
Surviving Wi-Fi Interference in Low Power ZigBee Networks

Chieh-Jan Mike Liang†, Nissanka Bodhi Priyantha‡, Jie Liu‡, Andreas Terzis†

†Department of Computer Science ‡Microsoft Research
Johns Hopkins University One Microsoft Way

Baltimore, MD Redmond, WA

{cliang4, terzis}@cs.jhu.edu {jie.liu, bodhip}@microsoft.com

Abstract
Frequency overlap across wireless networks with differ-

ent radio technologies can cause severe interference and re-
duce communication reliability. The circumstances are par-
ticularly unfavorable for ZigBee networks that share the 2.4
GHz ISM band with WiFi senders capable of 10 to 100 times
higher transmission power. Our work first examines the in-
terference patterns between ZigBee and WiFi networks at
the bit-level granularity. Under certain conditions, ZigBee
activities can trigger a nearby WiFi transmitter to back off,
in which case the header is often the only part of the Zig-
Bee packet being corrupted. We call this the symmetric in-
terference regions, in comparison to the asymmetric regions
where the ZigBee signal is too weak to be detected by WiFi
senders, but WiFi activity can uniformly corrupt any bit in a
ZigBee packet. With these observations, we design BuzzBuzz
to mitigate WiFi interference through header and payload re-
dundancy. Multi-Headers provides header redundancy giv-
ing ZigBee nodes multiple opportunities to detect incom-
ing packets. Then, TinyRS, a full-featured Reed Solomon
library for resource-constrained devices, helps decoding pol-
luted packet payload. On a medium-sized testbed, BuzzBuzz
improves the ZigBee network delivery rate by 70%. Further-
more, BuzzBuzz reduces ZigBee retransmissions by a factor
of three, which increases the WiFi throughput by 10%.
Categories and Subject Descriptors

C.2.1 [Computer-Communications Networks]: Wire-
less Communication
General Terms

Design, Experimentation, Measurement, Performance
Keywords

802.11 Interference Mitigation, 802.15.4, Wireless Mea-
surement Study, Error Correction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is premitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-4503-0344-6/10/11 ...$10.00

1 Introduction
We have witnessed over the last ten years a proliferation

of wireless technologies that have now become ubiquitous.
Given the scarce availability of RF spectrum, many of these
technologies are forced to use the same unlicensed frequency
bands. For example, IEEE 802.11 (WiFi), IEEE 802.15.1
(Bluetooth) and IEEE 802.15.4 (ZigBee)1 all share the same
2.4 GHz ISM band. Cross Technology Interference (CTI) is
a consequence of this coexistence that can lead to loss of
reliability and inefficient use of the radio spectrum.

The majority of MAC protocols are designed to share
the communication medium among nodes that understand
the same PHY layer. In this model CTI is considered the
same as random background noise, despite the fact that it
can cause significant performance degradation. Even worse,
system designers have little means to coordinate across net-
works that use different wireless standards since they usu-
ally belong to different administrative domains. CTI is es-
pecially unfavorable for 802.15.4-based wireless sensor net-
works that have to counter the effects of severe interference
from ubiquitous 802.11 deployments.

We motivate the problem that CTI causes to sensors net-
works using our experience from a sensor network deploy-
ment. In this deployment, we placed a network of 90
Genomote motes [16] within a 140,000 square feet lecture
hall. The motes ran a building energy management applica-
tion and used four 15.4 channels simultaneously. 16 Xirrus
XN8 WiFi arrays were deployed in the same space. Each
WiFi array integrates eight access points, which collectively
use all WiFi channels across the entire space. During the
Microsoft PDC conference in 2008, 7,000+ people sat in the
lecture hall and at the peak time, more than 2,500 people
were connected to the WiFi network. Figure 1 shows the
number of nodes from the sensor network deployment that
successfully reported data over an ten hour period. The WiFi
activity during the first four hours completely stressed the

1Technically, the IEEE standards and industrial alliances are dif-
ferent. Since this paper primarily considers the PHY and MAC
layer interactions among these wireless networks, we make no dis-
tinction between WiFi and IEEE 802.11, likewise between ZigBee
and IEEE 802.15.4. Furthermore, to shorten the presentation, in the
rest of this paper, we will use the terms 802.15.4 and 15.4 inter-
changeably. We will also invoke the names of the standard’s differ-
ent variants (i.e., 802.11b/g) whenever necessary.

309

Time (minutes)

N
um

 r
ea

ch
ab

le
 n

od
es

During conference After conference

0 50 100 150 200 250 300 350 400 450 500 550 600
0

20

40

60

80

100

Figure 1. The number of sensor nodes reporting data
over ten hours. Thousands of users were connected to a
co-located WiFi network during the first four hours caus-
ing dramatic interference to the sensor network.

radio bands and left more than half of the sensor nodes un-
reachable.

This result is supported by multiple previous studies that
have shown that 15.4 performance significantly degrades in
the presence of 802.11 interference [6, 18, 25, 28]. The unan-
imous pessimistic conclusion of those studies was that the
only way to mitigate such interference is for the 15.4 net-
work to avoid the channels occupied by 802.11.

There are two ways to pursue interference avoidance:
static channel assignment and dynamic channel assignment
(i.e., channel hopping). In a static channel assignment
scheme, one assumes that the 802.11 network occupies a
fixed number of channels and the 15.4 network is provi-
sioned to use frequency bands that are left unused by WiFi.
As Figure 2 suggests, this assignment leaves at most two 15.4
channels free from potential 802.11 interference. Further-
more, static channel assignment may not work as planned
due to node mobility [6] and incremental WiFi deployments.

In dynamic channel assignment schemes, different nodes
in a sensor network, or the same node over different points
in time, will use different 15.4 channels to avoid interfer-
ence from nearby WiFi sources. These mechanisms face
two challenges: detect the presence of 802.11 traffic [6, 18]
and coordinate channel selection among 15.4 senders and re-
ceivers [28]. In addition to the coordination complexity, in-
terference avoidance mechanisms leave large portions of the
spectrum unused even when there is little 802.11 traffic in
them. This inefficiency is especially damaging for large and
dense sensor networks that cannot support the desired appli-
cation throughput using a single 15.4 channel [16, 30].

Instead of trying to avoid interference from 802.11 traf-
fic, the goal of this paper is to improve the coexistence of
15.4 and 802.11 networks that operate in the overlapping fre-
quency channels. Our approach is based on insights derived
from a thorough examination of the interactions between the
two radio technologies. In particular, we make several key
observations that previous work has overlooked: (1) In the
time domain, 802.11 packets are typically much shorter than
15.4 packets, so they cause bursty bit errors in 15.4 packets.
(2) A large percentage of dropped 15.4 packets are due to
corruptions in the packet headers, especially when the 15.4
transmitter is close to an 802.11 transmitter. (3) We experi-
mentally found that when a 15.4 node is close to an 802.11
transmitter, a 15.4 packet can actually cause the 802.11 trans-
mitter to back off, due to elevated channel energy. When this

14

247524702465246024552450244524402435243024252420241524102405

2412 2417 2422 2427 2432 2437 2442 2447 2452 2457 2462 2467 2472 2484

Zigbee Channels

WiFi Channels

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 6 7 8 9 10 11 12 13

2480

Figure 2. 802.11b/g and 802.15.4 frequency channels in
the 2.4 GHz ISM band. Each 802.11 channel is 22 MHz
wide, while 802.15.4 channels are 2 MHz wide.

happens, 802.11 only corrupts the 15.4 packet header (which
causes frequent packet losses), but the remainder of the 15.4
packet is left unaffected.

Depending on how 802.11 and 802.15.4 transmitters in-
teract, we partition the interfere domain of the two radios into
symmetric and asymmetric regions. In symmetric regions,
a 15.4 transmission can cause nearby 802.11 transmitters
to back off, so the receiving bit corruption happens mainly
in 15.4 packet headers. We employ a simple yet effec-
tive header redundancy mechanism, called Multiple-Headers
(MH), to address this packet header corruption problem. MH
sends the header multiple times in a single 15.4 packet. The
first (corrupted) header will cause the 802.11 transmitter to
back off, ensuring that the second header can be correctly de-
tected by the 15.4 receiver. In asymmetric regions, the 15.4
signal is too weak to affect 802.11 behavior. In this case,
we use a forward error correction (FEC) code to correct bit
errors that occur across the entire 15.4 packet. We examine
Hamming and Reed-Solomon (RS) codes and find that RS
code is particularly effective against the bursty error patterns
we observed.

We integrate these techniques into the BuzzBuzz protocol.
BuzzBuzz resides at the MAC layer and provides a general-
purpose, single hop reliable delivery mechanism that can
counter the effects of 802.11 interference. We implemented
BuzzBuzz in TinyOS and evaluated its performance on a 57-
node testbed under heavy WiFi interference. Specifically,
we compare the performance of the Collection Tree Protocol
(CTP) [3] with and without BuzzBuzz. The results show that
BuzzBuzz improves the packet delivery ratio by 70% and re-
duces the number of packet retransmissions by a factor of
three. Reducing the number of packet re-transmissions from
the sensor network leads to less interference to the WiFi net-
work and ultimately higher throughput for 802.11 as well.
Thus, BuzzBuzz creates a win-win situation in a crowded
spectrum space.

