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Abstract— The popularity of IEEE 802.11 WLANs has led to
dense deployments in urban areas. High density leads to sub-
optimal performance unless the interfering networks learn how
to optimally use and share the spectrum. This paper proposes
two fully distributed algorithms that allow (i) multiple interfering
802.11 Access Points to select their operating frequency in order
to minimize interference, and (ii) users to choose the Access Point
they attach to, in order to get their fair share of the whole
network bandwidth. The proposed algorithms rely on Gibbs
sampler, and do not require explicit coordination among the
wireless devices. They only require the participating wireless
nodes to measure local quantities such as interference and
transmission delay. The algorithms are shown to lead to optimal
bandwidth sharing, where optimality is defined according to the
minimal potential delay. We analytically prove the convergence
of the proposed algorithms, and study their performance by
simulation.

I. INTRODUCTION

The increasing popularity of Wireless Local Area Networks
(WLANs) has led to a dramatic increase in the density of
WiFi Access Points (APs) in university campuses, enterprise
environments, public places and homes. High node density
results in increased interference, and overall sub-optimal user
throughput due to contention [1]. In many instances of such
environments, clients find themselves within range of a number
of APs that may belong to the same administrative authority
as the user, offer service for a charge, or combinations of the
above. The selection of the operating frequency by APs, and
the association of users to APs dictates the overall network
capacity and user performance due to the shared nature of the
802.11 medium. In this work, we advocate that WiFi networks
need to become self-organizing to make optimal use of the
shared spectrum. The above is not possible in today’s WiFi
networks because:

1) User devices are programmed to associate with the AP
with the strongest received signal strength. This leads to
scenarios where some APs have very few users, while
other APs are overloaded with many users.

2) Multiple APs in close proximity of each other often use
the same (or overlapping) channel due to the default
out-of-the-box channel settings. This results in increased
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interference and poor user throughput (even with intel-
ligent user association algorithms).

We show that significant improvement can be achieved in user
throughput via: (i) interference mitigation through optimum
channel selection algorithms, and (ii) optimal bandwidth shar-
ing through fair user association algorithms.

The state of the art channel selection algorithms in man-
aged WiFi networks use a centralized approach that collects
information from the entire network, and derives the optimal
configuration. Such an approach is not scalable due to the NP-
hard nature of the problem, and requires a separate processing
infrastructure for performing the centralized computations
(see Aruba networks, Symbol, Cisco). In unmanaged WiFi
networks, the channel selection algorithm consists of using
the default factory setting, while the user association is based
on strongest received signal strength.

We focus on unmanaged WiFi networks where (i) all the
participating devices belong to the same enterprise, or (ii)
there is an implied co-operative relationship (e.g. a community
network, free hotspots, etc.), so that users can associate
with any AP in the network. Our optimization criterion for
channel selection is the minimization of global interference,
and for user association is the minimal potential delay of
the users (defined in [2]). The latter quantity captures the
long-term throughput that a user should expect to receive
from a fully saturated network. In the proposed algorithms,
local decision procedures are driven by actual measurements
thereby avoiding simplifying assumptions about the nature of
the wireless medium and the impact of the MAC protocol. Our
algorithms do not require changes at the MAC layer. They can
be implemented through simple software modifications, and
can be supported by the wireless devices through firmware
upgrades (in line with current proposals within the IEEE
802.11k task group). An actual implementation on a small
scale testbed validates the feasibility of our scheme.

The rest of the paper is organized as follows. The next
section discusses related work. In Section III, we formulate the
problem, introduce notation and assumptions. In Section IV,
we describe the proposed algorithms. Their performance is
then extensively simulated and compared to currently used
strategies in Section V. Results over a proof of concept testbed
are presented in Section VI. We conclude and discuss future
work in Section VII.

II. RELATED WORK

Centralized algorithms for channel selection and user asso-
ciation are proposed in [3] and [4] respectively. In a similar



spirit, some papers have addressed optimal channel allocation
in wireless meshed networks [5]. In [6], the authors propose a
distributed channel hopping scheme which results in improved
fairness as compared to static channel allocation schemes. The
problem of channel assignment in WLANs is also very briefly
addressed in [1], but was found to have limited impact in terms
of performance; APs are recommended to select an orthogonal
frequency that none of their neighbors uses if possible. Kumar
and Kumar [7] study the user association problem in 802.11
networks by casting it as a utility optimization problem.
Korakis et al. [8] also address the problem of user association,
and propose a greedy algorithm that locally maximizes the
throughput of a user based on the estimation of its SINR value.

To the best of our knowledge, the present paper is the
first to propose a set of algorithms that simultaneously solves
the problems of channel selection and user association in
a fully distributed way. These two problems have only very
recently been addressed together by Mishra et al. (see [9]).
However, the authors in [9] use a centralized approach. Some
commercial products1 claim that they have a solution to
these problems, but the technology used is not disclosed.
Our approach is unique because our algorithms are fully
distributed, and are analytically shown to lead to a globally
optimal bandwidth sharing.

