
Analyzing the MAC-level Behavior of Wireless Networks
in the Wild

Ratul Mahajan
Microsoft Research

Maya Rodrig
University of Washington

David Wetherall
University of Washington

John Zahorjan
University of Washington

ABSTRACT
We present Wit, a non-intrusive tool that builds on passive moni-
toring to analyze the detailed MAC-level behavior of operational
wireless networks. Wit uses three processing steps to construct an
enhanced trace of system activity. First, a robust merging proce-
dure combines the necessarily incomplete views from multiple, in-
dependent monitors into a single, more complete trace of wireless
activity. Next, a novel inference engine based on formal language
methods reconstructs packets that were not captured by any moni-
tor and determines whether each packet was received by its destina-
tion. Finally, Wit derives network performance measures from this
enhanced trace; we show how to estimate the number of stations
competing for the medium. We assess Wit with a mix of real traces
and simulation tests. We find that merging and inference both sig-
nificantly enhance the originally captured trace. We apply Wit to
multi-monitor traces from a live network to show how it facilitates
802.11 MAC analyses that would otherwise be difficult or rely on
less accurate heuristics.

Categories and Subject Descriptors
C.4 [Performance of systems]: Measurement techniques

General Terms
Measurement, performance

Keywords
Passive monitoring, measurement tool, 802.11 MAC

1. INTRODUCTION
Measurement-driven analysis of live networks is critical to un-

derstanding and improving their operation (e.g., [3, 28, 13, 18, 22,
24]). In the case of wireless, however, very little detailed informa-
tion is currently available on the performance of real deployments,
even though wireless protocols are a subject of intense research and
standardization [1, 15, 20, 16, 25]. This is particularly surprising
given the abundance of live networks, such as public hotspots, and
the apparent ease with which they can be measured.

We believe that this paradoxical state of affairs is due to fun-
damental challenges in measuring and analyzing live wireless net-
works. For instance, consider the task of determining how often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

clients retransmit their packets. This is one basic indicator of wire-
less performance that we may wish to measure. Most studies of op-
erational wireless networks to date are based on SNMP logs from
the APs or packet traces from the wire adjacent to the APs [4, 5,
7, 8, 23, 26]. However, neither method is sufficient for our task.
Traces from wired segments omit information about wireless re-
transmissions altogether. Similarly, AP logs provide coarse infor-
mation on transmissions and receptions of the AP but not on those
of the clients. It is not simply a matter of granularity. Even a com-
plete packet trace from the wireless side of the AP is not sufficient
as it does not reveal client transmissions that the AP did not receive.

A potential solution to this problem is to instrument the entire
network to obtain traces of activity at all the clients and the APs.
This approach has been successful in testbed settings [2, 10, 29].
However, it is impractical for widespread use in operational net-
works that may have many heterogeneous and transient clients be-
longing to different users.

The remaining approach, which we explore in this paper, is to de-
pend on traces obtained via passive monitoring. Here, one or more
nodes in the vicinity of the wireless network record the attributes
of all transmissions that they observe. This approach has the large
practical benefit that it is almost trivial to deploy. Unfortunately,
traces collected using it are limited in several respects. First, they
will necessarily be incomplete, due to packet drops caused by weak
signals and collisions. It is not even easy to estimate how much in-
formation is missing, which renders the trace of unknown quality.
Second, the traces do not record whether the packets were success-
fully received by their destinations. That information is needed to
compute many fundamental performance measures such as recep-
tion probability and throughput. Third, traces only record informa-
tion about packet events and omit other important network char-
acteristics, such as the offered load on the network at any given
instant. It is challenging to estimate these characteristics because,
unlike instrumentation, passive monitoring lacks access to the in-
ternal state of the nodes. These problems are also present in the
wired domain [17], but the magnitude of their effects in the wireless
domain makes them qualitatively different and more challenging.

Our goal is to tackle these challenges and develop sound method-
ologies for analyzing traces collected via passive monitoring of
wireless networks. This lets us apply passive monitoring to live net-
works and investigate questions that are not easy to answer today.
We are particularly interested in moving beyond basic performance
measures (e.g., how often do clients retransmit their packets?) to
higher-level questions concerning the network (e.g., what is the av-
erage asymmetry in the loss ratio between two nodes?) and its
interaction with the protocol (e.g., how does network performance
vary with offered load?).

In this paper, we take our first steps toward this goal and present
the design and implementation of a tool called Wit. Wit is composed
of three components that tackle each of the challenges that we iden-

75

Client

AP Merge Infer
Derive
measures

Monitor

Monitor’s
trace

Figure 1: The pipeline of our passive monitoring approach.

tify above to reconstruct a detailed record of system-wide behavior.
To help improve the inherently incomplete view of a single moni-
tor, the first component merges the independent views of multiple
monitors into a single, consistent view. The second component
uses novel inference procedures based on a formal language model
of protocol interactions to determine whether each packet was re-
ceived by its destination. It also infers and adds to the trace packets
that are missing from the merged trace. The third component de-
rives network-level measures from the enhanced trace. In addition
to simple measures such as packet reception probabilities, it esti-
mates the number of nodes contending for the medium as a mea-
sure of offered load. This characterization has not been previously
achieved to our knowledge, and we expect that future research will
add more techniques to our final component.

To evaluate the accuracy and completeness of the trace recon-
structed by Wit, we use a mix of real traces and simulation tests.
We find that the independent views of multiple monitors can be
precisely merged, which provides an effective way to gain cover-
age. Inference correctly determines the reception status of packets
in the vast majority of cases and is effective at adding packets that
are not recorded. It also supports estimates of trace completeness.
We find that Wit can accurately derive network-level measures, such
as the number of contenders, from the enhanced trace.

To further demonstrate its abilities, we apply Wit to multi-monitor
traces that we collected at the SIGCOMM 2004 conference. We
show how Wit supports the straightforward computation of metrics,
such as packet reception probabilities, in a manner that is more ac-
curate than existing heuristics. We uncover MAC-layer characteris-
tics of this environment that, to our knowledge, cannot be obtained
by other methods. For instance, we find that the network was dom-
inated by periods of low contention during which the medium was
poorly utilized even though stations were waiting to transmit pack-
ets. Our analysis suggests that the 802.11 MAC is tuned for high
contention levels that are uncommon for our measured network and
motivates the need for more adaptive MACs.

2. OUR PASSIVE MONITORING APPROACH
To make passive monitoring effective, we develop a three-phase

approach to address each key challenge that we identified: i) a sin-
gle monitor will miss many transmitted packets; ii) monitors do
not log whether a packet was received by its destination; and iii)
monitors do not log network-level information. Figure 1 shows the
resulting pipeline. The first phase uses multiple monitors to capture
more wireless activity and merges the independent views into a sin-
gle, more complete rendition. It must precisely time synchronize
the individual traces and identify and remove duplicate packets.

The second phase infers which packets were received by their
destinations and also infers packets that were not logged by any
monitor – even a dense array of monitors will miss many packets.
This phase uses a formal language technique based on the observa-
tion that, for many packets, the subsequent packet exchanges of the
802.11 protocol reveals both pieces of information.

pb

pa

pb

pa

pb

pa

pb

1 32input

pa

output

Ti
m
e

Figure 2: Our procedure to merge two traces. The ladders repre-
sent traces, and the shaded boxes represent packets. 1. Identify
common references. 2. Translate timestamps of the second trace.
3. Identify and remove duplicates.

The final phase derives network-level measures from the now
enhanced packet trace. In contrast to the first two, this phase has an
open-ended goal of deriving all measures that are needed to answer
the questions of interest. Some measures, such as packet reception
probability and throughput, are straightforward to compute, while
others require new techniques. We present a novel technique to
estimate the number of stations contending for the medium. Future
derivations might estimate, for instance, which nodes defer to one
another and detect the presence of hidden terminals.

We describe each phase in more detail below. Their implemen-
tation in Wit is described in the following section.

