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Abstract

Rate Adaptation (RA) is a fundamental mechanism in 802.11 systems. It allows trans-
mitters to adapt the coding and modulation scheme as well as the MIMO transmission mode
to the radio channel conditions, and in turn, to learn and track the (mode, rate) pair provid-
ing the highest throughput. So far, the design of RA mechanisms has been mainly driven
by heuristics. In contrast, in this paper, we rigorously formulate such design as an online
stochastic optimisation problem. We solve this problem and present ORS (Optimal Rate
Sampling), a family of (mode, rate) pair adaptation algorithms that provably learn as fast as
it is possible the best pair for transmission. We study the performance of ORS algorithms in
both stationary radio environments where the successful packet transmission probabilities
at the various (mode, rate) pairs do not vary over time, and in non-stationary environments
where these probabilities evolve. We show that under ORS algorithms, the throughput loss
due to the need to explore sub-optimal (mode, rate) pairs does not depend on the number of
available pairs, which is a crucial advantage as evolving 802.11 standards offer an increas-
ingly large number of (mode, rate) pairs. We illustrate the efficiency of ORS algorithms
(compared to the state-of-the-art algorithms) using simulations and traces extracted from
802.11 test-beds.

1 Introduction

In wireless communication systems, Rate Adaptation (RA) is a fundamental mechanism allow-
ing transmitters to adapt the coding and modulation scheme to the radio channel conditions. In
802.11 systems, the transmitter may choose from a finite set of rates with the objective of identi-
fying as fast as possible the rate providing maximum throughput, i.e., maximising the product of
the rate and the successful packet transmission probability. The challenge stems from the facts
that these probabilities are not known a priori at the transmitter, and that they may evolve over
time. The transmitter has to learn and track the best transmission rate, based on the measure-
ments and observations made on the successive packet transmissions.

Over the last decade, a large array of RA mechanisms for 802.11 systems has been proposed.
We may categorise these mechanisms depending on the feedback and measurements from past
transmissions available at the transmitter, and actually used to sequentially select rates for packet
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transmissions. Traditionally in 802.11 systems, RA mechanisms are based on rate sampling
approaches, i.e., the rate selection solely depends on the number of successes and failures of
previous packet transmissions at the various available rates. Examples of such mechanisms
include ARF (Auto Rate Fall back) [19] and SampleRate [4]. As 802.11 standards evolve,
the number of available rates increases. In 802.11n systems, for a given packet transmission,
a MIMO mode (e.g. a diversity oriented single-stream (SS) mode or a spatial multiplexing
driven double-stream (DS) mode) and a rate have to be jointly selected. The number of possible
decisions can then become quite large, making the use of sampling approaches questionable.

A natural alternative to RA sampling approaches consists in using channel measurements.
So far, such measurements have not been explicitly used in practice. The most accessible mea-
surement, the receiver signal strength indication (RSSI), is known to lead to poor predictions of
the packet error rate (PER) at the various rates (see e.g. [2, 6, 8, 14, 29, 39]). These poor predic-
tions are for example due to the fact that RSSI does not reflect frequency-selective fading. Note
that 802.11n NICs actually measure and report the channel quality at the OFDM subcarrier level,
also known as channel state information (CSI), which provides better information than the sim-
ple RSSI. CSI feedback could be used to improve PER prediction accuracy [14]. However it is
difficult and costly to get and store this complete information [7], and CSI feedback is supported
by very few 802.11n devices. A promising solution could then consist in storing and using only
parts of this information, as proposed for example in [8].

As of now, it seems difficult to predict whether measurement-based RA mechanisms will
be widely adopted in the future, or whether rate sampling approaches will continue to prevail.
In this paper, we investigate the fundamental performance limits of sampling-based RA mech-
anisms. Our objective is to design the best possible rate sampling algorithm, i.e., the algorithm
that identifies as fast as possible the rate maximising throughput. Our approach departs from
previous methods to design RA mechanisms: in existing mechanisms, the way sub-optimal rates
are explored to learn and track the best rate for transmission is based on heuristics. In contrast,
we look for the optimal way of exploring sub-optimal rates.

We rigorously formulate the design of the best rate sampling algorithm as an online stochas-
tic optimisation problem. In this problem, the objective is to maximise the number of packets
successfully sent over a finite time horizon. We show that this problem reduces to a Multi-
Armed Bandit (MAB) problem [24]. In MAB problems, a decision maker sequentially selects
an action (or an arm), and observes the corresponding reward. Rewards of a given arm are ran-
dom variables with unknow distribution. The objective is to design sequential action selection
strategies that maximise the expected reward over a given time horizon. These strategies have to
achieve an optimal trade-off between exploitation (actions that has provided high rewards so far
have to be selected) and exploration (sub-optimal actions have to be chosen so as to learn their
average rewards). For the rate adaptation problem, the various arms correspond to the decisions
available at the transmitter to send packets, i.e., in 802.11a/b/g systems, an arm corresponds
to a modulation and coding scheme or equivalently to a transmission rate, whereas in MIMO
802.11n systems, an arm corresponds to a (mode, rate) pair. When a rate is selected for a packet
transmission, the reward is equal to 1 if the transmission is successful, and equal to 0 other-
wise. The average successful packet transmission probabilities at the various rates are of course
unknown, and have to be learnt.
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The sequential rate (or (mode, rate) in MIMO 802.11n systems) selection problem is re-
ferred to as a structured MAB problem in the following, as it differs from classical MAB prob-
lems. First, the rewards associated with the various rates are stochastically correlated, i.e., the
outcomes of transmissions at different rates are not independent: for example, if a transmis-
sion at a high rate is successful, it would be also successful at lower rates. Then, the average
throughputs achieved at various rates exhibit natural structural properties. For 802.11b/g sys-
tems, the throughput is an unimodal function of the selected rate. For MIMO 802.11n systems,
the throughput remains unimodal in the rates within a single MIMO mode, and also satisfies
some structural properties across modes. We model the throughput as a so-called graphically
unimodal function of the (mode, rate) pair. As we demonstrate, correlations and graphical uni-
modality are instrumental in the design of RA mechanisms, and can be exploited to learn and
track the best rate or (mode, rate) pair quickly and efficiently. Finally, most MAB problems
consider stationary environments, which, for our problem, means that the successful packet
transmission probabilities at different rates do not vary over time. In practice, the transmitter
faces a non-stationary environment as these probabilities could evolve over time. We consider
both stationary and non-stationary radio environements.

In the case of stationary environments, we derive an asymptotic upper bound of the expected
reward achieved in structured MAB problems. This provides a fundamental performance limit
satisfied by any rate adaptation algorithm. This limit quantifies the inevitable performance loss
due to the need to explore sub-optimal rates. It also indicates the performance gains that can
be achieved by devising rate adaptation schemes that optimally exploit the correlations and the
structural properties of the MAB problem. As it turns out, the performance loss due to the need
of exploration does not depend on the number of available rates (or (mode, rate) pairs), i.e.,
on the size of the decision space. This suggests that rate sampling methods can perform well
even if the number of decisions available at the transmitter grows large. We present two rate
sampling algorithms: ORS (Optimal Rate Sampling) and G-ORS (G stands for Graphical), an
extension of ORS to MIMO systems. We show that their performance matches the upper bound
derived previously, i.e., ORS and G-ORS are asymptotically optimal. We extend the results
and algorithms to non-stationary radio environments: we propose SW-ORS and SW-G-ORS
algorithms (SW stands for Sliding Window) and analyse their performance. We show that again,
the latter does not depend on the size of the decision space, and that the best rate (or (mode, rate)
pair) can be efficiently learnt and tracked even. Finally we compare the performance of the
proposed algorithms to that of existing rate sampling algorithms using simulations and traces
extracted from real 802.11 test-beds. Our algorithms outperform existing RA schemes. This
should not be surprising: the design of most existing algorithms is based on heuristics, whereas
ORS algorithms are by design optimal.

Contributions and paper organisation.

1. The next section is devoted to the related work. Existing RA algorithms (using either
sampling approaches, or based on measurements) are discussed. A brief state-of-the-art
about MAB problems is also presented.

2. In the next two sections (Sections 3 and 4), we formulate the design of rate sampling
algorithms as an online stochastic optimization problem, and we show how the latter can
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be mapped to a structured MAB problem.

3. We derive a performance upper bound satisfied by any rate sampling algorithm in the case
of stationary radio environements, and show that this bound does not depend on the size
of the decision space (Section 5).

4. We present, in Section 6, ORS, a rate sampling algorithm whose performance matches the
upper bound derived in Section 5.

5. Next in Section 7, we present SW-ORS, an extension of ORS to non-stationary radio envi-
ronments and provide guarantees on its performance. Again we show that its performance
does not depend on the number of available rates.

6. The algorithms and performance results are extended to MIMO 802.11n systems in Sec-
tion 8. The proposed algorithm, referred to as G-ORS (G stands for Graphical), optimally
exploits the fact that the throughput is a graphically unimodal function of the (mode, rate)
pair.

7. Finally in Section 9, the performance of our algorithms are illustrated using simulation
results and traces extratced from real 802.11 test-beds.

2 Related work

2.1 RA mechanisms in 802.11 systems

In recent years, there has been a growing interest in the design of RA mechanisms for 802.11
systems, perhaps motivated by the new functionalities (e.g. MIMO, and channel width adapta-
tion) offered by the evolving standards.

Sampling-based RA mechanisms. ARF [19], one of the earliest rate adaptation algorithms,
consists in changing the transmission rate based on packet loss history: a higher rate is probed af-
ter n consecutive successful packet transmissions, and the next available lower rate is used after
two consecutive packet losses. In case of stationary radio environments, ARF essentially probe
higher rates too frequently (every 10 packets or so). To address this issue, AARF [23] adapts the
threshold n dynamically to the speed at which the radio environment evolves. Among other pro-
posals, SampleRate [4] sequentially selects transmission rates based on estimated throughputs
over a sliding window, and has been shown to outperform ARF and its variants. The aforemen-
tioned algorithms were initially designed for 802.11 a/b/g systems, and they seem to perform
poorly in MIMO 802.11n systems [27]. One of the reasons for this poor performance is the
non-monotonic relation between loss and rate in 802.11n MIMO systems, when considering all
rates options and ignoring modes. When modes are ignored, the loss probability does not nec-
essarily increase with the rate. As a consequence, RA mechanisms that ignore modes may get
stuck at low rates. To overcome this issue, the authors of [27] propose MiRA, a RA scheme
that zigzags between MIMO modes to search for the best (mode, rate) pair. In the design of
RAMAS [25], the authors categorise the different types of modulations into modulation-groups,
as well as the MIMO modes into what is referred to as enhancement groups; the combination of

4



the modulation and enhancement group is mapped back to the set of the modulation and coding
schemes. RAMAS then adapts these two groups concurrently. As a final remark, note that in
802.11 systems, packet losses are either due to a mismatch between the rate selection and the
channel condition or due to collisions with transmissions of other transmitters. Algorithms such
as LD-ARF [26], CARA [21], and RRAA [36] have been proposed to distinguish between losses
and collisions.

It is important to highlight the fact that in all the aforementioned RA algorithms, the way sub-
optimal rates (or (mode, rate) pairs) are explored to identify the best rate is based on heuristics.
This contrasts with the proposed algorithms, that are designed, using stochastic optimisation
methods, to learn the best rate for transmission as fast as possible. The way sub-optimal rates
are explored under our algorithms is optimal.

Measurement-based methods. As mentioned in the introduction, measurement-based RA
algorithms could outperform sampling approaches if the measurements (RSSI or CSI) used at the
transmitter could be used to accurately predict the PER achieved at the various rates. However
this is not always the case, and measurement-based approaches incur an additional overhead by
requiring the receiver to send channel-state information back to the transmitter. In fact, sampling
and measurement-based approaches have their own advantages and disadvantages. We report
here a few measurement-based RA mechanisms.

In RBAR [17] (developed for 802.11 a/b/g systems), RTS/CTS-like control packets are used
to “probe” the channel. The receiver first computes the best rate based on the SNR measured
over an RTS packet and then informs the transmitter about this rate using the next CTS packet.
OAR [31] is similar to RBAR, but lets the transmitter send multiple back-to-back packets with-
out repeating contention resolution procedure. CHARM [18] leverages the channel reciprocity
to estimate the SNR value instead of exchanging RTS/CTS packets. In 802.11n with MIMO,
ARAMIS [8] uses the so-called diffSNR as well as the SNR to predict the PER at each rate.
The diffSNR corresponds to the difference between the maximum and minimum SNRs observed
on the various antennas at the receiver. ARAMIS exploits the fact that environmental factors
(e.g., scattering, positioning) are reflected in the diffSNR. Recently, hybrid approaches combin-
ing SNR measurements and sampling techniques have also been advocated, see [15]. It is also
worth mentioning cross-layer approaches, as in [35], where BER (Bit Error Rate) are estimated
using information provided at the physical layer.

In some sense, measurement-based RA schemes in 802.11 systems try to mimic rate adapta-
tion strategies used in cellular networks. However in these networks, more accurate information
on channel condition is provided to base station [1]. Typically, the base station broadcasts a
pilot signal, from which each receiver measures the channel conditions. The receiver sends this
measurement, referred to as CQI (Channel Quality Indicator), back to the base station. The
transmission rate is then determined by selecting the highest CQI value which satisfies the given
BLER (Block Error Rate) threshold, e.g., 10% in 3G systems. More complex, but also more
efficient rate selection mechanisms are proposed in [9, 20]. These schemes predict the through-
put more accurately by jointly considering other mechanisms used at the physical layer, such as
HARQ (Hybrid ARQ).
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2.2 Stochastic MAB problems

Stochastic MAB formalise sequential decision problems where the decision maker has to strike
an optimal trade-off between exploitation and exploration. MAB problems have been applied
in many disciplines – their first application was in the context of clinical trials [34]. Please
refer to [5] for a recent survey. Most existing theoretical results concern unstructured MAB
problems [30], i.e., problems where the average reward associated with the various arms are not
related. For this kind of problems, Lai and Robbins [24] derived an asymptotic lower bound on
regret and also designed optimal decision algorithms. When the average rewards are structured,
the design of optimal decision algorithms is more challenging, see e.g. [5]. Unimodal bandit
problems have received little attention so far. In [38], the authors propose various algorithms,
but they do not prove their optimality (the . In this paper, we first derive asymptotic regret
lower bounds for these problems, and then devise asymptotically optimal algorithms. We also
study unimodal bandit problems in non-stationary environments, where the average rewards of
the different arms evolve over time. Non-stationary environments have not been extensively
studied in the bandit literature. For unstructured problems, the performance of algorithms based
on UCB [3] has been analyzed in [12, 22, 37] under the assumption that the average rewards
are abruptely changing. Here we consider more realistic scenarios where the average rewards
smoothly evolve over time. To our knowledge, such scenarios have only been considered in
[32, 33] but using different assumptions. Finally, the authors of [28] formalize rate adaptation
and channel selection issues as a MAB problem, but they do not solve it, and the proposed
algorithms are heuristics.

