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Abstract—The emergence of MIMO antennas and channel
bonding in 802.11n wireless networks has resulted in a huge
leap in capacity compared with legacy 802.11 systems. This leap,
however, adds complexity to selecting the right transmission rate.
Not only does the appropriate data rate need to be selected, but
also the MIMO transmission technique (e.g., Spatial Diversity or
Spatial Multiplexing), the number of streams, and the channel
width. Incorporating these features into a rate adaptation (RA)
solution requires a new set of rules to accurately evaluate
channel conditions and select the appropriate transmission setting
with minimal overhead. To address these challenges, we pro-
pose ARAMIS (Agile Rate Adaptation for MIMO Systems), a
standard-compliant, closed-loop RA solution that jointly adapts
rate and bandwidth. ARAMIS adapts transmission rates on a
per-packet basis; we believe it is the first 802.11n RA algorithm
that simultaneously adapts rate and channel width. We have
implemented ARAMIS on Atheros-based devices and deployed
it on our 15-node testbed. Our experiments show that ARAMIS
accurately adapts to a wide variety of channel conditions with
negligible overhead. Furthermore, ARAMIS outperforms existing
RA algorithms in 802.11n environments with up to a 10 fold
increase in throughput.

I. INTRODUCTION

Rate adaptation (RA) selects the best physical bitrate based
on time-varying channel qualities. With the emergence of the
IEEE 802.11n standard, WiFi technologies have witnessed
a significant increase in sophistication and complexity that
require novel approaches to RA. RA in 802.11 networks
not only needs to choose the operating rate, but also the
channel width and MIMO mode. Using MIMO, a solution
can send a single stream using spatial diversity or multiple
simultaneous streams to increase the transmission rate using
spatial multiplexing.

There are two main approaches to RA: open-loop and
closed-loop. In open-loop RA, the transmitter estimates the
best rate of the link to the receiver by building on some set
of parameters or metrics measured at the transmitter [1]. A
closed-loop RA is one in which the receiver’s insight into the
channel conditions contributes to determining the transmit rate.

As networks become more complex, the use of open-
loop RA techniques becomes increasingly inaccurate. An
RA solution now has to account for many variables that a
transmitter alone cannot accurately capture. In legacy clients,
RA mechanisms have to choose among four PHY rates in
802.11b and eight rates in 802.11a/g, whereas 802.11n allows
at least 64 combinations from 32 rates and 2 channel widths.
By allowing the receiver to contribute to the RA process,
we gain an accurate understanding of environment conditions,

and the transmitter can more efficiently select the appropriate
transmission rate for the link [2].

Perhaps the best RA solution for MIMO environments is to
use 802.11n’s Channel State Information (CSI) feedback from
the receiver to compute the transmission rate [2]. However,
complete CSI information is costly to obtain and store [3]
and is therefore supported by very few 802.11n devices.
Existing RA solutions adopt a practical approach and use a
credit-based system [4] or rate sampling [5], [6], [7]. Instead
of adapting the rate based on understanding the impact of
environment conditions on 802.11n features, these solutions
rely on a routine to converge to the best rate, which can be
costly or misdirected. Therefore, there is a clear need to build
RA solutions over a new, practical link metric that accurately
characterizes links in MIMO environments.

In a closed-loop RA model, the receiver’s insight into
channel conditions is used to compute the transmission rate.
A feedback mechanism should therefore be incorporated into
the design. In fact, the 802.11n standard supports an explicit
feedback system in MCS Request and MCS Feedback [8].
By exploiting this standard-compliant feedback mechanism,
accurate receiver-based RA solutions can be designed for
802.11n MIMO environments.

The state of the art for RA in 802.11n calls for a standard-
compliant, closed-loop solution that accurately exploits the
new features in 802.11 MIMO environments. The RA solution
therefore must adopt a link metric that accurately characterizes
MIMO link performance. We propose such an RA solution,
called ARAMIS (Agile Rate Adaptation for MIMO Systems).

ARAMIS is a closed-loop, per-packet RA solution that
simultaneously adapts both rate and channel width. In previous
work, we showed the importance of adapting bandwidth in
802.11n with RA to maximize performance [9], and we believe
that ARAMIS is in fact the first RA solution to do so. ARAMIS
incorporates a measurement-based, 802.11n link predictor in
its design. Given the current channel conditions, the link
predictor estimates Packet Reception Rate (PRR) for the given
link at all supported rate and bandwidth combinations. Using
this information, ARAMIS then selects the best operating
point, and sends the feedback to the transmitter using a
standard-compliant mechanism. To characterize MIMO link
performance and capture channel conditions, we develop a
new, practical link metric called diffSNR, which we then
use in ARAMIS. diffSNR provides a good balance between
implementability and accuracy as input to the link predictor.
Through testing in a variety of environments, we show our
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Fig. 1. Block diagram of ARAMIS.

link predictor estimates link quality with an accuracy of at
least 95.5%.

