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ABSTRACT

Many contributions in computer science rely on quantitative experiments to validate their efficacy.
Well-designed experiments provide useful insights while poorly-designed experiments can mislead.
Unfortunately, experiments are difficult to design and even seasoned experimenters can make
mistakes. This paper presents a framework that enables us to talk and reason about experimental
evaluation. As such, we hope it will help our community to avoid and recognize mistakes in our
experiments. This paper is the outcome of the Evaluate 2011 workshop whose goal was to improve

experimental methodology in computer science.
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Introduction

Quantitative experiments are central to
scientific investigation. A well-designed
experiment adds to scientific knowledge. In
contrast, a poorly-designed experiment can
mislead scientists because it does not
support the experimenter's claim (e.g., "A is
better than B"). Unfortunately, even with our
best diligence, we may make a mistake and
end up with a poorly-designed experiment.

This paper describes a framework for
understanding and reasoning about many of
the common mistakes in experiment design
that we have observed in the computer
science literature. Our hope is that this
framework will: a) expose common concepts
that foster effective communication about
experimentation, b) help the reader
understand and avoid mistakes in their own
experiments, and c) help reviewers reason
with clarity about the strengths and
shortcomings of papers submitted for
publication. We hope that together these
outcomes will serve to improve the quality of
experimental evaluation in computer
science.

There are many books that provide a recipe
for constructing good evaluations!23. This
paper does not try to duplicate them. Instead
it complements them by providing a
framework for understanding and critiquing
evaluations.

Experimental Evaluation

The framework in this paper applies to any
quantitative experimental evaluation. It
applies to researchers as well as
practitioners, and it is independent of the
particular scientific process they use. The
framework only assumes that experimenters
perform an experiment, and that they make a
claim based on the results.

Can you trust your experimental results?

Components of an Experiment

When designing quantitative experiments,
an experimenter must consider the following
components (Figure 1): (i) measurement
contexts, which identify the software and
hardware components to vary or hold
constant in the experiment; (ii) workloads,
which identify the benchmarks, along with
their inputs, to use in the experiment; (iii)
metrics, which identify the properties to
measure and how to measure them; and (iv)
data analysis and interpretation, which
identifies how to analyze the data and how
to interpret the results of the analysis to
provide insight into resulting claims.
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Figure 1. Components of an Experiment
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The measurement context and workload
together define the control and independent
variables for an experiment. They represent
the knobs the experimenter holds constant
(control) or changes (independent). For
example, an experiment to evaluate a
compiler optimization may perform
measurements with different optimization
levels (i.e., the independent variables) while
keeping the same hardware and operating
system across the experiments (i.e., the
control variables).

The metrics and data analyses together
define the dependent variables of an
experiment. They represent the gauges that
the experimenter reads. For example, the
experimenter may determine the mean and
confidence interval for the measured
execution time.
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While related, measurement context and
workloads are different components of an
experiment. Intuitively, the measurement
context is the environment in which the
experimenter places the measured system
and the workload is the load that the
experimenter applies to the measured
system.

A poorly-designed experiment makes poor
choices in one or more components.

Pitfalls in Experimentation

For each of these four components, this
paper identifies four common pitfalls (Figure
2): inappropriate, ignored, inconsistent, and
irreproducible. We abbreviate these as the
four ‘I's. Each pitfall represents a poor choice
for a component. An inappropriate
component includes elements that are
inappropriate for the experimenter's claim;
for example, including a desktop workload
when making claims about a supercomputer.
An ignored component omits aspects
relevant to the claim; for example, ignoring
compile time when making claims about the
quality of a just-in-time compiler. An
inconsistent component compares aspects
that are inconsistent with each other; for
example, making claims about the benefit of
A compared to B while comparing 4 on a
modern system to B on an antiquated
system. An irreproducible component is
one that others cannot use to reproduce the
experiments; for example an inadequately
described data analysis technique hinders
reproducibility.
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Figure 2. Pitfalls in Experimentation

Can you trust your experimental results?

The Scope of the Claim and the Evaluation

It is difficult to avoid these pitfalls when the
claim is broad. On the other hand, a narrow
claim may be of limited usefulness. For
example, it is much harder to design an
experiment to support the claim
"optimization O reduces energy
consumption of all mobile applications"” than
it is to support the claim "optimization O
reduces the energy consumption of a specific
movie player displaying a specific movie at a
specific resolution on a specific mobile
phone".

The relationship between the scope of the
evaluation and the scope of the claim is key.
The more general the experimenter’s claim,
the more difficult it will be for them to
provide a sufficiently broad evaluation. On
the other hand, the narrower the claim, the
less interesting and meaningful it is likely to
be. Understanding this relationship between
the scope of the evaluation and the scope
implied by the claim is an optimization
problem that lies at the heart of
experimental design.

The remainder of this paper develops this
framework, giving concrete and realistic
examples of the four pitfalls for each of the
four components of an experiment design.