The paper makes the following contributions: (1) We are
the first to examine and quantify the interference patterns
between 802.11 and 802.15.4 networks at a bit-level gran-
ularity. (2) We explain how a 802.15.4 node may change
the behavior of nearby 802.11 transmitters creating symmet-
ric interference between the two radios. Based on these ob-
servations, we introduce targeted redundancy mechanisms,
namely MH and FEC, that improve 15.4 reception rate. (3)
We present a complete implementation of a Reed-Solomon
(RS) library suitable for resource-constrained motes. (4)

310

PayloadPreamble SFD Len CRC

4 1 2 1 0-125

SHR PHR PSDU

Figure 3. Format of a 15.4 packet. Field sizes are in bytes.

We evaluate a TinyOS implementation of BuzzBuzz through
stress tests in a testbed.

The rest of the paper is organized as follows. We provide
a brief overview of the WiFi and ZigBee protocols in Sec-
tion 2 where we also illustrate the potential for interference
between the two radio technologies. Section 3 presents the
methodology we used to quantify the interactions between
co-located 802.11 and 15.4 networks and an in-depth anal-
ysis of the root causes for the observed packet losses. In
Section 4 we present techniques for protecting 15.4 packets
from 802.11 senders located in the symmetric and asymmet-
ric regions, while in Section 5 we describe BuzzBuzz and
evaluate its performance on a 57-node TelosB testbed. We
present related work in Section 7 and conclude in Section 8.

2 Background
In order to mitigate the impact of cross-technology inter-

ference and improve the performance of 802.15.4 networks
under 802.11 interference, we need to delve into the details
of how these radio technologies interact. We summarize their
salient features in the rest of this section.
2.1 802.15.4 Overview

The IEEE 802.15.4 standard defines a PHY layer for
low-rate wireless networks operating in the 2.4 GHz ISM
band [9]. The standard defines 16 channels within this band,
each 2 MHz wide with 3 MHz inter-channel gap-bands (see
Figure 2). According to the standard, outgoing bytes are di-
vided into two 4-bit symbols and each symbol is mapped
to one of 16 pseudo-random, 32-chip sequences. The ra-
dio encodes these chip sequences using orthogonal quadra-
ture phase shift keying (O-QPSK) and transmits them at
2 Mchips/s (i.e., 250 kbps).

Figure 3 shows the format of a 15.4 packet including the
Synchronization Header (SHR) and the PHY Header (PHR),
shown in grey. The SHR header includes a 4-byte pream-
ble sequence (all bytes set to 0x00) and a 1-byte Start of
Frame Delimiter (SFD) set to 0x7A. The PHR includes a 1-
byte Length field that describes the number of bytes in the
packet’s payload, including the 2-byte CRC. The maximum
packet size is 133 bytes, including all the headers.

The MAC protocol in the 802.15.4 standard defines both
beacon-enabled and non-beacon modes. In the beacon-
less mode, the standard specifies using a CSMA/CA proto-
col [9]. While the CSMA/CA protocol uses binary expo-
nential backoff, in practice the CSMA/CA protocol imple-
mented in TinyOS uses a fixed-length backoff interval [29].

On the receiving side, a 15.4 radio synchronizes to in-
coming zero-symbols and searches for the SFD sequence to
receive incoming packets. Interference and noise can corrupt
the incoming chip stream, leading to 32-chip sequences that
do not match one of the 16 valid sequences. The receiver

TimeSender

Time
Receiver

RTS

SIFS

Data

SIFS SIFS DIFS
CTS ACK

Contention Window

Backoff
slots

Frame

Figure 4. Messages and delays defined in the 802.11 MAC
protocol. Durations of packet transmissions and time in-
tervals depend on the 802.11 variant used. The leading
RTS/CTS exchange is used only for large packets.

then maps the input sequence to the valid sequence with the
smallest Hamming distance.

We note that some 802.15.4 radios (e.g., CC2420 [26])
provide a user-defined correlation threshold that controls the
maximum Hamming distance between the received 32-chip
sequence and the valid SFD sequence that the receiver is
willing to tolerate. If this threshold is high, the received
signal must closely match the ideal signal, hence the signal-
to-noise ratio should be high. If this threshold is low, the
receiver allows a low signal-to-noise ratio at the expense of
potentially interpreting corrupted packets or channel noise as
valid packets.
2.2 802.11 Overview

WiFi networks are almost ubiquitous in office buildings,
homes, and even outdoors in urban areas. Considering that
802.11b, 802.11g, and 802.11n share the same 2.4 GHz ISM
band with 802.15.4, 802.11 transmissions can interfere with
co-located 802.15.4 networks. In the U.S., only 15.4 chan-
nels 25 and 26 do not overlap with WiFi and even these chan-
nels are covered in other parts of the world. In practice, since
most WiFi networks use channels 1, 6, and 11, 15.4 channels
15 and 20 can also be interference-free [16]. The potential
for 802.11 transmissions to overwhelm 15.4 receivers is am-
plified by the fact that 802.11 radios transmit at 10 to 100
times higher power than 15.4 radios.

Figure 4, which presents the key features of the 802.11
MAC protocol through a timing diagram, helps us under-
stand how WiFi nodes use the wireless medium. The 802.11
standard specifies using CSMA/CA with ACKs as the MAC
protocol, optionally with the addition of RTS/CTS pack-
ets [10]. The protocol also specifies the SIFS and DIFS in-
tervals when nodes should defer using the medium.

A time period, called the contention window, follows the
DIFS shown in Figure 4. This window is divided into slots.
Nodes use a uniform random distribution to select a slot and
wait for that slot before attempting to access the medium.
The node that selects the earliest slot wins while others defer.
Nodes initialize their contention window (CW) to 31 slots
and double it every time they fail to access the medium, until
CW reaches a maximum size of 1023 slots.

Table 1 summarizes the duration of the DIFS, SIFS, and
backoff slots for 802.11b and 802.11g. Also shown are the
maximum and minimum packet sizes for 802.11b, 802.11g,
and 802.15.4. It is worth noting that for many 802.11b and
802.11g packets, the entire air time is smaller than a 802.15.4
slot time. Based on the relatively small time intervals be-
tween 802.11 transmissions, one can easily see that a back-
logged 802.11 sender can potentially corrupt the vast ma-

311

Parameter 802.15.4 802.11b 802.11g
SIFS N/A 30 µs 10 µs
DIFS N/A 50 µs 28 µs
Slot time 320 µs 20 µs 9 µs
Initial CW 1-32 0-31 0-31
Successive CWs 1-8 BEB BEB
Min length packet 352 µs 202 µs 194 µs
Max length packet 4,256 µs 1,906 µs 542 µs

Table 1. Packet and interval durations for 802.11 and
802.15.4. The length of the contention windows (CW) for
802.15.4 corresponds to the MAC used by TinyOS. The
802.11 standard uses Binary Exponential Backoff (BEB).

jority of 802.15.4 packets. In the section that follows we
experimentally measure the extent of this interference.

3 Measuring WiFi and Zigbee Interactions
We conduct a series of experiments that proceed from

quantifying the macroscopic impact of 802.11 interference
to 15.4 networks, to exposing the low-level interactions be-
tween the two networks that generate the high-level behav-
iors we observe. The knowledge of when and how 15.4 pack-
ets are corrupted is used to develop a set of compensation
techniques that markedly improve the coexistence between
the two radio technologies.
3.1 Methodology

Most of the previous work that has examined the in-
teraction between 802.11 and 802.15.4 networks has fo-
cused on high-level metrics such as packet reception rate
(PRR) [4, 23]. In contrast, we examine the interaction be-
tween the two radio technologies by accurately detecting
and measuring various packet transmission events. Given
the packet and interval durations shown in Table 1, this task
requires instruments that detect and measure RF events that
are as short as a few µs.

The RFMD ML2724 narrow band radio gives us the abil-
ity to detect RF transmissions with the desired timing ac-
curacy and precision [22]. The ML2724 can be tuned to a
central frequency between 2400 and 2485 MHz and gener-
ates an analog voltage on its RSSI OUT pin that is directly
proportional to the RF signal energy received in a 2 MHz
frequency band centered at the tuned frequency. Given the
relative widths of the channels used by 802.11, 15.4, and the
ML2724 radio, it is possible to detect 802.11 packets that
collide with 15.4 transmissions without being affected by
the later transmissions. In practice, we use 15.4 channel 22,
802.11 channel 11, and set the ML2724’s center frequency
to 2465.792 MHz (equivalent of 15.4 channel 23).

We selected the ML2724 for two key reasons. First, RSSI
measurements are directly available as analog voltage out-
puts, which makes it possible to detect RSSI changes quickly
by sampling this signal at a high frequency. In contrast, the
CC2420 radio exposes the measured RSSI value as the con-
tents of an internal register; due to the delays associated with
accessing CC2420 registers over the SPI bus, it is impossible
to detect most of the 802.11 RF events by reading this RSSI
register. The second reason for using the ML2724 is its fast
RSSI response. According to the datasheet, the maximum
rise and fall times of the RSSI OUT are 4.5 µs and 3 µs re-
spectively, which make ML2724 an excellent candidate for

detecting the RF activity we are interested in.
While we use the ML2724 radio to detect 802.11 packets,

we detect events related to the transmission of 15.4 packets
using the GPIO pins of TelosB motes equipped with CC2420
radios [20]. Specifically, we leverage the observation that
the TinyOS event, CaptureSFD.captured is invoked at the
beginning and the end of 15.4 packet transmissions respec-
tively. This event is the interrupt service handler that is
triggered when the CC2420 radio toggles its pin at specific
points during a radio packet transmission. Under light load,
when interrupts are disabled only for short durations, we can
accurately detect these CC2420 events by toggling proces-
sor GPIO pins from within these TinyOS events. There is
however a fixed offset between the actual RF transmissions
and the toggling of pins on the CC2420 radio. We measured
these offsets by observing the RSSI OUT of a properly tuned
ML2724 and the GPIO pin activities of a TelosB mote using
an oscilloscope; during these measurements, we also verified
that these offsets are constant.

