average bit-error rate in hardware. To evaluate the SoftRate

implementation, we implemented an signal-to-noise ratio (SNR)-based rate adapta-

tion protocol and a software channel simulator. We also developed an improved

synchronizer for Airblue, which detects transmissions at low SNRs. In hardware sim-

ulation. the SoftRate implementation achieved achieved 100o-40% higher throughput

than the SNR-based protocol across varying channel conditions. The SoftRate imple-

mentation is able to meet 802.11a timing specifications, including embedding feedback

and transmitting an ACK within 25 pis of receiving a packet.

1.1 Hardware Considerations

Design of hardware systems requires different trade-offs than design of software sys-

tems. Algorithms that are efficient in software are not necessarily efficient in hard-

ware. Hardware systems are able to exploit a much finer grained parallelism than

software systems. For example, the modules in the Airblue pipeline are able to

operate in parallel because each module has its own dedicated hardware resources.

Designing for this sort of task-level parallelism requires accessing data in a streaming

manmer.

Some operations that are relatively inexpensive in software would be impractical

in our system. For example, Airblue uses fixed-point rather than floating-point rep-



resentation to avoid the need for hardware intensive floating-point support at every

stage in the pipeline.

1.2 Roadmap

The rest of this work is organized as follows. First, some background about wireless

networks and bit-rate adaptation protocols is presented. Chapter 3 describes Airblue,

the FPGA-based platform for developing wireless protocols used in this work. Chapter

4 describes the hardware implementation of the SoftRate protocol on the Airblue

platform. Chapter 5 presents an evaluation of this implementation using a simulated

channel model. Chapter 6 concludes this work.
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Chapter 2

Background

Wireless networks suffer a variety of effects that degrade signal quality. Four effects

are listed in [13]: interference, attenuation, shadowing, and fading. Interference oc-

curs when multiple nodes transmit at the same time. resulting in corrupted signals at

the receiver. Attenuation describes the power loss of a signal as it propagates through

the environment. Power loss due to obstacles in the environment is called shadowing.

Multipath fading occurs when multiple copies of the signal reach the receiver through

different paths. These copies arrive with different phases and frequencies and can

interfere constructively or destructively.

Fading effects vary with time as the sender, receiver, or objects in the environment

move. The coherence time of a fading channel refers to the duration in which signals

experience correlated effects. It is related to the carrier frequency and the speed of the

sender. receiver, and objects in the environment. In the 5 GHz band used by 802.11a.

walking speed (3 mph) results in a coherence time of about 20 ins. For comparison,

802.11a packet transmission typically lasts up to a few milliseconds. This type of

channel, with a coherence time lasting multiple packet durations, is referred to as

slow fading. Figure 2-1(a) shows the power loss in a simulated fading channel with a

coherence time of 20 ms over a 100 ms interval.

Even when the sender and receiver are static, moving objects in the environment

can cause fading. In [4]. the authors found that passing cars can drive the coherence

time of a channel down to as low as 300 pts in an urban environment. In this scenario,



channels effects vary even within a packet duration. These types of channels are

referred to as fast fading. Figure 2-1(b) shows power loss in a simulated fading

channel with a coherence time of 300 ps.

10 ,, 10
5 5

0 0

0 -5 - o -5

-9 -10 - 2 -10
CYC

-0 -15 - - -15
LL LL

-20 -20

-25 -25

-30 -30
0 20 40 60 80 100 0 20 40 60 80 100

Time (ms) Time (ms)
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Figure 2-1: Fading in channels with coherence times of 20 ims and 300 ps over a 100

is interval.

2.1 Bit-Rate Adaptation

The coherence time of fading channels has implications for bit-rate adaptation pro-

tocols. Depending on the coherence time, the protocol may need to pick a new rate

every few packets. Frame-based rate adaptation protocols, including SampleRate

[3], choose bit-rates based on the measured packet-loss rate aggregated over multiple

packets. The performance of these protocols suffers when the channel coherence time

lasts only the duration of a few packets [13].