3 Models and Objectives

We present here the models and objectives for 802.11 a/b/g systems (using a single MIMO
mode). The extension to MIMO 802.11n is discussed in Section 8. We consider a single link (a
transmitter-receiver pair). At time 0, the link becomes active and the transmitter has packets to
send to the receiver. To do so, the transmitter can sequentially pick a coding rate from a finite
set R = {r1, . . . , rK}. This set is ordered, i.e., r1 < r2 < . . . < rK . After a packet is sent, the
transmitter is informed on whether the transmission has been successful. Based on the observed
past transmission successes and failures at the various rates, the transmitter has to select a rate
for the next packet transminssion. We denote by Π the set of all possible sequential rate selection
schemes. Packets are assumed to be of equal size, and without loss of generality the duration of
a packet transmission at rate rk is 1/rk for any k.

3.1 Channel models

For the i-th packet transmission at rate rk, a binary random variableXk(i) represents the success
(Xk(i) = 1) or failure (Xk(i) = 0) of the transmission.

Stationary radio environments. In such environments, the success transmission probabilities
at different rates do not evolve over time. This arises when the system considered is static
(in particular, the transmitter and receiver do not move) – refer to Section VI for a detailed
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discussion. Formally, Xk(i), i = 1, 2, . . ., are independent and identically distributed, and we
denote by θk the success transmission probability at rate rk: θk = E[Xk(i)]. We denote by k?

the index of the optimal rate, k? ∈ arg maxk rkθk. To simplify the exposition and the notation,
we assume that the optimal rate is unique, i.e., rk?θk? > rkθk, for all k 6= k?.

Non-stationary radio environments. In practice, channel conditions may be non-stationary,
i.e., the success probabilities at various rates could evolve over time. In many situations, the
evolution over time is rather slow – refer to [28] and to Section V for test-bed measurements.
These slow variations allow us to devise rate adaptation schemes that efficiently track the best
rate for transmission. In the case of non-stationary environment, we denote by θk(t) the success
transmission probability at rate rk and at time t, and by k?(t) the index of the optimal rate at
time t.

Unless otherwise specified, for clarity, we consider stationary radio environments. Non-
stationary environements are treated in Section 7, where we will present the models and objec-
tives, and extend our rate selection algorithm for these scenarios.

3.2 Structural properties

Our problem is to identify as fast as possible the rate maximizing throughput. To this aim,
we shall desin algorithms that exploit two crucial structural properties of the problem: (i) The
successes and failures of transmissions at various rates are correlated, and (ii) in practice, we
have observed that the throughput is an unimodal function of the transmission rate.

Correlations. If a transmission is successful at a high rate, it has to be successful at a lower
rate, and similarly, if a low-rate transmission fails, then a transmitting at a higher rate would also
fail. Formally assume that at a given time, rate rk (resp. rate rl) has already been selected (i−1)
(resp. (j − 1)) times. Then:

(k < l and Xk(i) = 0) =⇒ (Xl(j) = 0), (1)

(k > l and Xk(i) = 1) =⇒ (Xl(j) = 1). (2)

Using simple coupling arguments, we can readily show that an equivalent way of expressing the
correlations is to state that the following assumption holds.

Assumption 1 θ = (θ1, . . . , θK) ∈ T , where T = {η ∈ [0, 1]K : η1 ≥ . . . ≥ ηK}.

Unimodality. In practice, we observe that the throughputs achieved by transmitting at various
rates are unimodal. To formalize this observation, we make the following assumption, that will
be extensively discussed and verified in Section 9.

Assumption 2 θ ∈ U , where U = {η ∈ [0, 1]K : ∃k?, r1η1 < . . . < rk?ηk? , rk?ηk? >
rk?+1ηk?+1 > . . . > rkηK}.
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3.3 Objective

We now formulate the design of rate adaptation schemes as an online stochastic optimization
problem. An optimal scheme maximizes the expected throughput up to a certain finite time
T . The choice of T is not really important as long as during time interval T , a large number
of packets can be sent – so that infering the success transmission probabilities efficiently is
possible.

Consider a rate adaption scheme π ∈ Π that selects rate rkπ(t) for the t-th transmission.
At time T , the number of packets γπ(T ) that have been successfully sent under algorithm π

is: γπ(T ) =
∑

k

∑sπk (T )
i=1 Xk(i), where sπk(T ) is the number of transmission attempts at rate rk

before time T . The sk(T )’s are random variables (since the rates selected under π depend on
the past random successes and failures), and satisfy the following constraint:∑

k

sπk(T )× 1

rk
≤ T.

Wald’s lemma implies that the expected number of packets successfully sent up to time T is:
E[γπ(T )] =

∑
k E[sπk(T )]θk. Thus, our objective is to design an algorithm solving the following

online stochastic optimization problem:

max
π∈Π

∑
k

E[sπk(T )]θk, (3)

s.t. sπk(T ) ∈ N, and
∑
k

sπk(T )× 1

rk
≤ T, ∀k.

4 An equivalent Structured Multi-Armed Bandit (MAB) problem

In this section, we show that the online optimization problem (3) can be reduced to a structured
Multi-Armed Bandit (MAB) problem.

4.1 An alternative system

Without loss of generality, we assume that time can be divided into slots whose durations are
such that for any k, the time it takes to transmit one packet at rate rk corresponds to an integer
number of slots. Under this convention, the optimization problem (3) can be written as:

max
π∈Π

∑
k

E[tπk(T )]rkθk, (4)

s.t.
∑
k

tπk(T ) ≤ T, and

tπk(T ) ∈ 1

rk
N := { u

rk
, u ∈ N},∀k,

where tπk(T ) = sπk(T )/rk represents the amount of time (in slots) that the transmitter spends,
before T , on sending packets at rate rk. The constraint tk(T ) ∈ 1

rk
N indicates that when a rate
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is selected, this rate selection remains the same for the next 1/rk slots (to transmit an entire
packet). By relaxing this constraint, we obtain an optimization problem corresponding to a
MAB problem. Indeed, consider now an alternative system where rate selection is made every
slot. If at any given slot, rate rk is selected for the i-th times, then if Xk(i) = 1, the transmitter
successfully sends rk bits in this slot, and ifXk(i) = 0, then no bit are received. A rate selection
algorithm then decides in each slot which rate to use. There is a natural mapping between rate
selection algorithms in the original system and in the alternative system: let π ∈ Π, if for the t-th
packet transmission rate rk is selected under π in the original system, then π selects the same
rate rk in the t-th slot. This mapping is illustrated in Figure 1.

Figure 1: Examples of rate selections made by the same algorithm π ∈ Π in the original and
alternative systems - r1 = 1/3 and r2 = 1/2.

For the alternative system, the objective is to design π ∈ Π solving the following optimiza-
tion problem, which can be interpreted as a relaxation of (4).

max
π∈Π

∑
k

E[tπk(T )]rkθk, (5)

s.t.
∑
k

tπk(T ) ≤ T, and tπk(T ) ∈ N, ∀k.

The above optimization problem corresponds to a MAB problem, where in each slot a decision
is taken (i.e., a rate is selected), and where when rate rk is chosen, the obtained reward is rk
with probability θk and 0 with probability 1 − θk. Note that in traditional MAB problems, the
rewards obtained by taking various decisions are stochastically independent. This is not the case
for our MAB problem.

4.2 Regrets and Asymptotic Equivalence

We may assess the performance of an algorithm π ∈ Π in both original and alternative systems
through the notion of regret. The regret up to slot T compares the performance of π to that
achieved by an algorithm always selecting the best rate. If the parameter θ was known, then in
both systems, it would be optimal to select rate rk? . The regret of algorithm π up to time slot T
in the original system is then defined by:

Rπ1 (T ) = θk?brk?T c −
∑
k

θkE[sπk(T )],

where bxc denotes the largest integer smaller than x.
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The regret of algorithm π up to time slot T in the alternative system is similarly defined by:

Rπ(T ) = θk?rk?T −
∑
k

θkrkE[tπk(T )].

In the next section, we show that an asymptotic lower bound for the regret Rπ(T ) is of the
form c(θ) log(T ) where c(θ) is a strictly positive constant that we can explicitly characterize.
It means that for all π ∈ Π, lim infT→∞R

π(T )/ log(T ) ≥ c(θ). It will be also shown that
there exists an algorithm π? ∈ Π that actually achieves this lower bound in the alternative
system, in the sense that lim supT→∞R

π?(T )/ log(T ) ≤ c(θ). In such a case, we say that π? is
asymptotically optimal. The following lemma states that actually, the same lower bound is valid
in the original system, and that any asymptotically optimal algorithm in the alternative system
is also asymptotically optimal in the original system.

Lemma 4.1 Let π ∈ Π. For any c > 0, we have:(
lim inf

T→∞

Rπ(T )

log(T )
≥ c
)

=⇒
(

lim inf
T→∞

Rπ1 (T )

log(T )
≥ c
)
,

and (
lim sup

T→∞

Rπ(T )

log(T )
≤ c
)

=⇒
(

lim sup
T→∞

Rπ1 (T )

log(T )
≤ c
)
.

Proof. Let T > 0. By time T , we know that there have been at least bTr1c transmissions, but no
more than dTrKe. Also observe that both regrets Rπ and Rπ1 are increasing functions of time.
We deduce that:

Rπ(bTr1c) ≤ Rπ1 (T ) ≤ Rπ(dTrKe).
Now

lim inf
T→∞

Rπ1 (T )

log(T )
≥ lim inf

T→∞

Rπ(bTr1c)
log(T )

= lim inf
T→∞

Rπ(bTr1c)
log(bTr1c)

≥ c.

The second statement can be derived similarly. �

4.3 Structured MAB problem

Instead of trying to solve (3), we rather focus on analyzing the MAB problem (5). We know that
optimal algorithms for (5) will also be optimal for the original problem. As already mentioned,
the specificity of our MAB problem lies in its structure, i.e., in the correlations and unimodality
of the rewards obtained using different rates. Let us summarize the problem:

(PU ) structured MAB. We have a set {1, . . . ,K} of possible decisions. If decision k is taken
for the i-th time, we received a reward rkXk(i). (Xk(i), i = 1, 2, ...) are i.i.d. with Bernoulli
distribution with mean θk. The structure of rewards across decisions are expressed through
Assumptions 1 and 2, or equivalently θ ∈ T ∩ U . The objective is to design a decision scheme
minimizing the regret Rπ(T ) over all possible algorithms π ∈ Π.
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5 Lower bound on regret

In this section, we derive an asymptotic (as T grows large) lower bound of the regret Rπ(T )
satisfied by any algorithm π ∈ Π. This lower bound provides an insightful theoretical perfor-
mance limit for any rate adaptation scheme. We also quantify the performance gains achieved
by algorithms that smartly exploit the structural properties of (PU ), compared to algorithms that
consider the rewards obtained at various rates as independent.

5.1 Structured MAB

To derive a lower bound on regret for MAB problem (PU ), we first introduce the notion of
uniformly good algorithms. An algorithm π is uniformly good, if for all parameters θ, for any
α > 0, we have1: E[tπk(T )] = o(Tα), ∀k 6= k?, where tπk(T ) is the number of times rate rk
has been chosen up to time slot T , and k? denotes the index of the optimal rate (k? depends
on θ). Uniformly good algorithms exist as we shall see later on. We further introduce for any
k = 1, . . . ,K, the set N(k) defined by:

N(k) = {l ∈ {k − 1, k + 1} : rkθk ≤ rl}.

Finally, we introduce the Kullback-Leibler (KL) divergence, a well-known measure for dis-
similarity between two distributions. In the case we compare two Bernoulli distributions with
respective parameters p and q, the KL divergence is: I(p, q) = p log p

q + (1 − p) log 1−p
1−q . The

following theorem, proved in appendix, provides a regret lower bound.

Theorem 5.1 Let π ∈ Π be a uniformly good rate selection algorithm for MAB problem (PU ).
We have: lim infT→∞

Rπ(T )
log(T ) ≥ c(θ), where

c(θ) =
∑

k∈N(k?)

rk?θk? − rkθk
I(θk,

rk?θk?
rk

)
.

5.2 The value of exploiting structural properties

It is worth quantifying the performance gains one may achieve when designing rate selection
algorithms that exploit the structural properties of the MAB problem (PU ). To this aim, we can
derive the regret lower bound that one would obtain in absence of correlations and unimodal
structure, i.e., assuming that the rewards obtained at the various rates are independent. The
corresponding MAB would be defined as follows:

(PI) MAB with independent arms. We have a set {1, . . . ,K} of possible decisions. If decision
k is taken for the i-th time, we received a reward rkXk(i). (Xk(i), i = 1, 2, ...) are i.i.d. with
Bernoulli distribution with mean θk, and independent across decisions k. The objective is to
design a decision scheme minimizing the regret Rπ(T ) over all possible algorithms π ∈ Π.

The regret lower bound can be derived using the same direct technique initially used by Lai
and Robbins [24]. Define: k0 = min{k ∈ {1, . . . , k?} : rk?θk?rk

≤ 1}. Note that if k < k0, then

1f(T ) = o(g(T )) means that limT→∞ f(T )/g(T ) = 0.
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rk?θk? > rk, which means that even if all transmissions at rate rk were successful, i.e., θk = 1,
rate rk would be sub-optimal. Hence, there is no need to select rate rk to discover this fact, since
by only selecting rate rk? , we get to know whether rk?θk? > rk ≥ rkθk.

Theorem 5.2 Let π ∈ Π be a uniformly good rate selection algorithm for MAB problem (PI ).
We have: lim infT→∞

Rπ(T )
log(T ) ≥ c

′(θ), where

c′(θ) =
K∑

k=k0:k 6=k?

rk?θk? − rkθk
I(θk,

rk?θk?
rk

)
.

For completeness, the proof of the previous theorem is presented in Appendix. It should be
observed that the constant c(θ) involved in the regret lower bound when exploiting structural
properties (e.g. unimodality) is the sum of at most two terms, irrespective of the number of
available rates K. This is an important property that indicates that it might be possible to devise
rate selection algorithm whose performance (at least asymptotically) does not get worst when
the number of rates increases – which basically happens each time a new 802.11 standard comes
out. In contrast, the constant c′(θ) may consist of the sum of K−3 terms, and linearly increases
with the number of possible rates. When the number of rates is large, we expect that algorithms
exploiting the structural properties of the MAB problem significantly outperform those that do
not exploit the structure.