To accurately correlate 802.11 and 802.15.4 transmis-
sions over time we connected the RSSI OUT pin of the
ML2724 radio and the mote’s GPIO pins to the same Data
Acquisition (DAQ) card that samples and logs analog inputs
at 1 MHz frequency [17].

3.2 802.15.4 Packet Reception Ratio
The goal of the first experiments is to quantify at a high

level the impact of 802.11 interference on 15.4 links. Con-
sidering that lost 15.4 frames must be retransmitted at the
cost of increased latency and energy consumption, we adopt
packet reception ratio (PRR) as the pertinent metric for this
experiment.

Experiment setup. Indoor environments are most likely to
house overlapping 802.11 and 15.4 networks and for this rea-
son we performed a controlled experiment in the basement of
a parking garage. The parking garage had minimal structural
obstructions, enabling us to examine the interference under a
wide range of inter-node distances. The basement also min-
imized the external RF interference on our experiments; a
Wi-Spy spectrum analyzer verified that there was very low
interference from other RF sources.

The 802.11 network in this experiment consists of an
802.11 b/g access point and a laptop equipped with an 802.11
wireless radio configured in infrastructure mode. This laptop
generates a stream of 1,500-byte TCP segments using the
iperf tool. To measure the worst-case impact on the 15.4
network, we configure iperf to transmit as quickly as possi-
ble. Another laptop, connected to the access point through an
Ethernet cable, acts as the traffic sink for the WiFi network.
To ensure that our results are not biased by the implementa-
tion details of a specific 802.11 chipset, we repeat the exper-
iment using multiple access points manufactured by Belkin,
Linksys, and Netgear, with Broadcom or Atheros chipsets.
All access points produced similar results.

The 802.15.4 network consists of TelosB motes equipped
with 802.15.4-compliant TI CC24240 radios [26] running
TinyOS 2.1. A dedicated sender sends one max-size packet
(i.e., 128 bytes of payload) every 75 ms. These parameters
correspond to the sending rate of a high data-rate WSN ap-

312

802.15.4 Sender

802.15.4 Receivers

802.11 Sender

802.11 Receiver

d=15, 65, 115, 170 feet
12 feet 12 feet

Figure 5. Setup for the garage packet reception ratio ex-
periment.

plication [16]. The sender’s transmit power is set to 0 dBm
and the packets are sent to the broadcast address. We use
multiple receivers to minimize any receiver location-specific
effects and hardware artifacts. Furthermore, the 802.15.4 re-
ceivers are configured to accept packets with CRC errors,
while the transmitted packets have a predefined byte pattern
to enable off-line bit error analysis for corrupted packets.
Each receiver logs the entire packet contents for all incoming
packets by transmitting them to a dedicated PC over its se-
rial interface. Receivers also record whether a packet passed
the CRC check. We use the set up described in Section 3.1
to acquire precise timing of all 802.11 and 802.15.4 packet
transmissions. The DAQ card used for timing these transmis-
sions is connected to the same PC used to log the 802.15.4
packets.

Figure 5 illustrates the relative positions of all the nodes
used in this experiment. We examine the impact of differ-
ent levels of 802.11 interference on the packet reception ra-
tio (PRR) by varying the distance d between the 802.15.4
and 802.11 nodes. We run four sets of experiments with
d = 15,65,115,170 feet. For each value of d, we repeat
the experiment using 802.11b and 802.11g radios. During
each run, the 15.4 sender broadcasts 2,000 packets; with
five 802.15.4 receivers, this corresponds to a total of 10,000
packet receive events under ideal conditions.
Results. We identify three types of 15.4 packet reception
events: packets that are received correctly, packets that fail
the CRC tests due to corrupted bits, and packets that are lost
(i.e., transmitted but never received).

Figure 6 presents the relative percentages for each of these
three events for different values of d. As expected, 802.15.4
PRR is significantly reduced due to 802.11 interference, es-
pecially when the two networks are closer to each other. As
d increases, the 802.15.4 PRR improves since the 802.11 in-
terference becomes progressively weaker.

We observe that 802.11b traffic has a much larger impact
on the overall 802.15.4 PRR than 802.11g. Thonet et al.
made a similar observation and suggested that this difference
is due to the higher transmission rate of 802.11g networks,
which lowers the channel-time for 802.11 packets [27]. We
also observe, especially for smaller separations and 802.11b
radios, that the number of lost packets is larger than the num-
ber of packets received with bit errors. This observation sug-
gests that the front part of a 802.15.4 packet (i.e., the SHR)
is more vulnerable to 802.11 interference, especially consid-
ering the relative sizes of the different packet parts. The sec-
ond observation is important since it indicates that one needs

Distance (ft)

P
er

ce
nt

ag
e

of
 p

kt
s

(%
)

802.11b Interference

0

20

40

60

80

100

15 65 115 170

802.11g Interference

Lost pkts
Corrupted pkts
Valid pkts

15 65 115 170

Figure 6. Percentage of 15.4 packets correctly received,
corrupted, and lost as the distance between 802.11 nodes
and 15.4 nodes increases.

to focus on improving the detection of (partially) corrupted
frames in order to improve the overall PRR. We return to this
point in Section 3.4, where we present the distribution of bit
errors over a 15.4 packet.

We also found that packet transmission latency increased
by as much as 13% to 40% in the presence of 802.11g and
802.11b traffic respectively; another sign of the impact of
802.11 traffic on the 15.4 network. As discussed in Section 2,
the 15.4 radio uses a CSMA/CA protocol where it performs a
CCA check on the channel prior to each packet transmission.
Since the 15.4 radio sends a packet only if the CCA check
indicates a free channel, the latency of packet transmissions
should increase in the presence of active 802.11 traffic.

Another interesting result is the impact of the 15.4 traffic
on 802.11 throughput at d = 15 feet. We instrumented the
15.4 sender to transmit 10,000 128-byte packets at a rate of
75 ms, and the packet sniffer, WireShark, running on the
802.11 receiver recorded a 4% drop in TCP throughput.
3.3 Dynamics of 802.15.4 and 802.11 Interac-

tion
To better understand the dynamics between the overlap-

ping 802.11 and 15.4 networks shown in Figure 5 we exam-
ine next the RF activity logs captured during the experiments
described in the previous section.

Figure 7 presents a timeline of 802.11b and 15.4 traffic
activity when d = 15 feet (Figure 7(a)) and d = 115 feet
(Figure 7(b)). Each vertical box corresponds to a single 15.4
broadcast, while the grey region corresponds to 802.11b ac-
tivity, obtained from the narrow band radio as described in
Section 3.1.

One can see from Figure 7(a) that 802.11 backs-off during
802.15.4 transmissions, when the separation between 802.11
and 802.15.4 nodes is small — an observation that contra-
dicts the common belief that 802.11 nodes do not back off
in the presence of 15.4 traffic [21]. We repeated the same
experiment with five off-the-shelf 802.11b/g access points
(from Apple, Belkin, Linksys, Netgear, and OpenMesh), and
all exhibit the same behavior.

This behavior can be attributed to the 802.11 specification
that mandates performing a clear channel assessment (CCA)
prior to every data packet transmission. In other words, the
802.11b radio in our experiment sensed the channel noise
floor being above the CCA threshold and deferred its pend-
ing transmission.

313

Time (ms)

R
S

S
I (

dB
m

)

150 160 170 180 190 200 210 220 230 240

−
80

−
60

−
40

−
20

0

(a) d = 15 feet.

Time (ms)

R
S

S
I (

dB
m

)

170 180 190 200 210 220 230 240 250 260

−
80

−
60

−
40

−
20

0

(b) d = 115 feet.

Figure 7. Overlay of 802.11b and 15.4 traffic. Each verti-
cal box corresponds to a 15.4 packet transmission, while
the gray lines are RSSI measurements corresponding to
802.11 transmissions. When d is small, the 802.11 radio
backs-off when it senses a 15.4 transmission. As d in-
creases, the 802.11 radio cannot detect 15.4 transmissions
and packets collide.

We also note that in certain cases, the 802.11 radio will
not back off. First, the 802.11 specification requires that
RSSI ≥ −70 dBm for the channel to be considered busy
when TX power ≤ 50 mW [10]. Second, the 802.11 specifi-
cation lists three CCA modes (i.e., energy detection, packet
detection, and both) and vendors can implement one or more
at their discretion. 802.11 radios that use the packet detec-
tion CCA mode will declare the channel to be clear, since
they cannot decode the overheard 15.4 packet transmission.

On the other hand, Figure 7(b) suggests that 802.11 does
not back off when d is large. Nevertheless, due to the rela-
tively high transmit power of 802.11 radios, the 802.11 trans-
missions can interfere with 802.15.4 transmission event at
this distance (cf. Figure 6).

The discrepancy between 802.11 and 15.4 transmit pow-
ers leads to two distinct interference regions. In the symmet-
ric region the signal from the 15.4 sender is strong enough
to trigger the CCA check on the 802.11 transmitter. On the
other hand, in the asymmetric region the 802.11 transmitter
cannot detect 15.4 packets while it can still corrupt them.