SNR-based protocols use estimates of the signal-to-noise ratio (SNR) to choose

transmit rate. For example, RBAR [5] uses an RTS/CTS exchange at the start of each

packet to estimate the SNR. Fast fading channels cause problems for protocols like

RBAR because channel conditions vary even within a single packet duration. Cellular

physical layers (PHYs) often measure SNR continuously using pilot subcarriers to

compute an average SNR over the entire frame. This method is more accurate in



measuring fast fading channels, but incurs the additional overhead of transmitting

pilot symbols [13].

SoftRate uses confidence hints generated during convolutional decoding to esti-

mate channel bit-error rate. The bit-error rate estimate is communicated to the sender

in the time allotted for an 802.11 ACK. avoiding the need for a costly RTS/CTS ex-

change as in RBAR. Since SoftRate computes the bit-error rate (BER) estimate for

individual frames, it is responsive to rapidly changing channel conditions [13).

However, unlike some previously proposed rate adaptation mechanisms, SoftRate

requires modifications to both the 802.11 physical and medium access control layers.

The next section gives an overview of these layers.

2.2 802.11

The IEEE 802.11 standard describes both the physical layer (PHY) and medium

access control (MAC) layer. The MAC layer is responsible for sharing the wireless

medium with other nodes. It decides when to transmit and at which rate to transmit

packets. The SoftRate rate selection algorithm is implemented at the MAC layer.

The physical layer is responsible for the actual encoding, modulation, and trans-

mission of packets across the wireless medium. SoftRate alters the standard decoding

algorithm to generate SoftPHY confidence hints.

2.2.1 MAC Layer

The 802.11 MAC uses carrier sense multiple access with collision avoidance (CSMA/CA)

to prevent nodes from transmitting at the same time. The MAC uses carrier sense to

detect other transmissions and wait until they complete before transmitting. Expo-

nential backoffs, a form of collision avoidance, are used to reduce the probability of

repeated collisions. Wireless nodes should not reduce bit-rate in response to collisions

because it interferes with these techniques and increases the chance of subsequent col-

lisions due to longer packet transmission times.



The MAC uses a checksum at the end of each packet to verify that the packet was

received without errors. SoftRate modifies data packets so that they also include a

checksum after the header, which allows receivers to send feedback for packets with

bit-errors in the body.

2.2.2 Physical Layer

The 802.11 a/g specification uses orthogonal frequency-division multiplexing (OFDM)

at the physical layer to modulate data. The 20 MHz wide channel is divided into 64

orthogonal sub-carriers, each 0.3125 MHz wide. Of the 64 sub-carriers. 48 are used

to transmit data and four are pilot signals, used to detect frequency offset and phase

noise. The remaining 12 sub-carriers are not used in order to prevent inter-channel

interference and DC offset.

Frames are transmitted as a sequence of OFDM symbols, each 4 ps long. Each

OFDM symbol consists of data transmitted concurrently on the 48 data sub-carriers.

The modulation scheme defines how bits are represented as waves on each sub-carrier.

Four modulation schemes are used in 802.1la: BPSK, QPSK. QAM-16, and QAM-

64, which can encode one, two, four. and six bits per symbol respectively. Lower

modulation rates are more resistant to noise.

The physical layer uses convolutional coding. a type of forward error correction. to

increase robustness to noise. The code rate expressed as m/n represents the fraction

of useful information per bit transmitted. In an rn/n rate code, n coded bits are

transmitted for every m data bits. Lower code rates contain more redundancy and

are more resistant to noise.

802.11a defines eight bit-rates, for different combinations of modulation and coding

rates. The bit-rates are shown in Table 2.1.

2.3 Decoding Convolutional Codes

Several algorithms exist to decode convolutional codes. SoftRate requires a soft-

output decoder; a decoder that generates reliability measures for decoded bits. Two



Bit Rate | Modulation Code Rate
6 Mbps BPSK 1/2
9 Mbps BPSK 3/4
12 Mbps QPSK 1/2
18 Mbps QPSK 3/4
24 Mbps QAM-16 1/2
36 Mbps QAM-16 3/4
48 Mbps QAM-64 2/3
54 Mbps QAM-64 3/4

Table 2.1: 802.11a bit rates. The bit-rate is a function of the modulation scheme and
the code rate.

such algorithms are implemented in Airblue: the soft output Viterbi algorithm (SOVA)

and a simplification of the BCJR algorithm called Max-Log-MAP. 1 The BCJR al-

gorithmn presented in [2] is prohibitively expensive to implement in hardware. We

found that the Max-Log-MAP decoder provided a good trade-off between implemen-

tation complexity and decoder performance. The results presented in this paper

use the Max-Log-MAP decoder because Airblue's implementation of that algorithm

produced more accurate reliability measures than Airblue's SOVA implementation.