6 Asymptotically Optimal Rate Selection algorithm

In this section, we present ORS (Optimal Rate Sampling), a rate selection algorithm whose
regret matches the lower bound derived in Theorem 5.1 – in other words, ORS algorithm is
asymptotically optimal.

6.1 ORS algorithm

The algorithm we propose is an extension of the recently proposed KL-UCB (Kullback-Leibler
Upper Confidence Bound) algorithm [10]. The latter is a variant of the classical UCB algorithm
initially proposed by Auer et al. in [3], and it has been shown to be optimal in the case where
rewards are Bernoulli and independent across arms. One of the main contributions of the paper
is to show that ORS optimally exploits the reward structure of our MAB problem.

We need the following notations to describe ORS algorithm. Let tk(n) be the number of
times rate rk has been selected before time n and µ̂k(n) denotes the empirical average of the
reward obtained by rate rk so far:

µ̂k(n) =
1

tk(n)

tk(n)∑
i=1

rkXk(i).

The leader L(n) at time n is the index of the rate with maximum empirical throughput: L(n) ∈
arg maxk µ̂k(n). We further define lk(n) as the number of times that rate k has been the leader
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up to time n: lk(n) =
∑n−1

n′=1 1{L(n′) = k}, where 1{·} is the indicator function. Finally, for
any k ∈ {1, . . . ,K}, we define the set N (k) as follows. If 2 ≤ k ≤ K − 1,

N (k) = {k − 1, k, k + 1},

and N (1) = {1, 2}, N (K) = {K − 1,K}.
The sequential decisions under ORS algorithm are based on the indexes of the various rates

and can be easily implemented. The index bk(n) of rate rk for the n-th packet transmission is:

bk(n) = max
{
q ∈ [0, rk] : tk(n)I

( µ̂k(n)

rk
,
q

rk

)
≤ log(lL(n)(n)) + c log(log(lL(n)(n)))

}
,

where c is a positive constant. For the n-th transmission, KL-U-UCB selects the rate close to
the leader L(n) and with maximum index. More precisely, it selects the rate in N (L(n)) with
maximum index. Ties are broken arbitrarily.

Algorithm 1 Optimal Rate Sampling (ORS)

For n = 1, . . . ,K, select the rate with index k(n) = n.
For n = K + 1, . . . , select the rate with index k(n) where:

k(n) =

L(n) if (lL(n)(n)− 1)/3 ∈ N,
arg max

k∈N (L(n))
bk(n) otherwise.

The next theorem, proved in appendix, states that the regret achieved under ORS algorithm
matches the lower bound derived in Theorem 5.1.

Theorem 6.1 Fix θ ∈ T ∩U . For all ε > 0, under ORS algorithm, the regret at time T satisfies:

RORS(T ) ≤ (1 + ε)c(θ) log(T ) +O(log(log(T ))). (6)

As a consequence:

lim sup
T→∞

RORS(T )

log(T )
≤ c(θ).

The regret achieved under ORS algorithm is at most a sum of two terms, each of them
corresponding to neighbors of the optimal rate rk? . In particular, the regret does not depend on
the number of available rates.
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6.2 KL-R-UCB algorithm

We conclude this section by presenting KL-R-UCB (R stands for Rate), a simple extension of
KL-UCB algorithm [10]. This algorithm does not exploit the structural properties of our MAB
problem, and is asymptotically optimal for MAB problem (PI). The regret analysis of this
algorithm will be useful when considering non-stationary radio environments.

Under this algorithm, each rate rk is associated with an index qk(n) at time n defined by:

qk(n) = max{q ∈ [0, rk] : tk(n)I(
µ̂k(n)

rk
,
q

rk
) ≤ log(n) + c log log(n)}.

The algorithm selects the rate with highest index:

Algorithm 2 KL-R-UCB

For n = 1, . . . ,K, select the rate with index k(n) = n.
For n = K + 1, . . . , select the rate with index k(n) where:

k(n) ∈ arg max
k

qk(n).

The regret analysis of KL-R-UCB can be conducted as that of KL-UCB, and we have:

Theorem 6.2 Fix θ ∈ T . For all ε > 0, under π =KL-R-UCB algorithm, the regret at time T
satisfies:

Rπ(T ) ≤ (1 + ε)c′(θ) log(T ) +O(log(log(T ))). (7)

As a consequence:

lim sup
T→∞

Rπ(T )

log(T )
≤ c′(θ).

7 Non-stationary environments

We extend previous algorithms and results to non-stationary radio environments, i.e., to the case
where the transmission success probabilities θ(t) at various rates evolve over time. Based on
the ORS algorithm, we design SW-ORS (SW stands for Sliding Window), an algorithm that
efficiently tracks the best rate for transmission in non-stationary environments, provided that the
speed at which the parameters θ(t) evolve remains upper bounded.

We design algorithms for non-stationary versions of the MAB problem (PU ). In particular,
to simplify the exposition, we assume that time is slotted, and that at the beginning of each slot, a
rate is selected for transmission – in other words, we consider the alternative system as discussed
in Section 4.

(NS−PU ) Non-stationary structured MAB. We have a set {1, . . . ,K} of possible decisions.
If decision k is taken at time t, we receive a reward rkXk(t). (Xk(t), t = 1, 2, ...) are inde-
pendent with Bernoulli distribution with evolving mean θk(t) = E[Xk(t)]. The structure and
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evolution of θ(t) will be made precise in §7.2. The objective is to design a sequential decision
scheme minimizing the regret Rπ(T ) over all possible algorithms π ∈ Π, where

Rπ(T ) =

T∑
t=1

(
rk?(t)θk?(t)(t)− rkπ(t)θkπ(t)(t)

)
,

and k?(t) (resp. kπ(t)) denotes the best transmission rate (resp. the rate selected under π) at
time t. k?(t) = arg maxk rk(t)θk(t)(t).

The above definition of the regret is not standard: the regret is exactly equal to 0 only if
the algorithm is aware of the best transmission rate at any time. This notion of regret really
quantifies the ability of the algorithm π to track the best rate for transmission. In particular, as
shown in [11], under some mild assumptions on the way θ(t) varies, we cannot expect to obtain
a regret that scales sublinearly with the time horizon T . The regret is linear, and our objective is
to minimize the regret per unit time Rπ(T )/T .

7.1 The SW-ORS Algorithm

MAB problems with non-stationary rewards have received little attention so far, but a natural
and efficient way of tracking the changes of θ(t) over time is to select the rate at time t based on
observations made over a fixed time window preceding t, i.e., to account for transmissions that
occurred between time t − τ and t − 1, see e.g. [11]. The size τ of the time window is chosen
empirically: it must be large enough (to be able to learn), but small enough so that the channel
conditions do not vary significantly during a period of duration τ .

The SW-ORS algorithm naturally extends ORS to non-stationary environments: it mimics
the selections made under ORS, but based on the observations made over a sliding time window.
We now provide a formal description of SW-ORS. Let k(t) denote the index of the rate selected
at time t. The empirical average reward of rate rk at time n over a window of size τ + 1 is:

µ̂τk(n) =
1

tτk(n)

n−1∑
t=n−τ

rkXk(t)1{k(t) = k},

where

tτk(n) =
n−1∑
t=n−τ

1{k(t) = k}.

By convention, µ̂τk(n) = 0 if tτk(n) = 0. Based on µ̂τk(n), we can redefine as previously Lτ (n),
the leader at time n, lτk(n) =

∑n−1
t=n−τ 1{Lτ (t) = k}, the number of times k has been the leader

over the window τ preceding n, and bτk(n), the index of decision k at time n. bτk(n) is defined
by:

bτk(n) = max
{
q ∈ [0, rk] : tτk(n)I

( µ̂τk(n)

rk
,
q

rk

)
≤ log(lτLτ (n)(n)) + c log(log(lτLτ (n)(n)))

}
.
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Algorithm 3 SW-ORS with window size τ

For n = 1, . . . ,K, select the rate with index k(n) = n.
For n = K + 1, . . . , select the rate with index k(n) where:

k(n) =

L
τ (n) if (lτLτ (n)(n)− 1)/3 ∈ N,

arg max
k∈N (Lτ (n))

bτk(n) otherwise.

7.2 Slowly varying environment

We are interested in characterizing the regret per time unit achieved by SW-ORS in scenarios
where the speed at which θ(t) evolves is controlled (this evolution has to be relatively slow to be
able to design algorithms that track the best rate for transmission). Hence we make the following
assumption, stating that θ(t) is a Lipschitz function.

Assumption 3 t 7→ θ(t) is σ-Lipschitz, for some σ > 0: for any k = 1, . . . ,K, for any t, t′:

|θk(t′)− θk(t)| ≤ σ|t′ − t|.

Since the optimal rate changes over time, we cannot expect that the average rewards at
various rates are always well separated and that strict unimodality always holds as stated in
Assumption 2. However, we still assume that the unimodal structure is preserved, and make
assumptions about the periods of time where different rates yield very similar throughputs. More
precisely, in the following analysis, we shall use one of the two following assumptions. Let U be
the smallest closed set containing U : U = {η ∈ [0, 1]K : ∃k?, r1η1 ≤ . . . ≤ rk?ηk? , rk?ηk? ≥
rk?+1ηk?+1 ≥ . . . ≥ rkηK}.

Assumption 4 At any time t, θ(t) ∈ U .

The performance of bandit algorithms in non-stationary environments will depend on the
proportion of time where various decisions yield throughputs close to each other. Indeed, the
closer they are, the harder it is to differentiate them with high probability. We define

H(∆, T ) =
T∑
n=1

K∑
k=1

∑
k′∈N(k)

1{|rkθk(n)− rk′θk′(n)| ≥ ∆}.

H(∆, T ) is the number of time instants at which there is a decision which is not well separated
from one of its neighbors. H depends on the evolution of the success transmission probabilities,
i.e., on n 7→ (θk(n))1≤k≤K . We are interested in the performance of the algorithm in a slowly
changing environment, so that we will let σ → 0+. In this case, it is natural to choose a large
window size τ → +∞. We are interested in how the regret per unit of time scales with σ in the
regime σ,∆→ 0+ , τ → +∞. We consider the following assumption on H .
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Assumption 5 There exists a function Φ(K) ≤ K such that for all ∆ > 0 (or for all ∆ small
enough):

lim sup
T→+∞

H(∆, T )

T
≤ Φ(K)∆

r1
.

Assumption 5 is satisfied for instance if for all k, n 7→ θk(n) is a stationary ergodic process
with uniform stationary distribution on [0, 1] (in this case, we can select Φ(K) = K).

7.3 The SW-KL-R-UCB algorithm and its regret

Before analysing the regret achieved under SW-ORS, we introduce and study the SW-KL-R-
UCB algorithm, a version of KL-R-UCB adapted to non-stationary environments using a sliding
window. We derive an upper bound of the regret of SW-KL-R-UCB, and in the next subsection,
we use this bound to analyse the regret of SW-ORS.

To define SW-KL-R-UCB, we use µ̂τk(n) and tτk(n) as defined earlier. Each rate rk is asso-
ciated with an index qτk(n) at time n defined by:

qτk(n) = max{q ∈ [0, rk] : tτk(n)I(
µ̂τk(n)

rk
,
q

rk
) ≤ log(τ) + c log log(τ)}.

Algorithm 4 SW-KL-R-UCB with window size τ

For n = 1, . . . ,K, select the rate with index k(n) = n.
For n = K + 1, . . . , select the rate with index k(n) where:

k(n) = arg max
1≤k≤K

qτk(n).

Define

G(T, Imin, τ, σ) =
T∑
n=1

∑
k 6=k?(n)

1{rk(θk(n) + τσ) ≥ rk?(n)(θk?(n)− τσ)}

∪ {I(θk(n) + τσ, rk?(n)(θk?(n)− τσ)/rk}) > Imin}.

G(T, Imin, τ, σ) is the number of time instants up to time T at which there exists at least a sub-
optimal decision k 6= k?(n) which cannot be distinguished from k?(n) well enough. Namely,
either the difference between the average reward of k and k?(n) is smaller than the error caused
by the changing environment, or the KL-divergence number between them is smaller than a fixed
threshold Imin. Applying Pinkser’s inequality (see Appendix), we have:

G(T, Imin, τ, σ) ≤ H(
√
Imin/2 + 2rKτσ, T ).

The next theorem provides an upper bound of the regret of KL-R-UCB in a slowly changing
environment.
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Theorem 7.1 Under Assumption 3, the regret of π =SW-KL-R-UCB per unit of time satisfies:
for all Imin > 0 and ε > 0,

Rπ(T )

T
≤ rK

(√
Imin/2 + 2τσ

) G(T, Imin, τ, σ)

T
+KrK(1 + ε)

log(τ) + c log(log(τ))

τImin

+
CK

(τ log(τ)c)g0ε2
,

where C is constant, and

g0 =
1

2
min

1≤n≤T
min

k 6=k?(n),
rk?(n)(θk? (n)−στ)<rk

rk?(n)

rk
(θk?(n)− στ)

[
1−

rk?(n)

rk
(θk?(n)− στ)

]
.

The following regret upper bound is obtained from the above theorem by choosing Imin =

2(∆− 2rKτσ)2/r2
K and ε = g

−1/2
0 , and using the fact that G(T, Imin, τ, σ) ≤ H(

√
Imin/2 +

2rKτσ, T ).

Corollary 7.2 Let ∆ > 2rKτσ. The regret per unit of time of π =SW-KL-R-UCB is upper
bounded by:

Rπ(T )

T
≤ ∆H(∆, T )

T
+Kr3

K

(
1 + g

−1/2
0

) log(τ) + c log(log(τ)) + C

2τ(∆− 2rKτσ)2
,

where C > 0 is a constant.

Finally, using Assumption 5, and Corollary 7.2, we get a simple asymptotic upper bound for
the regret of SW-KL-R-UCB:

Corollary 7.3 Under Assumptions 3 and 5, if τ = (Kσ/Φ(K))−4/5/4, the regret per unit of
time of π =SW-KL-R-UCB satisfies:

lim sup
T→∞

Rπ(T )

T
≤ CΦ(K)

(
Kσ

Φ(K)

) 2
5

log(1/σ),

where C > 0 is a constant.

The previous result is proved using the bound derived in Corollary 7.2 with ∆ = rK(Kσ/Φ(K))1/5.

7.4 Upper bound of the regret under SW-ORS

To derive an upper bound on the regret under SW-ORS, we first show that the latter can be
expressed using the regret achieved under SW-KL-R-UCB.

