
A Model for Comparing Rate Adaptation Algorithms

Candy Yiu
Department of Computer Science

Portland State University
Portland, OR 97207

candy@cs.pdx.edu

Suresh Singh
Department of Computer Science

Portland State University
Portland, OR 97207

singh@cs.pdx.edu

ABSTRACT
Rate adaptation algorithms are critical to improving the
throughput performance of WLANs. While previous stud-
ies have examined the performance of different algorithms in
some detail using numerous measurements and simulations,
there is a lack of a theory that would allow comparison across
different channel conditions. This paper is a first step to-
wards developing an abstract model that can allow us to (a)
estimate or predict the performance of different algorithms
and (b) allow us to make general statements about which
algorithms would perform better, under what channel con-
ditions. Our work is empirical in nature and uses three rate
algorithms available in the Madwifi driver to examine the
problem. We identify two key metrics, the speed of adap-
tation and the quality of adaptation, that taken together
nicely encapsulate an algorithm’s performance. We then
show how these metrics predict the throughput behavior of
the three rate algorithms considered with an accuracy of over
70%. Furthermore, we show that these metrics can be used
to make very general statements comparing the behavior of
any pair of algorithms over a wide range of channels.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms

Keywords
802.11, Madwifi, Rate adaptation, Wireless protocol

1. INTRODUCTION
The problem of rate adaptation in 802.11 is fundamen-

tally important to maximizing the throughput of WLANs.
The main challenge is to estimate the channel dynamically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’09, September 21, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-740-0/09/09 ...$10.00.

and then adapt the transmission rate appropriately. Unfor-
tunately, the problem of channel estimation is hard because
the sender does not know the instantaneous channel con-
dition at the receiver when it transmits a packet. Since
no specific support is provided in 802.11 for providing in-
stantaneous channel feedback, indirect approaches for chan-
nel estimation have been studied. One common technique
uses MAC layer packet loss/retry counts at the transmitter.
Since MAC layer retransmissions occur within tens of mi-
croseconds, the channel state is assumed to be unchanged.
Then, depending on the pattern of loss, retries, and suc-
cesses, different algorithms adapt rates differently.

Over the past decade, several rate adaptation algorithms
have been proposed and evaluated either via simulations or
in real implementations. Generally, the comparisons with
other algorithms are a combination of qualitative analysis
and measurements targeted at illustrating some behaviors.
While one can generally infer the relative merits of one al-
gorithm over another using these techniques, there does not
exist any quantitative metric that can summarize the essen-
tial quality of these algorithms. In this paper we identify a
pair of metrics that may be used to summarize the perfor-
mance of any rate adaptation algorithm. We show how these
metrics may be used to predict or estimate the throughput
of an algorithm for any given channel. Finally we show how
these metrics, considered together, may be used to state
with confidence if one algorithm is better than another, and
under what conditions.

Our work starts out with developing an answer to the
simple question: “what does it mean for an algorithm to
adapt?” As our analysis will show, there are two metrics
that jointly answer this question: the speed at which an al-
gorithm changes its rate for given channel conditions, and
the quality of the adaptation as measured by the closeness
to an optimal rate for those channel conditions. We measure
these two metrics for three rate adaptation algorithms avail-
able in the Madwifi driver – SampleRate, Onoe, and AMRR.
We then rigorously evaluate the efficacy of these metrics in
terms of estimating how these algorithms perform for differ-
ent channel conditions. Finally, we discuss how these metrics
may be used to compare different algorithms to a first order
approximation.

The remainder of the paper is organized as follows. In
the next section we summarize related work on rate adap-
tation algorithms. Section 3 describes the two metrics we
develop to quantify the performance of rate adaptation al-
gorithms. These metrics are applied to various traces in
order to evaluate their quality in section 4. The correctness

of our approach is discussed in section 5. Section 4 develops
a methodology to compare rate algorithms using the devel-
oped metrics. We summarize our results and directions for
future work in section 7.