III. PROBLEM SETUP

In this work we look into distributed algorithms for optimal
channel selection and user association. We acknowledge that
the best overall solution would jointly optimize the channel
selection and user association. However, requiring the entire
AP infrastructure to adapt to the small timescale over which
the user population dynamics vary may lead to stability
problems. Hence, we believe that from a system design
perspective, AP frequency selection should not depend on user
associations across the network, since it allows for a simpler
implementation, and is more robust to fast user arrivals and
departures.

A. Assumptions and Notation

We assume a network model where a user can associate
with any AP in the network. The exact functionality required
by APs and users to support our algorithms is discussed in
Section VI. The wireless access network that we consider in
this paper is described by : (i) a set of APs a ∈ A, (ii) a set
of users u ∈ U , and (iii) a set of available channels c ∈ C.

• Let ca ∈ C be the channel that is chosen by access point
a ∈ A. We introduce the function sCH(a, b) that is equal
to 1 if a and b are operating on the same channel, and to
0 if they use non-overlapping channels.

We assume in this paper that APs select an operating
frequency among their band’s non-overlapping frequencies.
Our work can be easily extended to the case of partially
overlapping channels (see [10]).

• Let au ∈ A be the AP that is chosen by user u ∈ U .
For each AP a, we introduce Ua ⊆ U the subset of users

1see e.g. http://www.propagatenet.com/.

associated with AP a. Note that the collection of these
subsets is a partition of the set U . We denote by Ka the
number of users associated with a. For all pairs of users u
and v, let sAP(u, v) be the function whose value is equal
to 1 if u and v are associated with the same AP, and to
0 in all other cases.

The AP channel assignment problem is choosing a collec-
tion (ca)a∈A in C satisfying a given criterion. Similarly the
user association problem is choosing a collection (au)u∈U
satisfying a given criterion. These two criteria define a per-
formance objective that we present in Section IV.

B. A Model for Bandwidth Sharing in 802.11

We define a cell as an AP together with all users that are
associated to this AP. For simplicity, we focus on the downlink,
where data is sent by APs to users, that is the majority of
wireless traffic today. Extending the analysis to incorporate
the uplink traffic is part of future work. We assume that the
wireless links form the bottleneck, and that the network is
fully saturated, i.e., the APs always have data to send to all
the users.

If multiple APs coexist in the same frequency and collision
domain, medium access is coordinated following the speci-
fications of the 802.11 MAC protocol. The actual long-term
throughput of a user in a cell then depends on three factors: (i)
the medium utilization, or channel access time, obtained by the
AP; (ii) the number of users in the cell, which determines how
frequently each user is sent a data unit, and (iii) the quality of
the wireless link from the AP to the user, which determines
the data rate at which the user is served by the AP [11].

We assume that information is transmitted to each user in
data units of the same length, so that the data unit transmission
delay (the delay experienced by a data unit sent from the AP
to user) of user u is given by

d(u) =
1

f(SINR(u))
,

where f(SINR(u)) gives the instantaneous transmission rate
on the channel from au to u, that is expressed in data units
per second. The auto-rate function of 802.11 adapts the data
rate f(.) of the transmitter to the user SINR.

If AP a has other APs in its contention domain, its channel
access time M(a) will not be 100%, and its actual capacity
will only be the fraction M(a) of the medium capacity. In
such a setting the max-min fair allocation of bandwidth in the
cell implies that the long-term throughput obtained by each
user u associated with a is given by:

ru =
M(a)∑

v∈Ua
d(v)

=
M(a)∑

v∈U sAP(u, v)d(v)
. (1)

Note that despite the fact that the time to transmit the same
unit of information is different from one user to another in the
same cell, all the users of the same cell receive the same long-
term throughput [12]. The inverse of ru (which is identical for
all users associated with the same AP) will be referred to as
the aggregated transmission delay of the AP in what follows.



IV. NETWORK SELF-CONFIGURATION USING GIBBS

SAMPLERS

We now propose algorithms for channel selection and user
association. The algorithms are based on a simulated annealing
technique called the annealed Gibbs sampler. In the following
sub-section, we describe the basic notions and the framework
of a Gibbs sampler. Details are available in [13].

A. The Gibbs Sampler

Consider an undirected graph with K nodes. Two nodes are
said to be neighbors if they are connected by an edge. Each
node is endowed with a state variable that belongs to a finite
set S. The state of the graph is the vector s = (s1, . . . , sK) of
the states of its nodes. For example, for the channel selection
algorithm, the nodes are the APs, edges connect APs within
communication range and the state of a node is its channel.

An energy function E associates a real number E(s) to
each state s of the graph. The objective is to find one of
the states that minimizes this energy function. In general,
this problem is of combinatorial complexity and difficult to
solve for large networks. However, if the energy function has
a certain form (explained below), then the minimization can
be achieved by using an annealed Gibbs sampler. For this, we
define the following terms. A clique of order k is a set of
nodes of cardinality k such that all pairs of nodes in the set
are neighbors. Let Ck denote the set of all cliques of order
k. A potential V on this graph is a function that associates
a non-negative real number V (B) to all subsets of nodes B;
this value only depends on the state of nodes inside B, and it
is zero if B is not a clique. The energy function E is said to
derive from the potential V if we can write:

E(s) =
∑

k

∑
B∈Ck

V (B).