We implemented ARAMIS and evaluated it on a 15 node
testbed. We compare ARAMIS to leading RA solutions for
802.11n, namely Ath9k [7], Minstrel HT [6], and RAMAS [4].
We evaluate the solutions under various scenarios, including
interference, mobility, and hidden nodes. We demonstrate that
ARAMIS is robust, consistently performs well and outper-
forms existing solutions, with up to a 2.87 fold increase in
throughput compared to its best competitor, RAMAS, and a
10 fold increase compared to Ath9k.

II. OVERVIEW OF ARAMIS

ARAMIS is a closed-loop RA solution for 802.11n MIMO
environments. In the design of ARAMIS, we identify three
important, high-level components. The first component is a
link metric that can be used to accurately characterize MIMO
link performance. An existing MIMO link metric, called
effectiveSNR, is one option [2]. However, effectiveSNR is built
using CSI, and CSI is supported by few devices due to its
costliness [3]. We therefore choose to develop a new, practical,
MIMO link metric for systems where CSI is not available. We
call this new metric diffSNR, and it provides a good balance
between implementability and accuracy.

The second component is a mechanism that can accurately
predict the Packet Reception Rate (PRR) of a link for any
MCS and bandwidth combination, which we refer to as the
link predictor. To predict PRR, the link predictor uses PRR
performance models from the adopted link metric. The link
predictor and link metric together form the backbone of the
third and main design component, the rate selector. Based on
current channel conditions which are determined using the link
metric, and the corresponding PRR values computed using the
link predictor, the rate selector finds the best operating rate
and bandwidth with high accuracy. Since ARAMIS is a closed-
loop RA solution, the rate selector also needs to implement a
standard-compliant feedback mechanism.

Fig. 1 depicts the specific components in the design of
ARAMIS and the corresponding communication flow between
a transmitter and receiver pair. The primary functionality of
ARAMIS is implemented at the receiver.

The first interface into ARAMIS’s rate selector is the
Frame Monitor. The Frame Monitor maintains updated infor-
mation on channel conditions by measuring the link metric
from existing data traffic. Current channel status information
is used as input to the Link Predictor, which estimates the PRR
of the link for all supported MCS and bandwidth combinations.
The Link Predictor is measurement-based, and therefore must

first access data storage to obtain the measured PRR values.
To improve the accuracy of predictions, the Link Predictor
goes through a Training Phase that corrects errors in predicted
PRR values in real-time. The Decision Maker then takes the
PRR predictions from the Link Predictor, and based on some
performance model, selects the best operating point. Using
a standard-compliant mechanism, the Feedback Generator
encapsulates information on the best possible rate in ACK
frames to be sent to the transmitter. However, in the case when
the feedback is not received, for example due to lack of active
traffic, a backup Timer is implemented at the transmitter to
reset the operating rate.

In the following sections, we describe the main features of
ARAMIS, namely the adopted link metric, the link predictor,
and the rate selector.

III. 802.11N MIMO LINK METRICS

We are first motivated by the need for a new metric by
identifying the limitations of a commonly used and accessible
link metric, RSSI (Received Signal Strength Indicator), in
predicting link quality in 802.11n MIMO environments. We
measure link quality or performance in terms of Packet Error
Rate (PER, where: PER = 1 − PRR). We then present
diffSNR and examine how it can be used together with RSSI
to accurately reflect performance.

For legibility, we present a subset of our results that best
reflects and is representative of patterns in the behavior of RSSI
and diffSNR. We conduct all experiments for both 20MHz and
40MHz channels, and we discuss our observations for three
MCS indices that cover robust (MCS 8), intermediate (MCS
12), and aggressive (MCS 15) PHY rates.

A. The Limitation of RSSI

RSSI, defined as the signal to noise ratio (SNR) in dB, has
traditionally been used to represent the quality of a link [10].
The existing models that map RSSI to performance show that
a link’s PER is 1.0 for sufficiently low RSSI and then steeply
drops to 0.0 as RSSI increases beyond a threshold value [11].

Fig. 2(a) plots PER vs SNR averaged over 50 links in
our testbed for two simultaneous streams. As RSSI increases,
we expect PER to drop since the receiver can better decode
the received signal. The plot, however, shows that this is not
necessarily the case, particularly for aggressive modulation
schemes with spatial multiplexing (MCS 12 and 15). PER
does not converge to 0 for high SNR values and surprisingly,
performance degrades for SNR > 55dB.

There are two explanations to this behavior. High SNR
values are achieved when the output power is high and/or when
the propagation losses are low due to the close proximity of
the transmitter/receiver pair in the absence of obstacles. The
combination of OFDM and high order amplitude modulations
(such as 64-QAM used in MCS 13 to 15) is prone to high
peak-to-average ratios: high peaks cause the power ampli-
fiers to move toward saturation [12], exhibiting non-linear
behavior that produces inter-modulation distortion. The other
explanation is that the presence of a dominant path between a
transmitter/receiver pair, such as when the nodes are in direct
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(a) Average over testbed links.