We note that the 802.11 back-off behavior in the sym-
metric region seemingly contradicts the packet losses ob-
served in Figure 6. Specifically, in the symmetric region,
where 802.11 backs off due to ongoing 802.15.4 transmis-
sions, we expect to see lower 802.11 interference compared
to the asymmetric region. Instead, one can observe in Fig-
ure 6 that there is much larger 802.11 induced interference
in this region as observed from the large number of lost and
corrupted packets. The following sections examine and ex-

Bit position

F
re

qu
en

cy
 (

%
)

0 128 256 384 512 640 768 896 1024

0
5

10
15

20

(a) 802.11b interfering source.

Bit position

F
re

qu
en

cy
 (

%
)

0 128 256 384 512 640 768 896 1024

0
5

10
15

20

(b) 802.11g interfering source.

Figure 8. Bit-error distribution for 15.4 packets that
failed the CRC check when the interfering 802.11 trans-
mitter is in the symmetric region. It is far more likely
that the front part of the 15.4 packet will be corrupted.

plain this apparently contradictory behavior.

3.4 802.15.4 Bit Error Distribution
To resolve the contradiction presented in the previous sec-

tion, we examine the distribution of corrupted bits over 15.4
packets that failed the CRC check. Since we know the origi-
nal packet content, it is possible to identify the bits that were
corrupted during transmission.

First, Figure 8 shows the bit error distribution in the sym-
metric region. It is evident that the front section of a 802.15.4
packet has a much higher probability of incurring bit errors
compared to the rest of the packet, which has almost zero
bit errors. For now, let us sidestep the question why a col-
lision happens in the first place and focus on the extent of
the collision itself. Considering the relative durations of the
802.11 and 15.4 packets (cf. Table 1), the 802.11 transmis-
sion will finish well before the full 15.4 packet has been
sent. At this point the 802.11 sender performs a CCA check,
notices that the channel is busy, and defers any subsequent
(re)transmissions. We note that in Figures 8(a) and 8(b) the
extent of the corrupted packet region closely matches the du-
ration of a single 1,500-byte 802.11b and 802.11g packet re-
spectively.

Figure 9 illustrates this behavior in more detail, provid-
ing a zoomed-in view of the event timeline surrounding the
transmission of a 15.4 packet. It is clear that once the
first 802.11 packet collides with the 15.4 packet the 802.11
sender defers any subsequent transmissions until the end of
the 15.4 packet. The initial transmission overlap generates
the bit errors seen in Figure 8.

The large number of bit errors at the beginning of 15.4
packets can also explain the large number of missing packets
as follows. As Figure 3 shows, the front part of the 15.4

314

Time (ms)

R
S

S
I (

dB
m

)

226 228 230 232 234 236 238

−
80

−
60

−
40

−
20

0

Figure 9. Detailed view of the 802.11b and 15.4 packet
transmission timeline. The overlap at the beginning of
the 15.4 packet (vertical box) corresponds to a collision
with a 802.11 packet. The 802.11 sender defers sending
any additional packets until the 15.4 transmission com-
pletes.

frame includes the SHR and PHR headers. Several problems
can occur when the receiver cannot properly decode the SHR
and the PHR. First, if the receiver cannot properly decode the
Preamble or the SFD field, it will misinterpret the packet as
channel noise. Second, if the Length field is corrupted the
received packet will be either incomplete (when the decoded
length field value is smaller than the actual packet length) or
will contain additional junk bits (when the decoded length
field value is larger). Both cases will result in a CRC failure.

The observation that bit errors are concentrated in the
front part of the packet suggests that decreasing the size of
the 15.4 packet will not increase the PRR. The results shown
in Figure 10 confirm this hypothesis. As before, d = 15 feet,
but the 15.4 sender broadcasts packets with payload sizes
30, 50, 70, 90, and 115 bytes. Despite a three-fold increase
in payload size the PRR remains effectively constant.

We can now explain why 15.4 and 802.11 packets collide.
Looking at Figure 4, the only time that a 15.4 sender can be-
gin its transmission is during the DIFS + Contention Window
period since it otherwise senses the channel as busy. Fur-
thermore, the time granularity that the 15.4 sender senses the
medium is equal to the slot time (= 320 µs) and it senses the
medium for eight symbol periods (= 128 µs) before declaring
the channel as idle [9]. Considering the short length of the
DIFS interval and the shorter 802.11 slot time (cf. Table 1) it
is very likely that during the time the 15.4 sender senses the
channel, the 802.11 node also senses the channel. As a result
of both nodes sensing the channel idle, they start transmitting
at the same time and subsequently collide.

Finally, Figure 11 shows the 802.15.4 packet bit error dis-
tribution in the asymmetric region. Compared to results in
the symmetric regions, bit errors are almost uniformly lo-
cated throughout the 15.4 packet. We note that the lack of
bit errors near the end of the packet in the figure is partly due
to the corrupted length field.

The difference in the bit corruption patterns seen in the
two regions implies that we need to develop different tech-
niques, targeting individual regions, to overcome the nega-
tive impact of 802.11 traffic on 15.4 transmissions.

So far we have shown aggregate statistics about which
bits in the 15.4 frame are more likely to be corrupted in the
two regions. We are also interested in the number of cor-

Payload size (Byte)

P
er

ce
nt

ag
e

of
 p

kt
s

(%
)

802.11b Interference

0

20

40

60

80

100

30 50 70 90 115

802.11g Interference

30 50 70 90 115

Lost
Corrupted
Valid

Figure 10. 15.4 packet reception rate as the payload size
varies. The competing 802.11 sender lies within the sym-
metric region of the 15.4 sender. Since only bits in the
front section of the 15.4 packet are corrupted varying the
packet’s length does not affect PRR.

Bit position

F
re

qu
en

cy
 (

%
)

0 128 256 384 512 640 768 896 1024
0

1
2

3
4

5

Figure 11. Bit-error distribution for 15.4 packets that
failed the CRC check when the interfering 802.11g trans-
mitter is in the asymmetric region. Bit errors are evenly
distributed across the whole packet.

rupted bits and their distribution over individual 15.4 packets
since this information will be useful in designing protection
mechanisms. Figure 12 presents the CDF of the total num-
ber of corrupted bits in both regions for 802.11b and 802.11g
senders. Interestingly, corrupted 15.4 packets received in the
symmetric region have a wider spread in the number of cor-
rupted bits, and they are also more severely damaged than
corrupted packets received in the asymmetric region.

While Figure 12 presents the number of corrupted bits,
Figure 13 presents the density with which these bits appear
over the 15.4 packet. Specifically, it plots the probability
density function of the distance n between any two corrupted
bits in the packet. Small values of n correspond to bursts
of corrupted bits, while corrupted bits randomly scattered
throughout the header will result in large values of n. We
can see from this figure that errors occur in bursts, especially
in asymmetric regions. This corresponds to, possibly multi-
ple, 802.11 packets colliding with the 15.4 packet.

4 Protecting 15.4 packets from WiFi senders
Based on the insights from the above measurements, we

design targeted redundancy mechanisms to compensate WiFi
interference. Depending on whether the ZigBee node can
push back the WiFi transmissions, we investigate techniques
for symmetric and asymmetric regions respectively.
4.1 Symmetric Region Techniques

Section 3 shows that in the symmetric region corrupted
bits occur at the front of a 15.4 packet. Such corrupted pack-

315

Total number of bad bits

F
re

qu
en

cy
 (

%
)

●●●●●●●●●●●●●●
●●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ● ● ●●● ●● ●●● ●● ● ●

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

●

●

Asymmetric region
Symmetric region

(a) 802.11b.

Total number of bad bits

F
re

qu
en

cy
 (

%
)

●
●

●

●
●
●
●
●
●
●
●
●●
●●
●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●● ● ●

●

●

●

●

●
●
●
●●
●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

●

●

Asymmetric region
Symmetric region

(b) 802.11g.

Figure 12. CDF of the number of bad bits in a corrupted
packet.

n

F
re

qu
en

cy
 (

%
)

●
●
●●

●

●

●
●●●

802.11b Interference

0

10

20

30

40

50

60

0 10 20 30 40 50

●
●
●
●●●

●

●

●
●●●

802.11g Interference

0 10 20 30 40 50

●

●

Symmetric region
Asymmetric region

Figure 13. Distance n between any two corrupted bits in
a 15.4 packet. Errors caused by competing 802.11b and
802.11g senders occur in concentrated bursts.

ets are traditionally recovered through an Automatic Repeat
Request (ARQ) protocol. For example, the Collection Tree
Protocol (CTP), a widely used protocol in the WSN commu-
nity, uses hop-by-hop retransmissions aggressively [3]. Even
though ARQ improves the packet reception ratio, it does so
at the expense of higher energy consumption and lower chan-
nel throughput.

Considering that only the front section of the packet is
corrupted and that a large portion of packets may not be af-
fected by interference, retransmitting the same packet multi-
ple times is intuitively inefficient. In this section we inves-
tigate whether it is possible to overcome this specific form
of packet corruption without retransmissions. We start with
two straw man approaches that provide the desired outcome
only partially and conclude with a simple, yet efficient mech-
anism that does.
4.1.1 Correlation Threshold

As we described in Section 2, some 15.4 radios pro-
vide a user-defined correlation threshold that determines the
amount of noise that the radio is willing to tolerate when
decoding incoming 32-chip sequences in searching for the
SHR. Considering that WiFi interference is a form of (non-
random) noise, it is then plausible that varying the correla-
tion threshold will increase the PRR.