2.1 Merging
The input to the merging process is a number of packet traces,

each collected by a different monitor. In each, the timestamp on
a packet reflects a monitor’s local view of when the packet was
received. The goal of merging is to produce a single, consistent
timeline for all the packets observed across all the monitors, that
is, to eliminate duplicates and to assign coherent timestamps to all
packets regardless of the monitor that captured them.

To be useful, the merged trace must have timestamps accurate to
a few microseconds, the granularity of 802.11 MAC-level opera-
tions. The challenge is that the monitors’ clocks are not synchro-
nized at this granularity, and in fact may have significantly different
skews and drifts. Eliminating duplicates is another challenge. Only
a few types of 802.11 packets carry information that is guaranteed
to be unique over even a few milliseconds, and distinct transmis-
sions of bit-for-bit identical packets can happen on timescales of a
few hundred microseconds. The only way to distinguish duplicates
across traces from distinct transmissions is by time. This stresses
the need for accurate timestamps in the merged trace.

We extend the scheme of Yeo et al. [27] to accurately merge
realistic datasets with many long traces in a manner that is robust
to the vagaries of data from live networks. Like Yeo et al., we
leverage “reference” packets that can be reliably identified as being
identical across monitors. We first consider how to merge a pair of
traces and then extend merging to an arbitrary number.

We use the three step process shown in Figure 2 to merge pairs
of traces:

1. Identify the reference packets common to both monitors.
We use beacons generated by APs as references, since they carry
a unique source MAC address and the 64-bit value of a local, mi-
crosecond resolution timer. This is sufficient in practice, though
other types of packets could be used if necessary.

76

2. Use the timestamps of the references to translate the time
coordinates of the second monitor into those of the first, as shown
in the transition from Step 1 to 2 in Figure 2. We independently
translate each interval spanned by successive pairs of references
with a simple linear function: the timestamp interval in the second
trace is “stretched” or “shrunk” to match the first trace, and then
a constant is added to align the two. The resizing reflects relative
clock drift and the alignment reflects relative skew.

3. Remove duplicates by identifying them as packets of the
same type, with the same source and destination and with times-
tamp difference less than half of the minimum time to transmit a
packet (106 µsecs for 802.11b). This ensures that distinct packets
from the same source are never mistakenly identified as duplicates.

Linear timestamp translation in Step 2 assumes that the relative
clock drift is constant. If that were true over long intervals, it would
suffice to merge based on only two references. However, we find
that even our most reliable time sources exhibit varying relative
drift. This is why we use multiple references and interpolate inde-
pendently between successive pairs, reducing the impact of clock
fluctuations to short intervals. For this to be effective, common ref-
erences must be found with reasonable frequency, which we quan-
tify later. In contrast, Yeo et al. use linear regression over the
references in the entire trace to translate the time coordinates of the
second monitor [27]. We find in Section 4.2 that the precision of
this method degrades over long traces because of non-linearities in
clock behavior.1

In theory, the two-trace procedure could be directly extended to
merge arbitrary numbers by translating the time coordinates of all
the monitors into those of the first. Yeo et al. adopt this approach.
In practice, however, we find that the scarcity of common refer-
ences is a limiting factor when monitoring a large network – it is
unlikely that any one monitor will have enough references in com-
mon with each of the others. To circumvent this problem, we use a
waterfall merging process: we merge the traces from two monitors,
then add the trace from a third monitor to the merged trace, and
so on. This approach has a somewhat longer running time.2 The
benefit is improved precision: as each additional trace is merged, it
introduces new references into the partially merged result, making
it easier to find a set of references shared with the next trace dense
enough to overcome variable clock drift.

2.2 Inferring Missing Information
The inference phase serves two purposes. First, it uses the in-

formation in packets that the monitors did capture to infer at least
some that they did not. It then synthesizes as complete as possible
versions of such packets, improving the effective capture capabil-
ity. In this role, inference is similar to using more monitors and then
merging their views. Second, it introduces an entirely new class of
information to passive traces – an estimate of whether packets were
received by their destination.

The key insight behind our inference technique is that the packets
a node transmits often imply useful information about the packets it
must have received. For instance, an AP sends an ASSOCIATION
RESPONSE only if it recently received an ASSOCIATION RE-
QUEST. If the trace contains a response, but no matching request,
we know that the request was sent and that it was successfully re-
ceived. We also know that the sender of the request was the desti-

1Recent communication with Yeo informed us that they have now
evolved a technique that is similar to ours.
2It takes O(N2Z) time, where N is the number of traces and
Z the number of packets in each. Simultaneous merging takes
O(N log(N)Z) time.

nation of the response. We can thus reconstruct many key attributes
of the missing packet. While others have used such heuristics [6,
11, 21], we systematically automate this kind of reasoning.

2.2.1 The Formal Language Approach
We cast the inference problem as a language recognition task.

Sentences in the language represent legal sequences of packets ex-
changed by two endpoints that follow the protocol. We call these
packet exchanges conversations and define them at the granular-
ity of logical 802.11 operations (e.g., all packets involved in an
association attempt, or an exchange involving RTS, CTS, DATA,
and ACKs to successfully convey a single data packet). Although
longer conversations can be defined (e.g., association must precede
data transmission) to enable a slightly larger set of inferences, the
practical benefit of doing so is tiny; the additional inferences are
about relatively rare events.

We view the input trace as interleaved partial sentences from the
language. The interleaving stems from overlapping conversations
between distinct endpoint pairs. A similar view of packet traces
is taken in the context of passive testing of protocol implemen-
tations [14]. Our goal is different, however: to find valid sentences
in the language that account for what is observed in the input trace.
Thus, we do not simply ask “Is this sentence in the language?”
Rather, we presume that there was a sentence in the language for
which we see only some of the symbols and ask what complete
sentence it was likely to have been.

We use regular languages as our choice of the formal language
because they are recognizable by finite state machines (FSMs) which
have efficient implementations. FSMs also afford an efficient way
to extend traditional language recognition in a way that allows sen-
tence reconstruction from partial information, as described below.
Our short conversations can be easily described using FSMs.

2.2.2 Processing the Trace
Assume that the FSM (and so the language) for our protocol has

been defined. To infer missing information using it, we scan the
trace and process each packet as follows:

1. Classify We map packets to symbols of the language
based primarily on their type. We also use the values of the retry
bit and the fragment number field in forming symbols, which pro-
vides some additional leverage in making inferences, at the cost of
a somewhat larger symbol set and FSM. Additionally, we identify
the conversation of the packet based on its source and destination.
For packets without the source field (ACKs and CTSs), we deduce
the source from earlier packets. Non-unicast packets are considered
conversations of a single packet.

2. Generate Marker Our language contains an artificial sym-
bol, which we call the marker. We introduce a marker if the cur-
rently scanned packet indicates that an ongoing conversation has
ended. This occurs under one of the following conditions. First,
the sequence number field signals a new conversation between the
endpoints. Second, for non-AP nodes, the other endpoint of the
current packet is different from the earlier one; only APs can have
multiple simultaneous conversations. Third, there is no legal tran-
sition in the FSM for the current symbol; if nodes correctly imple-
ment the 802.11 protocol, our FSM construction (described below)
ensures that there is always a transition for packets in the current
conversation. Fourth, a timeout interval has passed since the last
seen activity for the conversation.

3. Take FSM Step If a marker was generated, first take a
step in the FSM based on the marker. By construction, this causes

77

Figure 3: Left: An FSM for our simplified example. A ‘+’ in-
dicates that the packet was received by its destination, and a ‘−’
indicates that the packet was lost. Right: The same FSM after
augmentation of the Start state (only). The dashed edges are the
augmented ones and the symbols in braces are their annotations.

a transition to the accept state, closing the current conversation and
placing the FSM in the start state. The path taken from the start
to the accept state reveals information missing from the trace, as
explained shortly. Now take a step in the FSM based on the symbol
for the current packet.

While the first two steps involve some 802.11-specific decisions,
the third step is entirely independent of the protocol being analyzed.

Key to this process is the construction of the FSM, which re-
quires elaboration. We cannot simply use an FSM corresponding
to the protocol because packets (i.e., sentence symbols) are miss-
ing from the trace and because we want to use the FSM to estimate
which packets were received by their destination. We extend tradi-
tional FSM matching to address these issues.