2. RELATED WORK
Several rate adaptation algorithms have been developed

over the past decade or so. Most of them rely on chan-
nel feedback inferred from MAC layer retransmission/loss
counts to adjust transmit rates. Thus, ARF [5] starts a
connection at the highest bit rate and then drops down a
rate if a packet is never ACK’ed. If ten successful transmis-
sions occur (with no retransmissions), it goes up a rate. As
noted in [7] ARF suffers from too many retransmissions in
slowly changing channels. A more adaptive algorithm called
AARF is proposed in [7] where the adaptation intervals are
adjusted dynamically. The Madwifi [1] driver implements
an algorithm called Onoe which is run every second. The
rate adaptation is again based on success and retry counts
though the adjustment is somewhat slower than AARF. An-
other algorithm implemented in Madwifi is called AMRR.
This algorithm changes the estimation period using a sim-
ple binary exponential backoff algorithm. SampleRate [2]
uses a more sophisticated method to determine the rates to
use. It computes the average bit rate for each transmission
rate (i.e., for a given transmission rate packets may need
to be retransmitted therefore, the average bit rate for this
transmission rate is calculated by normalizing over the retry
time). SampleRate periodically probes the channel by send-
ing a packet at a rate that has a higher average bit rate.
Rates are changed based on packet loss/success counts. The
RRAA algorithm [8] also uses loss data to infer short-term
channel conditions. In addition, however, the algorithm uses
a RTS/CTS filter to prevent collision losses from triggering
a rate change.

A more reliable measure of channel conditions is rssi (Re-
ceived Signal Strength Indicator) that is available at the re-
ceiver. If this value can be returned to the sender, then the
sender can make precise rate adjustments to met a target
packet error rate (for maximizing throughput). Unfortu-
nately, there is no way within the standards to return this
value to the sender. One approach explored in [9] is for the
sender to retrieve the rssi value of the MAC ACK returned
by the receiver. The assumption is that the channel is re-
ciprocal and thus the sender rssi value reflects the receiver’s
rssi value. [4] also uses signal strength information to aid the
transmitter in making its decision. As in [9], the information
is obtained by assuming the reciprocity and stationarity of
indoor channels. The benefit of both of these approaches is
they do not need to use either probe packets or RTS/CTS
packets. A hybrid approach is explored in [6] where the re-
ceiver returns the value of Clear Channel Assessment (CCA)
to the transmitter via RTS/CTS packets. Furthermore, the
RTS packets are used as probes to determine the state of
the channel.

2.1 Discussion
In studying the various algorithms developed previously,

one thing becomes clear – to a certain extent the compar-
isons reported tend to be a mix of measurement in specific
channels and qualitative discussions of what makes one algo-
rithm better than another. In this paper we seek to develop
metrics that will allow a straightforward comparison of al-

gorithms without resorting to a detailed study of specific
behaviors of the algorithms under different channel condi-
tions. An added benefit of such metrics is the ability to
predict the performance of an algorithm under various chan-
nel conditions.

3. CHARACTERIZING THE ADAPTIVITY
OF RATE ALGORITHMS

Figure 1 shows an example of how SampleRate adapts
to a mobile channel. As the rssi of the channel varies, the
transmission rate used also changes, with low rates used
for poor channel conditions and high rates used for a good
channel. The rapidity with which the algorithm changes
its rate to match channel conditions directly impacts the
achievable throughput. Therefore, throughput has been the
metric of choice for characterizing algorithm performance
under a variety of channel conditions. We however believe
that throughput is a second order metric that hides impor-
tant information about algorithm behavior. We assert that
understanding how well an algorithm adapts requires an ex-
amination of the speed of adaptation as well as the quality
of adaptation. With these two canonical metrics in hand, it
is then possible to infer the throughput behavior of an algo-
rithm and indeed to make general statements about relative
performance of different algorithms under a range of channel
conditions.