Theorem 7.4 Under Assumptions 3 and 4, for all ∆ > 0 and τ such that ∆ > 4rKτσ, the
regret of SW-ORS per unit of time satisfies:

RSW-ORS(T ) ≤ 2Rπ(T )

K
+ rKH(∆, T ) +

C1KT log(τ)

τ(∆− 4rKτσ)2
,

where C1 > 0 is a constant, and π=SW-KL-R-UCB.
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Choosing ∆ = rKσ
1/4 log(1/σ) in Theorem 7.4, we deduce the following asymptotic regret

upper bound for SW-ORS.

Corollary 7.5 Under Assumptions 3-4-5, if τ = σ−3/4 log(1/σ)/8, then

lim sup
T→∞

Rπ(T )

T
≤ CΦ(K)σ

1
4 log

(
1

σ

)
(1 +Ko(1)) , σ → 0+,

for some constant C > 0.

Note that σ1/4 log(1/σ) tends to 0 as σ → 0, which indicates that the regret per unit time
vanishes when we slow down the evolution of θ(t), i.e., SW-ORS tracks the best transmission
rate if θ(t) evolves slowly. Also observe that the performance guarantee on SW-ORS depends
on the size K of the decision space only through Φ(K).

8 Extension to MIMO Systems

This section deals with MIMO systems, and extends all previous results and algorithms to these
systems. In MIMO, the transmitter has the possibility of using several antennas to transmit
several data streams in parallel. The maximal number of streams that can be transmitted in
parallel is equal to the minimum between the number of transmit and receive antennas. We use
the term “mode” to denote the number of streams to be transmitted i.e single steam mode, dual
stream mode etc.

We leverage structural properties of the achieved throughput as a function of the selected
(mode, rate) pair, to propose an optimal sequential (mode, rate) selection scheme. Subsections
8.1 to 8.5 deal with stationary radio environments. The extension to non-stationary environments
is presented in subsection 8.6. All results presented in this section are straightforward extensions
of results derived in Sections 4-7, and their proofs are left to the reader.

8.1 Model

In MIMO systems, the transmitter has to select, for each transmission, both a mode and a rate.
As before the set of available rates is denoted by R. The set of modes is M = {1, . . . ,M}.
Hence the set of possible decisions is D = M× R. Let D = |D|. With a slight abuse of
terminology, we say that the (mode, rate) pair (m, k) is selected if the mode m and rate rk are
used. For d ∈ D, we define the corresponding mode and rate asm(d) and r(d), respectively, i.e.,
d = (m(d), r(d)). Again, after each transmission, the transmitter is informed on whether the
corresponding packet has been successfully received. Based on the observed past transmission
successes and failures at the various (mode, rate) pairs, the transmitter has to select a (mode,
rate) pair for the next packet transmission. We denote by Π the set of all possible sequential
(mode, rate) selection schemes.

For the i-th packet transmitted using (mode, pair) d = (m, k), a binary random vari-
able Xd(i) represents the success or failure of the transmission. For any decision d, the r.v.s
(Xd(i), i = 1, 2, . . .) are i.i.d. Bernoulli with mean θd. The expected reward of decision d is
denoted by µd = r(d)θd. To simplify the presentation, we assume that the best decision d? is
unique: d? = arg maxd∈D µd, and we define µ? = µd? .
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8.2 Correlations and Graphical Unimodality

To design efficient (mode, rate) selection algorithms, we exploit structural properties of the
throughputs obtained selecting different (mode, rate) pairs: (i) The successes and failures of
transmissions at various rates are correlated; (ii) the throughput satisfies a property referred to
as graphical unimodality.

8.2.1 Correlations

If a transmission is successful at a high rate at a given mode, it has to be successful at a lower
rate using the same mode, and similarly, if a low-rate transmission fails, then a transmitting at a
higher rate would also fail. Formally assume that at a given time, (mode, rate) pair (m, k) (resp.
rate (m, l)) has already been selected (i− 1) (resp. (j − 1)) times. Then:(

k < l and X(m,k)(i) = 0
)

=⇒ (X(m,l)(j) = 0), (8)(
k > l and X(m,k)(i) = 1

)
=⇒ (X(m,l)(j) = 1). (9)

Again using simple coupling arguments, we can readily show that an equivalent way of express-
ing the correlations is to state that the following assumption holds.

Assumption 6 θ = (θd, d ∈ D) ∈ T ′, where T ′ = {η ∈ [0, 1]D : η(m,k) ≥ η(m,l),∀m,∀k <
l}.

8.2.2 Graphical Unimodality

Graphical unimodality extends the notion of unimodality to the case where decisions are the
vertices of an undirected graph G = (D, E). When (d, d′) ∈ E, we say that the two decisions
d and d′ are neighbors. Define N (d) = {d′ ∈ D : (d, d′) ∈ E} as the set of neighbors of
m. Graphical unimodality expresses the fact that when the optimal decision is d?, then for any
d ∈ D, there exists a path in G from d to d? along which the expected reward is increased.
In other words there is no local maximum in terms of expected reward except at d?, where the
notion of locality is defined through that of neighborhood N (d), d ∈ D. Formally:

Assumption 7 θ ∈ UG, where UG is the set of parameters θ ∈ [0, 1]D such that, if d? =
arg maxd r(d)θd, for any d ∈ D, there exists a path (d0 = d, d1, . . . , dp = d?) in G such that
for any i = 1, . . . , p, µdi > µdi−1

.

Note that as considered earlier, when modes do not exist, unimodality of the mean rewards is
a particular case of graphical unimodality whereG = (R, E) andE = {(r1, r2), . . . , (rK−1, rK)}.
In practice for 802.11n MIMO systems, as discussed in more details in Section 9, we can find
a graph G such that the throughput or average reward obtained at various (mode, rate) pairs is
graphically unimodal with respect to G. Such a graph is presented in Figure 2. It has been
constructed exploiting various observations and empirical results from the literature. First, for a
given mode (SS or DS), the throughput is unimodal in the rate. Then, when the SNR is relatively
low, it has been observed that using SS mode is always better than using DS mode; this explains
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why for example, the (mode, rate) pair (SS,13.5) has no neighbor in the DS mode. Similarly,
when the SNR is very high, then it is always optimal to use DS mode. Finally when the SNR is
neither low nor high, there is no clear choice between SS and DS mode, which explains why we
need links between the two modes in the graph.

Figure 2: Graph providing unimodality in MIMO 802.11n systems. Rates are in Mbit/s, two
MIMO modes are considered, single-stream (SS) and double-stream (DS) modes.

8.3 Graphical Unimodal MAB

As earlier, we consider an alternative system, where the transmission of a packet is assumed to
last for exactly one slot, see Section 4. The regret of an algorithm π up to slot T is then defined
as:

Rπ(T ) = µ?T −
∑
d∈D

µdE[tπd (T )],

where tπd (T ) denotes the number of times decision d has been taken up to slot T . Applying the
same arguments as those used in Section 4, we know that an asymptotically optimal sequential
decision algorithm is also asymptotically optimal in the original system (where the time it takes
to transmit a packet depends on the selected rate).

(PG) Graphically Unimodal MAB. We have a set D of possible decisions. If decision d is
taken for the i-th time, we received a reward r(d)Xd(i). (Xd(i), i = 1, 2, ...) are i.i.d. with
Bernoulli distribution with mean θd. The structure of rewards across decisions are expressed
through Assumptions 6 and 7, or equivalently θ ∈ T ′ ∩ UG for some graph G. The objective is
to design a decision scheme minimizing the regret Rπ(T ) over all possible algorithms π ∈ Π.

8.4 Lower bound on regret

To state the lower bound on regret, we define the following sets: for any d ∈ D, N(d) = {d′ ∈
N (d) : r(d)θd ≤ r(d′)}.

Theorem 8.1 Let π ∈ Π a uniformly good sequential decision algorithm for the MAB problem
(PG). We have:

lim sup
T→∞

Rπ(T )

log(T )
≥ cG(θ),
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where

cG(θ) =
∑

d∈N(d?)

r(d?)θd? − r(d)θd

I(θd,
r(d?)θd?
r(d) )

.

Observe that the lower bound on the regret depends on the graph G, and is proportional
to the number of neighbors in G of the optimal decision d?. To achieve a regret as small as
possible, it is therefore important to design a graph G as sparse as possible while preserving the
graphical unimodality property. In practice, we can build a graph G for 802.11n MIMO systems
with small degree, irrespective of the number of available (mode, rate) pairs.

8.5 G-ORS Algorithm

Next we devise a (mode, rate) pair selection algorithm, referred to as G-ORS (”G” stand for
”Graphical”) whose regret matches the regret lower bound derived in Theorem 8.1 in the case
of stationary environments. This algorithm is an extension of the ORS algorithm. As before,
µ̂d(n) denotes the empirical average reward obtained using decision d up to slot n. The leader
L(n) at slot n is the decision with maximum empirical average reward. Further define ld(n) as
the number of times up to slot n that decision d has been the leader. Finally, let γ the maximum
degree of a vertex in G.

Under G-ORS algorithm, the index bd(n) of decision d in slot n is given by:

bd(n) = max
{
q ∈ [0, r(d)] : td(n)I

( µ̂d(n)

r(d)
,
q

r(d)

)
≤ log(lL(n)(n)) + c log(log(lL(n)(n)))

}
,

where c is a positive constant. For the n-th slot, G-ORS selects the decision in N (L(n)) with
maximum index. Ties are broken arbitrarily.

Algorithm 5 G-ORS

Select all decisions d ∈ D once.
For n = D + 1, . . . , select decision d(n) where:

d(n) =

L(n) if (lL(n)(n)− 1)/γ ∈ N,
arg max

d∈N (L(n))
bd(n) otherwise.

The next theorem states that the regret achieved under the ORS algorithm matches the lower
bound derived in Theorem 8.1.
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Theorem 8.2 Fix θ ∈ T ′ ∩ UG. For all ε > 0, under algorithm π = G-ORS, the regret at time
T is bounded by:

Rπ(T ) ≤ (1 + ε)cG(θ) log(T ) +O(log(log(T ))).

As a consequence:

lim sup
T→∞

Rπ(T )

log(T )
≤ cG(θ).

8.6 Non-stationary environments: SW-G-ORS Algorithm

We consider a non stationary environment where parameter evolve in a Lipschitz manner as
described in section 7. We introduce SW-G-ORS which is a straightforward extension of G-
ORS to non stationary environments using a finite window of size τ . The definition of tτd(n)
µ̂τd(n) and lτd(n) and bτd(n) remain unchanged.

Algorithm 5 SW-G-ORS

For n = 1, . . . , D, select decision d(n) = n.
For n = D + 1, . . . , select decision d(n) where:

d(n) =

L
τ (n) if (lτLτ (n)(n)− 1)/γ ∈ N,

arg max
d∈N (Lτ (n))

bτd(n) otherwise.

The regret per unit of time of SW-G-ORS is given by proposition 1.

Proposition 1 Consider assumption 5, and parameters ∆ = rKσ
1/4 log(1/σ) and

τ = σ−3/4 log(1/σ)/8. Then there exists a constant C > 0 independent of D such that the
regret per unit of time of SW-ORS is upper bounded by:

lim sup
T

Rπ(T )

T
≤ CΦ(D)σ

1
4 log

(
1

σ

)
(1 +Do(1)) , σ → 0+.

9 Numerical Experiments

In this section, we illustrate the efficiency of our algorithms using traces that are either artificially
generated or extracted from test-beds. Artificial traces allow us to build a performance bench-
mark including various kinds of radio channel scenarios as those used in [4]. They also provide
the opportunity to create non-stationary radio environments (in the literature, RA mechanisms
are mostly evaluated in stationary environments).
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9.1 802.11g systems

9.1.1 Artificial traces

We first consider 802.11g with 8 available rates from 6 to 54 Mbit/s. Algorithms are tested in
three different scenarios as in [4]: steep, gradual, and lossy. In steep scenarios, the successful
transmission probability is either very high or very low. In gradual scenarios, the best rate is
the highest rate with success probability higher than 0.5. Finally in lossy scenarios, the best
rate has a low success probability, i.e., less than 0.5. In stationary environments, the success
transmission probabilities at the various rates are (steep) θ = (.99, .98, .96, .93, 0.9, .1, .06, .04),
(gradual) θ = (.95, .9, .8, .65, .45, .25, .15, .1), and (lossy) θ = (.9, .8, .7, .55, .45, .35, .2, .1).
Observe that in all cases, θ ∈ T ∩ UG (unimodality holds). We compare G-ORS and SW-G-
ORS to SampleRate, where the size of the sliding window is taken equal to 10s. SampleRate
explores new rates every ten packet transmissions, and hence has a regret linearly increasing with
time. G-ORS and SW-G-ORS explore rates in an optimal manner, and significantly outperform
SampleRate as demonstrated see Fig. 3.

For non-stationary environments, we artificially generate varying success probabilities θ(t)
as depicted in Fig. 4 (left). At the beginning, the value of θ corresponds to a steep scenario. It
then evolves to a gradual and finally lossy scenario. Fig. 4 (right) compares the performance of
SW-G-ORS to that of SampleRate and of an oracle algorithm (that always knows the best rate
for transmission). SW-G-ORS again outperforms SampleRate, and its performance is close to
that of the Oracle algorithm (aware of the success probabilities at various rates).

9.1.2 Test-bed traces

We now present results obtained on our 802.11g test-bed, consisting of two 802.11g nodes con-
nected in ad-hoc mode. We collect traces recording the throughputs at the 8 available rates,
and then use these traces to test SampleRate, and SW-G-ORS algorithm. Packets are of size
1500 bytes. We generate two kinds of traces: (a) when the two nodes have fixed positions, the
successful packet transmission probabilities are roughly constant – we have a stationary environ-
ment; (b) the receiver is then moved (at the speed of a pedestrian), generating a non-stationary
environment. The results are presented in Fig. 5. Again in both scenarios, SW-G-ORS clearly
outperforms SampleRate, and exhibits a performance close that of the Oracle algorithm.

9.2 802.11n MIMO systems

Next we investigate the performance of SW-G-ORS in 802.11n MIMO systems with two modes,
SS and DS, as in [8, 27]. We use frame aggregation (30 packets per frame) which is essential
in 802.11n. SW-G-ORS is compared to MiRA [27] and SampleRate. To define SW-G-ORS,
we use the graph G depicted in Fig. 2. The sliding window for SW-G-ORS and SampleRate is
taken equal to 1s. MiRA is a RA algorithm specifically designed for MIMO systems. It zigzags
between MIMO modes to find the best (mode, rate) pair. In its implementation, we use, as
suggested in [27], the following parameters: α = 1/8, β = 1/4, and T0 = 0.2ms.
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Figure 3: Regret vs. time in stationary environments under SampleRate, G-ORS, and SW-G-
ORS.