We explain our method in the context of a simplified version
of 802.11 data exchange conversations in which there are no frag-
ments, and instead of quitting after a configured number of at-
tempts, nodes retransmit the data packet until they receive an ACK.
An FSM for this simplified version is shown on the left in Fig-
ure 3. (In contrast to Figure 3, our production FSM for the complete
802.11 protocol has 339 states.)

Inferring Packet Reception We first explain how we in-
fer packet reception, assuming for now that all transmitted pack-
ets are present in the trace. To infer packet reception, we non-
deterministically walk both the packet received and packet lost edges
and encode the current state as the distinct set of paths traversed so
far. When the accept state is reached, the edges traversed on the
paths from the start state can be examined to determine whether
each packet was received. (We describe shortly how we handle
multiple paths to the accept state.)

For instance, as shown on the left in Figure 3, if the first packet
seen is a DATA packet, we transition along both the +DATA and
−DATA edges, producing the state {Start→S1, Start→S3}. If
an ACK is seen next, the FSM state after the transition becomes
{Start→S1→S2, Start→S1→S3}. In this case, the original
ambiguity about the reception of the DATA packet has been re-
solved: it was received since both live paths traverse the +DATA
edge. In contrast, if the second seen packet is a DATAretry , the
FSM state will be {Start→S3→S4}, and we can infer that the
DATA packet was lost.

Inferring Missing Packets We now explain how we infer
packets that are missing from the trace. With missing packets, there
may be no legal transition for the current symbol. For instance, in
our simplified example, if the first packet encountered for a conver-

sation is a DATAretry , there is no legal transition out of the start
state. Our solution is to augment the FSM with additional edges.
Abstractly, for each pair of states (Si,Sj) �= (Start, Accept), we
add an edge from Si to Sj for each distinct trail (or, a path with
no repeated edges) from Si to Sj , labeling it with the final symbol
of the trail. We annotate each augmented edge with the traversed
trail’s prefix, i.e., the path without the final symbol. The annotation
represents packets that must be missing if the edge is traversed to
reach the accept state. Example augmented edges can be seen on
the right side of Figure 3. For instance, the edge between Start
and S4 can be taken upon observing a DATAretry and its annota-
tion indicates a missing DATA packet (which was lost).

We move non-deterministically in the augmented FSM until the
accept state is reached. At this point, there may be multiple paths
from Start to Accept, all of them consistent with the captured
packets. To select, we assign weights to paths and select the lowest
weight one.3 The weight of a path reflects the number of packets
that it indicates as missing and the rarity of those packets types.
Specifically, it is the sum of the weights of its edges. Unaugmented
edges, which correspond to captured packets, have zero weight.
The weight of an augmented edge is the sum of the weights of the
symbols in the annotation. Symbol weights are inversely propor-
tional to their frequencies in the trace. (We find that our inferences
are similar even when we use the logs of these values, which trans-
lates the decision to the minimum product of the inverse frequen-
cies, rather than their sum.) This weighting method prefers the
shorter of two paths when the symbols of one are a subset of the
other, thus producing conservative estimates of missing packets.

When the path weight function is a linear operator, as in our
case, a straightforward optimization simplifies FSM construction,
without impacting results. If there are multiple trails from Si to Sj

ending with the same symbol, only the lowest weight one needs to
be considered.4 The right side of Figure 3 shows the FSM for our
example after the Start state (only) has been augmented using this
optimization.

As a final step when the accept state is reached, we synthesize
any missing packets along the selected path. We cannot always in-
fer the exact properties of a missing packet but can often do so.
Properties that are relevant for MAC-level analysis include packet
size and transmission time and rate, and which of these we can infer
depends on the details of the 802.11 protocol. The size of certain
packet types, such as ACK, RTS and CTS, is fixed. For others, such
as DATA packets, the size can be inferred if a retransmission of the
packet is observed. The transmission time of a missing packet can
be inferred if there exists a captured packet relative to which it has a
fixed spacing; for instance, the transmission time of a DATA packet
can be inferred from that of the corresponding ACK. The trans-
mission rate of certain packet types, such as PROBE REQUEST,
is usually fixed for a client, and for certain other types, such as
ACK, it depends on the rate of the previous, incoming packet (i.e.,
DATA). However, the rate of missing DATA packets cannot be in-
ferred unless the rate adaptation behavior of the sender is known.

3While we pick a single final path, our framework allows us to
enumerate others, along with measures of their plausibility. Also,
as a practical matter, our weighting method makes ties virtually
impossible for 802.11 exchanges; we have never encountered one.
4The interested reader should note that the seemingly plausible
“optimization” of moving only along the lowest weight path at each
FSM step is incorrect, because subsequent symbols can change
which paths are even possible. For instance, with an ACK in the
start state, the most likely missing packet is a DATA packet. But if
the next packet is a DISASSOCIATION REQUEST with the retry
bit on, the missing packet was a DISASSOCIATION REQUEST.

78

2.2.3 Limitations
While the FSM analysis extracts a great deal of missing infor-

mation, what can be known with certainty is inherently limited.
First, we cannot infer any conversation for which we do not log any
packet. Second, for any specific partial conversation, we cannot be
certain as to which complete conversation actually transpired. (Se-
lecting the most plausible path leads to our predictions being cor-
rect most of the time.) Finally, we cannot always infer all the prop-
erties of a missing packet. As a result, the reconstructed trace is
most appropriate for deriving measures that are aggregated across
many conversations. We show later that the impact of these uncer-
tainties is small, especially given the ability of merging to provide
good initial coverage.

We can use several methods to reduce the uncertainty of infer-
ences in the future. For instance, we can better leverage timestamp
and sequence number information: missing sequence numbers pro-
vide insight into missing conversations, and the transmission times
of inferred packets may be estimated if we observe the idle times
in the trace and mimic the 802.11 channel acquisition policy. This
may lead to more precise inferences, but at the expense of increased
complexity (e.g., while most clients increment sequence numbers
by one, some have more erratic behaviors). Our current focus is on
simpler techniques that bring the most gain.

2.3 Deriving Measures
The enhanced trace generated by merging and inference can be

mined in many ways to understand the detailed MAC-level behav-
ior. Many measures, such as packet reception probability, can now
be trivially obtained. The trace also facilitates derivations of more
sophisticated measures that were not possible before. One such
novel analysis that we present below is the estimation of the num-
ber of stations that are actively contending for the medium at any
given time. This is key to understanding the behavior of the MAC
as a function of offered load.

We consider a station to be contending for the medium from the
time the MAC-layer gets a packet to send to the time of successful
transmission. For packets that require MAC-level responses, trans-
mission is considered successful when the response is successfully
received. While the station is contending, there can be multiple re-
transmissions of the packet and there can be many responses if the
initial responses are not correctly received.

The primary difficulty in computing the number of contenders
is that judging whether a station is contending requires access to
state, such as randomly selected backoff values and carrier sense
decisions, that is not present in the trace. We overcome this by
making a simple observation: much of the relevant state can be
approximated by viewing the station’s transmissions through the
lens of the medium access rules that it implements. For instance,
for 802.11, if we see DATA and DATAretry packets from a station,
we know that it was contending for the medium in the time between
the two transmissions and at least for some time before the first one.

Our technique is shown in Figure 4. Its description assumes that
the reader is familiar with the medium access rules of 802.11. We
scan the trace in reverse chronological order and maintain a set
of current contenders along with their idle-wait-time, which is the
amount of idle time they must have waited to acquire the channel
before their last observed transmission. Stations are inserted into
the set when we observe a packet for them and ejected when that
much idle time elapses in the trace. If the transmission is original,
i.e., the retry bit is off, the idle-wait-time is set to initial-backoff to
mimic the procedure used by the station itself. If it is a retrans-
mission, we set the idle-wait-time to TIMEOUT so that the station
is eventually ejected from the contenders set even if we do not see

1: Scan the trace in reverse chronological order and do the follow-
ing for each packet.

2: Compute the time for which the medium was idle between the
current and previous transmissions.