(b) Per-link measurements (20MHz channel).

Fig. 2. PER vs average per-packet SNR for two transmit streams.

line-of-sight, increases the Rician K-factor and the channel
becomes increasingly correlated in space. This hampers the
utilization of spatial multiplexing [13].

Fig. 2(a) also shows that SNR is a poor indicator of link
quality for different channel widths. For the same SNR, a
40MHz channel suffers a higher PER. Wider transmissions are
more likely to suffer from frequency selective fading, which
causes SNR variations across the OFDM subcarriers, and PER
is dominated by the lower SNR carriers. A 40MHz channel,
therefore, not only requires a stronger transmission power to
achieve the same SNR [14] but also a higher SNR to provide
the same PER.

Fig. 2(b) plots per-link PER vs SNR for all testbed links. It
shows the impact of RSSI on PER is unpredictable across dif-
ferent links. This result is consistent with previous work [15],
[2]. The transition region between a good quality (PER ≈ 0)
and a lossy (PER ≈ 1) link is wide, which means there is a
wide range of SNR values where the performance of a link is
uncertain. For MCS 8, the transition region is 10dB. For more
aggressive PHY rates (e.g. MCS ≥ 12), it is as wide as 35dB.

B. Differential SNR (diffSNR)

It is clear that RSSI alone does not accurately capture the
factors that cause the variability in 802.11 channels. Frequency
selectivity due to multipath is one major factor whose effects

are only captured using OFDM per-subcarrier SNR informa-
tion [2]. Antenna correlation, or spatial selectivity, is another
factor [16]. Both factors, however, require costly CSI which is
supported by only very few devices [3].1 For devices that do
not support CSI, we develop a practical metric, called diffSNR,
by using the channel metrics available to us in all commodity
MIMO devices. We now show how we can use diffSNR to
accurately reflect channel quality in 802.11n networks.

Multipath propagation in wireless environments produces
constructive and destructive interference at the receiving anten-
nas [17]. The resulting signal combination varies at different
locations, a concept referred to as spatial selectivity. MIMO
systems take advantage of these multipath phenomena to
improve performance.

When received signals combine destructively in a process
called selective fading, SNR can degrade and will reliably
indicate a lossy link. Since per-packet SNR is the linear sum of
all per-antenna measurements, if only a portion of the antennas
experience fading, the reported SNR may be high even though
the link could be lossy. Reported SNR does not reflect the
extent of selective fading. We therefore argue that knowledge
of the SNR combined with the per-antenna SNR provides us
with some added insight, which can be used to predict the link
performance with greater accuracy. We henceforth define the
difference between the best and the worst SNR at any of the
receiver’s antennas as diffSNR.

In Fig. 3, we take a closer look at the real-time evolution
of RSSI and diffSNR for a given link. A peak in diffSNR can
occur when RSSI increases and one or more antennas receive
constructive interference. However, we observe that with a
higher certainty of 80%, diffSNR peaks are caused by some
of the antennas suffering from fading.

Our experiments show that diffSNR does not depend signif-
icantly on the transmitter’s output power, the MCS used, or the
channel width. In fact, diffSNR shows a clear dependency on
the environment (factors such as rich scattering, dynamic/static
positioning, line-of-sight, and obstacles). We find that a more
dynamic environment (during office hours) is reflected in
a wider dispersion of the measured diffSNR, while a static
scenario (night-time) exhibits fewer variations.

Given the predictable behavior of diffSNR and its correla-
tion to RSSI, we next examine the implications of the (SNR,
diffSNR) relationship and how it can be used to determine link
quality or performance in terms of PER.

C. diffSNR and Packet Error Rate (PER)

For links with similar RSSI, we find that diffSNR can
be used to characterize their performance differences. We
illustrate this behavior in Fig. 4 using three representative
links. We evaluate their PER vs SNR relationships using spatial
multiplexing (MCS 12 and 15) and a 40MHz channel.

1Channel State Information (CSI) describes the current channel conditions
with fine granularity. It consists of the attenuation and phase shift for each
spatial stream to every receive antenna, for every OFDM subcarrier (52
subcarriers for 802.11n). Measuring a complete and timely CSI for all possible
MIMO channel configurations incurs excessive sampling overhead [3].



4

Fig. 3. Real-time evolution of per-packet SNR and diffSNR.

Fig. 4. PER vs per-packet SNR for three links (40MHz channel).

Link 1 successfully transmits packets (PER < 0.02) using
MCS 12; for MCS 15, there is a clear transition around
34dB SNR. Link 2 has similar RSSI values and exhibits a
clear transition for MCS 12 (SNR > 25dB), yet remains
lossy at MCS 15 until SNR > 44dB. The difference between
Link 1 and 2 can be explained with diffSNR: for Link 1,
we measure an average diffSNR of 1.82dB, with a standard
deviation of 0.30, while for Link 2, the average diffSNR is
9.46dB, with a standard deviation of 0.37. Link 3 displays the
worst performance, showing an average diffSNR of 13.41dB.
This link does not exhibit a clear transition for MCS 12 and
never works for MCS 15. We can explain this behavior with
the dispersion of its measured diffSNR values with a standard
deviation of 0.97.