In order to develop an understanding of rate adaptation,
we first make the key observation that rate algorithms switch
between a small set of discrete rates even though the rssi may
vary over a larger set of values. Define a rate to be optimal
for a rssi value if the expected throughput using that rate is
maximum over all rates. In Madwifi we can compute the ex-
pected throughput for a given rate by setting the transmit
rate to a fixed value using iwconfig and running a program
like iperf. If the channel remains stable, the same experi-
ment can be run for different rates and we can easily find
the optimal rate. Any rssi graph can now be converted to a
optimal rate graph that makes it easier to understand how
a rate adaptation algorithm adapts. The important thing to
note here is that the optimal rate remains constant over rela-
tively long periods even though the rssi changes over a much
shorter time scale. It is because of this stability of the opti-
mal rate that rate algorithms can adapt. This observation is
also made in [2] where they note that rate adaptation on a
time scale of 10 seconds is reasonable in many environments.
Of course, for a mobile channel, rate adaptation should hap-
pen on a much shorter time scale. Indeed, this is where the
behavior of several rate adaptation algorithms tends to be
sub-optimal and, in some cases, even random [3].

Let us now return to the question of determining how well
a rate algorithm adapts. In order to study this question,
we need to identify the event(s) where the channel changes
sufficiently to force a rate change. Indeed, the best possible
scenario is one where the rate algorithm has adapted to a
stable channel (stable in the sense that the optimal rate is
constant) and then the channel changes so that a different
rate is optimal. If the channel stays in this new state for a
long enough length of time, we can measure the time taken
for the rate to change. The shorter this time, the more
adaptive an algorithm. A second metric that is evident in
our studies is that even if the channel remains relatively
stable for extended time periods, an algorithm may never

0 1 2 3 4 5 6 7 8 9 10
x 104

0

10

20

30

40

50

60

time (ms)

R
SS

I (
dB

)/R
at

e
(M

bp
s)

SampleRate Adaptation (Walking Trace)

RSSI
Rate

Figure 1: Rate adaptation for a mobile channel.

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

35

40

Time (s)

R
SS

I (
dB

)/
Th

ro
ug

hp
ut

 (M
bp

s)

RSSI
Optimal Tput
Actual Tput

period

tup
tdn

δup

δdn

Figure 2: Illustration of t and ε.

achieve the optimal rate. For instance, even if rate 48Mbps
is optimal, the rate algorithm may fluctuate between 36-
54Mbps due to statistical variations in channel feedback. We
define the quality of adaptation as the difference between the
optimal throughput and the throughput achieved using the
rates provided by the rate algorithm.

Figure 2 illustrates the two metrics described above. We
see the optimal rate changing from a high value to a low
value and back to a high value again. The time taken by
the rate algorithm to adapt (dotted lines) tup, tdn (time to
change from a low to high value and from a high to low
value) and the quality of the adaptation δup, δdn are also
shown. The δ values are the difference between the opti-
mal throughout and the mean achieved throughput after
the algorithm has adapted. We normalize the quality of the
adaptation by dividing δ by the optimal throughput and de-
note that value as ε. In order to compute the t values, we
calculate the time between when the channel changes to the
time at which the mean throughput of the rate algorithm
stabilizes. We assert that these two metrics can be used to
describe any rate algorithm.

Before we present the results of our measurements, how-
ever, a discussion of the limitations of our approach are in
order. Rate algorithms take some time (of the order of sev-
eral seconds) to adapt to new channel conditions. Therefore,
if the channel changes faster than this adaptation time, the
performance of the rate algorithms can be unpredictable.
In other words, our metrics will not be as accurate at es-
timating algorithm behavior for rapidly changing channels
as compared to the case when the channel changes on the
same time scale as that at which the rate algorithm can
adapt. Another limitation of our metrics is that they are
deterministic and are based on viewing the algorithms like

black boxes. We only look at averaged algorithm perfor-
mance and ignore completely the interplay between statis-
tical feedback to the algorithm and its performance. Thus,
there is some loss of accuracy but, as we show, our metrics
perform surprisingly well despite these shortcomings.

4. QUANTIFYINGTHEPERFORMANCEOF
RATE ALGORITHMS

In order to perform a systematic study of rate adaptation
behaviors, we need to have repeatable experiments. Specifi-
cally, we need to create channel conditions with the following
properties:

1. The channel needs to exhibit long periods of stable
behavior interspersed with sudden changes. In other
words, we need to create square wave patterns such as
in Figure 2. These patterns best expose the adaptive
behavior of algorithms.