When E derives from V , the local energy of node n consists
of those terms in E(s) that involve sn, i.e.,

En(sn, (si)i�=n) =
∑

k

∑
B∈Ck : n∈B

V (B).

We define the Gibbs measure associated with an energy
function E and with temperature T > 0, as the following
probability distribution on the state of the graph:

π (s) = e−
E(s)

T /


 ∑

s′∈SK

e−
E(s′)

T


 . (2)

This distribution has two important properties:

• it favors states of small energy, especially when the
temperature T is small;

• it is a Markov random field; conditionally on the states
for all neighbors of n, the state of node n is independent
of the states of all non-neighbor nodes k �= n.

The Gibbs sampler is a procedure where each node n
updates its own state according to the following algorithm: (the
transitions of all the nodes can occur in an asynchronous way,
for instance using an independent exponential timer): given the

state of all other nodes than n, node n computes the following
probability on S:

µ(s) =

(
e−

En(s,(si)i�=n)
T

)/(∑
s′∈S

e−
En(s′,(si)i�=n)

T

)
, s ∈ S. (3)

Node n then samples a random variable with law µ on S,
independently of everything else, and makes a transition to
the sampled state. It should be clear from the form of µ
that transitions to states of smaller local energy are favored
compared to states of higher energy.

When T is fixed, the Gibbs sampler drives the graph to a
steady state distributed according to the Gibbs measure (2).
Notice that µ only depends on the state of the neighbors
of node n. In this sense, the Gibbs sampler is a distributed
procedure. The annealed Gibbs sampler combines the above
procedure and a slow decrease of T . When T decreases to 0
with time t > 0 like 1/ log(1 + t), we get convergence to a
collection of states of minimal global energy. For more on the
matter, see e.g. [13].

In the following section, we show how the above procedures
can be used to solve the problems of optimal channel selection
and optimal user association.

B. Performance Objectives

The objectives for our algorithms are defined as follows.
1) AP channel selection: As noted in Subsection III-B, the

higher the interference in the network, (i) the lower the SINR
of the users, and (ii) the smaller the time share received by
the APs (due to MAC contention). Both factors collectively
degrade the users’ throughput. Thus, from a heuristic view-
point, minimizing the total interference in the network should
result in improvement of users throughput. Hence our first
objective is to find a channel allocation which minimizes the
total interference received by all APs, namely:

F ((ca)a∈A) =
∑
a∈A


Na +

∑
b∈A : b �=a

sCH(a, b)Pb(a)


 , (4)

where Na denotes the total thermal noise plus the interference
from non-802.11 sources on this channel, and Pb(a) the power
of the signal received at a from AP b. The function F depends
on (ca)a not only through sCH(a, b) = 1ca=cb

but also through
Na and Pb(a) which may both depend on ca and cb. Here and
in what follows, we do not write the dependence in (ca)a to
simplify the notation. In practice, we can limit the inner sum
to those APs b which are within communication range of AP
a, or equivalently assume that sCH(a, b) is 0 whenever a and b
are not within communication range of each other (which we
assume to be symmetric).

Let us now see how to cast this in the Gibbsian frame-
work. We take as nodes the APs and say that two APs are
neighbors if they are within communication range. The state
of AP a is of course its channel ca. We can expand (4) as:

F =
∑
a∈A

Na +
∑

{a,b}⊆A
sCH(a, b)(Pb(a) + Pa(b))

F =
∑
B⊆A

V (B) ,



where V denotes the potential function defined, for all subsets
B of A, by

V (B) = Na for B = {a} ,
V (B) = sCH(a, b)(Pa(b) + Pb(a)) for B = {a, b} ,
V (B) = 0 for |B| ≥ 3 .

Thus F derives from a potential function. The correspond-
ing local energy of AP a is then given by:

Fa =
∑
a∈B

V (B) = Na +
∑
b �=a

sCH(a, b)(Pb(a) + Pa(b)) .

Assuming symmetry in power and attenuation, the above
equation can be further simplified to

Fa = Na +
∑
b �=a

2sCH(a, b)Pb(a).

This expression shows that in this symmetric case, the
local energy function can be measured locally by AP a: the
term Na is the ambient noise around AP a, and the term∑

b �=a sCH(a, b)Pb(a) is the amount of power a receives from
all other APs b within communication range and operating on
the same frequency.

When the symmetry assumption cannot be made, APs need
to advertise their nominal power (this feature is currently
supported by IEEE 802.11k). Note that even in this case, the
local energy of AP a only depends on the channels selected by
its neighbors, which shows that the advertisements in question
remain local.