We tested the effectiveness of this technique by varying

Correlation threshold

P
er

ce
nt

ag
e

of
 p

kt
s

(%
)

802.11b Interference

0

20

40

60

80

100

120

12 14 16 18 20

802.11g Interference

12 14 16 18 20

Lost
Corrupted
Valid

Noise pkts

Figure 14. 15.4 PRR in the presence of 802.11b inter-
ference as the TI CC2420 correlation threshold varies.
Lower threshold values do not increase PRR but lead the
receiver to incorrectly decode channel noise as packets.

Preamble length (Byte)

P
er

ce
nt

ag
e

of
 p

kt
s

(%
)

802.11b Interference

0

20

40

60

80

100

2 5 7 9 11 13 15

802.11g Interference

2 5 7 9 11 13 15

Lost
Corrupted
Valid

Figure 15. 15.4 PRR as the preamble length varies. Due
to the shorter 802.11g packets it is possible to recover all
15.4 frames by increasing the preamble’s length.

the correlation threshold of a CC2420 receiver. In this case,
the maximum correlation threshold is 32 and the default is
set to 20. While operating in the symmetric region, we var-
ied the correlation threshold from 12 to 20 in increments of
2 and logged the received packets. Figure 14 presents the
results of this experiment. Decreasing the threshold does not
increase the number of correctly received packets. The only
change is a negative one: increasing the instances in which
the 15.4 radio mistakenly interpreted background or WiFi-
related noise as the start of a valid 15.4 packet.

4.1.2 Preamble Length
While the 15.4 specification mandates a 4-byte preamble,

radios such as the CC2420 allow the user to set the length
of the transmitted preamble up to 17 bytes. We leverage this
capability to overcome the effects of 802.11 interference on
15.4 packets as follows. Consider an instance for which the
WiFi and 15.4 packets overlap by n 15.4 bytes. Then, if the
preamble’s length was n+4 bytes, the receiver would be able
to properly decode the preamble’s last four bytes to receive
the packet correctly.

To verify that a longer preamble does indeed reduce
packet loss in the symmetric region, we ran an experiment in
which we varied the preamble length and observed the packet
reception ratio. Figure 15 illustrates the experiment’s results.
As expected, increasing the preamble length increases the
PRR. Nevertheless, this technique has two drawbacks. First,
the maximum preamble length that the CC24240 radio sup-
ports is 17 bytes. This preamble length cannot fully protect a

316

PayloadPreamble SFD Len

4 1 2 1 0-115-16N

CRC

Original Header MH Header

MAC

10

Preamble SFD Len

4 1 1

MAC

10

Figure 16. MH: a 15.4 packet with an additional header.

15.4 packet from all WiFi packets, since such transmissions
can take more than 480 µs (cf. Table 1). Second, since the
15.4 specification requires a four-byte preamble, other 15.4
radios, such as the Atmel RF230 [1], do not support variable-
length preambles.

4.1.3 Multi-Headers
Next, we introduce Multi-Headers (MH), a light-weight

sender-initiated mechanism that emulates the PRR improve-
ments due to longer preambles, but is effective against a
wider range of competing WiFi packets.

The naı̈ve approach to emulate the effect of longer pream-
bles is to send two packets back-to-back. The first packet,
whose sole purpose is to save the second packet from cor-
ruption, carries a dummy payload to make the 802.11 back
off. The following packet can then be correctly received with
higher probability. Unfortunately, it can be difficult to trans-
mit back-to-back packets. For example, the smallest inter-
packet interval with TelosB motes is as high as 600 µs, con-
sidering the time to send the STXON or STXONCCA command
over the SPI bus and the 12 symbol periods that the CC2420
radio waits before each transmission.

Rather than transmitting multiple packets, MH transmits
multiple packet headers back to back. Such transmission
of consecutive headers is feasible due to the much simpler
packet decoding approach that 15.4 radios use, compared to
802.11 radios. Specifically, 802.11 b/g radios use different
modulation schemes and transmission rates for the packet
header and the payload. This feature allows 802.11 radios
to detect and switch to a stronger new packet transmission
in the middle of a weaker packet transmission and overcome
hidden terminal effects. Furthermore, this approach enables
backward-compatibility with older 802.11 standards. On the
other hand, 15.4 radios transmit the whole packet with the
same modulation scheme and bit rate. Once the 15.4 receiver
correctly detects the SHR and PHR headers, it continues to
decode the incoming RF signal until it receives the number
of bytes mentioned in the PHR header. This feature implies
that we can safely add multiple headers within a single 15.4
packet and the receiver will treat them as part of the payload.

Figure 16 shows a legitimate 15.4 packet with one addi-
tional set of headers in the payload. Given this two header
packet structure, if there are no overlapping 802.11 trans-
missions, the receiver will detect the first SFD after the first
preamble sequence and will treat this SFD as the start of the
packet; the radio treats the second packet header as a part of
the payload. On the other hand, if the first preamble bytes
were corrupted due to an overlapping 802.11 transmission,
the 15.4 receiver may not detect the first SFD correctly; in-
stead, the receiver will detect the second SFD preceded by
four preamble bytes and assume the packet starts at the sec-
ond SFD.

With multiple packet headers per packet, the length field

15.4 header Additional headers
1st 2nd 3rd

TCP 30.5% 49.5% 10.0% 1.9%
UDP 28.2% 53.9% 12.9% 1.8%

Table 2. Percentage of packets successfully received using
the original 15.4 header or one of the additional headers.

of each header must be properly adjusted. For example, in
Figure 16, the length field of the second header corresponds
to the length of the actual payload, while the length field of
the first header is higher by 16 bytes. Given that the radio
treats additional headers as payload, the receiver’s software
stack needs to remove any remaining headers from the pay-
load before delivering the packet to the user application.

The CRC in the 15.4 packets covers both the header and
payload, which limits its applicability in the presence of MH.
Specifically, depending on the header detected by the radio,
the 15.4 header and payload will be different. To address
this problem, we disable the 15.4 CRC filtering on the radio
and modify the radio software stack to include a 2-byte CRC
within the packet’s payload. This CRC covers the innermost
header (excluding the length field) and the user payload.
Evaluation. We evaluated the effectiveness of MH using
the following experimental setup. Five 802.11g clients were
connected to the same AP in infrastructure mode to simulate
a typical office setting. These 802.11g clients sent TCP and
UDP traffic as fast as possible to the PC connected to the AP
via an Ethernet cable. The 802.11g clients were distributed
within the same office and the 15.4 sender was 15 ft away
from four 15.4 receivers. Activity traces of the 802.11g ac-
tivity collected by the ML2724 radio verified that the 15.4
sender was within the symmetric region. The 15.4 sender
broadcasted 2,000 128-byte packets at a rate of one packet
per 75 ms and it filled the packets payloads with four addi-
tional in-payload headers and a 50-byte application payload.
In addition, for each header, we replaced the source address
field in the 15.4 header with a counter that acts as a header
index for offline analysis.

Table 2 shows the number of successfully received pack-
ets as triggered by each additional header. Having even a
single additional header increases PRR by 50%. The ben-
efit of MH diminishes as we increased the number of addi-
tional headers beyond one, suggesting that two headers in
total are sufficient. Achieving an effective PRR of 80% to
82.1% (compared to the original 28%-30%) outweighs the
20% packet overhead incurred by the one additional header.
Finally, we note that we observed similar performance for
802.11b traffic.

4.2 Asymmetric Region Techniques
The results in Section 3 showed that symmetric and asym-

metric regions lead to two distinct bit error patterns. Bit er-
rors in the asymmetric region, in contrast to the symmetric
region, are uniformly distributed across the packet. There-
fore, MH, that protects only the packet header cannot protect
from these bit errors.

Packet loss due to bit errors is resolved using either ARQ
or Forward Error Correction (FEC). Although packet retrans-
mission is commonly used under low to moderate packet

317

loss, FEC is more suitable to overcome packet loss under
heavy interference for the following reason. Under heavy
interference, a packet has to be retransmitted many times,
which induces extra energy cost for the motes and increases
channel congestion.

FEC augments each packet with extra information that
enables the receiver to correct some of the bit errors. Al-
though FEC algorithms are widely used in digital commu-
nications, selecting the right algorithm and implementing it
on resource-constrained sensor nodes are non-trivial. In this
section we evaluate several FEC techniques, in terms of their
error recovery performance and implementation overhead.
4.2.1 Error-Correction Codes

An FEC transmitter applies an Error-Correction Code
(ECC) to the data to be transmitted. The ECC transforms the
message to a larger encoded message. The receiver then ap-
plies the reverse transformation to recover the original mes-
sage from the encoded message. The redundancy in the en-
coded message allows the receiver to recover the original
message in the presence of a limited number of bit errors.

One example of an ECC is the linear code that the 15.4
physical layer employs to overcome RF noise [9]. As men-
tioned in Section 2.1, the 15.4 radio maps 4-bit symbols to
32-bit chip sequences. Since the minimum Hamming dis-
tance among the sixteen predefined chip sequences is 12, if
the received chip sequence does not have bit errors at more
than 6 positions, the 15.4 radio can properly map it to the cor-
rect chip sequence. However, we argue that the 15.4 ECC is
not sufficient against external 802.11 noise, which typically
lasts longer than six chip times, or 3 µs.