Artificial traces. To generate artificial traces, we use results from [8], and more specifically,
the mapping between channel measurements (the SNR and diffSNR2, see [8]) and the packet
transmission success probabilities. For non-stationary scenarios, we artificially vary (smoothly)
the SNR and diffSNR, and then deduce the corresponding evolution of the PER at various (mode,
rate) pairs.

Test-bed traces. We also exploit real test-bed traces extracted from [8]. These traces corre-
spond to stationary environments, and to generate real non-stationary traces, we let the system
evolve between 5 stationary scenarios.

Results are presented in Fig. 6. Instantaneous throughputs are computed on a window of
size 0.5s. In stationary environments, we observe, as expected, that SW-G-ORS is able to learn
the best (mode, rate) pair very rapidly, faster than any other algorithm. In the tested scenarios,
we find that both MiRA and SampleRate were also able to find the best pair (there are scenarios
where SampleRate is not able to do it [27]). Note however that SW-G-ORS provides a better

2The maximal gap between the SNRs measured at the various antennas.
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Figure 4: Artificially generated non-stationary environment: (left) throughput at different rates;
(right) throughput (averaged over 10s) under SW-G-ORS, SampleRate, and the Oracle algo-
rithm.

throughput than MiRA and SampleRate (these algorithms do not explore (mode, rate) pairs in
an optimal way). In non-stationary scenarios, the throughput of SW-G-ORS is really close to
that of the Oracle algorithm. MiRA and SampleRate do seem to be able track the best (mode,
rate) pair, but the performance loss compared to SW-G-ORS can be quite significant.

10 Conclusion

In this paper, we investigated the fundamental limits of sampling approaches for the design of
RA adaptation algorithms in 802.11 systems. We developed G-ORS, an algorithm that provably
learns as fast as it is possible the best MIMO mode and rate for transmission. The proposed
design methodology is based on online stochastic optimisation techniques: it is versatile, and
can be easily adapted to evolving 802.11 standards. Our numerical experiments showed that
G-ORS outperforms state-of-the-art sampling-based RA algorithms. This is not surprising as
G-ORS is by design optimal. This performance superiority is due to the fact that under G-ORS,
the way sub-optimal mode and rate pairs are explored is carefully and optimally controlled.

A Proof of Theorem 5.1

We derive here the regret lower bounds for the MAB problem (PU ). To this aim, we apply the
techniques used by Graves and Lai [13] to investigate efficient adaptive decision rules in con-
trolled Markov chains. We recall here their general framework. Consider a controlled Markov
chain (Xt)t≥0 on a finite state space S with a control set U . The transition probabilities given
control u ∈ U are parametrized by θ taking values in a compact metric space Θ: the probability
to move from state x to state y given the control u and the parameter θ is p(x, y;u, θ). The
parameter θ is not known. The decision maker is provided with a finite set of stationary control
laws G = {g1, . . . , gK} where each control law gj is a mapping from S to U : when control law
gj is applied in state x, the applied control is u = gj(x). It is assumed that if the decision maker
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(a) Stationary environment
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Figure 5: 802.11g test-bed traces. Throughput evolution at different rates (left), and throughput
under SW-G-ORS, SampleRate, and the Oracle algorithm (right) in stationary (top) and non-
stationary (bottom) environment.
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(b) Test-bed traces

Figure 6: Throughput under SW-G-ORS, SampleRate, MiRA, and the Oracle algorithm in
802.11n systems: (left) stationary environments, (right) non-stationary environments; (top) arti-
ficial traces, (bottom) test-bed traces.
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always selects the same control law g the Markov chain is then irreducible with stationary distri-
bution πgθ . Now the reward obtained when applying control u in state x is denoted by r(x, u), so
that the expected reward achieved under control law g is: µθ(g) =

∑
x r(x, g(x))πgθ(x). There

is an optimal control law given θ whose expected reward is denoted µ?θ ∈ arg maxg∈G µθ(g).
Now the objective of the decision maker is to sequentially control laws so as to maximize the
expected reward up to a given time horizon T . As for MAB problems, the performance of a
decision scheme can be quantified through the notion of regret which compares the expected
reward to that obtained by always applying the optimal control law.

We now apply the above framework to our MAB problem. For (PU ), the parameter θ takes
values in T ∩ U . The Markov chain has values in S = {0, r1, . . . , rK}. The set of control laws
is G = {1, . . . ,K}. These laws are constant, in the sense that the control applied by control law
k does not depend on the state of the Markov chain, and corresponds to selecting rate rk. The
transition probabilities are given as follows: for all x, y ∈ S,

p(x, y; k, θ) = p(y; k, θ) =

{
θk, if y = rk,
1− θk, if y = 0.

Finally, the reward r(x, k) does not depend on the state and is equal to rkθk, which is also the
expected reward obtained by always using control law k.

We now fix θ ∈ T ∩ U . Define Ik(θ, λ) = I(θk, λk) for any k. Further define the set B(θ)
consisting of all bad parameters λ ∈ T ∩ U such that k? is not optimal under parameter λ, but
which are statistically indistinguishable from θ:

B(θ) = {λ ∈ T ∩ U : λk? = θk? and max
k

rkλk > rk?λk?},

B(θ) can be written as the union of sets Bk(θ), k = 1, . . . ,K defined as:

Bk(θ) = {λ ∈ B(θ) : rkλk > rk?λk?}.

Note that Bk(θ) = ∅ if rk < rk?θk? . Define P = {k : rk ≥ rk?θk?}. Observe that there exist
k0 and k1 such that k0 ≤ k? ≤ k1 and P = {k0, . . . , k1}. Further define P ′ = P \ {k?}.

By applying Theorem 1 in [13], we know that c(θ) is the minimal value of the following LP:

min
∑

k ck(rk?θk? − rkθk) (10)

s.t. infλ∈Bk(θ)

∑
l 6=k? clI

l(θ, λ) ≥ 1, ∀k ∈ P ′ (11)

ck ≥ 0, ∀k. (12)

Next we show that the constraints (11) on the ck’s are equivalent to:

min
k∈N(k?)

ckI(θk,
rk?θk?

rk
) ≥ 1. (13)

To this aim, let k ∈ P ′. Without loss of generality assume that k > k?. We prove that:

inf
λ∈Bk(θ)

∑
l 6=k?

clI
l(θ, λ) =

k∑
l=k?+1

clI(θl,
rk?θk?

rl
). (14)

This is simply due to the following two observations:
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• for all λ ∈ Bk(θ), we have λk?rk? = θk?rk? and λkrk > λk?rk? , which using the
unimodality of λ, implies that for any l ∈ {k?, . . . , k}, λlrl ≥ θk?rk? . Hence:

∑
l 6=k?

clI
l(θ, λ) ≥

k∑
l=k?+1

clI(θl,
rk?θk?

rl
).

• For ε > 0, define λε as follows: for all l ∈ {k?, . . . , k}, λl = (1 + (l − k?)ε) rk?θk?rl
, and

for all l /∈ {k?, . . . , k}, λl = θl. By construction, λε ∈ Bk(θ), and

lim
ε→0

∑
l 6=k?

clI
l(θ, λε) =

k∑
l=k?+1

clI(θl,
rk?θk?

rl
).

From (14), we deduce that constraints (11) are equivalent to (13) (indeed, only the con-
straints related to k ∈ N(k?) are really active, and for k ∈ N(k?), (11) is equivalent to
ckI(θk,

rk?θk?
rk

) ≥ 1). With the constraints (13), the optimization problem becomes straight-
forward to solve, and its solution yields:

c(θ) =
∑

k∈N(k?)

rk?θk? − rkθk)
I(θk,

rk?θk?
rk

)
.

�

B Proof of Theorem 5.2

The proof of Theorem 5.2 is similar to that of Theorem 5.1. The only difference is that in
absence of correlations and unimodality, we can only assume that the parameter θ takes values
in [0, 1]K .

In what follows, we fix θ ∈ [0, 1]K , and denote by k? the index of the optimal rate. The sets
B(θ) and Bk(θ) are now defined as:

B(θ) = {λ ∈ [0, 1]K : λk? = θk? and max
k

rkλk > rk?λk?}.

Bk(θ) = {λ ∈ B(θ) : rkλk > rk?λk?}.

By applying Theorem 1 in [13], we know that c′(θ) is the minimal value of the following opti-
mization problem:

min
∑

k ck(rk?θk? − rkθk)
s.t. infλ∈Bk(θ)

∑
l 6=k? clI

l(θ, λ) ≥ 1, ∀k 6= k?

ck ≥ 0, ∀k.

We now solve : infλ∈Bk(θ)

∑
l 6=k? clI

l(θ, λ). Remark that for k < k0, Bk(θ) = ∅, because
rk?θk? > rk for k < k0. Let k ≥ k0. For any fixed θ and all l,

I l(θ, λ) = θl log
θl
λl

+ (1− θl) log
1− θl
1− λl
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is a convex in λl and it achieves its minimum (equal to 0) at λl = θl. Hence, we can choose
λl = θl, for all l 6= k. Since λ ∈ Bk(θ), we must have λk >

rk?θk?
rk

. Hence from the convexity
of I(θk, λk) in λk, we get:

inf
λk:λk>

rk?θk?
rk

I(θk, λk) = I(θk,
rk?θk?

rk
).

We deduce that infλ∈Bk(θ)

∑
l 6=k? clI

l(θ, λ) = ckI(θk,
rk?θk?
rk

), where the infimum is reached

for λ = (θ1, . . . , θk−1,
rk?θk?
rk

, θk+1, . . . , θK). Finally we obtain that:

c′(θ) =
K∑

k=k0,k 6=k?

rk?θk? − rkθk
I(θk,

rk?θk?
rk

)
.

C Proof of Theorem 6.1

Notations. Throughout the proof, by a slight abuse of notation, we omit the floor/ceiling func-
tions when it does not create ambiguity. Consider a suboptimal rate k 6= k?. If k has only one
neighbor, we denote it by k2 and we must have θkrk < θk2rk2 since k is suboptimal. Otherwise
we denote by k1 and k2 the neighbors of k with θk1rk1 < θkrk < θk2rk2 .

Define the difference between the average reward of k and k′ : ∆k,k′ = |θk′rk′ − θkrk| > 0.
We use the notation:

tk,k′(n) =

n∑
n′=1

1{L(n) = k, k(n) = k′}.

tk,k′(n) is the number of times up time n that k′ has been selected given that k was the leader.

Proof. Let T > 0. The regret RORS(T ) of ORS algorithm up to time T is:

RORS(T ) =
∑
k 6=k?

(rk?θk? − rkθk)E[

T∑
n=1

1{k(n) = k}].

We use the following decomposition:

1{k(n) = k} = 1{L(n) = k?, k(n) = k}+ 1{L(n) 6= k?, k(n) = k}.

Now ∑
k 6=k?

(rk?θk? − rkθk)E[

T∑
n=1

1{L(n) 6= k?, k(n) = k}]

≤ rk?
∑
k 6=k?

E[

T∑
n=1

1{L(n) 6= k?, k(n) = k}]

≤ rk?
∑
k 6=k?

E[lk(T )].
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Observing that when L(n) = k?, the algorithm selects a decision k ∈ N (k?), we deduce that:

RORS(T ) ≤ rk?
∑
k 6=k?

E[lk(T )] +
∑

k∈N(k?)

(rk?θk? − rkθk)E[
T∑
n=1

1{L(n) = k?, k(n) = k}]

Then we analyze the two terms in the r.h.s. in the above inequality. The first term cor-
responds to the average number of times where k? is not the leader, while the second term
represents the accumulated regret when the leader is k?. The following result states that the first
term is O(log(log(T ))):

Theorem C.1 For k 6= k?, E[lk(T )] = O(log(log(T ))).

From the above theorem, we conclude that the leader is k? except for a negligible number of
instants (in expectation). When k? is the leader, ORS behaves as KL-R-UCB restricted to the set
N(k?) of possible decisions. Following the same analysis as in [10] (the analysis of KL-UCB),
we can show that for all ε > 0 there are constants C1 ≤ 7 , C2(ε) and β(ε) > 0 such that:

E[

T∑
n=1

1{L(n) = k?, k(n) = k}] ≤ E[

T∑
n=1

1{bk(n) ≥ bk?(n)}]

≤ (1 + ε)
log(T )

I(θk,
rk?θk?
rk

)
+ C1 log(log(T )) +

C2(ε)

T β(ε)
. (15)

Combining the above bound with Theorem C.1, we get:

RORS(T ) ≤ (1 + ε)c(θ) log(T ) +O(log(log(T ))), (16)

which concludes the proof of Theorem 6.1. �
It remains to show that Theorem C.1 holds, which is done in the next section.

D Proof of Theorem C.1

The proof of Theorem C.1 is technical, and requires a few preliminary results presented in D.1,
D.2, and D.3. The theorem itself is proved in D.4.

D.1 Concentration inequalities

We recall the Hoeffding’s inequality which is used throughout the proofs.

Lemma D.1 [Hoeffding’s inequality] Let {Zt}1≤t≤n be a sequence of independent random
variables with, for any t, Zt ∈ [at, bt] almost surely. We have, for any δ > 0:

P
[∣∣ n∑

t=1

(Zt − E[Zt])
∣∣ ≥ δ] ≤ 2 exp

(
− 2δ2∑n

t=1(bt − at)2

)
.
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We also prove a concentration inequality of independent interest for sums of bounded inde-
pendent variables with a random number of summands. Lemma D.2 is not a simple consequence
of Hoeffding’s inequality.

Lemma D.2 Let {Zt}t∈Z be a sequence of independent random variables with values in [0, B].
Define Fn the σ-algebra generated by {Zt}t≤n and the filtration F = (Fn)n∈Z. Consider
s ∈ N, n0 ∈ Z and T ≥ n0. We define Sn =

∑n
t=n0

Bt(Zt − E[Zt]), where Bt ∈ {0, 1} is a
Ft−1-measurable random variable. Further define tn =

∑n
t=n0

Bt. Define φ ∈ {n0, . . . , T+1}
a F-stopping time such that either tφ ≥ s or φ = T + 1.

Then we have that:

P[Sφ ≥ tφδ , φ ≤ T ] ≤ exp

(
−2sδ2

B2

)
.

As a consequence:

P[|Sφ| ≥ tφδ , φ ≤ T ] ≤ 2 exp

(
−2sδ2

B2

)
.