1The BCJR algorithm is also referred to as the MAP algorithm
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Chapter 3

Hardware Platform

This project was developed using the Airblue platform. Airblue is a flexible FPGA-

based radio prototyping platform based on orthogonal frequency-division multiplexing

(OFDM). This project and the Airblue platform were developed using Bluespec [6],

a high-level hardware description language.

Baseband Processor

Cnoer + Scrarnbler + Ec er +Interleaver + Mapper +-PiloulGuard 4+ CP insertion
x Controller Encode

Device -o
MAC IFF/FFTInterface

* De- BCJR De- De- Channel RX Snhoie
Scrambler Decoder Interleaver Mapper Estimator Controller Synchronizer

SoftPHY Hints

Figure 3-1: The Airblue pipeline. Highlighted modules were modified to support the
SoftRate protocol.

The Airblue pipeline is shown in Figure 3. Implementing SoftRate requires mod-

ifications to the MAC layer and to the receive pipeline in the PHY layer. SoftPHY

hints are extracted from the convolutional decoder and passed to the MAC layer. The

RX Controller was modified to drop SoftPHY hints when the physical layer header is

corrupted. To make low bit-rates useful at low SNRs, we implemented a synchronizer

with improved packet detection at high noise levels.



Airblue's design makes it a good match for this project. The flexible nature of

the platform allowed us to expand the MAC-PHY interface to include SoftPHY hints

as well as data. Since the modules were designed in a latency-insensitive manner,

we were able to replace the Synchronizer without affecting the correctness of other

components. Finally, the implementing the MAC layer in hardware allowed us to

compute and embed the bit-crror rate feedback in 23 ps. which is within a slot time

after the Short Inter Frame Spacing (SIFS) interval.



Chapter 4

Implementation

This chapter describes the implementation of the SoftRate protocol in the Airblue

platform. The system consists of hardware components in the MAC and the physical

layers and a software channel model for simulation.

The physical layer computes per-bit confidence hints and passes them up to the

MAC. The MAC computes the channel bit-error rate by converting the confidence

hints to bit-error probabilities and averaging those probabilities over the length of the

packet. This bit-error rate estimate is sent as feedback to the original transmitter.

If the packet is decoded without errors, the feedback is appended to an 802.11 ACK

message. Otherwise. the the feedback is sent in the time slot reserved for ACK

miessages.

4.1 MAC-PHY interface

The interface between the MAC and the PHY layers allows decoded data to be passed

up from the PHY. and data to be transmitted to be passed down from the MAC.

The interface also allows the layers to communicate per-packet information., such as

bit-rate and packet length.

SoftRate requires the receiving PHY to pass up per-bit confidence hints along

with data to the MAC. The PHY passes up data as a sequence of bytes along with



the confidence hints for each bit in the byte as they are decoded. The confidence

hints themselves are represented using 8-bit values in this project.

The 802.11a protocol has strict timing requirements for transmitting link-layer

acknowledgements; the ACK must be transmitted within a slot time (9 ps) after the

SIFS duration (16 ps).

If the physical layer were to wait to dccode a complete packet before passing it

up to the MAC, the MAC would not be able to compute the packet average bit-error

rate from the confidence hints in the time alloted to transmit an ACK message.

