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Abstract—Campus and enterprise wireless networks are in-
creasingly characterized by ubiquitous coverage and rising traffic
demands. Efficiently assigning channels to access points (APs) in
these networks can significantly affect the performance and capacity
of the WLANs. The state-of-the-art approaches assign channels
statically, without considering prevailing traffic demands. In this
paper, we show that the quality of a channel assignment can be
improved significantly by incorporating observed traffic demands
at APs and clients into the assignment process. We refer to this
as traffic-aware channel assignment. We conduct extensive trace-
driven and synthetic simulations and identify deployment scenarios
where traffic-awareness is likely to be of great help, and scenarios
where the benefit is minimal. We address key practical issues in
using traffic awareness, including measuring an interference graph,
handling non-binary interference, collecting traffic demands, and
predicting future demands based on historical information. We
present an implementation of our assignment scheme for a 25-node
WLAN testbed. Our testbed experiments show that traffic-aware
assignments offers superior network performance under a wide
range of real network configurations. On the whole, our approach
is simple yet effective. It can be incorporated into existing WLANs
with little modification to the wireless nodes or infrastructure.

I. I NTRODUCTION

Enterprises and university campuses are deploying WLANs
at a remarkable rate and effectively managing such networks
becomes increasingly important. The broadcast nature of wireless
communication makes the task of supporting good end-user ex-
perience very difficult. Emerging trends such as rapidly growing
densities and increasing traffic volumes only exacerbate this
problem (see [15] for a detailed analysis). Traditionally, careful
channel assignmenthas provided some respite to end-users. In
the common case, network administrators conduct detailed site
surveys and manually try various configurations to determine
the right channel and placement for APs. The state-of-the-art
research [20], [22] also offers similarstatic solutions. While
there are other solutions for supporting better performance in
dense deployments [5], channel assignment is attractive due to
its simplicity and no need for client modification.

Unfortunately, existing approaches to channel assignments are
insufficient for enterprise WLAN deployment and usage patterns.
Indeed, recent work has shown the traffic volumes in a WLAN
can vary significantly both across APs and across time [15]. In
the future, as more devices and newer applications contend for
wireless access, the variability in traffic will increase further.
Due to traffic variability in current and future networks, the
performance of static channel assignment is bound to suffer.

Researchers in the wire-line world faced a similar problem
when static routing weights were proven to be insufficient
for achieving robust intra-domain routing. Several researchers
advocated that routing weights be tuned to observed traffic
demands [8], [9], [32]. Motivated by the vast success of these ap-
proaches in the IP world, our paper asks the following question:
Does the quality of a channel assignment improve when dynamic
traffic demands in the WLAN are taken into account?

To answer this question, we develop and systematically study
the notion oftraffic-aware channel assignmentfor WLANs. Our
approach is simple: at regular intervals, collect traffic demand

information and use it to determine the channel assignment. We
espouse traditional channel optimization objectives and show
how they can be modified to incorporate the WLAN traffic
demands. Of course, computing optimal channel assignments
for traffic-aware objectives is NP-Hard. Hence, we develop
simple techniques (based on Simulated Annealing) for quickly
computing close-to-optimal assignments. We show these channel
assignments can closely track the prevailing network conditions.

To be effective, we must address a few practical issues.
(1) The effectiveness of a channel assignment depends on the
availability of an accurate interference map for the WLAN. Since
wireless signal propagation and interference patterns are hard to
predict using simple heuristics [3], we directly measure wireless
interference using active probes. This is done at coarser time-
scales than collection of demand information. (2) While existing
work assumes binary wireless interference, we find that in real
networks interference across links may not be binary (e.g., two
senders may carrier sense each other sometimes but not always
due to variation of RSS). We present simple and effective channel
assignment schemes for handling non-binary interference. (3)
Our approach requires timely and accurate estimation of traffic
demands. For this, we simply leverage the SNMP network usage
statistics that most APs export. In addition, we develop simple
approaches for predicting upcoming traffic demands using only
historical SNMP samples and extend our traffic-aware channel as-
signment algorithms to use these predicted demands. (4) Finally,
we address the issue of the overhead experienced by clients when
their APs switch channels frequently due to fluctuating traffic
loads. We describe and evaluate a suite of simple approaches to
minimize this overhead.