Proof. Let λ > 0, and define Gn = exp(λ(Sn − δtn))1{n ≤ T}. We have that:

P[Sφ ≥ tφδ , φ ≤ T ] = P[exp(λ(Sφ − δtφ))1{φ ≤ T} ≥ 1]

= P[Gφ ≥ 1] ≤ E[Gφ].

Next we provide an upper bound E[Gφ]. We define the following quantities:

Yt = Bt[λ(Zt − E[Zt])− λ2B2/8]

G̃n = exp

(
n∑

t=n0

Yt

)
1{n ≤ T}.

So that G can be written:

Gn = G̃n exp(−tn(λδ − λ2B2/8)).

Setting λ = 4δ/B2:
Gn = G̃n exp(−2tnδ

2/B2).

Using the fact that tφ ≥ s if φ ≤ T , we can upper bound Gφ by:

Gφ = G̃φ exp(−2tφδ
2/B2) ≤ G̃φ exp(−2sδ2/B2).

It is noted that the above inequality holds even when φ = T + 1, since GT+1 = G̃T+1 = 0.
Hence:

E[Gφ] ≤ E[G̃φ] exp(−2sδ2/B2).

We prove that (G̃n)n is a super-martingale. We have that E[G̃T+1|FT ] = 0 ≤ G̃T . For n ≤
T − 1, since Bn+1 is Fn measurable:

E[G̃n+1|Fn] = G̃n((1−Bn+1) +Bn+1E[exp(Yn+1)]).

33



As proven by Hoeffding ( [16][eq. 4.16]) since Zn+1 ∈ [0, B]:

E[exp(λ(Zn+1 − E[Zn+1]))] ≤ exp(λ2B2/8),

so E[exp(Yn+1)] ≤ 1 and (G̃n)n is indeed a supermartingale: E[G̃n+1|Fn] ≤ G̃n. Since
φ ≤ T + 1 almost surely, and (G̃n)n is a supermartingale, Doob’s optional stopping theorem
yields: E[G̃φ] ≤ E[G̃n0−1] = 1, and so

P[Sφ ≥ tφδ, φ ≤ T ] ≤ E[Gφ] ≤ E[G̃φ] exp(−2sδ2/B2) ≤ exp(−2sδ2/B2).

which concludes the proof. The second inequality is obtained by symmetry.
�

D.2 Deviation bounds

The following two lemmas are used repeatedly in the proof of Theorem C.1. They are corollar-
ies of Lemma D.2 and allow us to show that certain families of events happen only rarely (in
expectation).

Lemma D.3 states that if a set of instants Λ can be decomposed into a family of subsets
(Λ(s))s≥1 of instants (each subset has at most one instant) where k is tried sufficiently many
times (tk(n) ≥ εs, for n ∈ Λ(s)), then the expected number of instants in Λ at which the
average reward of k is badly estimated is finite.

Lemma D.3 Let k ∈ {1, . . . ,K}, and ε > 0. DefineFn the σ-algebra generated by (Xk(t))1≤t≤n,1≤k≤K .
Let Λ ⊂ N be a (random) set of instants. Assume that there exists a sequence of (random) sets
(Λ(s))s≥1 such that (i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s), tk(n) ≥ εs, (iii)
|Λ(s)| ≤ 1, and (iv) the event n ∈ Λ(s) is Fn-measurable. Then for all δ > 0:

E[
∑
n≥1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤
r2
k

εδ2
. (17)

Proof. Let T ≥ 1. For all s ≥ 1, since Λ(s) has at most one element, define φs = T + 1 if
Λ(s) ∩ {1, . . . , T} is empty and {φs} = Λ(s) otherwise. Since Λ ⊂ ∪s≥1Λ(s), we have:

T∑
n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ} ≤
∑
s≥1

1{|µ̂k(φs)− E[µ̂k(φs)]| > δ, φs ≤ T}.

Taking expectations:

E[
T∑
n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤
∑
s≥1

P[|µ̂k(φs)− E[µ̂k(φs)]| > δ, φs ≤ T ].

Since φs is a stopping time upper bounded by T + 1, and that tk(φs) ≥ εs we can apply
Lemma D.2 to obtain:

E[
T∑
n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤
∑
s≥1

2 exp

(
−2sεδ2

r2
k

)
≤

r2
k

εδ2
.
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We have used the inequality:
∑

s≥1 e
−sw ≤

∫ +∞
0 e−uwdu = 1/w. Since the above reasoning is

valid for all T , we obtain the claim (17). �
A useful corollary of Lemma D.3 is obtained by choosing δ = ∆k,k′/2, when arms k and k′

are separated by at least ∆k,k′ .

Lemma D.4 Let k, k′ ∈ {1, . . . ,K} with k 6= k′ and ε > 0. Define Fn the σ-algebra generated
by (Xk(i))1≤i≤n,1≤k≤K . Let Λ ⊂ N be a (random) set of instants. Assume that there exists
a sequence of (random) sets (Λ(s))s≥1 such that (i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all
n ∈ Λ(s), tk(n) ≥ εs and tk′(n) ≥ εs, (iii) for all s we have |Λ(s)| ≤ 1 almost surely and (iv)
for all n ∈ Λ, we have E[µ̂k(n)] ≤ E[µ̂k′(n)]−∆k,k′ (v) the event n ∈ Λ(s) is Fn-measurable.
Then:

E[
∑
n≥1

1{n ∈ Λ, µ̂k(n) > µ̂k′(n)}] ≤
4(r2

k + r2
k′)

ε∆2
k,k′

. (18)

D.3 KL divergence

We present results related to the KL divergence that will be instrumental when manipulating
indexes bk(n). Lemma D.5 gives an upper and a lower bound for the KL divergence. The lower
bound is Pinsker’s inequality. The upper bound is due to the fact that I(p, q) is convex in its
second argument.

Lemma D.5 For all p, q ∈ [0, 1]2, p ≤ q:

2(p− q)2 ≤ I(p, q) ≤ (p− q)2

q(1− q)
. (19)

and

I(p, q) ∼ (p− q)2

q(1− q)
, q → p+ (20)

Proof. The lower bound is Pinsker’s inequality. For the upper bound, we have:

∂I

∂q
(p, q) =

q − p
q(1− q)

.

Since q 7→ ∂I
∂q (p, q) is increasing, the fundamental theorem of calculus gives the announced

result:

I(p, q) ≤
∫ q

p

∂I

∂u
(p, u) du ≤ (p− q)2

q(1− q)
.

The equivalence comes from a Taylor development of q → I(p, q) at p, since:

∂I

∂q
(p, q)|q=p = 0,

∂2I

∂q2
(p, q)|q=p =

1

q(1− q)
.
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�

Lemma D.6 is straightforward from [10][Theorem 10]. It should be observed that this result
is not a direct application of Sanov’s theorem; Lemma D.6 provides sharper bounds in certain
cases.

Lemma D.6 For 1 ≤ tk(n) ≤ τ and δ > 0, if {Xk(i)}1≤i≤τ are i.i.d Bernoulli random
variables with parameter θk, we have that:

P

tk(n)I

 1

tk(n)

tk(n)∑
i=1

Xk(i), θk

 ≥ δ
 ≤ 2edδ log(τ)e exp(−δ).

D.4 Proof of Theorem C.1

Let k be the index of a suboptimal rate under. Let δ > 0, ε > 0 small enough (we provide a
more precise definition later on). To derive an upper bound of E[lk(T )], we decompose the set
of times where k is the leader into the following sets:

{n ≤ T : L(n) = k} ⊂ Aε ∪BT
ε ,

where

Aε = {n : L(n) = k, tk2(n) ≥ εlk(n)}
BT
ε = {n ≤ T : L(n) = k, tk2(n) ≤ εlk(n)}.

Hence we have:
E[lk(T )] ≤ E

[
|Aε|+ |BT

ε |
]
,

Next we provide upper bounds of E[|Aε|] and E[|BT
ε |].

Bound on E|Aε|. Let n ∈ Aε and assume that lk(n) = s. By design of the algorithm, tk(n) ≥
s/3. Also tk2(n) ≥ εlk(n) = εs. We apply Lemma D.4 with Λ(s) = {n ∈ Aε, lk(n) = s}, Λ =
∪s≥1Λ(s). Of course, for any s, |Λ(s)| ≤ 1. We have: Aε = {n ∈ Λ : µ̂k(n) ≥ µ̂k2(n)}, since
when n ∈ Aε, k is the leader. Lemma D.4 can be applied with k′ = k2. We get: E|Aε| <∞.

Bound on E|BT
ε |. We introduce the following sets:

• Cδ is the set of instants at which the average reward of the leader k is badly estimated:

Cδ = {n : L(n) = k, |µ̂k(n)− θkrk| > δ}.

• Dδ = Dδ,k ∪Dδ,k1 where Dδ,k′ = {n : L(n) = k, k(n) = k′, |µ̂k′(n) − θk′rk′ | > δ} is
the set of instants at which k is the leader, k′ is selected and the average reward of k′ is
badly estimated.

• ET = {n ≤ T : L(n) = k, bk2(n) ≤ θk2rk2}, is the set of instants at which k is the
leader, and the upper confidence index bk2(n) underestimates the average reward θk2rk2 .
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We first prove that |BT
ε | ≤ 12(|Cδ|+ |Dδ|+ |ET |) +O(1) as T grows large, and then provide

upper bounds on E|Cδ|, E|Dδ|, and E|ET |. Let n ∈ BT
ε . When k is the leader, the selected

decision is either k1, or k, or k2, and hence:

lk(n) = tk,k1(n) + tk,k(n) + tk,k2(n),

where recall that tk,k′(n) denotes the number of times up to time n when k is the leader and k′

is selected. Since n ∈ BT
ε , tk,k2(n) ≤ εlk(n), from which we deduce that:

(1− ε)lk(n) ≤ tk,k1(n) + tk,k(n).

Choose ε < 1/6. With this choice, from the previous inequality, we must have that either (a)
tk,k1(n) ≥ lk(n)/3 or (b) tk,k(n) ≥ lk(n)/2 + 1.

(a) Assume that tk,k1(n) ≥ lk(n)/3. Since tk,k1(n) is only incremented when k1 is selected
and k is the leader, and since n 7→ lk(n) is increasing, there exists a unique φ(n) < n such
that L(φ(n)) = k, k(φ(n)) = k1, tk,k1(φ(n)) = blk(n)/6c. φ(n) is indeed unique because
tk,k1(φ(n)) is incremented at time φ(n).

Next we prove by contradiction that for lk(n) ≥ l0 large enough and δ small enough, we
must have φ(n) ∈ Cδ∪Dδ∪ET . Assume that φ(n) /∈ Cδ∪Dδ∪ET . Then bk2(φ(n)) ≥ θk2rk2 ,
µ̂k1(φ(n)) ≤ θk1rk1 + δ. Using Pinsker’s inequality and the fact that tk1(φ(n)) ≥ tk,k1(φ(n)):

bk1(φ(n)) ≤ µ̂k1(φ(n)) +

√
log(lk(φ(n))) + c log(log(lk(φ(n))))

2tk1(φ(n))

≤ θk1rk1 + δ +

√
log(lk(n)) + c log(log(lk(n)))

2blk(n)/6c
.

Now select δ < (θk2rk2 − θkrk)/2 and l0 such that
√

(log(l0) + c log(log(l0)))/2bl0/6c ≤ δ.
If lk(n) ≥ l0:

bk1(φ(n)) ≤ θk1rk1 + 2δ < θk2rk2 ≤ bk2(φ(n)),

which implies that k1 cannot be selected at time φ(n) (because bk1(φ(n)) < bk2(φ(n))), a
contradiction.

(b) Assume that tk,k(n) ≥ lk(n)/2 + 1 = lk(n)/3 + lk(n)/6 + 1. There are at least
lk(n)/6+1 instants ñ such that lk(ñ)−1 is not a multiple of 3, L(ñ) = k and k(ñ) = k. By the
same reasoning as in (a) there exists a unique φ(n) < n such that L(φ(n)) = k, k(φ(n)) = k
, tk,k(φ(n)) = blk(n)/6c and (lk(φ(n)) − 1) is not a multiple of 3. So bk(φ(n)) ≥ bk2(φ(n)).
The same reasoning as that applied in (a) (replacing k1 by k) yields φ(n) ∈ Cδ ∪Dδ ∪ ET .

We define BT
ε,l0

= {n : n ∈ BT
ε , lk(n) ≥ l0}, and we have that |BT

ε | ≤ l0 + |BT
ε,l0
|. We

have defined a mapping φ from BT
ε,l0

to Cδ ∪Dδ ∪ ET . To bound the size of BT
ε,l0

, we use the
following decomposition:

{n : n ∈ BT
ε,l0 , lk(n) ≥ l0} ⊂ ∪n′∈Cδ∪Dδ∪ET {n : n ∈ BT

ε,l0 , φ(n) = n′}.
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Let us fix n′. If n ∈ BT
ε,l0

and φ(n) = n′, then blk(n)/6c ∈ {tk,k1(n′), tk,k(n
′)} and lk(n) is

incremented at time n because L(n) = k. Therefore:

|{n : n ∈ BT
ε,l0 , φ(n) = n′}| ≤ 12.

Using union bound, we obtain the desired result:

|BT
ε | ≤ l0 + |BT

ε,l0 | ≤ O(1) + 12(|Cδ|+ |Dδ|+ |ET |).

Bound on E|Cδ|. We apply Lemma D.3 with Λ(s) = {n : L(n) = k, lk(n) = s}, and Λ =
∪s≥1Λ(s). Then of course, |Λ(s)| ≤ 1 for all s. Moreover by design, tk(n) ≥ s/3 when n ∈
Λ(s), so we can choose any ε < 1/3 in Lemma D.3. Now Cδ = {n ∈ Λ : |µ̂k(n)− θkrk| > δ}.
From (17), we get E|Cδ| <∞.

Bound on E|Dδ|. Let k′ ∈ {k1, k}. Define for any s, Λ(s) = {n : L(n) = k, k(n) =
k′, tk′(n) = s}, and Λ = ∪s≥1Λ(s). We have |Λ(s)| ≤ 1, and for any n ∈ Λ(s), tk′(n) =
s ≥ εs for any ε < 1. We can now apply Lemma D.3 (where k is replaced by k′). Note that
Dδ = {n ∈ Λ : |µ̂k′(n) − θk′rk′ | > δ}, and hence (17) leads to E|Dδ,k′ | < ∞, and thus
E|Dδ| <∞.

Bound on E|ET |. We can show as in [10] (the analysis of KL-UCB) that E|ET | = O(log(log(T )))
(more precisely, this result is a simple application of Theorem 10 in [10]).