2) User association: For the user association problem, we
assume that each AP has selected some channel. We follow
the same Gibbsian methodology. The set of nodes is the set
of users. The state of user u is the AP au it associates
with, so that the state space of a user is the set of APs it
can possibly associate with (e.g. the set of APs within its
communication range, or the closest APs for each channel
and within communication range). Two users are neighbors if
there exists an AP with which both could possibly associate.
We aim at minimizing the global energy function defined as
the sum of the aggregated transmission delays of all users:

E ((au)u∈U ) =
∑
u∈U

1

ru
, (5)

where ru is the long term throughput of user u as given by
(1). The aggregated transmission delay of user u should not
be confused with the data unit transmission delay d(u) of
this user. It may be interpreted as the average delay between
the transmission of two data units to this user. The fairness
obtained when minimizing the sums of the mean delays of
all users of a network, was first introduced under the name
of minimal potential delay fairness by Massoulié and Roberts
[2]. It belongs to the so called α-fair class.

Let us denote by {u, v} ⊆ U a pair of distinct elements of
U . Using the results and the notation of §III-B, we see that E
can be simplified as 2:

2As before, we do not explicitly write the state variables (au)u as
arguments of E to keep notation light. Similarly, to be exhaustive, one should
write d(v, av) in place of d(v) in the following expressions for E and V .

E =
∑
u∈U

1

ru
=
∑
u∈U

∑
v∈U

sAP(u, v)d(v)

M(au)
using (1).

=
∑
u∈U

d(u)

M(au)
+

∑
u,v∈U : u �=v

sAP(u, v)d(v)

M(au)

=
∑
u∈U

d(u)

M(au)
+
∑

{u,v}⊆U

sAP(u, v)d(v)+sAP(u, v)d(u)

M(au)
.

E =
∑
V⊆U

V (V) .

The key observation is that the above cost/energy function
also derives from a potential function V defined on the subsets
of U by:

V (V) = d(u)/M(au) for V = {u}
V (V) =

sAP(u, v)d(u) + sAP(u, v)d(v)

M(au)
for V = {u, v}

V (V) = 0 for |V| ≥ 3 .

Thus, the corresponding local energy of user u is given by:

Eu =
∑
u∈V

V (V) =
1

M(au)


Kaud(u) +

∑
v∈Uau

d(v)


 , (6)

where Ka denotes the number of users associated with a. This
local energy only depends on the state au of user u and that of
its neighbors. We assume here that for all a, the AP channel
access time M(a) is not a function of the state (au)u of the
users, which is reasonable under our saturated downlink traffic
assumption as long as as each AP has at least one user.

Notice that this local energy is the sum of two terms. The
first term can be seen as the sum of the additional potential
delay experienced by other users due to u associating with
this AP. This will be called the social cost. The second term
consists of the sum of the data unit transmission delays of
all users affiliated with the AP, and may be seen as the delay
experienced by user u because of the other users. We call it
the selfish cost.

The AP channel access time M(a) ∈ [0, 1], which is
the long-term fraction of time for which AP a acquires the
wireless channel for its transmissions, can easily be measured
(and advertised) by the AP. For a given association to a,
the term d(u) can be estimated via the SINR of the signal
received from a. If each AP a advertises the total number of its
users, Ka will be known to all users that might associate with
a. Finally, if each AP advertises its aggregated transmission
delay, the sums

∑
v∈Ua

d(v) will also be available to all
these users. In this sense, the local energy of a given state
(or association) can be computed by each user from local
information received by APs within communication range.

C. Algorithms

1) AP Channel Selection: We denote the collection of AP
channels by c = (ca)a∈A ∈ CA. In our solution, each AP
maintains an exponential timer, with mean ta (an exponential
timer is a timer which expires as per a random variable that
is exponentially distributed); whenever this timer expires, the
AP performs the following transition:



Algorithm 1 (Annealed Gibbs sampler for AP transition)

1) Compute the temperature parameter: T = T0
log2(2+t) .

2) For all channels c, compute the local energy experienced
by the AP a on this channel :
Fa(c) = Na + 2

∑
b∈A ; cb=c Pb(a) .

3) For all channels c, compute the probability

π(c) =

(
e−

Fa(c)
T

)/(∑
c∈C

e−
Fa(c)

T

)
.

4) Sample a random variable with law π and choose a
channel according to this random variable.

In this algorithm, t is an age variable (that roughly represents
the time elapsed since initialization of the network) and T0 is
the parameter that determines the speed of convergence.

The version of this algorithm with a temperature kept
constant to T is the plain Gibbs sampler for AP transition
and temperature T . It is referred as Algorithm 2.

A greedy algorithm : Alg. 1 is probabilistic in nature, and
it requires that APs maintain a loose synchronization through
a common time t. In practice, an AP could also follow the
simpler greedy local optimization, whenever its timer expires:

Algorithm 3 (Greedy AP transition)

Choose channel c = argminc∈C(Fa(c)).

Alg. 3 may be seen as a limit case of Alg. 1 when the
temperature goes to zero: state updates are not randomized
but always chosen to minimize the local energy. Instead of a
logarithmic temperature decrease, which drives in Alg. 1 the
distribution towards minimal energy states, Alg. 3 minimizes
the local energy observed for each transition3. In other words,
Alg. 3 can be interpreted as an aggressive version of Alg. 1.

2) User Association: The algorithm for user association
is very similar to the one proposed in the previous section.
In this algorithm, the user collects information pertaining to
the number of users and the aggregated transmission delay
for every AP a it can possibly associate with. The user then
computes the local energy Eu, given by (6), that it would
experience if it would associate with a.