Our analysis reveals the dependency of performance on
RSSI and diffSNR together. Since robust modulations are less
affected by fading, variations in diffSNR will be more clearly
reflected on the performance of aggressive modulations. Sim-
ilarly, diffSNR variations will have little impact on links with
high SNR, but this impact will increase as SNR decreases. We
believe this dependency is intriguing and leave further analysis
of potential correlations to spatial or frequency selectivity to
future work. Fig. 5 is a representative graph that effectively
exemplifies this dependency.

Fig. 5 plots the measured PRR as a function of average
per-packet SNR and diffSNR for a given MCS and bandwidth
combination. We note that the dataset in Fig. 5 combines
values obtained from real measurements with interpolated
points. Fig. 5 shows that the PRR(SNR, diffSNR) relationship
yields well-behaved surfaces that allow us to predict the PRR
of a link for a given MCS and bandwidth. For example, with an
SNR of 32dB, a link with diffSNR below 5dB performs well,

Fig. 5. PRR(SNR,diffSNR) surface for MCS 7 and 20MHz channel.

however with a diffSNR above 10dB, the PRR of the link is
almost 0. Next, we describe how we utilize these surfaces in
the design of our link predictor.

IV. A MEASUREMENT-BASED LINK PREDICTOR

A link predictor accurately estimates the PRR of a link for
all MCS and bandwidth combinations. We now describe the
methodology we use to build such a predictor, and demonstrate
how it accurately predicts PRR. In case of errors, we introduce
a low-overhead training mechanism to improve accuracy.

A. Methodology

We design our predictor as the synthesis of the
measurement-based PRR(SNR, diffSNR) surfaces for all MCS
and bandwidth combinations. SNR and diffSNR measurements,
along with the operating MCS and bandwidth of a link,
are the input parameters the predictor uses to identify the
corresponding expected PER for that link. Our testbed provides
us with SNR data for the control channel and when channel
bonding, the extended channel. Predictions for 20MHz links
can be made from measurements under 40MHz links, but not
vice versa [9]. Therefore, our predictor builds separate PRR
surfaces for both 40MHz and 20MHz channels for each MCS.

To gather sufficient data to build PRR(SNR, diffSNR) sur-
faces for each MCS and bandwidth combination, we measure
PRR(SNR, diffSNR) over all 50 testbed links while varying the
transmit power from 0dBm to the maximum allowed power.
The remaining values that are not measured are interpolated.

Intuitively, PRR depends on the packet length. Hence,
packet length should be accounted for to predict PRR. The
PRR for any given packet size can be roughly estimated from
the PRR we measure for 1,000 byte packet size using the

equation: Px =
(

L1000

√
P1000

)Lx

, where Px is the PRR for
a packet of length x bytes, and Lx is the length in bits of a
frame carrying an x byte packet. For different packet sizes, our
measurements show that the transition regions for links from
high quality to lossy do not exhibit a noticeable difference.

B. Prediction Accuracy

The link predictor is a matrix, with dimensions defined by
the number of supported MCS, bandwidths, and the range of
expected SNR and diffSNR values. To evaluate our predictor,
we build two 6× 70× 20 matrices for MCS 0, 4, 7, 8, 12 and
15, with SNR values from 0 to 69dB and diffSNR values from 0
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to 19dB, with 1dB precision.2 Our complete predictor consists
of two 16 × 70 × 20 matrices, and is used in future sections.
The reduced matrix consists of 40% of measured values (the
remaining 60% are interpolated). We show that interpolation
has no significant impact on the prediction accuracy.

We evaluate the accuracy of our measurement-based link
predictor by comparing the predicted PER values against
the measured values for two different groups of transmit-
ter/receiver pairs. The first group consists of nodes located
in the same environment where the data for the predictor
was collected. The second group consists of a set of laptops
placed in two different off-campus small office/home office
environments as well as in an outdoor environment, on a
rooftop free of obstacles with direct LoS between nodes placed
20m apart. We include this second group to evaluate the
utility and accuracy of the proposed predictor in unfamiliar
and dissimilar environments.