We have shown that E|BT
ε | = O(log(log(T ))), and hence E[lk(T )] = O(log(log(T ))),

which concludes the proof of Theorem C.1. �

E Proofs for non-stationary environments

To simplify the notation, we remove the superscript τ throughout the proofs, e.g tτk(n) and lτk(n)
are denoted by tk(n) and lk(n).

E.1 A lemma for sums over a sliding window

We will use Lemma E.1 repeatedly to bound the number of times some events occur over a
sliding window of size τ .

Lemma E.1 Let A ⊂ N, and τ ∈ N fixed. Define a(n) =
∑n−1

n′=n−τ 1{n′ ∈ A}. Then for all
T ∈ N and s ∈ N we have the inequality:

T∑
n=1

1{n ∈ A, a(n) ≤ s} ≤ sdT/τe. (21)

As a consequence, for all k ∈ {1, . . . ,K}, we have:

T∑
n=1

1{k(n) = k, tk(n) ≤ s} ≤ sdT/τe, (22)

T∑
n=1

1{L(n) = k, lk(n) ≤ s} ≤ sdT/τe.
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These inequalities are obtained by choosing A = {n : k(n) = k} and A = {n : L(n) = k} in
(21).

Proof. We decompose {1, . . . , T} into intervals of size τ : {1, . . . , τ} , {τ + 1, . . . , 2τ} etc. We
have:

T∑
n=1

1{n ∈ A, a(n) ≤ s} ≤
dT/τe−1∑
i=0

τ∑
n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s}. (23)

Fix i and assume that
∑τ

n=1 1{n + iτ ∈ A, a(n + iτ) ≤ s} > s. Then there must exist
n′ < τ such that n′ ∈ A and

∑n′

n=1 1{n + iτ ∈ A, a(n + iτ) ≤ s} = s. Since a(n′ + iτ) ≥∑n′

n=1 1{n + iτ ∈ A, a(n + iτ) ≤ s}, we have a(n′ + iτ) ≥ s. As n′ ∈ A, we must have
a(n′′ + iτ) ≥ (s+ 1) for all n′′ > n′ such that n′′ ∈ A. So

τ∑
n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s} =
n′∑
n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s} = s,

which is a contradiction. Hence, for all i:

τ∑
n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s} ≤ s,

and substituting in (23) gives the desired result:

T∑
n=1

1{n ∈ A, a(n) ≤ s} ≤
dT/τe−1∑
i=0

s = sdT/τe.

�

E.2 Deviation bound

We prove a deviation bound similar to that of Lemma D.3 for non-stationary environments.

Lemma E.2 Let k ∈ {1, . . . ,K}, n0 ∈ N and ε > 0. Let Λ ⊂ N be a (random) set of instants.
Assume that there exists a sequence of (random) sets (Λ(s))s≥1 such that (i) Λ ⊂ ∪s≥1Λ(s), (ii)
for all s ≥ 1 and all n ∈ Λ(s), tk(n) ≥ εs, and (iii) for all s ≥ 1 |Λ(s) ∩ [n0, n0 + τ ]| ≤ 1.
Then for all δ > 0:

E[

n0+τ∑
n=n0

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤
log(τ)r2

k

2εδ2
+ 2.

Proof. Fix s0 ≥ 1. We use the following decomposition, depending on the value of s with
respect to s0:

{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ} ⊂ A ∪B,
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where

A = {n0, . . . , n0 + τ} ∩ (∪1≤s≤s0Λ(s)),

B = {n0, . . . , n0 + τ} ∩ {n ∈ ∪s≥s0Λ(s) : |µ̂k(n)− E[µ̂k(n)]| > δ}.

Since for all s, |Λ(s) ∩ {n0, . . . , n0 + τ}| ≤ 1, we have |A| ≤ s0. The expected size of B is
upper bounded by:

E[|B|] ≤
n0+τ∑
n=n0

P[n ∈ ∪s≥s0Λ(s), |µ̂k(n)− E[µ̂k(n)]| > δ]

≤
n0+τ∑
n=n0

P[|µ̂k(n)− E[µ̂k(n)]| > δ, tk(n) ≥ εs0].

For a given n, we apply Lemma D.2 with n − τ in place of n0, and φ = n if tk(n) ≥ εs0 and
φ = T + 1 otherwise. It is noted that φ is indeed a stopping time. We get:

P[|µ̂k(n)− E[µ̂k(n)]| > δ, tk(n) ≥ εs0] ≤ 2 exp

(
−2s0εδ

2

r2
k

)
.

Therefore, setting s0 = r2
k log(τ)/(2εδ2),

E[|B|] ≤ 2τ exp

(
−2s0εδ

2

r2
k

)
= 2.

Finally we obtain the announced result:

E[

n0+τ∑
n=n0

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤
log(τ)r2

k

2εδ2
+ 2. (24)

�

Lemma E.3 Consider k, k′ ∈ {1, . . . ,K}, n0 ∈ N and ε > 0. Let Λ ⊂ N be a (random)
set of instants. Assume that there exists a sequence of (random) sets (Λ(s))s≥1 such that (i)
Λ ⊂ ∪s≥1Λ(s), and (ii) for all s ≥ 1 and all n ∈ Λ(s), tk(n) ≥ εs, tk′(n) ≥ εs and (iii) for all
s ≥ 1 |Λ(s) ∩ [n0, n0 + τ ]| ≤ 1 and (iv) for all n ∈ Λ, we have E[µ̂k(n)] ≤ E[µ̂k′(n)]−∆k,k′ .

Then for all δ > 0:

E[

n0+τ∑
n=n0

1{n ∈ Λ, µ̂k(n) > µ̂k′(n)}] ≤
2 log(τ)(r2

k + r2
k′)

ε∆2
k,k′

+ 4.
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E.3 Proof of Theorem 7.1

Recall that due to the changing environment and the use of a sliding window, the empirical
reward is a biased estimator of the average reward, and that its bias is upper bounded by στrK .

To ease the regret analysis, we first provide simple bounds on the distribution of the empirical
reward distribution. Unlike in the stationary case, the empirical reward µ̂k(n) is not a sum
of tk(n) i.i.d. Bernoulli variables. In order to work with i.i.d. random variables only, we
introduce µ̂

k
(n) and µ̂k(n) which are sums of tk(n) i.i.d. Bernoulli variables, and such that

µ̂
k
(n) ≤ µ̂k(n) ≤ µ̂k(n) in distribution. This means that for all µ ≥ 0, P[µ̂

k
(n) ≥ µ] ≤

P[µ̂k(n) ≥ µ] ≤ P[µ̂k(n) ≥ µ]. By definition:

µ̂k(n) =
1

tk(n)

n−1∑
n′=n−τ

rkXk(n
′)1{k(n′) = k},

where for n − τ ≤ n′ ≤ n − 1, Xk(n
′) is a Bernoulli random variable whose mean lies in

[θk(n)− τσ, θk(n) + τσ]. Hence if we define

µ̂
k
(n) =

1

tk(n)

n∑
n′=n−τ

rkXk(n
′)1{k(n′) = k},

µ̂k(n) =
1

tk(n)

n∑
n′=n−τ

rkXk(n
′)1{k(n′) = k},

where Xk(n
′) and Xk(n

′) are Bernoulli random variables with means θk(n)− τσ and θk(n) +
τσ, respectively, then of course, µ̂

k
(n) ≤ µ̂k(n) ≤ µ̂k(n) in distribution.

Now the regret under π=SW-ORS is given by:

Rπ(T ) =
T∑
n=1

K∑
k=1

(rk?(n)θk?(n)− rkθk(n))P[k(n) = k].

Let ε > 0 and Kτ = (1 + ε) log(τ)+c log(log(τ))
Imin

. We introduce the following sets of events:

(i) A = ∪Kk=1Ak = ∪Kk=1(Ak,1 ∪Ak,2), where

Ak,1 = {1 ≤ n ≤ T : k(n) = k, |rkθk(n)− rk?(n)θk?(n)| < 2rKτσ},

Ak,2 = {n /∈ Ak,1 : k(n) = k, I

(
θk(n) + τσ,

rk?(n)

rk
(θk?(n)− τσ)

)
< Imin}.

Ak is the set of times at which k is chosen, and k is ”close” to the optimal decision. Two
decisions are close if either the difference between their average rewards is smaller than the
error caused by the changing environment 2rKτσ, or their KL-divergence number is smaller
than Imin, taking into account the error caused by the changing environment. Note that, by
definition, |A| ≤ G(T, Imin, τ, σ).
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(ii) B = {1 ≤ n ≤ T : bk?(n) ≤ rk?(n)(θk?(n)− τσ)}. B is the set of times at which the index
bk?(n) underestimates the average reward of the optimal decision (with an error greater than the
bias rk?(n)τσ).

(iii) C = ∪Kk=1Ck , Ck = {1 ≤ n ≤ T : k(n) = k, tk(n) ≤ Kτ}. Ck is the set of times at
which k is selected and it has been tried less than Kτ times.

(iv) D = ∪Kk=1Dk, Dk = {1 ≤ n ≤ T : k(n) = k, n /∈ (A ∪ B ∪ C)}. Dk is the set of times
where (a) k is chosen, (b) k has been tried more than Kτ times, (c) k is not close to the optimal
decision, and (d) the average reward of the optimal decision is not underestimated.

We will show that:

n ∈ Ak ⇒ rk?(n)θk?(n)− rkθk(n) ≤ rK

(√
Imin

2
+ 2τσ

)
, (25)

and the following inequalities

E[|B|] ≤ O(T/τ), E[|Ck|] ≤ KτdT/τe, E[|Dk]] ≤
T

(τ log(τ)c)g0ε2
.

We deduce that:

Rπ(T ) ≤ rK

(√
Imin

2
+ 2τσ

)
G(T, Imin, τ, σ) +O(T/τ) + rKKKτbT/τc

+
KT

(τ log(τ)c)g0ε2
,

which proves Theorem 7.1.

Proof of (25). Let n ∈ Ak. If n ∈ Ak,1, by definition we have |rk?(n)θk?(n) − rkθk(n)| <
2rKτσ. If n ∈ Ak,2, then by definition n /∈ Ak,1 so that: θk(n) + τσ < rk?(n)(θk?(n)− τσ)/rk.
Furthermore:

I(θk(n) + τσ, rk?(n)(θk?(n) − τσ)/rk) < Imin.

Using Pinsker’s inequality (Lemma D.5), we get:

Imin ≥ 2

(
rk?(n)

rk
(θk?(n)− τσ)− θk(n) + τσ

)2

,

so that:

|rk?(n)θk?(n)− rkθk(n)| ≤ rK

(√
Imin

2
+ 2τσ

)
,

which completes the proof of (25).

Bound on E[|B|]. Let n ∈ B. Note that µ̂
k?

(n) ≤ µ̂k?(n) ≤ bk?(n) in distribution (the second
inequality actually holds almost surely). Since bk?(n) ≤ rk?(θk?(n) − στ), we deduce that:
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µ̂
k?

(n) ≤ rk?(θk?(n)− στ). Now we have:

P[n ∈ B] = P[bk?(n) ≤ rk?(n)(θk?(n)− στ)]

= P
[
tk?(n)I

(
µ̂k?(n)

rk?
, θk?(n)− στ

)
≥ log(τ) + c log(log(τ))

]
(a)

≤ P
[
tk?(n)I

(
µ̂
k?

(n)

rk?
, θk?(n)− στ

)
≥ log(τ) + c log(log(τ))

]
(b)

≤ 2e

τ(log(τ))c−2
,

where (a) is due to the fact that µ̂
k?

(n) ≤ µ̂k?(n) in distribution, and (b) is obtained applying
Lemma D.6. Hence: E[|B|] ≤ O(T/τ).

Bound on E[|Ck|]. Using Lemma E.1, we get |Ck| ≤ KτdT/τe, and hence |C| ≤ KKτbT/τc.

Bound on E[|Dk|]. We will prove that n ∈ Dk implies that µ̂k(n) deviates from its expectation
by at least rkf(ε, Imin) > 0 so that:

P[n ∈ Dk] ≤ P
[
µ̂k(n)− E[µ̂k(n)] > rkf(ε, Imin)

]
.

Let n ∈ Dk. Since k(n) = k and bk?(n) ≥ rk?(n)(θk?(n) − στ), we have bk(n) ≥
rk?(n)(θk?(n)− στ). We decompose Dk as follows:

Dk = Dk,1 ∪Dk,2

Dk,1 = {n ∈ Dk : µ̂k(n) ≥ rk?(n)(θk?(n)− στ)}
Dk,2 = {n ∈ Dk : µ̂k(n) ≤ rk?(n)(θk?(n)− στ)}

If n ∈ Dk,1, µ̂k(n) − E[µ̂k(n)] ≥ rk?(n)(θk?(n) − στ) − rk(θk(n) + στ) > 0 so that µ̂k(n)
indeed deviates from its expectation. Now let n ∈ Dk,2. We have:

P[n ∈ Dk,2] ≤ P[bk(n) ≥ rk?(n)θk?(n)− στ, n ∈ Dk,2]

= P
[
tk(n)I

(
µ̂k(n)

rk
,
rk?(n)

rk
(θk?(n)− στ)

)
≤ log(τ) + c log(log(τ)), n ∈ Dk,2

]
(a)

≤ P
[
KτI

(
µ̂k(n)

rk
,
rk?(n)

rk
(θk?(n)− στ)

)
≤ log(τ) + c log(log(τ)), tk(n) ≥ Kτ

]
= P

[
I

(
µ̂k(n)

rk
,
rk?(n)

rk
(θk?(n)− στ)

)
≤ Imin

1 + ε
, tk(n) ≥ Kτ

]
,

where in (a), we used the facts that: µ̂k(n) ≤ rk?(n)(θk?(n) − στ), µ̂k(n) ≥ µ̂k(n) in distri-
bution, and tk(n) ≥ Kτ (n /∈ C). By continuity and monotonicity of the KL divergence, there
exists a unique positive function f such that:

I

(
θk(n) + στ + f(ε, Imin),

rk?(n)

rk
(θk?(n)− στ)

)
=
Imin
1 + ε

,

θk(n) + στ + f(ε, Imin) ≤
rk?(n)

rk
(θk?(n)− στ).
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We are interested in the asymptotic behavior of f when ε , Imin both tend to 0 . Define θ′ ,
θ′′ and θ0 such that

θk(n) + στ ≤ θ′ ≤ θ′′ ≤ θ0 =
rk?(n)

rk
(θk?(n)− στ).

and
I(θ′, θ0) = Imin , I(θ′′, θ0) =

Imin

1 + ε
.