Measurement Contexts

The measurement context defines the
environment in which an experiment runs.
For example, when evaluating the
performance of a middleware platform, the
measurement context includes the specific
hardware and operating system versions.

Scenario: To illustrate the four pitfalls that may
occur for a specific measurement context,
assume that you are an engineer at a
smartphone manufacturer.
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Inappropriate Measurement Contexts

A measurement context is inappropriate
when it is flawed or does not reflect the
measurement context that is implicit in the
claim. This may become manifest as an error
or as a distraction (a “red herring”).

Example: You claim that your smartphone
battery lasts 10 hours when running your
newspaper application. Your evaluation ran
the application while the phone was in airplane
mode, which caused your application to use
data cached locally on the phone instead of
fetching data from a server over the wireless
network.

Ignored Measurement Contexts

An aspect of the measurement context is
ignored when an experiment design does not
consider it even when it is necessary to
support the claim.

Example: You claim that your phone drops
fewer than 1% of calls. Your evaluation ignored
left-handed users, who, because they hold the
phone differently, may interfere with the
antenna.

Inconsistent Measurement Contexts

A measurement context is inconsistent when
an experiment compares two systems and
uses different measurement contexts for
each system. The different contexts may
produce incomparable results for the two
systems. Unfortunately, the more disparate
the objects of comparison, the more difficult
it is to ensure consistent measurement
contexts. Even a benign-looking difference in
contexts can introduce bias and make
measurement results incomparable. For this
reason, it may be important to randomize
experimental parameters (e.g., memory
layout in experiments that measure
performance).

Example: You claim that the optimizations that
you implemented in the most recent version of
your multi-threaded mobile phone application
led to a 20% reduction in response time. Your
evaluation compared the response time with
optimizations on a dual-core phone against the
response time without optimizations on a
single-core phone.

Irreproducible Measurement Contexts

If the measurement context is irreproducible
then the experiment is also irreproducible.
Measurement contexts may be
irreproducible because either they are not
public or they are not documented.

Example: You claim that your phone’s
operating system boots in less than 5 seconds.
Your evaluation fails to report which
smartphone model you used in your
experiment to obtain those results.

Workloads

Experimental evaluation typically involves
subjecting the system, or systems, to one or
more workloads. A workload may be
characterized as a benchmark with a given
set of inputs.

Scenario: To illustrate the four pitfalls that may
occur for workloads, assume that you are
responsible for the high-frequency trading
system of a large financial institution.

Inappropriate Workloads

A workload is inappropriate when it is
flawed or does not reflect the workload that
is implicit in the claim.

Example: You claim that your algorithmic
trading system completes 99.9% of
transactions within 3 milliseconds. Your
evaluation used a workload that represents
guiescent markets, which does not capture
high-frequency trading activity.



Ignored Workloads

In the real world, most systems are subjected
to diverse workloads. The selection of
workloads must include sufficient diversity
to support the intended claims. Alternatively,
if the workloads are not sufficiently diverse,
the claim must be narrowed appropriately.

Example: You claim that your newly developed
high-frequency trading algorithm outperforms
the currently used algorithm. Your evaluation
used a workload that ignores one of the largest
markets in which your institution participates
and on which your system is employed.

Inconsistent Workloads

When an evaluation compares two or more
systems, it is essential that the systems
under test are subjected to the same
workloads.

Example: You claim that your new system
consumes only 10% more power than your old
system. Your evaluation compared the old
system's power consumption as measured
during the "Flash Crash" of May 6, 2010, to the
new system's consumption during a day when
markets were stable.

Irreproducible Workloads

The workloads used to evaluate an
innovation should include at least some
workloads that others have access to; this
will enable others to reproduce the results.
We are careful not to say: “one should only
pick workloads that others can access”
because sometimes valuable insight can be
gained from commercially pervasive, but
proprietary, workloads that cannot be
disclosed.

Example: You claim that an upgrade of the
operating system will reduce the median
trading latency by up to 10%. Your evaluation
used a workload consisting of real-time market
data, which you fed concurrently to both

systems. However, you neither captured nor
characterized that workload in any way,
making it impossible for someone else to
examine a similar workload.

Metrics

In quantitative empirical studies, metrics are
necessary to quantify certain properties of
systems. Specifically, metrics identify the
properties that the experiment will measure
and how those properties will be measured.
Metrics can range from the end-to-end
execution time of a system, to the size of a
data structure, to the precision of static
analysis results.

Scenario: To illustrate how the four pitfalls
apply to metrics, assume you are a researcher
at a supercomputing center working on
compiler optimizations to improve
supercomputer performance.

Inappropriate Metrics

A metric is inappropriate when it is flawed
or when it does not support the intended
claims of the experiment. A common
manifestation of an inappropriate metric is
the use of a surrogate metric, which is easy
to measure, but which may not correlate
with the desired metric it replaces.

Example: You claim that your new compiler
optimization speeds up programs. Your
evaluation used instructions per cycle (IPC) to
measure performance with and without your
optimization. Because your optimization may
change the number of instructions, IPC is
inappropriate. Your optimization might
increase IPC by inserting extra no-op
instructions that execute quickly and increase
IPC without improving overall performance.