For the first group of nodes located in a familiar en-
vironment, the average absolute error in PER predictions,
computed as the difference between the measured PER and
the predicted PER, is only 4.8%. This error rate increases for
high order modulations (up to 11% for MCS 15) since these
modulations show a higher degree of uncertainty. Although the
absolute error may be relatively high for some MCS indices,
we reliably predict link feasibility with a 96.1% accuracy.3

As for the second group of nodes in new environments, the
average absolute error in PER predictions is 12% and the
accuracy in feasibility predictions is 88.1%. These results
show the importance of a calibration or training mechanism.
To increase the prediction accuracy, we include the error of
previous measurements in the new PER predictions such that:

PER
m,B

k = PER(m,B, SNRk, diffSNRk) + E
m,B

k−1
(1)

where PER
m,B
k is the predicted PER for MCS m and band-

width B; SNRk, and diffSNRk are the currently measured
RSSI and diffSNR values; and PER(w, x, y, z) returns a PER
value from the predictor using the input parameters. Finally,

E
m,B
k−1

is the error in previous predictions for the same MCS

and bandwidth, where 0 ≤ E
m,B
k−1

≤ 1. We track the error by

computing E
m,B
k as an exponential moving average with α =

0.9. Our α is large to give more weight to recent error samples,
since the mean error in PER predictions is close to 0.

We re-evaluate our results in the new environments using
Equation 1. The average absolute error in PER predictions now
falls below 5.8%, and link feasibility predictions improve to a
95.5% accuracy rate.

Not surprisingly, the performance of aggressive modula-
tions is more difficult to predict, and this is translated into
lower feasibility prediction rates and higher PER prediction
errors. Also, PER prediction errors increase when spatial
multiplexing is used (4.6% average absolute error for one
stream vs 6.9% for two streams). Finally, the PER of a 20MHz
channel can be predicted with slightly greater accuracy than a
40MHz channel (96.0% accuracy in link feasibility predictions
for 20MHz channels vs 95.1% for 40MHz).

2The distribution of diffSNR in all tested environments lie below 19dB.
3We consider a link feasible for a given MCS if PER < 0.5.

Algorithm 1 ARAMIS(SNR, diffSNR)

Output: 1) MCS m; 2) Channel width B;

1: if newPacket = true then

2: (SNRavg , diffSNRavg ) ← update-moving-average(SNR, diffSNR)
3: // If there is a change in channel conditions

4: if exception(SNR, diffSNR) = true then

5: (m,B) ← decision-maker() ← link-predictor(SNRavg ,diffSNRavg )
6: end if

7: end if

Recall that we interpolate to fill the gaps in a PER(SNR,
diffSNR) surface. We observe that regardless of whether the
predictions come from interpolated or measured values, the
predictor accuracy remains the same. For the measurements
conducted in unfamiliar environments, we predict 71% of the
indoor links from measured values while the remaining 29%
are interpolated. For outdoor links, the proportion is 61/39%.
For the familiar environment, interpolated values are not used.

We have built a mechanism capable of accurately predict-
ing PRR for all MCS and bandwidth combinations for a given
link (SNR, diffSNR). This accuracy enables us to include our
predictor in a rate selection mechanism.

V. RATE SELECTOR

The rate selector is the final and main design component of
ARAMIS. An effective rate selector in a closed-loop, 802.11
RA model identifies changes in environment conditions and
responds with the appropriate rate using a standard-compliant
feedback method. To achieve these goals, we now describe
how we combine our knowledge of our link metric, in this case
diffSNR, and the link predictor in the design of an effective rate
selector. We use the terminology illustrated in Fig. 1.

A. Frame Monitor

The first step of a rate selector is to identify changes in
channel conditions. This step is necessary to determine when
an alternative rate might be appropriate. We have verified the
accuracy of (SNR, diffSNR) in predicting link quality. We now
describe how we monitor the behavior of per-packet (SNR,
diffSNR) in real-time, using existing active traffic, to identify
changes in channel conditions.

Fig. 3 depicts the evolution in per-packet (SNR, diffSNR)
over time for a given link. Over a short period of time, (SNR,
diffSNR) can fluctuate rapidly. To identify when changes in
(SNR, diffSNR) could reflect a change in channel conditions,
we apply an exponentially weighted moving average approach.
ARAMIS stores (SNR, diffSNR) for every packet received
and computes their moving average (SNRavg, diffSNRavg). We
maintain moving averages not only for the average (SNR,
diffSNR) values, but also for their standard deviation (SNRsd,
diffSNRsd). ARAMIS initiates lookups to the link predictor if
the current (SNR, diffSNR) lies outside of the range specified
by SNRavg ± SNRsd. The same conditions apply for diffSNR.

B. Decision Maker

The rate selector uses a link’s current channel conditions,
reflected through the link metric, as input arguments to the
link predictor, in this case using (SNRavg , diffSNRavg). The
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Fig. 6. Depiction of ARAMIS measurements.

predictor provides accurate PRR estimates for all supported
MCS and bandwidths for that link. The role of the Decision
Maker is to use this information to select the MCS and
bandwidth configuration that yields the highest throughput.
One model would be to select the configuration with the
highest expected throughput. The computation of the expected
throughput, however, requires a foreknowledge of the packet
size implemented at the transmitter [9], which is not available
at the receiver. Furthermore, this approach adds significant
overhead to the computation of the appropriate rate.

We adopt a simple yet effective approach. Our model
selects the MCS and bandwidth combination with the highest
PHY bitrate from a reduced set of combinations whose pre-
dicted PRR is above a threshold. By adjusting this threshold,
ARAMIS has the flexibility to adapt to environments with
varying error tolerances.