3: Subtract this idle time from the idle-wait-time of stations in the
contenders set

4: Remove from the contenders set stations with idle-wait-time of
zero or less.

5: Add the source of the packet (or the destination for response
packets such as ACKs) to the contenders set.

6: If the packet is an original transmission, set the station’s idle-
wait-time to initial-backoff. Otherwise, set it to TIMEOUT.

Figure 4: Our technique to estimate the number of contenders.

another packet from this station (in particular, the corresponding
original transmission). Our implementation uses a TIMEOUT of
50 ms. The initial-backoff is the sum of the 802.11 DIFS interval
and a randomly selected number of slots between 0 and the initial
congestion window.

Our computation of the number of contenders is approximate.
First, the exact initial idle-wait-time cannot be known, as stations
make random choices. Second, by not decrementing idle-wait-time
when any packet is in the air, we are mimicking that the station
senses all transmissions, which of course is not true in practice.
Third, we ignore interference effects such as transmissions on other
channels. We find that the inaccuracy due to these simplifications is
not significant because the initial backoff period they affect is rel-
atively small (Section 4.4); we do not need to approximate the full
backoff procedure because that is encoded in stations’ subsequent
transmission times. Missing packets may cause larger inaccura-
cies, but their impact is limited by our use of multiple monitors and
inference to obtain a reasonably complete trace.

3. IMPLEMENTATION OF Wit
Wit is implemented as three components, halfWit,5 nitWit and

dimWit, corresponding to the three pipeline phases. As a starting
point, Wit inserts the traces collected by individual monitors into a
database, and then uses the database to pass results between stages.
At each stage the trace becomes more complete and gets annotated
with additional information. Without the external utilities that they
use, halfWit, nitWit and dimWit are roughly 1200, 3200 and 1200
lines of Perl code.

3.1 halfWit: The Merging Component
The vagaries of real data, and its sheer volume, make it chal-

lenging to build a robust and fast implementation of the conceptu-
ally simple merging process. As one example, we did not expect
the 64-bit beacon counters that we use to identify references to roll
over. But they do for some APs, perhaps because the APs were re-
set; we detect such APs and stop using their beacons as references.

For speed, halfWit uses a merge-sort like methodology. It treats
the two input traces as time-sorted queues and at each step out-
puts the queue head with the lower timestamp (after translation).
When the precision of timestamp translation is better than half the
minimum time to transmit a packet, duplicate packets will appear
together as queue heads. Thus, to identify duplicates we only need
to compare the queue heads. This is much faster than searching
deeper inside the queues for potential duplicates. But it has a subtle
interaction with waterfall merging. Consider merging traces from
three monitors such that the first and third hear a packet p1 and

5So-called because it represents about one third of Wit.

79

the second hears p2. If p2 is heard at almost the same time as p1,
the two packets can appear in the merge of the first two traces in
any order. Suppose p2 comes first. Now suppose that when mer-
ging the third trace, its copy of p1 is slightly ahead of p2 in the
merged timeline because of minor imprecision in timestamp trans-
lation. The merge-sort based method will fail to merge the two
copies of p1 because now they do not appear as queue heads to-
gether. To address this, we maintain separate logical queues for
individual traces in the partially merged trace and then identify du-
plicates among all the logical heads.

The accuracy of timestamp translation in merging may be af-
fected by monitor processing: monitors must have low variability
in the delay between packet reception and timestamp generation.
For this reason we use the timestamp applied closest to the hard-
ware from among the several available for the packets. But these
timestamps roll over roughly once per hour; we use another, persis-
tent (but more variable) timestamp to detect and correct rollovers.

The precision of the final merge depends on the order in which
the monitors are added because order determines the density of
common references at each waterfall step. Currently, it has been
sufficient to manually order the monitors based on their locations:
starting with two close monitors, we successively add monitors
close to those already merged. In the future, we will automati-
cally determine the order based on the number of references that
monitors have in common with each other.

3.2 nitWit: The Inference Component
nitWit takes the output of halfWit as its input and produces an-

notated copies of the captured and inferred packets. The critical
annotation for each packet is whether it was received. We also pig-
gyback sundry annotations on this processing phase, for instance,
we convert the retry-bit field of the 802.11 packet into a counter.

We use a customized regular expression grammar to simplify
specification of the FSM. The grammar that corresponds to the sim-
plified FSM in Figure 3 is: [DATA ACK,$,-][DATAretry ACK,$,-]*.
The fundamental units, enclosed in square brackets, consist of three
fields: a sequence of symbols, an indication of the next step if all
the packets represented by the symbols are received, and an indica-
tion of the next step if any is dropped. For instance, the first unit
above specifies that if both DATA and ACK are received, transition
to the accept state (the ‘$’ specifier). This corresponds to the path
Start→S1→S2→Accept in the FSM. If a packet is not received,
transition to the next unit of the regular expression (the ‘-’ spec-
ifier). The second unit specifies that what follows is any number
of DATAretry and ACK pairs (the ‘*’ specifier). Because it is the
final unit, the conversation ends if both packets in any such pair
are received. We use lex- and yacc-like tools to parse this language
and generate the FSM. The regular expression for the entire 802.11
protocol is 660 characters long. It produces an FSM with 339 states
and 1061 edges. Augmentation adds 15,193 edges.

For speed, we perform two optimizations. Both are guaranteed
to not impact the outcome of FSM processing. First, we statically
prune some edges in the FSM. If, from a state Si, a symbol leads to
Sj with weight cij and to Sk with weight cik, we remove the edge
to Sk if there is a path from Sj to Sk with weight cjk such that
cij+cjk <= cik. This eliminates 2,431 augmented edges. Second,
we dynamically detect when multiple paths lead to the same state
after a transition, and record only the least weight one.

3.3 dimWit: The Derived Measures Component
dimWit operates over the annotated version of captured packets

produced by nitWit. Our current implementation does not “merge”

captured and inferred packets because the exact timing for the latter
is uncertain in some cases.

Along with other measures, dimWit computes the number of con-
tenders in the network. It inserts summary information into a num-
ber of auxiliary database tables so that it may compute per con-
tention level measures without reading a number of records propor-
tional to the number of packets. This lets it analyze tens of millions
of packets in a few minutes.

4. EVALUATION
We evaluate Wit empirically to understand how well each of its

components work. We investigate the following key questions:
(a) What is the quality of time synchronization with merging?
(b) How accurate are inferences of packet reception status?
(c) What fraction of missing packets are inferred?
(d) How accurate is the estimate of the number of contenders?
(e) And finally, to complete the view of network activity, how

should we decide between adding monitors and using inference?
Ideally, we would like to answer these questions by comparing

our inferences against “ground truth” obtained from the monitored
network. But obtaining such authoritative data for deployed net-
works is intractable. Additionally, instrumentation necessary to ob-
tain the authoritative data is problematic; no commodity hardware
to our knowledge reports information on many low-level events re-
quired for validation, such as the timing of different retries of a
packet. This hinders validation in a testbed as well.

We therefore use simulation as the primary validation method.
Because our techniques depend heavily on the MAC layer, we be-
lieve that the possibly inaccurate PHY layer models in simula-
tors [12] do not significantly impact our results. But as a sanity
check, we test that Wit’s results over real traces are self-consistent.

4.1 Simulation Environment
Our simulations involve two APs and forty clients that are ran-

domly distributed on a grid and run 802.11b. We use the QualNet
simulator [19] which mimics an 802.11b-like PHY layer; packet re-
ception probability depends on the received signal strength, trans-
mission rate, other packets in flight, and random bit errors. The
simulator estimates the maximum radio range in our setup as 480
meters at 1 Mbps and 280 meters at 11 Mbps. To study diverse
monitoring environments, we consider three grid sizes: 100x100,
600x600, and 900x900 square meters. The clients generate a mix
of web- and DNS-like traffic.

Ten randomly distributed monitors passively sniff the medium
and log every packet that they can correctly decode. The timestamp
resolution is 1 µsec. Because of the finite precision of timestamps
and different propagation delays from the source to different moni-
tors, the timestamps of a packet can differ across monitors. We also
generate an authoritative simulation log containing each packet sent
and received and when each packet arrived at the MAC layer from
higher layers. This log is used to validate the outputs of our tool.