4.2 Hint-BER table

To compute the average bit-error rate. the MAC first translates the confidence hints

to bit error probabilities. In theory. the confidence hints generated by the convolu-

tional decoder are log-likehliood ratios (LLRs); they represent the logarithm of the

probability that the bit is correct divided by the probability that the bit is in er-

ror. Therefore. the probability that the bit was decoded incorrectly in terms of the

confidence hint LLR is [12]:
1

Perror 1 C LLR

The relationship requires that the inputs to the convolutional decoder the out-

puts of the deinapper - are themselves LLRs. For demodulating BPSK symbols in

the presence of additive white Gaussian noise, the LLR is proportional to the symbol

amplitude and inversely proportional to the noise variance. Computing the LLRs for

other constellations. such as QAM-16 and QAM-64 is more complex but [11] gives a

good approximation.

Computing bit-error probability from the equation for each received bit would

be too computationally expensive. Since there confidence hints are 8-bit values, we

compute a 256-entry table mapping hints to probabilities ahead of time, implementing

it as a look-up table in hardware.



4.3 Interference detection

The MAC differentiates between bit errors caused by signal attenuation and fading

and errors caused by interfering transmissions. Lower bit rates are more robust to

signal attenuation and fading. Nevertheless, the MAC should not lower the bit rate

in response to collisions because that would increase the duration of each frame and

conflict with other mechanisms the MAC uses to cope with interference [12]. The

MAC computes packet bit-error rate feedback from only the interference-free portions

of the frame.

This method requires that the MAC identify bit errors due to collisions. This

project uses the technique described in [12]: the MAC identifies interference by de-

tecting a jump in the average bit-error rate. Since the bits within a symbol are

transmitted concurrently, the MAC uses the average bit-error rate over a symbol and

uses the difference between symbols to detect collisions. If the difference exceeds a

threshold. the MAC ignores the remainder of the frame when computing the average

bit-error rate.

4.4 BER averaging

The BER averaging module computes the arithmetic mean of the bit error probabil-

ities from the Hint-BER table. Since packets can be of variable length, computing

the mean requires a division by the packet length. However, fixed-point dividers are

expensive in FPGAs taking up a large number of available resources.

Furthermore, the bit error probabilities have a wide range of values ranging

as small as 10- and as large as 0.5. To represent the full range of values for the

maximum packet size (2304 octets [1]) requires at least 44 bits. A naive approach

would require a large fixed point divider, which would use a large number of resources

to realize in an FPGA. This seems like a waste since our final result requires a wide

range, but not high precision.

This project explored two different strategies to avoid the need for a large divider.



4.4.1 Log Domain

The first strategy focused on the idea that divisions are easy to compute in the log-

domain, since they are turned into subtraction. However, addition in the log-domain

is more difficult. The Log-MAP decoder uses the Jacobi logarithm to compute the

addition in the log domain [9]:

ln(ea + eb) = max(a. b) + ln(1 + e-Iab)

We can rewrite the last term as a function of -la - b|:

ln(ea + eb) = max(a, b) + fc(-la - bl)

The function fc can be thought of as a correction function to the simple max. Typi-

cally, fc(.) is approximated using a pre-computed table. In [9], the authors found that

a table with eight values for la - b| in the range 0 to 5 was sufficient for the Log-MAP

decoder, and that a finer representation did not achieve any decoding improvement.

The Jacobi logarithm with an 8-entry table makes efficient use of FPGA resources.

However, computing the running sum of the bit error probabilities results in poor

accuracy. Consider a 1024-bit packet where each bit has an equal error probability of

2-10. Assuming that the first 64 values sum correctly to 2 -4, the next sum would be

computed as:

log 2 (2- 4 + 2-10) = max(-4, -10) + log92(1 + 2-1-4+101)

= max(-4. -10) + fc(6)

~-4.0

fc(6) is approximately 0.02, but the smallest value we can represent with four frac-

tional bits is larger than that: 0.0625. With this method the computed sum would

be 2 -40 rather than the actual sum of one (20).



Accurately computing the sum over the ten thousand or more bits in a large packet

would require a much larger table and at least 13 fractional bits.

Rather than increasing the size of the table, we change the order in which we

sum the probabilities. Each bit-error probability is distributed into 64 exponentially

spaced buckets The first bucket contains only values 2-33 < x < 2 -31, the next values

2-31 < x < 229 and so on. At the beginning of each packet each bucket is marked

as empty. The modules uses the following algorithm:

1. Accept the next probability input.

2. If the bucket for the probability is empty. store the probability in the bucket

and mark it as full.