Fig. 6 demonstrates the behavior of ARAMIS in real-
time, as described in Algorithm 1. In Fig. 6(a) and (b), we
plot the instantaneous values, moving averages, and upper and
lower bounds for our link metrics, both SNR and diffSNR.
Fig. 6(c) depicts how ARAMIS changes MCS on a per-
packet basis based on the correlated (SNR, diffSNR) values,

High Throughput Control Field (HTC)

Link Adaptation Control

MAI:

MRQ

MSI

CBF1

B2 B3 B4 B6

MFB: MIRCB

B9 B10 B16

B0 B16 B32

«.

Fig. 7. 802.11n compliant MCS feedback system.

TABLE I. HTC SUBFIELDS THAT SUPPORT RECEIVER-BASED RA.

MRQ MCS feedback request

MSI MRQ sequence identifier

MFB MCS feedback

CBF* AP Channel bonding friendly

MIR* Client MCS index request

CW* Client channel width request

*: Bits allocated to support channel width feedback

where ARAMIS selects the MCS with the highest bitrate from
those MCS that achieve a PRR above a given threshold for
the current channel conditions. The corresponding bandwidth
graph is not shown as ARAMIS always opts for a 40MHz
channel in this run.

C. Training Phase

To improve the accuracy of predicted PRR values for all
MCS and bandwidth combinations, a training mechanism is
performed on-the-fly using the statistics of received frames.
ARAMIS measures PRR by dividing the number of received
frames with the Retry flag set to 0, by the total number of
frames sent, the latter computed using frame sequence num-
bers. If aggregation is enabled, more precise PRR estimation
could be provided by inspecting the bitmap field present in the
Block ACK. ARAMIS then uses this measured PRR to update

E
m,B
k values in Equation 1.

D. Feedback Generator

So far, we have discussed how ARAMIS identifies an
appropriate rate given the current channel conditions. This rate,
however, should be sent as feedback to the transmitter using a
standard-compliant mechanism. To fully exploit variations in a
MIMO channel, the 802.11n standard supports MCS feedback
(MFB) in link adaptation [8]. MFB is a subfield of the HT
Control field (HTC). HTC is a 4B optional field added to
control packets (such as ACKs and Block ACKs).

Fig. 7 shows the HTC field with its corresponding link
adaptation control field, where the subfields are described in
Table I. We propose utilizing the unused fields and creat-
ing subfields that control bandwidth feedback. These added
subfields allow ARAMIS to operate in conjunction with a
channel management solution, where the CBF field set by
the AP defines the supported bandwidth in the given WLAN.
For example, if CBF is set to 1, the client can request to
operate on both a 20MHz and 40MHz channel, which it
specifies in the CW subfield, and if CBF is set to 0, the
client only operates on a 20MHz channel. It is worth noting
that the emerging 802.11ac standard supports such a client-
based bandwidth adaptation mechanism, given the maximum
supported bandwidth at the AP.
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Fig. 8. Floorplan of our testbed environment.

E. Timer

A transmitter stops receiving feedback when the ARAMIS
receiver does not receive transmitter frames. This can happen
for two reasons. First, channel conditions at any given time
could change drastically such that the PRR for the PHY config-
uration in use suddenly drops to 0. Second, the transmitter may
not have traffic to send. In both cases, the communication could
be set at the wrong configuration with outdated information,
since the transmitter is not receiving feedback to identify the
appropriate MCS and bandwidth. This can lead to performance
degradation. To mitigate this problem, we use a timer at
the transmitter, whereby if feedback packets are not received
before the timer expires, the MCS is set back to a reliable rate,
MCS 8, then MCS 0 after a consecutive timeout, at the same
bandwidth. Our results show that ARAMIS’s per-packet rate
adaptation is able to rapidly recover from this MCS reset.

VI. PERFORMANCE EVALUATION

We now evaluate ARAMIS in a testbed implementation
under various scenarios, including interference, mobility, and
hidden nodes. The goal of our evaluation is to demonstrate
the efficacy of ARAMIS in accurately responding to channel
conditions compared to other popular and leading 802.11n
RA solutions. We measure performance in terms of achieved
throughput. We demonstrate that ARAMIS is robust, consis-
tently performs well and outperforms existing solutions.

A. Testbed Environment

The evaluation environment is built over our platform
that consists of 15 laptops deployed in both an open office
and semi-open office environment. Each laptop is equipped
with an 802.11n 2×3 MIMO PC card with an Atheros
AR5416/AR5133 2.4/5GHz chipset. The AR5416 baseband
and MAC processor allow MCS indices 0 to 15. Each laptop
runs the Linux 2.6.32 kernel, where the device driver is based
on the Atheros Ath9k that supports 802.11n [7]. We run our
experiments on the 5GHz frequency range and verify the lack
of background traffic with a spectrum analyzer.