We use the same code base for analyzing simulator and real
traces. This lets us check our implementation as well as validate
our techniques.

4.2 Merging
To evaluate merging, we check its correctness and characterize

the quality of its time synchronization. Both are important to facil-
itate a wide range of MAC layer studies.

To check if halfWit merges correctly, we use it to merge the views
of the monitors in a simulation. For all three grid sizes, we find

80

0 1 2 3 4
uncertainty (usecs)

0

20

40

60
%

 o
f

du
pl

ic
at

e
pk

ts

Ch. 1
Ch. 11

0 1 2 3 4 5

uncertainty (usecs)

0

20

40

60

%
 o

f
du

pl
ic

at
e

pk
ts

Figure 5: The uncertainty of merging, shown as the histogram of
uncertainty values. Left: Real traces. Right: Simulator traces.

using the authoritative log that all duplicates and only duplicates
are removed. Because clock behaviors in the real and simulated
environments likely differ, this is not a litmus test. But, along with
manual verification of merged real traces, it boosts our confidence
in the tool’s implementation and its output with real traces.

Next, we evaluate synchronization quality, which tests the ro-
bustness of our timestamp mapping method to variabilities in real
clocks. We use real traces from a live network (described in detail
in the next section) for this experiment. It requires that quality be
measured without knowledge of ground truth. We accomplish this
by using the difference in the translated timestamps of the packets
that are identified as duplicates during the merge. This is a measure
of timestamp uncertainty. The minimum uncertainty value is zero,
for perfect synchronization. The maximum is 106 µsecs (half of the
minimum time to transmit an 802.11b packet), since duplicate iden-
tification is limited to packets within that threshold. Each pair of
identified duplicates at each waterfall step produces one uncertainty
value; we study the distribution of the values. Obtaining 106 µsecs
for even a small fraction of values suggests an incorrect merge, as
there are probably unidentified duplicates beyond the threshold.

Figure 5 plots the histogram of uncertainty values. The left graph
is for real traces from Channels 1 and 11 which have four and five
monitors, respectively. For both, the merge is very precise. The
99.9 percentile uncertainty is 2 µsecs. The worst is 8 µsecs (not in
the graph). For comparison, the uncertainty of merging the simula-
tor traces is shown on the right. Due to possibly different times-
tamps on identical packets across monitors, rather than it being
zero, the 99.9 percentile uncertainty of even simulator merges is
2 µsecs. This suggests that potential inaccuracies of real clocks do
not significantly increase the uncertainty of merging.

At 2 µsecs, the uncertainty in merged timestamps is smaller than
the slot time of 802.11b (20 µsecs). This enables a class of infer-
ences that are otherwise not possible. For instance, consider two
packets are in flight simultaneously: we can distinguish a collision
in which the two sources start in the same slot from a failure of
carrier sense in which one source does not sense the other.

We now study the relationship between the quality of time syn-
chronization and the frequency of common references. To do so,
we compute uncertainty of merging two real traces for reference
periods of 1, 10, 100, 1000, and 10,000 seconds. A period of 10
seconds means that the successive references used for time trans-
lation are spread roughly 10 seconds apart; we ignore intermediate
references. The 99.9 percentile uncertainty is 2 µsecs for 100 sec-
onds or less, 18 µsecs for 1000 seconds, and 106 µsecs for 10,000
seconds. Given that APs send beacons roughly every 100 ms, this
implies that the uncertainty can be kept down to 2 µsecs as long as
the two traces have in common at least 0.1% of the beacons from
at least one AP.

0 20 40 60 80 100
% pkts captured

75

80

85

90

95

100

%
 c

or
re

ct
 in

fe
re

nc
es

0 20 40 60 80 100
% client pkts captured (est.)

75

80

85

90

95

100

%
 c

or
re

ct
 in

fe
re

nc
es

Figure 6: Left: The accuracy of inferring packet reception. Each
point corresponds to a trace with a certain percentage of cap-
tured packets (x-axis); the y-axis shows the percentage of pack-
ets whose reception status was correctly inferred. Right: The
accuracy of inferences as a function of nitWit’s estimate of the
percentage of client’s packets captured. The y-axes start at 75%.

To compare our technique with that of Yeo et al. [27], we use
their method to merge two real traces of different lengths. We
find that the uncertainty increases with length. The 99.9 percentile
value is 5 µsecs for 1-hour traces, 12 µsecs for 2-hour traces, and
106 µsecs for 4-hour traces. (These results are better than those
reported by Yeo et al., who obtain a 40-µsec uncertainty for two
12.5-minute traces.) The last merge is likely incorrect.

4.3 Inference
To evaluate nitWit, we run it over simulator traces and study its

ability to infer packet reception statuses and missing packets.
The left side of Figure 6 shows how accurately nitWit infers whe-

ther packets were received. Correct inferences are shown as a func-
tion of the percentage of the total packets captured in a trace. We
obtain traces with different capture percentages by using different
monitors and merge combinations. Correctness and capture per-
centages are computed using the authoritative simulator log.

We see that nitWit is quite accurate: its accuracy is 95% even
when the trace contains only half of the total packets and 90% even
when it contains only a third. In our data, a common scenario in
which nitWit is relatively less accurate is when it observes one or
more ACKs without corresponding DATA packets; the ACKs by
themselves yield little information about their reception.

Interestingly, we find that nitWit can estimate when its inferences
will be relatively less accurate. This is because the accuracy of
the inferences for a client depends on the fraction of the client’s
packets that were captured. This fraction can in turn be estimated
from traces without knowledge of ground truth as a side-effect of
how many missing packets are inferred. The capture estimate we
compute is the ratio of the number of packets captured for the client
to the sum of the packets captured and inferred for the client.

The right side of Figure 6 shows how accurately nitWit infers re-
ceptions for a client’s packets as a function of this capture estimate.
Clients are binned by their capture estimate into 10%-wide bins,
and the average accuracy of the bin is plotted as the y-value. Over-
all, nitWit does well even for clients from whom a small fraction of
packets are captured. This is because the monitors often capture the
other end of the conversation. We see that accuracy decreases with
the estimate of packets captured. This enables a user of nitWit to
judge the accuracy of inferences for a client and, if need be, focus
on clients with accurate inferences.

Next, we study the ability of nitWit to complete a trace by in-
ferring missing packets. Figure 7 plots the percentage of packets
that are either inferred or captured versus the percentage captured.

81

0 20 40 60 80 100
% pkts captured

0

20

40

60

80

100

%
 (

ca
pt

ur
ed

 +
 in

fe
rr

ed
)

Figure 7: The ability of Wit to infer missing packets.

-20 -10 0 10 20
error

0

20

40

60

80

100

%
 o

f
pk

ts

100x100
600x600
900x900

Figure 8: The CDF of error in estimating the number of con-
tenders, for all three grid sizes.

Traces are binned into 5%-wide bins based on their capture per-
centage; the y-values are the averages for the bin. We see that nitWit
adds roughly 10-20% packets when the capture percentages are low
and that directly capturing 80-90% of the packets lets us infer much
of the remaining ones. In this role, nitWit is especially useful when
the monitors hear only one end of the conversation well, as it can
then infer the other end. This simplifies passive monitoring: we can
engineer placements that use fewer monitors to capture one end of
each conversation well, instead of both ends.

We also ran a self-consistency check over real traces to build
confidence that PHY layer losses in real environments do not lead
to significantly inaccurate inferences. Specifically, we infer packet
reception over two traces; the second trace is obtained by merging
the first with another trace and has 21% more packets. If realistic
PHY layer loss patterns affect our inferences significantly, the in-
ferences over the two traces are likely to differ significantly. We
find that our packet reception inferences are consistent for 93% of
the packets that are present in both traces. This is encouraging; if
this consistency reflects correctness, then nitWit takes us from hav-
ing no reception status information to correct inferences for the vast
majority of the cases, even when many packets are missing from the
input trace.