3. If the bucket is full, compute the sum of the input and value in the bucket using

the Jacobi logarithn.

(a) If the sum falls in the same bucket, store the value in the bucket

(b) Otherwise. mark the bucket as empty and use the sum as the next input

The algorithm has an amortized throughput of at least one probability per two cycles,

since it marks a bucket empty when it does not accept new input.

4.4.2 Linear Domain

The second method computes additions in the linear domain and then converts the

sum and the divisor to the log domain to perform the division. To convert to a power

of two, the module counts the number of left shifts necessary such that the highest

order bit is a one. The integer part of the exponent is the difference between the

number of available integer bits and the number of left shifts performed minus one.



For example, the number 27.1875 as a fixed point number in binary with eight integer

and four fractional bits is:

00011011.0011 left shift 3 = 11011001.1000

The integer part of the exponent is therefore 8 - 3 - 1 = 4. The fractional part is

computed by looking up the next four bits, 1011, which correspond to 0.75. Therefore

27.1875 is approximately 2

Once both the probability sun and the number of bits are converted to exponents

of 2, the module computes the average bit-error rate by taking the difference between

the two exponents. This effectively divides the expected bit-errors by the number of

bits.

4.4.3 Throughput

The BER averaging module uses four lookup tables to process four SoftPHY hints

per cycle. Since the MAC runs at 25 Mhz, the module can achieve a throughput of

up to 100 Mbps., which exceeds the highest 802.11a bit-rate of 54 Mbps.

4.5 Rate Selection

The rate selection module is responsible for choosing the bit rate at the sender based

on feedback from the receiver and the frame length. The module uses the rate selection

algorithm from [12): The module contains precomputed ranges (ai. 3i) for each rate

Ri such that Ri is the optimal if the BER at Ri falls within (as, Bi).

The module selects the next higher rate when the BER is less than ai, and the

next lower rate when the BER is greater than Oi. The rates are precomputed for

frame lenmgths of 4096 bits and adjusted for other frame lengths.

A frame that is twice as long requires half the BER to achieve approximately the

same packet error rate. To adjust the bit rate, the module first converts the frame



length to a power of two using the technique described in 4.4.2. The module then

adjusts a- and 3i by the length exponent minus 12 (since 4096 212).

For example, say (ai., i) is (2 21 2-14) for 4096 (212) bit frames. For a 512 (29)

bit frame, (ai, #i) is adjusted by 9 - 12 = -3. so the resulting range is (2-24. 2 17).

4.6 Synchronizer

The synchronizer is responsible for detecting transmissions and precise time synchro-

nization. Since the low rates (BPSK) are most useful at low SNRs, the synchronizer

must be able to function accurately at low SNRs.

The synchronizer uses the short training sequence (STS) [1] to detect packet trans-

missions. The STS consists of 10 repetitions of a 0.8 ps symbol. This design uses a

16-sample auto-correlation to detect the STS.

The 802.11 specification has a tolerance of +20 ppm for the transmitted center

frequency [1]. In the 5.4 GHz band, this means the receiver can see a frequency offset

of up to i216 KHz. The synchronizer uses auto-correlation over four symbols of the

STS to do a coarse estimation of the frequency offset. Since the symbol is repeated,

the rotation of the auto-correlation is proportional to the frequency offset.

The auto-correlation is fed into a CORDIC arctan module, which computes and

corrects for the frequency offset.

The long training sequence (LTS) follows the STS and is 160 samples (8 ps)

long beginning with a guard interval (32 samples) followed by a repeated training

symbol (64 samples each). We use the LTS for fine timing acquisition and fine carrier

frequency offset estimation. We use both cross-correlation and auto-correlation for

fine timing acquisition.

Cross-correlation is our primary means of fine timing acquisition. The synchro-

nizer uses cross-correlation of the sign components of the received signal with the sign

components of training symbol. Using only the signs allows us to compute an entire

64-sample cross-correlation in a single clock cycle, since the sign can be represented as

a single bit. (Each sample requires two bits. one for the real and one for the imaginary



component). Using only the sign components also allows us to avoid normalizing the

cross-correlation based on the magnitude of the received signal.