On the whole, the traffic-aware approach we propose requires
very few modifications to existing wireless nodes and infras-
tructure. It is effective and simple to use. In our evaluation,
we first conduct extensive simulations over real topologies and
traffic demands (available publicly at [13] and [16]), as well as
over several synthetic settings. We start by considering a setting
where perfect information about current and future demands is
available. These baseline analyses help establish the potential
benefits of traffic-aware channel assignment algorithms. Our sim-
ulation results show that being traffic-aware could substantially
improve the quality of a channel assignment in terms of total
network throughput. The exact level of improvement from traffic-
awareness depends on the deployment scenario, e.g. the density
of wireless nodes, the traffic volumes, and the spatial distribution
of traffic demands. Our key finding is that traffic awareness
offers the most benefit when the demands in a WLAN are highly
skewed. We investigate the quality of traffic-aware assignments
that are computed using predicted demands, and find that their
performance is within 5% of the ones obtained with access to
perfect information. In addition, we also inject artificial errors to
traffic demands, and our evaluation shows that the traffic-aware
channel assignment is robust against these errors.

Finally, we implement and evaluate the traffic-aware channel



assignment algorithms in a 25-node wireless testbed, deployed
on two floors of an office building. We find that traffic-aware
channel assignment is very effective in real wireless networks
under a range of network configurations. It benefits both TCP
and UDP flows. Traffic-aware assignment also interacts well with
multi-rate adaptation by reducing interference and allowing data
communication to use higher data rates. In addition, we find that
traffic-aware channel assignment not only improves average net-
work performance, but also helps avoid very inefficient channel
assignments that could arise from traffic-agnostic approaches.

II. RELATED WORK

We first review past work on the channel assignment problem.
Then we consider the channel hopping approach which has been
used to leverage the benefit of the entire frequency spectrum.
Finally, we discuss related work in IP traffic engineering.

A. Channel Assignment

Channel assignment for improving the efficiency of spectrum
usage is a well-studied problem. In particular, the problem has
received much attention in the context of cellular networks [19].
In general, approaches for cellular channel allocation are un-
suitable for our purposes (i.e., traffic-aware channel assignment
in WLANs): Cells in a cellular network are arranged in a very
regular fashion and have uniform, large coverage areas, unlike
the regions covered by indoor access points (APs). As a result,
channel assignment in cellular networks is a static, one-time task.
In contrast, depending on the number and location of clients,
load on APs and the presence or movement of obstacles, channel
assignment across WLAN APs may need to change over time.

We review past approaches to channel assignment applied to
two different settings: enterprise/campus WLANs, and multi-hop
mesh networks. We note our focus is on the first setting.

Campuses/Enterprises. Assigning channels across APs in
WLANs has traditionally been a static one-time approach [17]:
First, net-admins conduct an “RF site survey” of the campus
and determine the location and the number of APs required for
adequate coverage. Then, the admin manually configures APs
with 802.11’s non-overlapping channels to ensure that close-by
APs operate on different channels when possible. We show in
this paper that such static approaches result in poor performance
in the face of shifting traffic demands.

There are several research proposals for channel assignment
in campus WLANS [4], [20], [22], [23]. However, unlike our
paper, none of them consider the benefit of tailoring the channel
assignment to prevailing traffic demands. For example, Lee et.
al [20] advocate identifying “expected high-demand points” in
a given WLAN deployment and assigning channels so as to
maximize signal strength at the demand points. This is still a
static, one-time approach.

Mishra et. al [22] argue that AP-centric channel assignment ap-
proaches (like [20]) capture the interference amongst the APs, but
do not account for the interference observed due to clients. They
identify scenarios where client-AP and client-client interference
reduces the throughput of the system. They propose that clients
have a better view of interference (since interference directly
impacts their performance), and therefore channel assignment
must take client-side views of interference into account. They
identify the interference at the client in two ways: (1) considering
all the APs in the range of the client and (2) considering all the

APs which are in direct range of some station, where the station
is either the client, or an AP within range of the client. This set of
APs is called the conflict set and the channel assignment problem
is formulated as a conflict set coloring problem with the aim
of minimizing the conflicts amongst the clients. A randomized
search algorithm is used to find an efficient channel assignment.
However, this approach only takes client locations into account
and assumes that all wireless nodes exhibit the same level of
activity at all times. In our work, we show the potential benefit of
taking into account the instantaneous levels of activity of different
wireless nodes. We also show how to predict future trends in
activity based on historical information.

The channel assignment scheme used in [4] is similar to [22].
Ahmed et al. [4] use a conflict graph to represent inter-AP, AP-
client and inter-client interference. An utility function is defined
as per the requirements of the system. The channel assignment
is carried out in two phases. In the first phase, only the conflicts
amongst the APs are considered. A randomized search algorithm
is used to assign channels amongst the AP so that the utility
of the system is maximized. In the paper, the authors consider
utility in terms of reducing the total number of access-point
conflicts. In the second phase, conflicts involving the clients are
considered. Every AP locally tries to change its channel so that
client conflicts are reduced, keeping constant the number of inter-
AP conflicts. In our approach, we propose a new utility function
which takes into account the varying traffic at APs and the clients.