2. Similar channel conditions need to be used to measure
t, ε values for different algorithms.

3. The period of the square wave as well as its amplitude
need to be varied to study how or if t, ε values are
affected.

To this end, we exploit the ability to change transmit powers
in Madwifi on a per-packet basis to create repeatable channel
models. The sender and receiver are placed in the same
locations for all experiments. We use iperf() to generate
UDP traffic continuously and we use 1450 byte packets. At
the iperf server we dump the rssi values for each packet
received along with a time stamp and the transmit rate used.

4.1 Finding t and ε

Based on several initial measurements, we decided to use a
long period of 100s for the square wave channel. Thus, the
channel switches between two rssi values every 50s. This
gives the algorithms sufficient time to reach steady state at
the high and low rssi values before we force a change. The
second parameter we study is the amplitude of the change
between large and small rssi values. The expectation is that
a large drop in rssi will result in high packet losses causing
faster adaptation whereas a smaller change may take longer
time to adapt. We consider four different values of changes
in amplitude (ratio of high to low) – 17.5dB, 15.5dB, 13dB,
9dB. We run the experiments for different channels at least
five times for each of three algorithms – Onoe, SampleRate,
and AMRR. Within each run we identify the transitions
from high to low and low to high values. The values of t
and ε are then computed for each of these transitions. The
channel used for the experiments is quiet and therefore the
effect of backoff is minimized.

For each trace, we first convert the rssi values to the op-
timal rate value. Next, we use 1s buckets and compute the
optimal throughput and throughput achieved by the rate al-
gorithm in each bucket. Figure 3 shows an example of these
transformations for one trace of the AMRR algorithm. Us-
ing the throughput traces, we now find the t and ε values
for the algorithm. Table 1 gives us the mean values for the
metrics for the three algorithms.

There are several things of note in Table 1. First, ob-
serve that tdn (in seconds) is generally smaller than tup in
almost all cases. This is because when rssi falls significantly,
the high rate being used causes significant packet loss that
forces the rate algorithm to adapt quickly. However, when
we go from a low rssi to a high rssi, the old slow rate con-
tinues performing well (though sub-optimally). This results
in slower adaptation. The quality ε of the adaptation is
generally good with values above 0.7. However, there are
some instances where the adaptation is very poor (about
0.4). This is an interesting phenomenon that needs to be
explored within the context of the specific algorithms but is
outside the scope of the current paper.

5. EVALUATING THE CORRECTNESS OF
THE METRICS

As we discussed previously, our goal in computing t and ε
values is to develop metrics that allow us to compare algo-
rithms as well as to estimate algorithm performance under
different channel conditions. Indeed, before we can make
general statements about relative algorithm performance, it
is important to determine the “goodness” of the metrics.
Since one of the primary methods used to compare rate al-
gorithms is to study their throughput performance under
a range of channels, we compare the measured throughput
with the model-derived throughput for the three algorithms.

5.1 Estimating Throughput Performance
Let us assume that we are given the rssi values for a chan-

nel at the receiver. Our goal is to estimate the throughput
obtained when using a particular rate algorithm. The algo-
rithm we use for estimating the throughput is as follows:

Throughput Estimation:

• Given the rssi plot, create a plot of optimal throughput
using one second buckets.

• Given a high-to-low or low-to-high transition, we need
to find the point at which the rate algorithm will have
adapted to the new channel conditions. One way to do
this is to simply use the t values from Table 1. How-
ever, that method only works if the channel is stable
for long enough to enable the rate algorithm to sta-
bilize. Furthermore, using the t values does not tell
us the throughput for the time that the algorithm is
adapting the rate.

To deal with these twin problems, we convert the t data
to a slope value γ that describes the rate of change in
Mbps/sec and use this linear model to determine the
throughput for the transition period and to determine
when the algorithm stabilizes.