Next, we evaluate two ECCs, namely the Hamming code
and the Reed-Solomon code for correcting 802.11-induced
bit errors on 802.15.4 packets.
4.2.2 Hamming Code

Hamming codes enable FEC by adding extra parity bits to
the message. They can detect up to two bit errors and correct
one bit error in the encoded message. In particular, we use
the Hamming(12,8) code, in which four parity bits are added
to every eight bits of data to generate encoded messages that
are 12 bits long. The Hamming(12,8) code can detect and
correct one bit error within the 12 bit word. If more than
one bit errors are present, the decoded message will most
likely correspond to a data word other than the original. This
implies that, once a message with unknown number of bit
errors is decoded, the validity of the decoded message has to
be verified by some other techniques such as a CRC check.

We implemente a Hamming(12,8) code-based FEC to re-
cover 802.11-induced 802.15.4 packet errors. Our imple-
mentation uses 72-byte messages, which results in 108-byte
encoded messages (we packed two 12-bit encoded values to
three bytes). The 72-byte message contains a 2-byte CRC
field to verify the messages correctness after the Hamming
decoding. This implementation uses 754 bytes of ROM (ex-
cluding the CRC code) and 82 bytes of RAM (excluding the
data and encoded message buffers). Encoding and decoding
the 108-byte messages requires 1.4 ms and 1.8 ms respec-
tively on a TelosB mote running at 4 MHz.

Our implementation places each 12-bit encoded message
in consecutive locations in the 108-byte packet payload.

Hamming(12,8) Hamming(12,8) RS
w/ Bit interleaving w/ 30-byte parity

11b 11g 11b 11g 11b 11g
15 ft 0.6% 11.7% 12.4% 57.6% 52.0% 65.2%
65 ft 4.7% 19.1% 55.6% 70.4% 85.3% 85.9%

Table 3. Percentage of corrupted packet payloads that
can be recovered by two version of the Hamming code
and the RS code.

Encoding Decoding
15-byte error 30-byte erasure no errors

36.156 ms 181.892 ms 207.824 ms 104.296 ms
Table 4. Execution time for TinyRS operations. The orig-
inal message is 65 bytes long and the RS-encoded mes-
sage contains the original 65-byte message and the 30-
byte parity.

Hence, all the 12 encoded bits are transmitted as consec-
utive bits in the radio packet. While the Hamming(12,8)
code is very efficient in terms of execution cost and mem-
ory overhead, the first column of Table 3 shows that only a
very small fraction of the corrupted messages are recovered
by the Hamming(12,8)-based FEC scheme. Its poor perfor-
mance is due to the burstiness of bit errors (see Figure 13),
which results in more than one bit error within an encoded
message thus preventing correct error recovery.

Next, we apply bit interleaving to make the encoded mes-
sage more resilient to bursty errors. Our implementation
treats the 108-byte encoded messages as a (108 × 8) se-
quence of bits. For each 12-bit encoded message, we evenly
spread each bit over the entire message (i.e., two consecutive
bits in the 12-bit message are separated by 72 bits in the inter-
leaved message). Interleaving is reversed during the decod-
ing process by concatenating 12 bits, evenly spread across
the message, to form the 12-bit encoded message.

The second column of Table 3 shows the error recovery
performance of the bit interleaved Hamming encoding. Due
to the heavy use of the bit-level operations, the execution
times for encoding and decoding a 108-byte message now
become 6.7 ms and 9.2 ms respectively. The implementation
consumes 1.4 KB of ROM and 0.1 KB of RAM space.

4.2.3 Reed-Solomon Code
The Reed-Solomon (RS) code is a block-based linear

error-correction code with a wide range of applications in
digital communications and storage. Unlike the Hamming
code, the RS code can recover from both data corruptions
and erasures; the former refers to bit flipping at unknown po-
sitions in the packet, while the latter refers to missing pieces
of data at known locations. The RS code divides a message
into x blocks of user-defined size and computes a parity of y
blocks. An RS-encoded message then consists of the original
message and the computed parity. The length of the parity
determines the maximum number of corrupted and erasure
blocks in the encoded message that the receiver can success-
fully recover from. Specifically, for y blocks of parity, the
number of erasure and corrupted blocks that the RS code can
recover from is:

2× (num corrupted blks)+1× (num erasure blks) < y

318

RS parity size (Bytes)

N
um

 tr
an

sm
is

si
on

s
(K

)

●
● ● ●

●
●

●

●

● ● ● ● ● ●
●

●

10 15 20 25 30 35 40 45 50 55 60
0

1

2

3
● ●802.11b interference 802.11g interference

Figure 17. Total number of 15.4 transmissions necessary
to transfer a 38-KB object over a single hop in the pres-
ence of interference from 802.11 traffic.

The RS code is commonly (mis-)believed to be too com-
putationally and memory intensive for resource-constrained
motes [13]. Previous work minimizes the implementation
complexity by either implementing only the encoding en-
gine [24], or focusing on recovering from data erasures
only [14]. However, since a corrupted length field can mis-
lead the radio into demodulating a smaller packet, we ar-
gue that it is advantageous to handle both data corruptions
and erasures. To this end, we have developed a full-featured
TinyOS-compatible RS library, TinyRS, based on the work
of Karn et al. [19]. The rest of this section outlines the per-
formance of RS code based on our TinyRS implementation.

TinyRS has a relatively small code footprint, requiring 2.9
KB of ROM and 1.4 KB of RAM when using 8-bit block size
and 30-byte parity. Table 4 presents the micro-benchmark
on the execution time in the case of a 65-byte message. The
encoding time is significantly lower than the decoding time
and the latter also depends on the state of the received RS-
encoded message. In Section 5, we further describe a real-
world system that attempts to reduce the impact of decoding
overhead on network throughput.

The third column of Table 3 illustrates the benefits as-
sociated with the increasing processing overhead: RS can
successfully recover four times more packets than Ham-
ming(12,8) with bit interleaving, when 15.4 packets are cor-
rupted by an 802.11b transmitter in the symmetric region.

Using larger parities increases the probability of recov-
ering bits corrupted by interference, thereby decreasing the
need for retransmissions. At the same time, larger parity de-
creases the space in the 15.4 payload that can be used to de-
liver application data, leading to more packet transmissions.

To guide the decision on the parity size, we ran simula-
tions to determine the expected number of transmissions nec-
essary to deliver a 38-KB object over a single hop for various
parity sizes. To do so, we first obtained the link’s effective
PRR by simulating the transmission of 10,000 RS-encoded
packets with various parity sizes and applying the bit errors
observed in the packet traces from Figure 6 (68 ft.). We cal-
culated the effective PRR for each parity size by counting
both valid packets and corrupted packets that RS can suc-
cessfully recover. From the effective PRR we calculate the
expected number of transmissions to deliver a 38-KB object,
shown in Figure 17. The results suggest that the 30-byte par-
ity requires the smallest number of transmissions.

Finally, to further illustrate the effectiveness of TinyRS in
reducing the expected number of transmissions, we consider

two other packet recovery strategies: packet-level and block-
level ARQ. Both approaches rely on acknowledgments to
decide whether to initiate retransmissions. However, block-
level ARQ divides a packet into sub-blocks and allows the
sender to retransmit only the corrupted blocks [5]. For sim-
plicity, we assume that the network can always successfully
delivery acknowledgement packets. In the scenario of deliv-
ering a 38-KB object mentioned before, packet-level ARQ
would need to transmit a total of 4,409 packets, while block-
level ARQ (with 30-byte blocks) would require a total of
2,313 packets. In comparison, with 30-byte parity, TinyRS
transmits only 1,720 packets. However, TinyRS requires ad-
ditional energy to encode and decode payload. In the pre-
vious example, each RS-encoded packet would use an ad-
ditional 0.435 mAs for encoding and decoding packets with
15 or less bit errors on a 4 MHz TelosB mote, or 748 mAs
for 1,720 packets. This is in comparison to 1,290 mAs and
284 mAs used by the additional transmissions in packet-level
and block-level ARQ (considering both sending data packets
and waiting for acknowledgements). If we consider that ac-
knowledgements could be lost, we expect the ARQ methods
would use even more energy.

5 BuzzBuzz MAC Layer
The results from Sections 4.1 and 4.2 show that MH and

TinyRS improve the 802.15.4 PRR in the presence of 802.11
interference. MH improves the detection of packets by pro-
tecting the packet header, while TinyRS protects against bit
errors in the packet payload. This section presents BuzzBuzz,
a MAC-layer solution that combines MH and TinyRS to im-
prove the overall PRR under 802.11 interference. Experi-
mental results from a 57-node testbed show that BuzzBuzz
improves the end-to-end data yield of the CTP data collec-
tion protocol, while reducing the overall network traffic by
71%, under severe 802.11 interference.

5.1 BuzzBuzz Protocol Design
When designing a networking solution, it is important to

identify the best architectural layer at which it should oper-
ate. We argue that both MH and TinyRS are best positioned
at the MAC layer due to the following reasons.

First, the MAC layer typically maintains neighborhood
and link quality information that BuzzBuzz can leverage to
improve the packet delivery efficiency. For example, de-
pending on the link quality, BuzzBuzz can decide if the
overhead of running the error correction code is justified.
BuzzBuzz can also leverage the MAC layer’s knowledge of
the underlying radio header format to construct MH headers.

Second, while running FEC only at the source and the
destination nodes of a multi-hop path reduces the computa-
tion cost, the bit errors accumulated over the intermediate
hops will reduce the likelihood of successfully decoding the
packet at the destination. Therefore, we optimize FEC oper-
ations for the MAC layer and perform packet encoding and
decoding on every hop along the end-to-end path.