The synchronizer keeps track of the past two largest cross-correlation computed.

Timing is acquired only when the two largest peaks are 64-samples apart, correspond-

ing to the end of the two repetitions of the LTS training symbol.

Using only this approach, the synchronizer may acquire timing too early because

the guard symbol is the same as the second-half of the training symbol. To deal

with this. the synchronizer checks that a 32-sample auto-correlation with a lag of

64-samples exceeds a certain threshold. This correlates the first-half of the two repe-

titions of the training symbol. Early synchronization is prevented because the end of

the STS does not correlate well with the LTS training symbol.

4.7 Channel Simulator

Evaluating the SoftRate implementation and synchronizer requires a channel simula-

tion capable of modelling signal attenuation, fading, noise, and multipath interference

effects. The channel simulation is implemented in C++, since it does not need to be

realized in hardware.

The channel model is implemented as a set of reusable filters, including an additive

white Gaussian noise (AWGN) model, a linear FIR filter to model multipath fading.

and a filter to model carrier frequency offset. We adapted the GNU radio Jakes'

fading model from [12] for use within our channel model. Most parameters, including

SNR. channel coherence time, and carrier frequency offset are configurable at run-

time through environmental variables. To support repeated trials, the channel model

provides functions to save and restore the internal state of the filters and the pseudo-

random number generator seed.

The channel model supports both linking into the hardware simulation using Blue-

spec's foreign function interface and running as a separate process. When run as a

separate process. the hardware simulation accesses the channel model using HAsim's

remote request/response (RRR) mechanism.



The RRR mechanism allows for high-speed hardware-software co-simulation. To

improve performance, we implemented a multi-threaded noise generator to take ad-

vantage of multiple processing cores. We were able to achieve simulation speeds of up

to 20 Mbit/s using a Virtex-5 ACP module connected to a quad-core Xeon processor

[8]. The software-only simulations typically achieved speeds of 4 Kbit/s.
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Chapter 5

Simulation Results

This chapter presents the simulation results using the channel simulator described in

Section 4.7. We compare our SoftRate implementation with an SNR-based protocol.

which uses the Schmidl-Cox algorithm [10] to estimate SNR using the preamble.

The SNR feedback is embedded in an ACK frame in the same manner as the BER

feedback.

The simulation consists of two nodes connected by the channel simulator. The

sender transmits as many 1500 byte UDP packets as possible to the receiver. The re-

ceiver discards any packets with an invalid frame checksum. We measure throughput

in terms of the number of packets for which the sender received an acknowledgement.

In these simulations. Airblue's channel estimator was disabled because the current

implementation is highly sensitive to noise. To adjust for this. the channel simulator

was modified to adjust the noise variance based on the fading magnitude predicted

by the Jakes' fading model. This preserves the effective SNR of each sample.

5.1 Static Channels

In this section we compare the SoftRate implementation with the SNR-based pro-

tocol in static channels with fixed noise levels. Figure 5-1 shows the results of this

simulation.
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Figure 5-1: Throughput versus SNR at various noise levels. The SoftRate imnplemen-

tation achieves higher throughput than the SNR-based protocol. The performance

gap is large at 15db because the Schmidl-Cox algorithm is less accurate at higher
SNRs and therefore the SNR-based protocol is more likely to over-select the bit-rate

and suffer a packet loss. At 20db, the performance gap narrows because the highest
bit-rate is optimal. so over-selection is not possible.



The SoftRate implementation typically achieved 10-14% higher throughput than

the SNR-based protocol. This is because the SoftRate implementation is able to

more accurately estimate channel quality than the SNR-based protocol. The SoftRate

implementation uses the entire packet to estimate the channel BER, while the SNR-

based protocol only estimates SNR based on the preamble. The SNR-based protocol

is therefore more likely to select a non-optimal bit-rate.

At an SNR of 15db, the SoftRate implementation has a performance improvement

of over 73% of the SNR-based protocol. This is because the Schmidl-Cox algorithm

is less accurate at high SNRs. Therefore, the SNR-based protocol is more likely to

choose too high a bit-rate and suffer packet losses.