• The above step will tell us the time periods when
the algorithm is adapting as well as the periods when
the algorithm has stabilized. For the stable periods,
we estimate throughput by multiplying the optimal
throughput with ε from Table 1.

Figure 4 illustrates the rssi, actual throughput, and esti-
mated throughput curves for AMRR. As we can see, the
agreement between the estimated and actual throughput
curves is quite good. Indeed, in this case, the average actual
throughput is within 90% of the estimated.

5.2 Experiments to Validate the Metrics
To study how well the metrics can be used to estimate

or predict algorithm performance, we need to measure ac-
tual algorithm performance under various channel condi-
tions and compare the obtained throughput with the es-
timated throughput. However, an underlying issue here is
what channels should be used for this purpose? Clearly, in
order for the answer to be general, we need to cover all pos-
sible channel models, but this is unrealistic. Therefore, the
approach we follow is to identify those parts of real traces
that force rate changes and use those as the basis to create
artificial traces for our study.

We observe that there are three basic types of changes in
the rssi values that occur most often – the square wave, the
sawtooth, and the ramp shown in Figure 5. The sawtooth
and the ramp models represent channel changes in the mo-
bile case. The sudden drop in the ramp model corresponds
to environment changes, such as turning a corner or enter-
ing a stairwell. The square pulse model is present in most
traces and represents fluctuating rssi values due to changes
in the multipath. In each of the models, the period defines
how quickly the channel changes and hence it effects the
adaptivity of the rate algorithms.

5.3 Results of the Validation
For all the three channel models, we studied the estima-

tion versus actual performance of the three rate algorithms
for the following periods: 625ms, 1.25s, 2.5s, 5s, 10s, 20s,
30s, 40s, and 50s. The ratio of the maximum to minimum
rssi was generally around 18dB though it tended to vary
somewhat. As previously, we computed actual through-
put in one second buckets and also computed the average

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

Time (s)

R
SS

I (
dB

)/T
pu

t(M
bp

s)

RSSI
Optimal Tput
Actual Tput

Figure 3: Illustration of the process for estimating t and ε.

tup tdn

step size 17.5dB 15.5dB 13dB 9dB 17.5dB 15.5dB 13dB 9dB
Sample 15.14 7.33 6.67 3 6.14 2.75 2 1
Onoe 13 25.6 17.67 1 3.86 5.33 6.5 2.5
Amrr 6.6 2.67 3.25 1 8.33 3.2 4 2.25

εup εdn

step size 17.5dB 15.5dB 13dB 9dB 17.5dB 15.5dB 13dB 9dB
Sample 0.82 0.87 0.89 0.9 0.82 0.65 0.44 0.71
Onoe 0.25 0.45 0.79 0.77 0.78 0.42 0.44 0.68
Amrr 0.9 1 0.99 0.95 0.89 1 0.45 0.73

Table 1: Measured values of adaptation time t and quality ε.

Time

RSSI
Period

Square Pulse Channel

Time

RSSI
Period

Ramp Channel

Time

RSSI
Period

Sawtooth Channel

Figure 5: Channel models.

throughput over a 200s run using iperf. To calculate the es-
timated throughput, we used the slope γ and ε values given
in Table 2. The values for ε are the mean values from Table
1. The values for γ are also the mean values of slope and
are obtained by computing the slope as an angle in radi-
ans for each transition that was used to generate the t data
in Table 1. We then average the angles over all transitions
and calculate tan of that angle. The reason we chose to use
mean values for the parameters from Table 2 rather than the
more accurate values from Table 1 is that for the sawtooth
and ramp channel models, the changes in rssi occur in small
steps and therefore none of the values from Table 1 can be
used individually, the average is more meaningful here.

Mean γup(Mbps/sec) γdn(Mbps/sec) εdn εdn

Sample 1.89 4.149 0.87 0.65
Onoe 0.68 1.42 0.56 0.58
Amrr 5.68 3.63 0.97 0.77

Table 2: Mean values of γ, ε used for our validation
study.

Square Pulse Sawtooth Ramp
Sample 0.7490 0.8235 0.8940
Onoe 0.7928 0.7976 0.7464
Amrr 0.7315 0.9557 0.7306

Table 3: Summary of quality of the estimation.