Using the equivalent (20) given in Lemma D.5, there exists a function a such that:

(θ0 − θ′)2

θ0(1− θ0)
(1 + a(θ0 − θ′)) = Imin,

(θ0 − θ′′)2

θ0(1− θ0)
(1 + a(θ0 − θ′′)) =

Imin

1 + ε
.

with a(δ) → 0 when δ → 0+. It is noted that 0 ≤ θ0 − θ′′ ≤ θ0 − θ′ = o(1) when Imin → 0+

by continuity of the KL divergence. Hence:

θ′′ − θ′ =
( ε

2
+ o(1)

)√
θ0(1− θ0)Imin.

Using the inequality

f(ε, Imin) = θ′′ − (θk(n) + στ) ≥ θ′′ − θ′ = ε

2

√
θ0(1− θ0)Imin,

we have proved that:

2f(ε, Imin)2 ≥ ε2g0Imin + o(ε2)

with

g0 =
1

2
min

1≤n≤T
min

k 6=k?(n),
rk?(n)(θk? (n)−στ)<rk

rk?(n)

rk
(θk?(n)− στ)

[
1−

rk?(n)

rk
(θk?(n)− στ)

]
.

Therefore, since E[µ̂k(n)] ≤ rk(θk(n) + στ), as claimed, we have

P[n ∈ Dk] ≤ P
[
µ̂k(n)− E[µ̂k(n)] ≥ rkf(ε, Imin) , tk(n) ≥ Kτ

]
.

We now apply Lemma D.2 with n − τ in place of n0, Kτ in place of s and φ = n if
tk(n) ≥ Kτ and φ = T + 1 otherwise. We obtain, for all n:

P[n ∈ Dk] ≤ P
[
µ̂k(n)− E[µ̂k(n)] ≥ rkf(ε, Imin), tk(n) ≥ Kτ

]
≤ exp

(
−2Kτf(ε, Imin)2

)
≤ 1

(τ log(τ)c)g0ε2
,

and we get the desired bound by summing over n:

E[|Dk|] =

T∑
n=1

P[n ∈ Dk] ≤
T

(τ log(τ)c)g0ε2
.
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E.4 Proof of theorem 7.4

We first introduce some notations. For any set A of instants, we use the notation: A[n0, n] =
A ∩ {n0, . . . , n0 + τ}. Let n0 ≤ n. We define tk(n0, n) the number of times k has been
chosen during interval {n0, . . . , n0 + τ}, lk(n0, n) the number of times k has been the leader,
and tk,k′(n0, n) the number of times k′ has been chosen while k was the leader:

tk(n0, n) =

n∑
n′=n0

1{k(n′) = k},

lk(n0, n) =
n∑

n′=n0

1{L(n′) = k},

tk,k′(n0, n) =
n∑

n′=n0

1{L(n′) = k, k(n′) = k′}.

Note that lk(n − τ, n) = lk(n), tk(n − τ, n) = tk(n) and tk,k′(n − τ, n) = tk,k′(n). Given
∆ > 0, we define the set of instants at which the average reward of k is separated from the
average reward of its neighbours by at least ∆:

Nk(∆) = ∩k′∈N(k){n : |rkθk(n)− rk′θk′(n)| > ∆}.

We further define the amount of time that k is suboptimal, k is the leader, and it is well separated
from its neighbors:

Lk(∆) = {n : L(n) = k 6= k?(n), n ∈ Nk(∆)}.

By definition of the regret under π =SW-ORS:

Rπ(T ) =
T∑
n=1

∑
k 6=k?(n)

(θk?(n)rk? − θk(n)rk)P[k(n) = k].

To bound the regret, as in the stationary case, we split the regret into two components: the regret
accumulated when the leader is the optimal arm, and the regret generated when the leader is not
the optimal arm. The regret when the leader is suboptimal satisfies:

T∑
n=1

∑
k 6=k?(n)

(θk?(n)rk? − θkrk)1{k(n) = k, L(n) 6= k?(n)}

≤ rK
T∑
n=1

1{L(n) 6= k?(n)} ≤ rK
T∑
n=1

∑
k 6=k?(n)

1{L(n) = k 6= k?(n)}

≤ rK
T∑
n=1

∑
k 6=k?(n)

1{n ∈ Lk(∆)}+ 1{∃k′ ∈ N(k) : |θk(n)rk − θk′(n)rk′ | ≤ ∆}

≤ rK

(
K∑
k=1

|Lk(∆)[0, T ]|+H(∆, T )

)
.
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Therefore the regret satisfies:

Rπ(T ) ≤ rK

(
H(∆, T ) +

K∑
k=1

E[|Lk(∆)[0, T ]|]

)

+
T∑
n=1

∑
k∈N(k?(n))

(θk?(n)rk? − θk(n)rk)P[k(n) = k]. (26)

The second term of the r.h.s in (26) is the regret of SW-ORS when k?(n) is the leader. This term
can be analyzed using the same techniques as those used for the analysis of SW-KL-R-UCB and
is upper bounded by the regret of SW-KL-R-UCB. It remains to bound the first term of the r.h.s
in (26).

Theorem E.4 Consider ∆ > 4rKτσ. Then for all k:

E[|Lk(∆)[0, T ]|] ≤ C1 ×
T log(τ)

τ(∆− 4rKτσ)2
, (27)

where C1 > 0 does not depend on T , τ , σ and ∆.

Substituting (27) in (26), we obtain the announced result.
�

E.5 Proof of theorem E.4

It remains to prove theorem E.4. Define δ = (∆ − 4rKτσ)/2. We can decompose {1, . . . , T}
into at most dT/τe intervals of size τ . Therefore, to prove the theorem, it is sufficient to prove
that for all n0 ∈ Lk(∆) we have:

E[|Lk(∆)[n0, n0 + τ ]|] ≤ O
(

log(τ)

δ2

)
.

In the remaining of the proof, we consider an interval {n0, . . . , n0 + τ}, with n0 ∈ Lk(∆)
fixed. It is noted that the best and worst neighbour of k change with time. We define k1(n)
and k2(n) to be the worst and the best neighbor of k respectively at time n. From the Lipshitz
assumption and the fact that ∆ > 4rKτσ, we have that for all n ∈ {n0, . . . , n0 + τ}, k1(n) =
k1(n0) and k1(n) = k1(n0). Indeed for all n ∈ {n0, . . . , n0 + τ}:

θk2(n0)(n)rk2(n0) − θk(n)rk ≥ θk2(n0)(n0)rk2(n0) − θk(n0)rk − 2(n− n0)σrK

≥ ∆− 2rKτσ ≥ 2rKτσ > 0.

We denote k1 = k1(n0) = k1(n) and k2 = k2(n0) = k2(n) when this does not create ambiguity.
We will use the fact that, for all n ∈ {n0, . . . , n0 + τ}:

E[µ̂k2(n)]− E[µ̂k(n)] ≥ rk2θk2(n)− rkθk(n)− 2rKτσ,

≥ rk2θk2(n0)− rkθk(n0)− 4rKτσ,

≥ ∆− 4rKτσ = 2δ > 0.

We decompose Lk(∆)[n0, n0 + τ ] = An0
ε ∪Bn0

ε , with:
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An0
ε = {n ∈ Lk(∆)[n0, n0 + τ ], tk2(n) ≥ εlk(n0, n)} the set of times where k is the

leader, k is not the optimal arm, and its best neighbor k2 has been tried sufficiently many
times during interval {n0, . . . , n0 + τ},

Bn0
ε = {n ∈ Lk(∆)[n0, n0 + τ ], tk2(n) ≤ εlk(n0, n)} the set of times where k is the

leader, k is not the optimal arm, and its best neighbor k2 has been little tried during
interval {n0, . . . , n0 + τ}.

Bound on E[An0
ε ]. Let n ∈ An0

ε . We recall that E[µ̂k2(n)] − E[µ̂k(n)] ≥ 2δ, so that the reward
of k or k2 must be badly estimated at time n:

P[n ∈ An0
ε ] ≤ P[|µ̂k(n)− E[µ̂k(n)]| > δ] + P[|µ̂k2(n)− E[µ̂k2(n)]| > δ].

We apply lemma E.3, with k′ = k2, ∆k,k′ = 2δ, Λ(s) = {n ∈ An0
ε , lk(n0, n) = s}, tk2(n) ≥

εlk(n0, n) = εs. By design of SW-ORS : tk(n) ≥ lk(n0, n)/3 = s/3. Using the fact that
|Λ(s)| ≤ 1 for all s, we have that:

E[An0
ε ] ≤ O

(
log(τ)

εδ2

)
.

Bound on E[Bn0
ε ]. Define l0 such that√

log(l0) + c log(log(l0))

2bl0/6c
≤ δ.

In particular we can choose l0 = 6(log(1/δ)/δ2). Indeed, with such a choice we have that√
log(l0) + c log(log(l0))

2bl0/6c
∼ δ/2 , δ → 0+.

Let ε < 1/6, and define the following sets:

Cn0
δ is the set of instants at which the average reward of the leader k is badly estimated:

Cn0
δ = {n ∈ {n0, . . . , n0 + τ} : L(n) = k 6= k?(n), |µ̂k(n)− E[µ̂k(n)]| > δ};

Dn0
δ = Dn0

δ,k ∪ D
n0
δ,k1

where Dn0
δ,k′ = {n : L(n) = k 6= k?(n), k(n) = k, |µ̂k′(n) −

E[µ̂k′(n)]| > δ}. Dn0
δ is the set of instants at which k is the leader, k′ is selected and the

average reward of k′ is badly estimated.

En0 = {n ≤ T : L(n) = k 6= k?(n), bk2(n) ≤ E[µ̂k2(n)]} is the set of instants at which
k is the leader, and the upper confidence index bk2(n) underestimates the average reward
E[µ̂k2(n)].
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Let n ∈ Bn0
ε . Write s = lk(n0, n), and we assume that s ≥ l0. Since tk2(n0, n) ≤

εlk(n0, n) and the fact that lk(n0, n) = tk1(n0, n) + tk(n0, n) + tk2(n0, n), we must have (a)
tk1(n0, n) ≥ s/3 or (b) tk1(n0, n) ≥ s/2 + 1. Since tk,k(n) and tk,k2(n) are incremented
only at times when k(n) = k and k(n) = k2 respectively, there must exist a unique index
φ(n) ∈ {n0, . . . , n0 + τ} such that either: (a) tk,k1(φ(n)) = bs/6c and k(φ(n)) = k1; or (b)
tk,k2(φ(n)) = bs/2c and k(n) = k and lk(φ(n)) is not a multiple of 3. In both cases, as in the
proof of theorem C.1, we must have that φ(n) ∈ Cn0

δ ∪D
n0
δ ∪ E

n0 .
We now upper bound the number of instants n which are associated to the same φ(n). Let

n, n′ ∈ Bn0
ε and s = lk(n0, n). We see that φ(n′) = φ(n) implies either blk(n0, n

′)/6c =
blk(n0, n)/6c or blk(n0, n

′)/2c = blk(n0, n)/2c. Furthermore, n′ 7→ lk(n0, n
′) is incremented

at time n′. Hence for all n ∈ Bn0
ε :

|n′ ∈ Bn0
ε , φ(n′) = φ(n)| ≤ 12.

We have established that:

|Bn0
ε | ≤ l0 + 12(|Cn0

δ |+ |D
n0
δ |+ |E

n0 |)
= 6 log(1/δ)/δ2 + 12(|Cn0

δ |+ |D
n0
δ |+ |E

n0 |).

We complete the proof by providing bounds of the expected sizes of sets Cn0
δ , Dn0

δ and En0 .

Bound of E[Cn0
δ ]: Using lemma E.2 with Λ(s) = {n ∈ Cn0

δ , lk(n0, n) = s}, and by design of
SW-ORS: tk(n) ≥ lk(n0, n)/3 = s/3. Since |Λ(s)| ≤ 1 for all s, we have that:

E[|Cn0
δ |] ≤ O

(
log(τ)

δ2

)
.

Bound of E[Dn0
δ ]: Using lemma E.2 with Λ(s) = {n ∈ Dn0

δ , tk,k′(n0, n) = s}, and |Λ(s)| ≤ 1

for all s, we have that:

E[|Dn0
δ,k′ |] ≤ O

(
log(τ)

δ2

)
.

Bound of E[En0 ]: By lemma D.6 since lk(n) ≤ τ :

P[n ∈ En0 ] ≤ 2edlog(τ)(log(τ) + c log(log(τ)))e exp(− log(τ) + c log(log(τ)))

≤ 4e

τ log(τ)c−2
.

Thus
E[|En0 |] ≤ 4e

(log τ)c−2
.

Putting the various bounds all together, we have:

E[|Lk(∆)[n0, n0 + τ ]|] ≤ O
(

log(τ)

δ2

)
,

for all n0 ∈ Lk(∆), uniformly in δ, which concludes the proof. �
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[10] A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits and
beyond. In Proceedings of Conference On Learning Theory (COLT), 2011.

[11] A. Garivier and E. Moulines. On upper-confidence bound policies for non-stationary bandit
problems, 2008. ArXiv e-print. http://arxiv.org/abs/0805.3415.

[12] A. Garivier and E. Moulines. On upper-confidence bound policies for switching bandit
problems. In Proceedings of the 22nd international conference on Algorithmic learning
theory, ALT’11, pages 174–188, 2011.

[13] T. L. Graves and T. L. Lai. Asymptotically efficient adaptive choice of control laws in
controlled markov chains. SIAM J. Control and Optimization, 35(3):715–743, 1997.

[14] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 packet delivery from
wireless channel measurements. SIGCOMM Comput. Commun. Rev., 40(4):159–170, Aug.
2010.

49



[15] I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips. Hybrid rate control for ieee
802.11. In Proceedings of the ACM MobiWac, 2004.

[16] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):pp. 13–30, 1963.

[17] G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive mac protocol for multi-hop wireless
networks. In Proceedings of ACM Mobicom, 2001.

[18] G. Judd, X. Wang, and P. Steenkiste. Efficient channel-aware rate adaptation in dynamic
environments. In Proceedings of ACM MobiSys, 2008.

[19] A. Kamerman and L. Monteban. Wavelan-ii: a high-performance wireless lan for the
unlicensed band. Bell Labs technical journal, 2(3):118–133, 1997.

[20] D. Kim, B. Jung, H. Lee, D. Sung, and H. Yoon. Optimal modulation and coding scheme
selection in cellular networks with hybrid-arq error control. Wireless Communications,
IEEE Transactions on, 7(12):5195–5201, 2008.

[21] J. Kim, S. Kim, S. Choi, and D. Qiao. CARA: Collision-aware rate adaptation for IEEE
802.11 WLANs. In Proceedings of IEEE Infocom, 2006.
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