Ignored Metrics

A metric is ignored when it is excluded
despite being necessary to confirm an



evaluation's claims. There are two primary
manifestations of “ignored metrics”.

First is to ignore the cost of an innovation
while reporting only the benefit. Most
innovations have both cost and benefit and
ignoring the cost is misleading.

Second is to report only ends-based or only
means-based metrics. Both are important:
ends-based metrics (such as end-to-end
execution time) are often relevant to the
claim; means-based metrics (such as cache
misses) are necessary for confirming the
cause of the change in the ends-based metric.
Thus reporting just ends-based or just
means-based metrics is misleading.

Example: You claim that your new data-locality
optimization improves performance. Your
evaluation only measured execution time (an
ends-based metric), but did not measure the
improvement in data locality, e.g., by counting
data cache misses (a means-based metric). It
thus failed to show that the improved
performance was caused by an improvement
in data locality.

Inconsistent Metrics

To demonstrate the superiority of an
innovation, many evaluations compare that
innovation to an existing baseline. If one
metric is used for the baseline, and a (even
slightly) different metric is used for the
innovation, the metrics are inconsistent and
the measurement results are not necessarily
comparable.

Example: You claim that your optimization
reduces L2 cache misses. Your evaluation of
the unoptimized program includes both
demand-load and prefetch request misses, but
the optimized version only counts demand-
load misses.

Irreproducible Metrics

A metric's name may seem to unambiguously
define the meaning of that metric, however,
often the actual implementation of the
metric leaves a lot of flexibility. A study
needs to precisely define how the metric is
measured, otherwise future studies cannot
produce comparable measurements.

Example: You claim that your compiler
optimization reduces the number of executed
instructions. Your evaluation failed to report
whether you included the number of
speculatively executed instructions in your
count.

Data Analysis and Interpretation

Data analysis takes as input the measured
metric values (data) generated by running
workloads in a measurement context. This
component determines how to analyze the
data and interpret the results of the analysis.

Scenario: To illustrate the four pitfalls that may
occur for data analysis and interpretation,
assume that you are a software engineer
developing new functionality for your
company's web site to support a new sales
promotion. The new promotion is expected to
guadruple traffic to the company's web site;
however, the new functionality must not
significantly degrade user response time.

Inappropriate Data Analysis

A common goal of data analysis is to draw
conclusions about a population from a small
subset of the population (a sample). For this
generalization to be valid, the experiment
must use appropriate analysis methods.

Example: You claim that your sales-promotion
feature does not lead to perceptibly longer
response times. Your evaluation took a sample
of 50 measurements and computed the
minimum response time. The minimum is not



an appropriate statistic because the minimum
may be a low-probability outlier.

Ignored Data Analysis

Well-studied methods for analyzing data are
used widely among the experimental
sciences. Using these methods reduces the
risk of poor data analysis and interpretation.

Example: You claim that the mean response
time does not significantly increase. Your
evaluation took a sample of 50 measurements
and computed the mean. However, you
ignored any inferential statistics, such as
confidence intervals, that would help to
establish the statistical significance of your
result.

Inconsistent Data Analysis

Inconsistent data analysis occurs when
different data analysis techniques are
applied to data pertaining to different
objects of an experimental study.

Example: You claim that your new feature does
not increase the response time. Your
evaluation used the mean to compute the
response time of the new system. You
compared that mean to the median response
time you found in a report about the
performance of the prior system.

Irreproducible Data Analysis

For a data analysis to be reproducible, the
experiment must carefully document the
analysis it uses and identify and report any
biases in the analysis. If an experimenter
does not document their analysis and
explicitly state their biases, other
researchers have little hope of reproducing
the analyses and arriving at the same
conclusion.

Example: You claim that the increase in
response time is not statistically significant.
Your evaluation did not report the confidence

level, the corresponding confidence interval,
and the number of samples taken.

Conclusions

Although many of us can already recognize
poorly-designed experiments (at least in our
own areas), we do not have a common
vocabulary for clearly and succinctly
explaining the shortcomings of an
experiment. This paper is an attempt to
provide such a vocabulary. It is an outcome
of the Evaluate 2011 workshop, which
brought together the authors of this paper,
who are concerned with the poor state of
evaluation in their areas.

No experimental evaluation is perfect. For
example, most experiments use a set of
benchmarks that sample a range of
workloads. Using a sample is acceptable as
long as the sample is “representative”. We
believe this framework will help to identify
both the strengths and shortcomings of an
experimental evaluation. As a reader, you
must balance the shortcomings with the
strengths to determine if the experimental
evaluation is acceptable. As a practitioner,
understanding the shortcomings can help
you to improve your experiment’s design,
modify your claims, or, when appropriate,
argue why a shortcoming is acceptable.

We hope that this framework enables you to
perform better quantitative experiments and
to identify the shortcomings and strengths of
others’ experiments with clarity.
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