4.4 Estimating Contenders
To evaluate our estimate of the number of contenders, we run

dimWit on the merged traces of all ten simulated monitors and com-
pare the estimate against the authoritative log. Figure 8 plots the
CDF of error in our estimate at the end of each transmission. Er-
ror is computed as the estimated minus the actual number of con-
tenders. We see that our estimates are quite accurate overall. The
accuracy decreases slightly with grid size because fewer packets
are captured. In the worst case of the 900x900 grid, where 90%
of the packets are captured, dimWit is within ±1 for 87% of the
cases and ±2 for 92% of them. In the 100x100 grid, where 98% of

70 75 80 85 90 95
% pkts captured

70

80

90

100

%
 (

ca
pt

ur
ed

 +
 in

fe
rr

ed
)

90%
70%
50%
30%
10%

70 75 80 85 90 95
% pkts captured

1.00

1.05

1.10

es
t.

/a
ct

ua
l r

ec
ep

. p
ro

b. 10%
30%
50%
70%
90%

Figure 9: Effectiveness trends of inference. The x-axis is moni-
tor capture probability. The curves represent different round-trip
reception probabilities. Left: The ability to infer missing packets.
Right: The accuracy of the estimate of reception probability.

the packets are captured, our estimates are within ±1 for 95% of
the cases. Closer inspection of data reveals that high error values
tend to correspond to cases with a high number of contenders (e.g.,
estimating 15 or 25 contenders when there are 20) because the ac-
tual number changes rapidly. This reduces the relative error in our
estimates.

We find that our estimates are largely insensitive to the exact
choice of the initial-backoff parameter within a reasonable range.
We varied the parameter value between zero and twice the initial
congestion window and observe that our accuracy is not signifi-
cantly impacted. For instance, with a value of zero, our estimates
are within ±1 for 82% of the cases in the 900x900 grid. This is en-
couraging because most of the approximation in our computation
occurs in the initial backoff phase (because stations’ transmissions
do not reflect their choices in this phase). For instance, we approx-
imate that stations defer to all transmissions in the initial phase.
Interestingly, the value of zero approximates the other extreme in
which stations do not defer to any transmission in this phase, and
even then our estimates are reasonably accurate.

4.5 Inference Versus Additional Monitors
Given that both inference and additional monitors help to com-

plete our view of network activity, how should these two methods
be combined in a practical system? To understand this, we study
a simple model that exposes the ability of inference to deal with
incomplete data. We generate artificial traces in which the monitor
capture probability and the node reception probability are held con-
stant. Clients repeatedly attempt to send data. Each DATA packet,
both original and retried, and ACK is independently logged with
the capture probability. Additionally, we drop packets according
to the specified round-trip reception probability, divided equally in
each direction. We vary the capture probability from 0.7 to 0.95;
higher values represent setups with more monitors. We vary round-
trip reception probability from 0.1 to 0.9 to cover a range of condi-
tions. This experiment lets us isolate capture and reception proba-
bilities in an understandable setting.

Figure 9 shows the results of running nitWit over the traces. In
both graphs, the x-axis is capture probability, and curves represent
different round-trip reception probabilities. The left graph plots the
percentage of packets that are either captured or inferred. The right
graph plots the ratio of nitWit’s estimate of reception probability to
the actual value. This shows the accuracy of inferences over the
trace. The main conclusion we draw is that merging and inference
are complementary. At low capture probabilities, while nitWit sub-

82

Figure 10: Monitoring environment at the conference. The lay-
out shows the approximate locations of the APs and the monitors.
Ballroom hosted the main conference and had only limited wire-
less access on the back and left. Parlor acted as the terminal room
and was most active. Galleria hosted the workshops.

stantially adds to the trace, the right course of action is to add mon-
itors to improve the underlying capture probability. Assuming that
the monitors log each packet with an independent probability, addi-
tional monitors in this regime will be highly effective at adding to
the trace. There are diminishing returns as monitors become more
dense and the capture probability is already high. Here, nitWit al-
most completes the trace with missing packets that would be hard to
recover through additional monitors, especially for well-connected
clients. Similarly, while the accuracy of inferences is high over the
entire range of capture probability, it is especially good in the range
that represents good coverage by the monitors. Above 85% capture
probability, the relative error in the estimates is less than 5%, and
the absolute error is even lower.

5. APPLYING Wit TO A LIVE NETWORK
We now report on our experience in applying Wit to analyze a

live wireless network. By necessity, we focus on a few analyses; it
is straightforward to perform many others.

5.1 Monitoring Environment
Our wireless environment is the SIGCOMM 2004 conference

which spanned four days and had roughly 550 attendees. We view
this as a large, busy setting. The layout of the conference floor
of the hosting hotel is depicted in Figure 10. The official wireless
network of the conference had five APs. Except for AP D, which
operated on Channels 6 and 8, the APs operated on Channels 1 and
11. Some of the APs switched channels during the conference. In-
ternet connectivity was enabled through four separate DSL access
lines. In addition to the conference network, a number of transient
infrastructure and ad hoc networks were present, and the hotel had
its own, private wireless network on Channel 6. In our view, the
diversity and transience of clients makes it intractable to study this
environment using instrumentation.

We passively monitored this network using five PCs, each with
three wireless NICs whose external antennae were placed at least a
foot apart. Two NICs of each monitor listened on Channels 1 and
11, and the third listened on Channel 6 or 8. Monitors logged all
observed activity, including control, management and data pack-
ets. Complete MAC headers and PHY information, such as trans-
mission rate, were logged for each packet. All monitors except 4,
which was switched off and stored elsewhere at nights, were active

0 1 2 3 4 5
monitor number

0

50

100

150

200

250

#
 p

ac
ke

ts
 (

m
ill

io
n)

pre-merge (Ch. 11)
pre-merge (Ch. 1)
post-merge (Ch. 11)
post-merge (Ch. 1)

Figure 11: Cumulative packet counts as monitors are merged.
“Pre-merge” counts the total number of packets, without remov-
ing duplicates. “Post-merge” represents the merged traces.

for the entire duration of the conference. We analyze traces from
Channels 1 and 11.

The SIGCOMM 2004 wireless network had intermittent usabil-
ity problems. We understand that these stemmed from DHCP and
DNS issues and disrupted Internet connectivity for some clients.
We believe that these problems do not affect the underlying MAC
behavior which is our focus. They do, however, lower the average
load on the network during connectivity disruptions.

5.2 Merging with halfWit
We merged the traces from Monitors 1-4 on Channel 1 and from

all five monitors on Channel 11 to produce a merged trace for each
channel. Monitors were merged in the order of their number. The
Monitor 5 trace of Channel 1 did not have enough references in
common with the merged trace of the other four monitors for it to
be correctly merged. We exclude it from our analysis.

Our experience provides a useful lesson on the placement of
monitors. A natural tendency is to place monitors far apart to max-
imize the capture of unique packets. But this minimizes the overlap
between monitors. Placement that yields too little overlap is a poor
strategy because it hinders merging.

To understand the value of merging in enhancing the view of
wireless activity, we count the number of additional packets and
clients that are present in the merged trace compared to the Monitor
1 trace. We find that merging adds 28% packets and 12% clients on
Channel 1 and adds 124% packets and 37% clients on Channel 11.
In addition to more overall activity, the additional packets represent
enhanced views of individual clients: the merged trace has 12% and
60% more packets per client on the two channels.

Figure 11 shows the gains of merging in more detail. It plots the
cumulative number of packets as additional monitors are merged.
The solid curves show the number of packets before duplicates are
removed, and the dashed ones show the merged traces (after remov-
ing duplicates). There is significant overlap in what the monitors
hear, yet each additional monitor increases the number of unique
packets in the trace. This is true even when we merge monitors 1
and 2 that sit next to each other. Thus, even a dense array of mon-
itors may miss packets. This motivates the need to infer missing
packets, as we do with nitWit, because capturing this information
through monitoring alone is almost impossible.