We compare the performance of ARAMIS to that of two
widely used open source 802.11n RA solutions, Ath9k [7]
and Minstrel HT [6], and RAMAS [4], which was recently
shown to be one of the best performing 802.11n RA solutions.
We run RAMAS using the implementation made available
by its authors. RAMAS is a credit-based system that divides
the features of 802.11n RA into two groups: a modulation
group and a group that includes the number of streams and
bandwidth. Each group follows a different credit system and
is adapted independently of the other. Minstrel HT and Ath9k
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Fig. 9. Algorithm performance in an interference-free environment.

both use random sampling to find the best MCS. Minstrel
HT, however, includes MCS with different bandwidths in
its sampling group. Ath9k does not have a mechanism for
enabling channel bonding, and to ensure a fair comparison,
we set Ath9k’s bandwidth to 40MHz to allow it to exploit
higher data rates. Ath9k switches to a 20MHz channel when
the PER is high. Other schemes select channel width based on
their algorithm, and independently of the rate.

We evaluate the RA algorithms in a wide variety of scenar-
ios, including interference and mobility. We fix transmit power
to 11dBm and enable packet aggregation. We measure UDP
throughput and PER, and average the results over 5 runs. The
floorplan of our semi-open office, experimental environment is
shown in Fig. 8, where the letters represent node locations.

In our implementation of ARAMIS, we faced restrictions
where the available chipset code does not support enabling
an HTC field for 802.11n feedback. We mitigate this issue
by implementing netlink sockets and transmitting packets
with the HTC field over the wire from the receiver to the
transmitter driver code. The overhead of user-space-kernel
communications, though minimal, often lead to delayed rate
feedback receptions which trigger timeouts that mimic ACK
packet losses. Moreover, the devices do not provide open
access to the hardware generated Block-ACK at the receiver.
This leads to inaccurate PER measurements, which reduces
the precision of the ARAMIS training mechanism, explained

in Section V-C, and the accuracy of measured E
m,B
k samples.

B. Testbed Results

Fig. 9 and 10 show that ARAMIS consistently outperforms
other algorithms in all test cases, with up to a 2 fold throughput
increase in interference-free environments, a 10 fold increase
in interference conditions, and a 25% increase in mobile
environments.

Interference-free: To assess how well each algorithm han-
dles random channel loss, for example due to shadowing or
multipath, Fig. 9 shows the performance in an interference-
free environment at seven different locations. Even without the
training mechanism, ARAMIS outperforms other algorithms
with throughput gains of up to 26% over Minstrel HT, 124%
over Ath9k, and 287% over RAMAS. Note that our results
for RAMAS are somewhat different from those reported [4],
since they were obtained in different scenarios. RAMAS was
previously evaluated only on the 2.4GHz frequency range,
which significantly limits the performance benefits of 802.11n
features [18], [5].

RAMAS leads to an average PER of 11% and a maximum
of 20%. The credit scheme it uses to adapt the number
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(a) Adjacent 40MHz interferer.
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(b) Adjacent 20MHz interferer.
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(c) Channel sharing with a 20MHz interferer.

Fig. 10. Algorithm performance under interference conditions.

of streams is conservative, while the scheme to adapt the
modulation and coding is aggressive. This mismatch causes
RAMAS to often operate at sub-optimal rates with high
modulations and single stream (e.g., MCS 7), which leads
to high PER and reduced performance. Ath9k and Minstrel
HT’s random sampling incurs high overhead that results in
poor performance. Ath9k also assumes PER monotonically
increases with rate, which causes it to often ignore suitable
high rates.

ARAMIS relies on our link predictor for rate selection and
hence does not require random sampling. Its link prediction
accuracy and ability to adapt MCS and bandwidth on a per-
packet basis maximize opportunities to exploit more aggressive
rates without sacrificing PER. We observe an average PER
between 4 and 6%. ARAMIS is therefore suitable for low error
tolerance applications, such as online gaming and bulk file
transfers.

Interference: We now assess how the algorithms perform
under interference from signal leakage, hidden nodes, and
channel sharing.

Signal leakage is produced by transmissions on adjacent
channels and can result in collisions similar to the hidden
node problem. We evaluate how the algorithms react to in-
terference due to leakage with varying interferer bandwidth,
as we discovered that the impact of leakage varies according
to channel width [9]. Fig. 10(a) presents results with an
interfering link that operates on an adjacent 40MHz channel.
Fig. 10(b) presents results for an adjacent 20MHz interferer.

Ath9k and Minstrel HT respond frequently and rapidly to
interference by reducing the rate. Reducing the rate exacerbates
the impact of leakage; frame transmission time increases and
so do the opportunities for collisions. Similarly, RAMAS
responds to channel disturbances by first reducing the number
of streams, thus reducing the transmission rate.