Figure 6 plots the estimated and actual measured through-
put graphs for the three channel models for all the different
period lengths. We first note that the estimation of through-
put for the Square channel model is very accurate for all
three algorithms. Indeed, the estimated throughput curves
also have the same trend as the actual throughput curves.
The estimation matches the actual throughput curves for
AMRR and Onoe for the Sawtooth channel model as well.
However, the estimation for SampleRate is poor with the
estimation algorithm over estimating throughput by a sig-
nificant amount. The fit for the Ramp model is also good
for the three algorithms with the AMRR fit being the worst.
Table 3 summarizes the fit quality averaged over all period
lengths and all runs (measured as the ratio of estimated to
actual throughput).

Finally, to further illustrate the applicability of our model
to actual traces, we show how the estimation algorithm com-
pares with actual performance of SampleRate for a mobile

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Time (s)

R
SS

I (
db

)/T
pu

t(M
bp

s)

RSSI
Optimal Tput
Estimated Tput
Actual Tput

Figure 4: Illustration of how the estimation algorithm works.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

Time (s)

R
SS

I (
db

)/T
pu

t(M
bp

s)

RSSI
Estimated Tput
Actual Tput

Figure 7: Illustration of the estimation algorithm with a real trace.

user in Figure 7. We see that the estimation algorithm tracks
the behavior of the actual SampleRate very closely. Indeed,
we observe similar behaviors in other real-life traces as well.

6. USINGTHEMETRICS TOCOMPAREAL-
GORITHMS

A second application of our abstract model is to be able to
compare algorithms against one another. One way we can
do this is to use the estimated model for each algorithm for
given channels and then state that if the estimated model
predicts that algorithm A is better than B, then indeed al-
gorithm A is better than B if we were to run the actual
experiments. If we perform this test on the data sets de-
scribed in the previous section, we see that the estimation
generally does correctly identify which of any pair of algo-
rithms perform better. Table 4 summarizes the results of
this study with each number denoting the fraction of time
our estimation algorithm correctly identified the better al-
gorithm of any pair.

A more general way of comparing rate algorithms is to
compare the value of γ and ε values and infer relative perfor-
mance. For instance, if we examine the throughput data in
Figure 4, we see that AMRR almost always performs better
than the other two algorithms. On studying the summary
of slope and quality data from Table 2 the reason for this
becomes apparent. Let us examine the ε values first. We
see that these values are highest for AMRR implying that
after AMRR stabilizes, it is closest to optimal. The sec-
ond metric γ denotes how quickly the algorithm adapts and
a larger value is better. We see that AMRR adapts much

faster to an increase in rssi values as compared to the other
algorithms. However, it adapts somewhat slowly compared
to SampleRate when rssi falls. Interpreting this data is in-
teresting because we have to take it in the context of the
other γ and ε values. Note that the number of high-low and
low-high transitions in a channel are almost equal. There-
fore, we need to consider the γup and γdn values jointly.
The difference in the γup values is 3.79 Mbps/sec in favor of
AMRR while it is only 0.519 Mbps/sec in favor of SampleR-
ate. Given that there are a similar number of up and down
changes in rssi and that AMRR has a higher ε value, overall
it is easy to see that AMRR will obtain a higher throughput
on average.

Indeed, based on the above discussion, we can use the
following empirical algorithm to compare which of two algo-
rithms A or B performs better. Define the following quan-
tities:

α = γA
up + γA

dn − γB
up − γB

dn

and,

β = εA
up + εA

dn − εB
up − εB

dn

Using these quantities, we can now state the following:

1. If α > 0 and β > 0 the A is the better algorithm in
general.

2. If α > 0 and β < 0 then A is better for those channels
that show rapid changes in optimal rates over time.
Examples would be mobile channels.

3. If α < 0 and β > 0 then B is better for relatively stable
channels where changes in optimal rates happen much
more slowly than the adaptation time.