5.3 Inference with nitWit
We applied nitWit to the two merged traces. The Channel 1 merge

has 56M packets of which 49M are unicast. nitWit processed 30M
conversations with 26K distinct packet sequences. The top three
sequences were DATA–ACK (51%), BEACON (22%), and DATA–

83

-0.8 -0.6 -0.4 -0.2 -0.0 0.2
difference in estimates

0

20

40

60

80

100

%
 o

f
cl

ie
nt

-A
P

pa
irs

Figure 12: The CDF of the difference in the reception probability
estimates of nitWit and the heuristic based on the retry-bit.

DATAretry–ACK (6%). nitWit inferred that 80% of the unicast
packets were received by their destination and inferred an extra
5.5M packets; we estimate from this that the monitors captured
90% of the total packets. The Channel 11 merge has 111M packets
of which 95M are unicast. nitWit inferred that 94% of the unicast
packets were received, and inferred an extra 24M packets with a
corresponding capture estimate of only 79%. Therefore, while the
view of Channel 1 is reasonably complete, the view of Channel 11
is poorer, and we expect the measures we compute for it to be less
accurate.

The traces also let us assess how well nitWit can infer various
properties of the missing packets. For the Channel 1 merge, we
count the inferred packets for which the exact size, transmission
time and transmission rate could be reconstructed. We find that
size, time and rate can be inferred for 76%, 64% and 42% of the
packets, respectively, and that all three properties can be inferred
for 34% of the packets. The low percentage of rate inferences is be-
cause the rate of any other packet in the conversation provides little
information about the rate of a missing data packet (which could be
improved by inferring the rate adaptation behavior of clients.)

We observe that nitWit can lead to simpler and likely more ac-
curate estimates. This is because it systematically extracts latent
information from the traces, whereas the heuristics that must other-
wise be used are based on simpler, less complete, models [11, 21].
Consider two cases:

1. In earlier work, we estimated the reception probability of
packets between clients and APs based on the retry bit [21]. Each
data packet with the retry bit set suggests that the earlier transmis-
sion was lost. As a heuristic, we estimated reception probability as
one minus the fraction of data packets with the retry bit set. Fig-
ure 12 plots the CDF of the difference between this heuristic and
the reception probability computed using nitWit’s reception infer-
ence. There is a data point for both directions of each client-AP
pair that exchange over 100 packets. We see that the heuristic com-
putes significantly lower reception probabilities, by 0.20 for 15%
of the cases and by 0.10 for 30% of them. While we cannot be
certain without ground truth, we believe that the Wit estimates are
closer to the correct values based on validation checks with the sim-
ulator. The heuristic is biased by assumptions that do not hold: it
assumes that both monitor capture and reception probability are in-
dependent of factors such as size, rate and type; in practice, data
packets are more likely to be lost than ACKs due to their bigger
size and original data packets are more likely to be lost than retries
due to their higher average transmission rate. There appears to be
no straightforward way to remove these biases from the heuristic.

2. The monitor capture percentage can be estimated with a heu-
ristic based on the DATA-ACK exchange. Each ACK without a
corresponding data packet indicates that a data packet was not cap-
tured. An estimate of the capture ratio is then the number of data

0.0 0.2 0.4 0.6 0.8 1.0
uplink reception prob.

0.0

0.2

0.4

0.6

0.8

1.0

do
w

nl
in

k
re

ce
pt

io
n

pr
ob

.

Figure 13: The uplink versus downlink reception probability for
clients in the network, computed over the entire Channel 1 trace.

0 5 10 15
contenders

0

10

20

30

40

50

%
 o

f
tim

e

0 5 10 15
contenders

0

10

20

30

40

50

%
 o

f
pk

ts

Figure 14: The prevalence of different levels of contention, com-
puted over a busy hour-long interval of the Channel 1 trace. The
graphs show the percentages of total time spent (left) and packets
sent (right) at each contention level. The y-axes end at 50%.

packets in the trace divided by the sum of this number and the num-
ber of ACKs without a corresponding data packet [11, 21]. We ob-
tain capture percentages of 94% and 85% with this heuristic for the
merged traces of Channel 1 and 11, respectively. The correspond-
ing nitWit estimates stated above are 90% and 79%, respectively.
Again, while we cannot be certain without ground truth, the heu-
ristic seems to overestimate capture. This is presumably because it
does not account for other patterns of missing packets, e.g., missing
ACKs or DATA-ACK pairs, whereas our FSM analysis can account
for such patterns using subsequent packets in the conversation.

5.4 Analysis with dimWit
We now present sample analyses of Channel 1 of the SIGCOMM

2004 wireless environment with dimWit. We present a series of
802.11 operational insights that are enabled by Wit, not simply
by passive monitoring. These observations could not have been
gathered via simulation or testbeds either because they depend on
802.11 usage in real environments.

Uplink was more reliable than downlink Figure 13 compares
the reception probability for uplink (to the AP) versus downlink
transmissions for 100 randomly selected clients. The reception
probabilities are often asymmetric and the uplink is usually more
reliable. We are surprised by this result; we expected the down-
link direction to be more reliable because APs tend to transmit at a
higher power, boosting the chances of correct reception. Addition-
ally, fewer packets from the AP should be involved in collisions
because all clients should be able to hear the AP even though they
may not all be able to hear each other. We speculate that the uplink
was more reliable because commercial APs have better, possibly
multiple, antennae that improve their decoding ability.

84

0 5 10 15
contenders

0

20

40

60

80

100

ai
rt

im
e

ut
ili

za
tio

n
(%

)

(a) airtime utilization

0 5 10 15
contenders

0.0

0.2

0.4

0.6

0.8

1.0

re
ce

pt
io

n
pr

ob
ab

ili
y

(b) reception probability

0 5 10 15
contenders

0

200

400

600

800

1000

pa
ck

et
s

pe
r

se
co

nd

(c) throughput (pkts)

transmitted
received

Figure 15: Various measures as a function of the number of contenders in the network, computed over the entire Channel 1 trace.

Offered load was mostly low Figure 14 shows histograms of
each contention level for an hour long busy interval which had 260
unique clients. The left graph plots the percentage of time spent at
each level. We see that most of the time there are no nodes waiting
to transmit. The time spent at higher contention levels decreases ex-
ponentially such that there are more than five contenders less than
4% of the time. The right graph plots the percentage of packets sent
at each contention level. We again see that the system is exercised
most at low contention levels. (Of course, no packets are sent at
zero contenders.)

While the prevalence of low contention is perhaps not surpris-
ing, it is difficult to reason about offered load without the analyses
provided by dimWit. For instance, utilization per unit time plots
(e.g, those in earlier work [11, 21]) do not distinguish between low
utilization due to a no-contender scenario and low utilization due
to a high-contender scenario in which there are backed-off stations.
Similarly, active clients per unit time plots do not convey informa-
tion as to whether the clients contend simultaneously.

The medium was inefficiently utilized Figure 15(a) plots air-
time utilization as a function of the number of contenders. Utiliza-
tion is computed as the percentage of time for which the medium
was busy with at least one transmission. The ending time of a
packet is its timestamp, and the starting time is computed using
its size and transmission rate and the length of the 802.11 (long)
preamble. Inter-frame spaces are not included in this computation.
We see that the medium is poorly utilized in the common case of
few contenders. This is surprising because it is not the case that
the medium is idle due to a lack of offered load: by definition
there is at least one station waiting to transmit at each non-zero
contention level. As reference, the theoretical utilization of a sin-
gle node sending 500 byte data packets at 5.5 Mbps and receiving
ACKs at 2 Mbps (with no losses) is roughly 75% rather than 30%
as we observe. Thus, it appears that nodes often wait unnecessarily
in backoff phases before they transmit.

Reception probability did not decrease with contention Fig-
ure 15(b) plots the packet reception probability as a function of
the contention level. We expected a decline with the number of
contenders due to increased collision losses. Instead, we were sur-
prised to find that reception probability remains steady.6 This sug-
gests that inherent “radio losses” were the dominant cause of packet
drops. Consistently, we find that only 0.45% of the packets in our
trace had their transmissions overlap with another packet.