Each user maintains an age variable t and an exponential
timer with mean tu. Whenever its timer expires, the user
performs this transition:

Algorithm 4 (Annealed Gibbs Sampler for User Transition)
Follow the same steps as in Alg. 1 (starting with Tempera-

ture T ′
0) and choose to associate with AP a with probability

π defined from the local energy Eu(a) as defined in (6).

The plain Gibbs sampler, that is the version of this algorithm
for a constant temperature, is referred to as Algorithm 5. The
greedy version of Alg. 4 may also be defined as follows.

Algorithm 6 (Greedy User transition)

Choose AP a = argmina∈A (Eu(a)) .

3Experimental observations reveal that the auto-channel selection algorithm
in Cisco APs uses a similar greedy heuristic to avoid congested channels, but
details could not be confirmed due to proprietary issues.

D. Analysis for Static Population

We characterize in this section the convergence of the
algorithms we presented above. We start with a result on the
plain Gibbs samplers (Alg. 2 and 5).

Theorem 1 For a fixed population of APs and users that
implement Alg. 2 (resp. 5) with temperature T , the distribution
of the state of the network converges in variation to the Gibbs
distribution (4) associated with total interference (resp. (5)
associated with total potential delay) for temperature T .

Both algorithms can be described by a finite state homoge-
neous Markov chain. A classical reversibility argument shows
that the Gibbs distribution is the invariant probability measure
for these chains. By arguments similar to Example 6.5 p.288
in [13], one gets that the convergence has a geometric speed.

Theorem 2 For a fixed population of APs and users that
implement Alg. 1 and 3, there exist values of T0, T

′
0 such that

AP channel selection and user association converge to a state
of minimum energy as time goes to infinity.

F ((ca)a∈A) → min
(ca)a∈A

F

and E ((au)u∈U ) → min
(au)u∈U

E .

Proof: The proof is analogous to that of Example 8.8
p.311 in [13]. The network evolves according to a strongly
ergodic non-homogeneous Markov chain: it converges in vari-
ation to a limit distribution that only puts positive probability
mass on the states of minimum global energy.

Theorem 3 For a fixed population of APs and users that
implement Alg. 3 and 6, the resulting AP channel selection
and user association verify, as time goes to infinity

(ca)a∈A → (c̃a)a∈A and (au)u∈U → (ãu)u∈U

where c̃ and ã are local minima, in the following sense:

For any a ∈ A, c̃a = argminc∈CFa(c)

For any u ∈ U , ãu = argmina∈AEu(a) .

Proof: From the definition of Alg. 3, the global energy
function F can only decrease after each transition, since the
transition of a given AP leads to a decrease in the sum of
energies of all subsets containing that AP, while leaving the
energy of other subsets unchanged. As the state space of
AP channels is finite, this sequence converges after a finite
number of steps. Similarly, the sequence of user associations
also converges in a finite number of steps.

The annealed sampler is the only algorithm which converges
to a collection of states of minimum energy, for all fixed
topologies. This comes at a cost since the convergence requires
a slow (logarithmic) cooling scheme.

In contrast, the plain sampler, which may use any fixed
temperature T , does not converge to a minimum energy state,
but only to a random state distributed according to the Gibbs
distribution. This distribution gives higher probability to small
energy states, and its speed of convergence is geometric (in
the number of transitions). Choosing to implement the plain



sampler is therefore trading the quality of the optimum against
the speed of convergence.

The difference between the annealed sampler and the greedy
algorithm is that the latter can get blocked in a local minimum
of the energy. Choosing to implement the greedy algorithm is
therefore trading long-term efficiency for quick improvement
and simpler implementation. It is not difficult to find situations
where a local minimum exists. Here is a simple example
pertaining to channel selection: 8 APs are arranged on a
linear grid where neighboring nodes are at distance 1; we
assume that the power received from another AP at distance
2 is 1, and that the power received from another AP at
distance 1 is 3. For two-non overlapping channels, 0 and
1, the channel configuration 01100110 is a local minimum
(i.e. no node has an incentive to change its channel state).
The energy (i.e. the sum of total power received) is 18 for
this configuration. However, the minimum energy, which is
attained for configuration 01010101, is 12. Hence, the greedy
algorithm cannot escape from this local minimum and one
needs Alg. 1 to reach a global minimum.

Extensive simulations have shown that for large random
populations of APs/users, the local minima that are found by
the greedy algorithms provide excellent approximations to the
results obtained by the annealed samplers (see Section V).

E. Dynamic Population

The annealed Gibbs sampler can be adapted to a slowly
varying dynamic topology. To deal with the case of a dynamic
population of APs, each AP should maintain the list of
APs that are in its neighborhood, and their respective signal
strengths. If this list changes (because of an AP joining or
leaving), the age variable of the AP is re-initialized to zero.
Notice that this requires the propagation of the global variable
t throughout the network. For highly dynamic topologies, a
reasonable and practical solution, studied below, is to use the
plain samplers. For cases where the population of users varies
(it may vary quite rapidly compared to the set of the active
APs), reasonable options would be to use either the Gibbs
sampler with fixed temperature or Alg. 6.