ARQ is the most widely used approach in WSNs to im-
plement reliable delivery at the MAC layer. In ARQ, the
sender retransmits a packet if the receiver has explicitly (i.e.,
negative acknowledgement) or implicitly (i.e., the lack of
acknowledgement) indicated that the current packet is lost.

319

BuzzBuzz complements ARQ with the selective use of MH
and TinyRS. The three techniques (i.e., MH , TinyRS, and
ARQ) present different trade offs. Although ARQ has the
least space and computational overhead, it is not efficient
in very noisy environments. Similarly, MH has less com-
putational overhead than TinyRS, but is less effective in the
asymmetric region. The main challenge that BuzzBuzz ad-
dresses is deciding which of these techniques is appropriate
given the current link quality.

One can use RSSI samples, collected over a period of
time, to detect external channel interference. Musăloiu-
E. et al. proposed three aggregation functions to analyze
RSSI measurements in real time and detect noisy 15.4 chan-
nels [18]. Since interference levels and channel conditions
change over time, motes need to periodically sample the
channel in that approach. Periodic sampling of RSSI may
not be suitable for all the systems, especially those that use
low-power duty-cycling.

Instead of periodic sampling, BuzzBuzz infers the chan-
nel quality by observing the packet losses, or the lack of
packet acknowledgments. Upon receiving a packet from the
upper layer, the BuzzBuzz sender first attempts to deliver the
packet using ARQ. If the packet cannot be successfully de-
livered after three attempts, the BuzzBuzz sender adds the
FEC information, and inserts one MH header in the packet.
The sender then makes three more transmission attempts of
the encoded message before giving up. We note that the
BuzzBuzz sender explicitly indicates that a packet contains
the FEC parity by setting the reserved bit 7 in the Frame Con-
trol Field (FCF) of the 15.4 frame to 1. In addition, to help
the receiver locate the application payload, the reserved bit 8
in the FCF of the last MH header is set to 1.

The two-phase retransmission approach has the advantage
of avoiding the overhead of MH and TinyRS when exter-
nal interference is low. On the other hand, in environments
with persistent interference, performing the two-phase prob-
ing for each packet slows down the transmission as the initial
ARQ phase will most likely fail. To address this problem,
BuzzBuzz remembers the setting of the last packet transmis-
sion for 60 seconds and applies it to the next packet trans-
fer. The sender falls back to the naive retransmission scheme
after receiving three consecutive packets that pass the MH
CRC. The receiver piggy-backs this information in its ac-
knowledgments.

The results from Section 4.2 show that TinyRS requires
at least 150 ms to decode a 95-byte RS-encoded packet.
This decoding time dominates the processing delay during
packet reception. This computational overhead is incurred
even when the RS-encoded packet does not have any bit er-
rors. BuzzBuzz uses the CRC field of the packet (cf. Sec-
tion 4.2) to reduce the decoding overhead when the packet
is received with no bit errors. Specifically, BuzzBuzz uses
CRC to check the integrity of the payload, and attempts de-
coding only if the CRC check fails. CRC can be efficiently
implemented with lookup tables, and computing CRC over
65-byte application payload takes approximately 325 µs.
5.2 Evaluation

To evaluate BuzzBuzz, we integrated it with the
PacketLink component in TinyOS 2.1. As mentioned in

CTP CTP
w/ BuzzBuzz

Packet Delivery Rate 43.05% 73.90%
Avg number pkts/s in the network 38 11
% pkts not ACKed 66% 35%
% pkts received due to MH hdr N/A 10.58%
% corrupted pkts recovered with RS N/A 42.69%
% decrease in 802.11g throughput 14.51% 3.35%

Table 5. Summary of experiment results running CTP
with BuzzBuzz on a 57-node testbed.

Section 2.1, the CSMA/CA protocol implemented in TinyOS
uses a fixed-length backoff interval. We ran experiments
on a 57-node TelosB testbed deployed in an office building.
All nodes were tuned to 15.4 channel 16. We decided to
use a real testbed, because simulators such as TOSSIM do
not fully simulate the 15.4 modulation/demodulation scheme
and can not match the full realism of testbeds.

Since data collection applications dominate real-world
WSN deployments, we developed a simple application that
uses the Collection Tree Protocol (CTP) [3] to deliver 65-
byte application data from each node at a rate of one packet
per minute. CTP relies on acknowledgments and packet re-
transmissions to improve the packet delivery rate.

The 802.11 interference originated from a co-located
802.11g testbed on the same building floor. The 802.11g
testbed backbone consisted of six OpenMesh OM1P mesh
routers forming an ad-hoc mesh backbone on 802.11 channel
5, with one node acting as the gateway between the 802.11
mesh and an Ethernet network. Three Nokia N800 Inter-
net tablets used the OpenMesh network to continuously send
TCP traffic to a PC on the same Ethernet network as the
OpenMesh gateway.

To ensure that CTP had sufficient time to build its routing
tree, we started the 802.11g traffic 20 minutes after the start
of the 15.4 nodes. Each experiment lasted two hours. We
evaluate the effectiveness of BuzzBuzz using the end-to-end
CTP data delivery ratio (or goodput), and the amount of 15.4
network traffic.

Table 5 presents the average results from two experiment
runs. CTP with BuzzBuzz is able to deliver 71% more pack-
ets while reducing the network traffic by two third. Note that
since all data packets carry a 65-byte application payload,
the packet delivery rate can be translated into effective data
delivery rate. The difference in the amount of network traffic
is due to the aggressive retransmissions that CTP uses for un-
acknowledged packets. Specifically, a CTP node can attempt
up to 30 retransmissions before discarding the packet. Since
the probability of packets having at least one bit corruption is
high in the presence of 802.11g traffic, many retransmissions
are needed for a successful packet delivery. The effective-
ness of BuzzBuzz is also evident from the fact that it reduces
the number of packets not acknowledged by 50%.

The middle part of Table 5 presents the contributions from
each of the two BuzzBuzz components. Approximately 10%
of all packets received (valid or corrupted) were due to the
MH header being detected by the radio. With a 30-byte par-
ity, TinyRS was able to successfully recover approximately
42% of the corrupted packets. Finally, Table 5 shows that

320

BuzzBuzz has a lower impact on the 802.11g throughput; a
3.35% decrease as compared to 14.56% decrease in the case
of CTP. This improvement is due to the fewer 15.4 packets
generated in the case of CTP with BuzzBuzz.

6 Future Directions
We have shown that BuzzBuzz achieves significant im-

provements over transmitting raw packets. These results lead
to several future directions of research.

Network-wide blocker. BuzzBuzz is a reactive approach.
Each ZigBee node operates independently to mitigate WiFi
interference. Leveraging the observation that 802.11 nodes
back off during active transmissions from nearby 15.4 nodes,
it is possible to design proactive solutions for dense ZigBee
networks. The idea is to use a collection of dedicated 802.11
blockers placed close to each 802.11 node. While there are
implementation challenges, such as the explicit coordina-
tions among the blockers and between blocks and commu-
nicating 15.4 nodes, we ran a simple experiment with one
15.4 blocker placed next to the 802.11 access point to eval-
uate the feasibility. And, we observed an increase in 15.4
throughput by as much as 26%.

Performance under 802.11n interference. The 802.11n
standard introduces several new features not present in
802.11b/g. However, these features do not completely mit-
igate the CTI problem between 15.4 and 802.11 networks,
making BuzzBuzz still relevant when mitigating WiFi inter-
ference.

With 802.11b and 802.11g, we observed that higher bit
rates make WiFi more responsive when backing off during
802.15.4 transmissions. Although the 802.11n standard sup-
ports higher bit rates, our preliminary results show that the
15.4 PRR in the presence of 802.11n traffic increased by only
3%, compared to under 802.11g interference.

Furthermore, channel bonding is a mechanism that com-
bines two adjacent 802.11 channels to create a wider channel
for higher throughput. As discussed earlier, current 15.4 de-
ployments typically make use of interference-free channels
that do not overlap with occupied 802.11 channels as a tech-
nique to avoid 802.11 interference. However, with channel
bonding, many of these interference-free channels will now
be under 802.11n interference.

7 Related Work
The WSN community has acknowledged the impact of

802.11 interference on WSN applications in various settings.
Ko et al. collected empirical results in a hospital setting
where they found that running CTP on a 15.4 network that
overlapped with an active 802.11 channel decreased the end-
to-end goodput by a factor of three [15]. Hauer et al. stud-
ied the impact of 802.11 interference on body sensor net-
works and found that the position of bit errors in 15.4 pack-
ets are temporally correlated with 802.11 traffic [6]. Hou
et al. observed a 15.4 packet loss as high as 87%, with an
802.11b sender located in between two 15.4 nodes five me-
ters apart [7].

The common approach to mitigate 802.11 interference on
15.4 networks is to switch the network to channels that do
not overlap with an active 802.11 channel. Musăloiu-E. and

Terzis [18] proposed a distributed channel selection mech-
anism that detects 802.11 interference using periodic RSSI
samples. Unfortunately, 802.11-free 15.4 channels may not
always be available. Outside of Japan, only 15.4 channels
25 and 26 do not overlap with any of the 802.11 channels.
These two channels may not be sufficient to accommodate
multiple collocated 15.4 networks, or high-throughput ap-
plications [16]. Kannan et al. proposed an off-line strat-
egy to quantify the level of link burstiness due to interfer-
ence, known as the β-factor, from RSSI traces [25]. 15.4
nodes then use this information to estimate the expected du-
ration of the interference and defer outgoing packet trans-
missions to reduce the retransmission cost. However, with
802.11-enabled mobile devices, the 802.11 interference pat-
tern may change dramatically in a short time, making off-line
approaches less effective. More recently, Boano et al. [2]
simulated general 2.4 GHz interference using CC2420 ra-
dios in an effort to identify mechanisms that can improve the
robustness of existing MAC protocols under 802.11 inter-
ference. We investigate WiFi interference with a more per-
sistent presence and heavy traffic. Instead of deferring, our
work aims to increase the PRR of 15.4 networks by being
more resilient to 802.11 interference.