Recently, several commercial “spectrum management” prod-
ucts have been developed to automate channel assignment across
WLANs. Some of these products perform dynamic channel
selection based on the current operating conditions (e.g. AutoCell
from Propagate Networks [7] and Alcatel OmniAccess AirView
Software [6]). A few of these also offer interference mitigation
via transmit power control, and load balancing across APs.
Unfortunately, due to their proprietary nature, very little is known
about the design of these products, their potential benefits, the
operating conditions they work best under, and reasons for their
failings (if any). In our work, we provide a thorough analysis
of these issues for traffic-aware channel assignment. We believe
that our observations will be crucial to the design of future
commercial offerings.

Multihop mesh networks. Raniwala et al. [27], [28] address
the limitations of a single-NIC architecture where the entire
mesh network has to operate on a single channel. They propose
equipping mesh network nodes with multiple network interface
cards to utilize multiple orthogonal channels. The different cards
can operate on different channels. The approach must first decide
which interface is used to communicate with a set of neighbors
and then which channel is assigned to that interface. The goal
here is to ensure that neighboring nodes are assigned to the
same channel. In contrast, WLAN settings require neighboring
APs to be assigned to distinct channels to mitigate interference.
Nevertheless, we believe that the core idea of traffic-aware
channel assignment can be applicable to mesh network settings
as well.

B. Channel Hopping

Channel hopping is another approach which has been used
to improve the performance of wireless networks [10], [23]. In
the channel hopping approach, the wireless nodes spend a fixed



amount of time on a single channel, called a slot, and then switch
to a subsequent channel as given by the hopping sequence. In the
WLAN scenario, the hopping sequence is defined for the APs and
all the clients associated to an AP change their channels along
with it. Similar to the channel assignment schemes, the channel
hopping approach has been studied for both the multi-hop mesh
networks and WLANs.

Bahl et al. [10] advocate a new link-layer mechanism called
SSCH, wherein neighboring mesh nodes perform synchronized
channel hops to better exploit frequency diversity. As this scheme
is applied for multihop mesh networks, the focus of the their
channel scheduling scheme is to ensure nodes are synchronized in
a slot and there is less overlap amongst nodes not communicating
with each other.

In [23], the authors use channel hopping to solve the channel
assignment problem for WLANs. The AP computes its hopping
sequence such that its observes less interference. It first obtains
the hopping sequence of the interfering APs. For each slot, the
AP finds the appropriate channel which minimizes interference.
Channel hopping ensures that one AP is not associated with a
bad channel for a long time and the network as whole uses a
’good’ static assignment. The evaluation results presented in the
paper show that using channel hopping improves the fairness of
the system, but degrades the throughput when compared to the
channel assignment approach in [22].

The throughput under a channel hopping with hopping se-
quence: C1, C2, ... Cn is the average throughput over the
channels used in the sequence. In comparison, channel assign-
ment aims to assign the best combination of channels, which
is likely to be better than the average throughput used over all
channel sequences. We mainly aim to improve the performance
of wireless LANs and hence focus on the channel assignment.
We later show in our evaluation that using traffic information for
computing intelligent channel assignments does not degrade the
fairness in throughput allocation at APs.

C. Traffic Engineering in ISP Networks

Traffic demands have been shown to have tremendous util-
ity for network provisioning and route optimization in ISP
networks [8], [9], [32]. A wide range of traffic engineering
approaches have been developed to incorporate traffic demands.
At a high level, these approaches maintain a history of observed
traffic demand matrices, and optimize routing for the representa-
tive traffic demands extracted from the observed traffic during
a certain history window. They differ in how representative
demands are derived. For example, Agrawal et al. [2] use a
traffic matrix in a one-hour window during daily peaks as the
representative demand. Zhang et al. [33], [34] consider multiple
representative traffic matrices and find an optimal set of routes
to minimize expected or worst-case cost for these representative
matrices. TeXCP [18] and MATE [14] conduct online traffic
engineering and react to instantaneous traffic demand.

Inspired by these results from the IP wireline world, we ask
whether being traffic-aware has similar benefits for managing
wireless network spectrum. We also seek to develop a parallel set
of approaches for deriving traffic demand information in wireless
LANs.

III. T RAFFIC-AWARE CHANNEL ASSIGNMENT

The goal of channel assignment is to ensure that wireless
nodes belonging to distinct Basic Service Sets (BSSs), but
within interference range, operate on distinct channels whenever
possible. A wireless Basic Service Set (BSS) includes an access
point (AP) and all clients associated with it. An entire BSS must
operate on a single channel, and only nodes belonging to different
BSSs can interfere.

Given that modern 802.11 wireless technologies offer very few
non-overlapping channels (e.g., both 802.11b and 802.11g offer 3
such channels: 1, 6, and 11), channel assignment can essentially
be viewed as an optimization problem: what is the best way to
allocate the available channels to BSSs so as to optimize a given
metric or objective?