With signal leakage, the reported SNR may be low and
collisions could be interpreted as wireless losses. ARAMIS’s
PRR predictions hence may not match the measured values

from the training mechanism. When the prediction error E
m,B
k

exceeds a given threshold, which we set to 0.2 based on
our experiments, ARAMIS interprets that there is a collision
problem and limits the influence of the training mechanism;

it sets E
m,B
k to the maximum allowed value, thus maintains

transmissions at suitable high rates. For an adjacent 40MHz
interferer shown in Fig. 10(a), we improve the throughput
by up to 60% over RAMAS, 85% over Minstrel HT, and
782% over Ath9k. For an adjacent 20MHz interferer shown
in Fig. 10(b), the improvement is 220% over RAMAS, 412%
over Minstrel HT, and 1908% over Ath9k. We observe greater
performance improvements with an adjacent 20MHz interferer,
since it is the more harmful configuration [9], and ARAMIS
mitigates this interference.

We also investigate the channel sharing scenario with an
interferer on a 20MHz channel. This scenario has been shown
to create worse fairness issues than a 40MHz co-channel inter-
ferer whereby the slower 20MHz channel occupies the medium
for longer periods of time [9]. In Fig. 10(c), we evaluate how
well the algorithms perform under such conditions.

The presence of co-channel interference slightly increases

collision probability, and thus E
m,B
k increases, but remains

under its maximum allowed value. As a result, the probability
of using high rates is slightly reduced and Minstrel HT matches
ARAMIS’s performance in some locations since those colli-
sions seldom affect Minstrel’s random probing mechanism.

The timely detection and adaptation to the channel condi-
tions give ARAMIS an advantage over other algorithms, and
this advantage is also evident in channel sharing conditions.
At all locations, ARAMIS maintains the high order rates, thus
exploiting its available channel time. ARAMIS improves the
throughput by up to 76% over RAMAS, 251% over Minstrel
HT, and 366% over Ath9k.

Mobility: We create a mobility scenario to evaluate the
responsiveness of ARAMIS to rapidly changing channel condi-
tions. With a static AP placed at Location I, we move the client
on a trolley through the adjacent corridor from the indicated
P1 to P2 at an approximate speed of 5km/h. ARAMIS achieves
throughput of 80.27Mb/s and improves the throughput by 25%
over RAMAS, 7% over Minstrel HT, and 15% over Ath9k. The
small differences in throughput in this case may be due to the
fact that ARAMIS is close to the capacity of this channel,
which is low.

Note that our ARAMIS implementation had to overcome
significant limitations due to hardware restrictions. These limi-
tations reduce the potential performance benefits of ARAMIS.
Hence, we believe that the ARAMIS performance we observe
from our experiment is a lower bound.
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VII. RELATED WORK

Wireless Link Metrics: A significant body of work has
proposed methods to characterize link performance. RSSI,
which is the most accessible link metric, has traditionally been
used to identify a link’s maximum expected throughput. Recent
studies [11], [2], [15] have shown that RSSI is an unreliable
metric to accurately predict performance. The utilization of
effective SNR [2] is proposed, where the metric is generated
using CSI feedback to accurately reflect link conditions in
OFDM environments. However, complete CSI information
could be costly to obtain and store [3] and is therefore not
supported by all 802.11n devices.

Rate Adaptation: Rate adaptation has been one of the most
popular research topics in WLANs [10], [1], [19] and new
algorithms for 802.11n networks have been proposed [2], [5],
[20], [21]. Although solutions for legacy clients have been
effective, they fall short when applied in 802.11n OFDM-
MIMO settings [5]. Existing 802.11n solutions require either
costly CSI [22], [2] or some form of a guided search (e.g.,
by probing candidate rates) to determine the best operating
rate [5], which is inefficient when the search space is large.
Other algorithms for MIMO environments do not consider
other 802.11n features, such as channel bonding [23], or
consider alternative energy efficiency goals [21].

VIII. CONCLUSION AND FUTURE WORK

The 802.11n standard has been touted as a new revolution
in Wi-Fi technology, in part because of the number of new
mechanisms that enable a multifold increase in transmission
speeds relative to 802.11a/b/g. What is clear, however, is
that while 802.11n has the theoretical ability to attain wire-
less data rates as high as a few hundred Mbps, it is only
through intelligent and adaptive transmission strategies that
such throughputs have a hope of being achieved. Among
the most crucial questions for accessing the medium is the
mechanism to select an appropriate data rate and bandwidth
combination for transmission that is correctly responsive to
changes in signal quality.

We have introduced ARAMIS, a closed-loop RA solution
that jointly adapts rate and bandwidth. Through implemen-
tation of our solution, we have demonstrated that ARAMIS
obtains impressive performance gains over leading 802.11n
rate adaptation contenders, including up to a 10 fold increase in
throughput. We believe that ARAMIS is a critical component
of a fully adaptive, intelligent 802.11n management system that
dynamically optimizes 802.11n performance in response to
changing channel conditions commonly present in operational
wireless networks. Our solution design can also be applied in
the context of the emerging 802.11ac standard, where MCS
and channel width selection are faced with further challenges.
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