Hou et al. proposed integrating an 802.11 radio chip on a
15.4-enabled medical device [7]. Before the device transmits
a 15.4 frame, it sends out an 802.11 RTS packet to reserve
the channel, preventing nearby 802.11 radios from sending
traffic. BuzzBuzz does not require any additional hardware.

While early work from the 802.11 community concluded
that 15.4 radios have little impact on 802.11 radios [8], more
recent work has amended this view. Gummadi et al. re-
ported that 15.4 signals can lower 802.11 SNR, significantly
impacting the 802.11 throughput [4]. Furthermore, Pollin et
al. showed that, despite 15.4 radios exercising carrier sense,
15.4 traffic can still collide with 802.11 transmissions and
lower 802.11 throughput [21]. We are the first to examine
these interactions at a finer granularity and found two dis-
tinct modes of 15.4 and 802.11 interference.

The wireless community has recently proposed methods
to efficiently recover from packet corruption. Lin et al. pro-
posed ZipTx that uses the RS code in 802.11 networks to
reduce the retransmission costs. In addition to the RS code,
BuzzBuzz tries to minimize the number of erasure packets
though MH. Instead of relying on computation-intensive RS
code, Maranello applies CRCs on blocks of the payload [5].
Then, based on the CRC validation feedback messages, the
sender retransmits only the corrupted data blocks. However,
efficiently sending feedback messages on a noisy channel
can be difficult. In addition, the trace-driven simulations in
Section 4.2.3 show that such a block-CRC approach may not
efficiently solve the coexistence problem between 15.4 and
802.11 networks. Jamieson et al. proposed Partial Packet
Recovery (PPR) that replicates the packet header at the end
of 802.11 packets [12], but PRR requires the use of soft-
ware radios and does not work on existing 802.11 hardware.
Finally, Bluetooth uses a 1

3 rate FEC to protect the packet
header from bit errors by repeating each bit three times [11].
On the other hand, MH replicates both the packet header and
preambles to improve detecting incoming packets.

321

8 Conclusion
This papers presents a careful analysis of the IEEE

802.15.4 and 802.11 interference patterns at 2.4 GHz ISM
band. We examine these interference patterns at a bit-level
granularity, and we explain how a 15.4 node may change the
behavior of nearby 802.11 transmitters under certain condi-
tions. With these observations, we define the symmetric in-
terference regions and asymmetric regions. This paper then
presents BuzzBuzz, a MAC layer solution that enables 15.4
nodes to coexist with WiFi networks. BuzzBuzz uses Multi-
Headers (MH) and Forward Error Correction (FEC) to over-
come the packet loss due to 802.11 interference. We im-
plemented TinyRS to show that a full-featured FEC library
is feasible on resource-constrained motes. We observe that
BuzzBuzz increases the packet reception rate on a 57-node
testbed by 70%, while simultaneously reducing the number
of 15.4 transmissions by a factor of three.

Finally, we note that although our current solutions are
software implementations running on the microcontroller at-
tached to the 15.4 radio, they can be implemented more ef-
ficiently on the radio chip itself. We hope that this paper
will act as a guidance for future 15.4 radio designs that can
withstand 802.11 interference.

Acknowledgments
We would like to thank the anonymous reviewers and our

shepherd, Prof. Koen Langendoen, for their insightful com-
ments and help in improving the quality of this paper. Chieh-
Jan Mike Liang and Andreas Terzis are partially supported
by NSF grants CNS-0546648 and CNS-0627611.

9 References
[1] Atmel Corporation. Low Power 2.4 GHz Transceiver for Zig-

Bee, IEEE 802.15.4, 6LoWPAN, RF4CE and ISM applica-
tions. Available at http://www.atmel.com/dyn/resources/prod_
documents/doc5131.pdf, 2009.

[2] C. A. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Romer, and M. A.
Zuniga. Making Sensornet MAC Protocols Robust Against Interfer-
ence. In EWSN, 2010.

[3] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collec-
tion Tree Protocol. In SenSys, 2009.

[4] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan. Understand-
ing and Mitigating the Impact of RF Interference on 802.11 Networks.
In SIGCOMM, 2007.

[5] B. Han, A. Schulman, F. Gringoli, N. Spril, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. Miller. Maranello: Practical Partial Packet Re-
covery for 802.11. In NSDI, 2010.

[6] J.-H. Hauer, V. Handziski, and A. Wolisz. Experimental Study of
the Impact of WLAN Interference on IEEE 802.15.4 Body Area Net-
works. In EWSN, 2009.

[7] J. Hou, B. Chang, D.-K. Cho, and M. Gerla. Minimizing 802.11 In-
terference on Zigbee Medical Sensors. In BodyNets, 2009.

[8] I. Howitt and J. Gutierrez. IEEE 802.15.4 Low Rate - Wireless Per-
sonal Area Network Coexistence Issues. In WCNC, 2003.

[9] IEEE Computer Society. 802.15.4: Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (LR-WPANs). Avail-
able at: http://standards.ieee.org/getieee802/download/
802.15.4-2003.pdf.

[10] IEEE Computer Society. Local and metropolitan area networks
- Specific requirements Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications. Avail-
able at: http://standards.ieee.org/getieee802/download/
802.11-2007.pdf.

[11] IEEE Computer Society. Local and metropolitan area networks - Spe-
cific requirements Part 15.1: Wireless medium access control (MAC)
and physical layer (PHY) specifications for wireless personal area
networks (WPANs). Available at: http://standards.ieee.org/
getieee802/download/802.15.1-2005_part1.pdf.

[12] K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recovery for
Wireless Networks. In SIGCOMM, 2007.

[13] J. Jeong and C.-T. Ee. Forward Error Correction in Sensor Networks.
In WWSN, 2007.

[14] S. Kim, R. Fonseca, and D. Culler. Reliable Transfer on Wireless
Sensor Networks. In SECON, 2004.

[15] J. Ko, T. Gao, and A. Terzis. Empirical Study of a Medical Sensor
Application in an Urban Emergency Department. In BodyNets, 2009.

[16] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. RACNet: A
High-Fidelity Data Center Sensing Network. In SenSys, 2009.

[17] Measurement Computing Corp. USB-2523: USB-Based 16
SE/8 DI Multifunction Measurement and Control Board. Avail-
able from: http://www.mccdaq.com/usb-data-acquisition/
USB-2523.aspx, 2009.

[18] R. Musaloiu-E. and A. Terzis. Minimising the Effect of WiFi Interfer-
ence in 802.15.4 Wireless Sensor Networks. International Journal of
Sensor Networks, 3(1):43–54, 2007.

[19] Phil Karn. Reed-Solomon Coding/Decoding Package v1.0.
Available at http://www.piclist.com/tecHREF/method/error/
rs-gp-pk-uoh-199609/index.htm., 1996.

[20] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-Low
Power Wireless Research. In IPSN/SPOTS, 2005.

[21] S. Pollin, I. Tan, B. Hodge, C. Chun, and A. Bahai. Harmful Coexis-
tence Between 802.15.4 and 802.11: A Measurement-based Study. In
CrownCom, 2008.

[22] RF Micro Devices, Inc. ML2724 2.4 GHz Low-IF 1.5 MBps
FSK Transceiver. Available from: http://www.rfmd.com/CS/
Documents/ML2724_ML2724SPACEDatasheet.pdf, Dec. 2005.

[23] S. Y. Shin, H. S. Park, and W. H. Kwon. Mutual Interference Anal-
ysis of IEEE 802.15.4 and IEEE 802.11b. Computer Networks,
51(12):3338 – 3353, 2007.

[24] H. Soude, M. Agueh, and J. Mehat. Towards An optimal Reed
Solomon Codes Selection for Sensor Networks: A Study Case Using
TmoteSky. In PE-WASUN, 2009.

[25] K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. The B-
factor: Measuring Wireless Link Burstiness. In SenSys, 2008.

[26] Texas Instruments. 2.4 GHz IEEE 802.15.4 / ZigBee-ready
RF Transceiver. Available at http://www.chipcon.com/files/
CC2420_Data_Sheet_1_3.pdf, 2006.

[27] G. Thonet, P. Allard-Jacquin, and P. Colle. ZigBee - WiFi Coex-
istence: White Paper and Test Report. Technical report, Schneider
Electrics, 2008.

[28] C. Won, J.-H. Youn, H. Ali, H. Sharif, and J. Deogun. Adaptive Ra-
dio Channel Allocation for Supporting Coexistence of 802.15.4 and
802.11b. In VTC, 2005.

[29] A. Woo and D. Culler. A Transmission Control Scheme for Media
Access in Sensor Networks. In MobiCom, 2001.

[30] G. Zhou, Y. Wu, T. Yan, T. He, C. Huang, J. A. Stankovic, and T. F.
Abdelzaher. A multi-frequency mac specially designed for wireless
sensor network applications. ACM Transactions in Embedded Com-
puting Systems, 9, 2010.

322