V. SIMULATION RESULTS

In this section, we use simulations to evaluate the conver-
gence and scalability properties, as well as the performance
benefits of the proposed algorithms. We use a customized
simulator for large network topologies, and the OPNET simu-
lator for small network topologies. Our customized simulator
(which we call the Gibbs simulator), uses a precomputed
mapping between SINR and data rate (obtained from measure-
ments on our testbed - see Section VI). It incorporates (i) the
max-min fair throughput sharing of 802.11 for downlink traffic
within the same cell, (ii) the path-loss and shadowing effects,
and (iii) the random arrival and departure of APs and users.
To remain scalable, the Gibbs simulator does not incorporate
packet level effects and, hence, approximates contention at the
MAC layer using the following simple rule. The AP channel
access time is equal to the inverse of the number of APs in its
contention domain, i.e. if the AP contends with 2 more APs,

they each access the channel for 1/3 of the time. OPNET, on
the other hand, has an accurate model for simulating 802.11
MAC dynamics at the packet level, but does not scale well4.

A. Validation of Simulation Methodology

Our simulator does not incorporate MAC layer contention.
Consequently, it may underestimate the impact of interference
when multiple APs are in the same contention domain. To
understand the implication of this limitation we performed the
following simulations. For 2000 randomly and independently
generated network topologies with average cell radius of 50m
and 11 orthogonal channels, we ran Alg. 3. We observed that
99.8% APs did not have any other AP in their contention
domain. For the remaining 0.2% APs, there was just one more
contending co-channel AP. This shows that for an average cell
radius of 50m (or larger) and 11 orthogonal channels, MAC
contention between co-channel APs is almost completely
eliminated when Alg. 3 is used for channel allocation. Thus,
selecting channels using Alg. 3 sufficiently resolves MAC
contention, thereby rendering our Gibbs simulator appropriate
for further exploration.

We first study the convergence properties of the proposed
algorithms using the Gibbs simulator in Subsection V-B. To
study the throughput benefits of Alg. 1-3, we compare the
performance with a random channel allocation scheme. Note
that although Gibbs channel selection results in contention-
free channel allocation, random channel allocation may result
in channel assignment in which a large fraction of APs may
contend with each other. For this setting, it is necessary to
take the 802.11 MAC dynamics into account. We therefore use
OPNET to compare the channel selection schemes, and these
results are presented in Subsection V-C. Finally, the simulation
results for Alg. 4-6 are presented in Subsection V-D.

B. Convergence and Stability

In the customized flow level simulator, we simulate network
topologies where APs and wireless users are located in a
square of size 2000m x 2000m. The path loss exponent is
set to 3.0 and all nodes use a default transmit power of
20dBm. The SINR to data rate relationship is derived from
real measurements using our testbed from §VI. For all the
simulations presented, an AP assesses the need for a transition
on average every 3 hours (ta in Alg. 1), while users test
the need for a transition on average every 15 minutes (tu
in Alg. 4). For ease of comparison, the same overall mean
numbers are used in all cases: 500 APs and 5000 users,
corresponding to an average cell radius of 50m, and about
10 users per cell. More precisely, we consider APs and users
distributed according to one of the following distributions:

• Homogeneous topology: the locations of APs and wire-
less users are sampled according to independent Poisson
point processes (PPP) in the square.

• Sporadic topology: same as above but now users are
sampled according to a non-homogeneous PPP that re-
sults in regions with very high density of users. We

4On a Pentium III PC a single simulation run of 10 minutes for a topology
of 30 WLAN nodes in OPNET takes around 10 hours.



configured 10% of the APs on the plane to have 10 times
higher user intensity than the global intensity.

We consider both (i) a static topology, and (ii) a dynamic
topology, where users and APs may join and leave the network
across time. To facilitate the comparison between the static and
dynamic topologies, APs and users join and leave such that the
number of APs and the number of users remains unchanged. In
order to demonstrate the benefits of the proposed algorithms,
we compare their performance with what could be considered
the current best practice: the case where APs select their
channels randomly and users affiliate with the AP with the
strongest signal strength.
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Fig. 1. Average Potential Delay per user seen over time for a static topology:
with different algorithms (left), impact of shadowing (right).

1) Static Sporadic Topology: We first look into static spo-
radic topologies, where at time zero, the APs and users choose
their channels and associations according to the current best
practice. Fig. 1 (left) presents the evolution of the sum of
potential delay (i.e. the value of the energy E over time)
and the improvement observed through the introduction of
the proposed algorithms. From Fig. 1 (left), we see that
the mean potential delay improves when Alg. 1 is used.
This improvement is reached on average after two transitions,
corresponding in our setting to six hours. We have obtained
similar qualitative results on static homogeneous topologies.

The Gibbsian algorithm for user association (Alg. 4) shows
similar convergence patterns. Referring to Fig. 1 (left), the
improvement is even more pronounced as the minimal poten-
tial delay stabilizes after one hour, which corresponds to four
user transitions on average. Finally, the use of both algorithms
combined offers the best performance. Most of the gain is
obtained within one hour. The greedy versions of Alg. 1 and
Alg. 4, i.e., Alg. 3 and Alg. 6 respectively, show identical
performance improvements, but the corresponding results have
been omitted due to space constraints.