Sample vs AMRR Sample vs Onoe Onoe vs AMRR
Square 1.0 0.9 1.0

Sawtooth 1.0 0.875 1.0
Ramp 0.75 1.0 0.875

Table 4: How well the model predicts relative algorithm performance.

We note that this empirical algorithm is based on steady-
state assumptions of rate algorithm behavior. In examining
traces, it is clear that on some occasions, due to large channel
variations and/or collisions due to hidden terminals, the be-
havior of the rate algorithm is unstable. In these instances,
we believe that the empirical algorithm will not work cor-
rectly.

7. CONCLUSIONS
The problem examined in this paper is understanding and

quantifying what it means for an algorithm to adapt to
changing channel conditions. We examine three rate algo-
rithms implemented in Madwifi - Onoe, SampleRate, and
AMRR. For each algorithm, we carefully study its adaptive
behavior using manufactured channel conditions that expose
the adaptive behavior best. We then measure the rate of
adaptation as well as the quality of adaptation. Using these
two metrics we develop an algorithm that can estimate the
achieved throughput for any algorithm given a channel rssi
trace. We show the estimation to be relatively accurate and,
more importantly, we show that the metrics can be used to
make general statements comparing different algorithms.

There are two main future directions for this work. First,
we need to develop a better model for the transition periods
where the channel has changed and the rate algorithm is
trying to adapt. The linear model we have developed has
error because in reality the adaptation of algorithms follows
a more exponential process. Second, we need to validate the
comparison algorithm presented in the previous section by
applying it to more pairs of algorithms.

8. ACKNOWLEDGEMENTS
We would like to thank Ron Fairley and Tektronix for

allowing us use of their Anechoic chamber. This work was
funded by the NSF under award number CNS-0722008.

9. REFERENCES
[1] The madwifi project. http://madwifi-project.org, 2009.

[2] John C. Bicket. Bit-rate selection in wireless networks.
Master’s thesis, MIT, 2005.

[3] J. Camp and E. Knightly. Modulation rate adaptation
in urban and vehicular environments: Cross-layer
implementation and experimental evaluation. In ACM
Mobicom, San Francisco, CA, September 14 - 19 2008.

[4] G. Judd, X. Wang, and P. Steenkiste. Efficient
channel-aware rate adaptation in dynamic
environments. In ACM MobiSys, Breckenridge, CO,
June 17-20 2008.

[5] A. Kamerman and L. Monteban. Wavelan-ii: A
high-performance wireless lan for for the unlicensed
band. Bell Labs Technical Journal, pages 118–133,
Summer 1997.

[6] J. Kim, S. Kim, S. Choi, and D. Qiao. Cara:
collision-aware rate adaptation for ieee 802.11 wlans. In
IEEE INFOCOM, 2006.

[7] M. Lacage, M. H. Manshaei, and T. Turletti. Ieee
802.11 rate adaptation: a practical approach. In ACM
MSWiM, 2004.

[8] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan.
Robust rate adaptation for 802.11 wireless networks. In
ACM MOBICOM, pages 146–157, 2006.

[9] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang. A
practical snr-guided rate adaptation. In IEEE
INFOCOM 2008 Minisymposium, April 2008.

0 1 2 3 4 5 6 7 8 9 10
x 104

0

5

10

15
Square Channel Model

Period Length (ms)

Th
ro

ug
hp

ut
 (M

bp
s)

Sample Est
Sample Actual
Onoe Est
Onoe Actual
AMRR Est
AMRR Actual

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

2

4

6

8

10

12

14

16

18

20

22
Sawtooth Channel Model

Period Length (ms)

Th
ro

ug
hp

ut
 (M

bp
s)

Sample Est
Sample Actual
Onoe Est
Onoe Actual
AMRR Est
AMRR Actual

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

4

6

8

10

12

14

16

18

20

22

24
Ramp Channel Model

Period Length (ms)

Th
ro

ug
hp

ut
 (M

bp
s)

Sample Est
Sample Actual
Onoe Est
Onoe Actual
AMRR Est
AMRR Actual

Figure 6: Comparison of actual versus estimated
throughput.