At 20db. the performance gap drops back to 10%. This is because the optimal

bit-rate is 54 Mbps, the highest available rate. The SNR-based protocol still performs

slightly worse because it occasionally chooses too low a bit-rate. which wastes available

bandwidth.

5.2 Slow Fading Channels

Figure 5-2 shows the results of simulating the SoftRate implementation and the SNR-

based protocol in slow fading channels. Three simulations were run with channel

coherence times of 40 ins, 8 ins, and 4 is. In each simulation. the sender transmits

as many 1000-byte packets as fast as possible. We use the number of acknowledged

packets to calculate throughput.

The SoftRate implementation achieves 20-25% higher throughput then the SNR-

based protocol. Both the SNR-based protocol and the SoftRate implementation are

able to adapt to the changing channel conditions. The SoftRate implementation

achieves a higher throughput because it is able to better estimate channel conditions

than the SNR-based protocol is, as seen in the static channel simulation.
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Figure 5-2: Throughput versus SNR in slow fading channels. SoftRate achieves 20-

25% higher throughput than the SNR-based protocol.

5.3 Fast Fading Channels

This section presents the results of simulating the SoftRate implementation and the

SNR-based protocol in fast fading channel conditions. In this experiment., the sender

transmitted 1000-byte packets as fast as possible to the receiver. We simulated a fast

fading channel with a coherence time of 200 ps. Figure 5-3 shows the throughput

achieved by the two rate adaptation protocols as well as the throughput of five static

bit-rates. The SoftRate achieved a throughput over 43% higher than the SNR-based

protocol. The SNR-based protocol is likely to choose too high a bit-rate since it only

measures the SNR at the beginning of a transmission. The SoftRate implementation

had a throughput of 85% of the static-best bit-rate.

The fast fading case is difficult because the channel coherence time is smaller than

the duration of a packet, so the fading losses experienced by sequential transmissions

are uncorrelated. Furthermore. the magnitude of deep fades varies substantially be-

tween packets; some transmissions experience deep fades of -35 dB, which is likely to
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Figure 5-3: Throughput in a fast fading channels for the SoftRate implementation

and SNR-based rate adaptation protocol. Also shown are the throughputs for static

bit-rates from 6 Mbps to 24 Mbps.

cause a packet loss at any bit-rate. while subsequent transmissions may not experience

any deep fades.

This results in a high packet-loss rate across all bit-rates. Figure 5-4 shows the

packet-loss rates for the static-bit rates in the fast fading simulation. The lowest bit-

rates, 6 Mbps and 9 Mbps, have a higher packet-loss rate then the 12 Mbps bit-rate

because lower bit-rates have longer packet-transmission times resulting in a higher

probability of experiencing a deep-fade. Since 802.11 a does not use time-interleaving,

the deep fades are likely to cause bit-errors and therefore packet-losses.
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Figure 5-4: Packet-loss rate in fast fading channel. The packet-loss rate is no longer

monotonic with bit-rate. In this case, 12 Mpbs is the optimal bit-rate.



Chapter 6

Conclusion

This thesis presented a hardware implementation of the SoftRate bit-rate adaptation

protocol, which meets 802.11 timing requirements. The project was implemented on

Airblue, an FPGA-based platform for wireless protocol development. Two methods

for efficiently computing average bit-error rates in hardware were presented. We inm-

plemented an SNR-based rate adaptation protocol for comparison with the SoftRate

implementation. To evaluate the rate adaptation protocols. we developed a channel

simulator. This project also contributes an improved synchronizer for the Airblue

platform, which more reliably detects transmissions at low SNRs. In our simula-

tion of the hardware, we found that the SoftRate implementation achieved 10%-40%

higher throughput than the SNR-based protocol across varying channel conditions.

The SoftRate implementation is able to meet 802.11 a timing specifications, including

embedding feedback and transmitting an ACK within 25 ps of receiving a packet.

Future work includes testing the SoftRate implemnentation over-the air. The hard-

ware implementation provides an opportunity to evaluate SoftRate in a real-world

environment at high speeds.
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