2) Impact of Shadowing: We simulate the same topologies
as above in the presence of shadowing with a shadowing
standard deviation, σ, varying from 0 to 12dB. The results
are presented in Fig. 1 (right). We see that even when σ is
large, our algorithms still converge, and perform quite well.
The improvement decreases as σ increases. This is because
as σ becomes large, locality in the optimization problem is
lost, as the shadowing component in the overall channel gain
becomes more dominant than the fixed path loss component.
Nevertheless, our algorithms are robust in this context.

3) Dynamic Topology: In this sub-section we simulate
dynamic changes to the topology where users can join and/or
leave the network. The join and leave events have the following
effect: when a user joins he/she automatically selects an AP to
affiliate with. A user leaving has no other effect than improving
the throughput of the other users in the same cell. When an AP
joins, it triggers an immediate transition to channel selection,
but users may not immediately associate with it. When an AP
leaves, all its users immediately trigger a transition in order
to choose another AP to associate with.

We have introduced exponential timers that alter the topol-
ogy every 90s in mean. The time between topological changes
for the user population is hence on average ten times smaller
than the time between two transitions for the same user. Each
of these topological changes may alter up to 10% of the
population of users, so that the proportion of the population
that changes between two transitions, that we call turnover,
may reach 100%.
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Fig. 2. Average potential delay as a function of time for dynamic topologies.

The results are shown in Fig. 2. The most remarkable
observation is that dynamic user population appears not to be
an issue in terms of convergence and algorithmic efficiency,
since a turnover up to 100% is still almost indistinguishable
from the static case.

C. Frequency selection

In this section, we demonstrate the benefits of our frequency
selection algorithm (Alg. 3, chosen for simplicity), for a small
topology (20 APs and 20 users) by incorporating the effects
of the 802.11 MAC. For this, we use OPNET. All the nodes
use a default transmit power of 20dBm, a carrier sensing
threshold of -90dB, and a path loss exponent of 3.0. The
APs are randomly and uniformly distributed in the network
with an average inter-AP distance of about 100m. We use
802.11a PHY layer that supports 11 orthogonal channels, so
that there are approximately twice as many APs as channels.
Note that OPNET does not incorporate rate adaptation. Hence
we allocate one user per AP, and the user location is chosen
close to its respective AP (within 10m) to ensure that all the
APs and the users can sustain the maximum transmission rate
of 54 Mbps. This enables us to study the impact of channel
selection in isolation. Saturated UDP traffic, comprising 1500
Byte packets, is sent over the downlink.

Referring to Fig. 3 (left), we see that with the random
channel assignment scheme, the average user throughput is
17.69Mbps. Five out of 20 users receive a throughput less



Fig. 3. Histograms of the long-term user throughput for the 40 node topology:
random channel assignment (left); channel assignment using Alg. 3 (right).

than 14Mbps, while one user receives a throughput less than
6Mbps. This is because random channel assignment results in
two or more co-channel APs in the same contention domain,
which need to time-share wireless access. On the other hand,
the channel assignment performed by Alg. 3 ensures that there
are no co-channel APs in the same contention domain. This is
reflected in the fact that all the users get the same maximum
throughput of about 20Mbps (see Fig. 3 (right)). We also
note that Alg. 3 results in about 12.3% improvement in the
average throughput. The Jain Fairness Index for the considered
topology for Alg. 3 is 0.999, while for the random channel as-
signment scheme is 0.957. Thus, the above results demonstrate
the effectiveness of the proposed channel selection algorithm
in mitigating interference, and thereby resulting in improved
throughput.

D. User association

The throughput performance of Alg. 4 is studied using the
Gibbs simulator. The results for Alg. 5 and 6 are similar and
we do not show them due to space constraint. Referring to
Fig. 1 (left), we see that the average potential delay decreases
from 1.45 second per Mb to 0.8 second per Mb when Alg. 4
is used in addition to Alg. 1. In Fig. 4, we plot the empirical
distribution of the throughput obtained by the entire user
population across all 2000 topologies in log-log scale. On
the left, we show the distribution achieved by the current
best practice. We notice that when users choose APs with
the strongest signal, the throughput distribution obtained has
high variance. It spans from maximal values obtained when
a single user is associated with an AP (21Mb/s), to small
throughput values obtained by a non-negligible fraction of the
user population (43 users on average have less than 200kb/s,
1400 users on average have less than 500kb/s).

In contrast, our combined algorithms, shown in Fig. 4
(right), lead to a more even distribution (all users, except from
7, receive more than 200kb/s; all except 125 receive more than
500kb/s). With our algorithms, there are fewer users with very
high throughput which is primarily due to the load balancing
feature of our algorithms. However this is achieved at the cost
of a slightly lower average throughput. Similar performance
has been observed with static homogeneous topologies.