Performance was stable at high contention levels Figure 15(c)
shows the rates of packets transmitted and received (by the des-

6The increase in reception probability from one to two contenders
might be because poorly connected clients dominate the former
case.

tination) in the network. This is the throughput of the network. It
initially increases with the number of contenders and then stabilizes
at five or more contenders. As reference, the throughput with a sin-
gle node sending 500 byte data packets at 5.5 Mbps and receiving
ACKs at 2 Mbps (with no losses) will be roughly 1200 packets per
second. Thus, we find the MAC operates well at high contention
levels. Contrary to a concern of recent work [11, 21], we do not
observe throughput decreases due to undesirable interactions with
transmission rate adaptation (where high contention leads to lower
transmission rates because of losses).

Taken together, our observations suggest that the 802.11 MAC
is tuned for higher contention levels than those we observe in our
measured network. It assumes that most losses are due to con-
tention and hence backs off in response to any loss; in reality,
most losses appear to be radio losses that do not warrant backoff.
The MAC appears overly biased towards avoiding collisions by us-
ing larger than necessary backoff intervals. The result is that the
medium usage is quite inefficient for the common case of low of-
fered load. This suggests that there is an opportunity for a MAC
that adapts to its environment to be efficient at low load as well
as high load. Indeed, recent work explores some aspects of this
problem [9].

6. RELATED WORK
Most work on measurement-driven analysis of wireless networks

either uses traces from the wired portion of the network and SNMP
logs of APs [4, 5, 7, 8, 23, 26] or uses instrumentation in testbed
settings [2, 10, 29]. While these approaches provide useful insights
into the behavior of wireless networks, the information they gather
cannot be used to study the detailed behavior of the MAC layer in
deployed networks.

A few recent works have explored passive monitoring of wire-
less networks. Jardosh et al. [11] and Rodrig et al. [21] analyze data
collected by individual monitors at live networks to analyze aspects
such as 802.11 MAC overhead, airtime utilization, and congestion.
But the view of a single monitor is inherently limited. To overcome
this limitation, Yeo et al. originally proposed merging the views of
multiple monitors [27]. Our merging approach is built on their ob-
servation regarding reference packets, though our exact technique
is different and more precise. We view our work as posing passive
monitoring as a broad approach to analyze live wireless networks
and advancing the state of the art through novel techniques to in-
fer, for instance, the reception status of packets and the number of
stations competing for the medium.

Jigsaw is a concurrently developed system to perform cross-layer
analysis of enterprise wireless networks [6]. While it focuses on a
different problem, like Wit, it builds on merging and inferring the
reception status of packets. However, its techniques are different.

85

Jigsaw focuses on merging a large number of traces in real-time,
and, in contrast to our formal approach, its inferences are based on
an ad hoc set of rules that encode common protocol exchanges.

Our view of traces as sentences from a formal language is ins-
pired by work on using traces to test protocol implementations [14].
Our goal is different, however, and to our knowledge, we are the
first to use formal methods to add missing packets to the trace and
infer packet reception statuses.

7. CONCLUSIONS
We presented Wit, a non-intrusive tool that builds on passive

monitoring to support detailed MAC-level analysis of operational
802.11 wireless networks. It uses several novel techniques to en-
hance the necessarily incomplete view of system activity obtained
through passive monitoring. First, it merges the independent views
of multiple monitors into a single, consistent view. Then, it uses an
engine based on formal language techniques to infer packets that
were missed by all monitors as well as infer which packets were
received by their destinations. Finally, it derives detailed perfor-
mance measures. We provided a procedure to estimate offered load
in terms of the number of nodes competing for the medium at any
given time. We used a mix of simulation and real traces to evaluate
our techniques, with encouraging results.

To demonstrate its abilities, we applied Wit to a multi-monitor
trace of a live network, performing analyses that would otherwise
not be possible or rely on less accurate heuristics. We uncovered a
picture of MAC operation that warrants further study. For instance,
we found that our network predominantly had low contention and
that the medium was inefficiently utilized during those times. It
appeared that the MAC was tuned for the uncommon case of high
contention levels, e.g., it backs off more than necessary in response
to any loss.

Our work is a nascent step towards non-intrusive methods that
can provide deep analyses of the behavior of operational 802.11
wireless networks. Our formal language based inference engine is
both general (e.g., we have used it to discover protocol violations)
and highly effective in extracting latent information from traces. It
will only improve as we use it to model and infer other behaviors. It
may be applicable in settings beyond 802.11 as well. Our procedure
for estimating the number of contenders highlights new kinds of
analyses that can extract higher-level information from packet-level
wireless traces. We hope that future research in this area will lead
to a better understanding of 802.11 “in the wild.”

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for feedback on the submit-

ted draft of this paper. This work was supported in part by the NSF
(Grants CNS-0133495 and CNS-0338837).

9. REFERENCES
[1] IEEE Std. 802.11i – Amendment 6: Medium access control security

enhancements, 2004.
[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level

measurements from an 802.11b mesh network. In SIGCOMM, 2004.
[3] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A

comparison of overlay routing and multihoming route control. In
SIGCOMM, 2004.

[4] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.
Characterizing user behavior and network performance in a public
wireless LAN. In SIGMETRICS, 2002.

[5] M. Balazinska and P. Castro. Characterizing mobility and network
usage in a corporate wireless local-area network. In MobiSys, 2003.

[6] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker,
and S. Savage. Jigsaw: Solving the puzzle of enterprise 802.11
analysis. In SIGCOMM, 2006.

[7] F. Chinchilla, M. Lindsey, and M. Papadopouli. Analysis of wireless
information locality and association patterns in a campus. In
INFOCOM, 2004.

[8] T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a
mature campus-wide wireless network. In MobiCom, 2004.

[9] M. Heusse, F. Rousseau, R. Guillier, and A. Duda. Idle sense: An
optimal access method for high throughput and fairness in rate
diverse wireless LANs. In SIGCOMM, 2005.

[10] K. Jamieson, B. Hull, A. Miu, and H. Balakrishnan. Understanding
the real-world performance of carrier sense. In workshop on
Experimental Approaches to Wireless Network Design and Analysis
(E-WIND), 2005.

[11] A. Jardosh, K. Ramachandran, K. Almeroth, and E. Belding-Royer.
Understanding congestion in IEEE 802.11b wireless networks. In
IMC, 2005.

[12] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott.
Experimental evaluation of wireless simulation assumptions. In
symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), 2004.

[13] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. An experimental
study of delayed Internet routing convergence. In SIGCOMM, 2000.

[14] D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John.
Passive testing and applications to network management. In ICNP,
1997.

[15] S. Mangold, Z. Zhong, G. R. Hiertz, and B. Walke. IEEE
802.11e/802.11k wireless LAN: Spectrum awareness for distributed
resource sharing. Wireless Communications and Mobile Computing,
4(8), 2004.

[16] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss resilience
with multi-radio diversity in wireless networks. In MobiCom, 2005.

[17] V. Paxson. Automated packet trace analysis of TCP implementations.
In SIGCOMM, 1997.

[18] V. Paxson. End-to-end routing behavior in the Internet. In
SIGCOMM, 1997.

[19] Qualnet network simulator by Scalable Network Technologies.
http://www.qualnet.com.

[20] I. Ramani and S. Savage. Syncscan: Practical fast handoff for 802.11
infrastructure netwroks. In INFOCOM, 2005.

[21] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan.
Measurement-based characterization of 802.11 in a hotspot setting.
In workshop on Experimental Approaches to Wireless Network
Design and Analysis (E-WIND), 2005.

[22] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The
end-to-end effects of Internet path selection. In SIGCOMM, 1999.

[23] D. Schwab and R. Bunt. Characterising the use of a campus wireless
network. In INFOCOM, 2004.

[24] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. In SIGCOMM, 2002.

[25] G. Tan and J. Guttag. The 802.11 MAC protocol leads to inefficient
equilibria. In INFOCOM, 2005.

[26] D. Tang and M. Baker. Analysis of a local-area wireless network. In
MobiCom, 2000.

[27] J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless LAN
monitoring and its applications. In workshop on Wireless Security
(WiSe), 2004.

[28] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
characteristics and origins of Internet flow rates. In SIGCOMM,
2002.

[29] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In SenSys, 2003.

86

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