We have also studied the performance of Alg. 4 for the
scenarios of incremental deployment and selfish users. The

Fig. 4. Histograms of the distribution of long-term throughput, in the case of
a sporadic topology: closest association (left); association using Alg. 4 (right).
AP channel selection have been made according to Alg. 1.

latter is similar to the user association algorithm proposed in
[8]. However, we do not present the results here due to space
constraints. Please see [10] for details.

VI. EXPERIMENTATION ON A TESTBED

We prototyped the proposed algorithms on a small scale
testbed. The prototyping served two purposes: (i) to show
that the algorithms can indeed be implemented on today’s
hardware, and (ii) show that for simple topologies, the user
association algorithm, (we have chosen Alg. 6 for simplicity),
results in optimal bandwidth sharing. However, the channel
selection algorithms require a large number of APs in the
testbed (at least twice the number of orthogonal channels),
and although we implemented Alg. 3, we were not able to
evaluate its performance extensively due to the small size of
our testbed. We are currently addressing the challenges that
crop up when experimenting with the proposed algorithms
over a large testbed.

A. Implementation Details

In our algorithms, APs and users need to evaluate, whenever
a timer expires, whether a transition to another channel or an-
other AP is needed. The main requirements are the following:
(i) APs should be able to measure the total interference on each
channel. (ii) Each user should be able to evaluate the SINR

received from all the APs within range, the number of users
of each AP, and each AP’s associated aggregated transmission
delay (see Eq. (6)). (iii) Each AP should be able to notify all
its users about an upcoming change in its operating channel.

Of the above, (i) is currently supported by 802.11 hardware.
Functions (ii) and (iii) are being addressed within the 802.11k
and 802.11h task groups of the IEEE. IEEE 802.11k defines
a framework to facilitate radio resource management within
which WLAN devices exchange statistics, say to make more
informed roaming decisions. The number of users supported
by an AP is part of the 802.11k specification and the aggre-
gated transmission delay and AP channel access time could
easily be added and communicated to the hosts inside the
Beacon probes. IEEE 802.11h defines the mechanisms that
need to be implemented by an AP for Dynamic Frequency
Selection (DFS) and Transmit Power Control (TPC). Within
the proposed 802.11h standard, APs can initiate channel switch
announcements to their users, i.e, function (iii).



Since many of the above functionalities are not available on
the current 802.11 hardware, we implemented some of them on
the Intel 2915ABG cards used in our testbed nodes. Following
is a list of modifications that were made to the firmware of
the cards. (i) APs can scan all frequencies and measure the
total amount of interference on each of them. They can select
the operating frequency that minimizes the cost function F .
(ii) APs can measure M(a) and

∑
v∈Ua

d(v). Both values
are computed over 5 second intervals and their exponential
weighted moving average, with a 0.8 weight, are advertised
through the AP beacon frames once every 30 seconds to avoid
firmware instability. (iii) Users can decode the new metrics in
the beacon frames and select an AP for association so as to
minimize E .

B. Network Topology and Experimental Results

The testbed consists of 2 Dell Inspiron desktops as APs,
and 4 IBM T30 laptops as users. Both platforms use the
Intel 2915ABG wireless cards with the open source ipw2200
client driver that has been modified to support the AP func-
tionality discussed above. The topology used for evaluating
the performance of the Gibbsian algorithms is as follows. The
test machines are deployed in a corridor in such a way that
one user is placed on either side of each AP, with 2 users
between the 2 APs. Using Alg. 3, the APs pick two non-
overlapping channels for their operation. We then initialize
the 4 users in turn starting from the outside users and moving
toward the area between the 2 APs. After each user affiliates
with the AP of its choice, a 1 Mb/s CBR source starts from
the AP to the user. We show the results of our experiment in
Fig. 5. The two bottom figures show the throughput achieved
by each user, along with the time when they become active and
which AP they select. The upper figure plots the aggregated
transmission delay for each AP. We notice that the aggregated
transmission delay exhibits increases upon the affiliation of
new users tracking the activity of the AP. More importantly,
we clearly see that the fourth user decides to affiliate with AP2
given its smaller aggregated transmission delay compared to
AP1 (the user receives similar RSSI from both APs). Thus,
through this simple network topology, we can see how the
user association algorithm performs load balancing for optimal
bandwidth sharing.

Fig. 5. Aggregate transmission delay and throughput for the 6-node testbed.

VII. CONCLUSION

Using the Gibbs sampler framework, we designed fully
distributed algorithms for (i) channel selection for interference
mitigation, and (ii) user association for fair and optimal sharing
of bandwidth between users. We demonstrated that distributed
decisions which take into account the individual gain as well
as the social cost can lead to efficient spectrum usage, and
improved performance. This was proved in the context of the
minimal potential delay fairness. The fact that this notion of
fairness is amenable to a distributed optimization within the
802.11 context is one of the key scientific observations of the
paper.

Implementation of the proposed algorithms relies on
firmware modifications, and requires features that could be
incorporated within the efforts of the IEEE 802.11 task groups.
The actual implementation was shown to be feasible with
today’s hardware on a small scale testbed. Experimentation
over a larger testbed and extension of the analytical framework
to study mesh networks is part of our future work.
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