A good optimization metric should satisfy two important
conditions: (i) it should be easy and efficient to compute given
a channel assignment, and (ii) it should reflect the WLAN
performance. In Section III-A, we present an overview of metrics
commonly used in channel assignment. We argue that these
metrics suffer from key drawbacks and, therefore, fail to satisfy
condition (ii) above. In order to address these drawbacks, the
metrics should betraffic-aware, i.e. they should capture prevail-
ing traffic demands in the WLAN. In Section III-A we show how
to construct traffic-aware metrics.

Choosing an appropriate optimization metric is only a part
of the problem. Computing the optimal channel assignment,
even for the simplest metrics, is known to be NP-hard [22].
In Section III-B, we develop efficient heuristics for computing
close-to-optimal assignments for traffic-aware metrics.

A practical implementation of traffic-aware channel assign-
ment must address a few key challenges such as how to measure
wireless interference, how to cope with realistic wireless interfer-
ence patterns, and how to measure and predict traffic demands.We
discuss and address these challenges in Section III-C.

Finally, in Section III-D, we summarize the traffic-aware
channel assignment approach using a simple flow-chart.

A. Optimization Metrics for Channel Assignment

Common optimization metrics attempt to quantify the extent of
interference in a WLAN due to a given channel assignment. One
example is the “channel separation” metric, which maximizes the
difference in the channels of interfering nodes.

The channel separation metric is computed as follows:
Let Ci denote the channel assigned to APi. Also, if
APs i and j are within interference range of each other,
define Separation(i, j) = min(|Ci − Cj |, 5), otherwise
Separation(i, j) = 5. We use “5” as an upper-bound of channel
separation, because channels 1, 6, 11 in 802.11b/g are considered
as orthogonal. IfA denotes the set of APs, then the channel
separation objective is:

Maximize :
∑

i,j∈A

Separation(i, j).

This metric is easy to compute, given the interference graph.
However, this metric fails to reflect the performance of the

network due to two reasons: (1) The metric ignores whether
the wireless nodes are active. In fact, the nodes are assumed
to always be active. In practice, some wireless nodes are more
active than others. Since the number of available non-overlapping
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Fig. 1. Time series of traffic for a heavily loaded and moderately loaded AP
from LibBldg in the Dartmouth Data (a) and MBldg in the IBM data (b).

channels is very small (only 3 in 802.11b/g), taking the activity
of nodes into account can result in better channel assignments.
(2) The metric ignores clients completely. In practice, minimizing
interference introduced by client transmissions is also important.
Our analysis of real wireless traces shows that clients transmit
a significant volume of traffic. As we show later, these two
drawbacks result in poor channel assignments in terms of overall
network performance. Due to the above two properties, we refer
to the traditional metric astraffic-agnostic and client-agnostic.

1) Client-awareness:When the interference graph induced by
clients is available,client-aware channel assignment becomes
possible. The corresponding metric is:

Maximize :
∑

i,j∈A∪B,BSS(i)6=BSS(j)

Separation(i, j).

HereB denotes the set of clients in the network. Also, nodesi, j
in the sum must belong to different BSSs. This metric is designed
to capture the channel separation between any two interfering
APs, any two interfering clients that are associated with different
APs, and an interfering AP-client pair. Note, however, that the
metric is still traffic-agnostic. Mishra et. al [22] propose a traffic-
agnostic, client-aware metric similar to this one.

2) Traffic-awareness:The previous two metrics do not take
into account the actual traffic volumes or periods of activity
of individual clients and APs. Thus, these metrics may force
interfering but relatively inactive APs or clients to operate on
non-overlapping channels, whereas a smarter channel assignment
would have re-used these channels to mitigate interference at
other active network locations.

In order to verify that traffic varies across BSSs, we examined
the traffic demands at APs from publicly-available traces (circa
2004 [15]). Figure 1 shows that traffic volumes could vary
substantially both across APs and across time. We observe similar
variation among client traffic. Such variation prevents traffic-
agnostic metrics from fully exploiting the capacity of the wireless
medium.

Incorporating traffic volumes and activity of wireless nodes
requires a simple change to the client-aware metric. Before out-
lining this modification, we define the termdemandinformally.
The sending demandof a node is the aggregate amount of data
(excluding link-layer ACKs) it wishes to transmit per unit time.
In the case of a client, there is a single recipient- its AP; in the
case of an AP, all of its clients could be recipients. Similarly,
the receiving demandis the amount of data (excluding link-layer
ACKs) the node wishes to receive from various transmitters.

To incorporate traffic-awareness into channel assignment, we
simply need to ensure that interfering nodes with high indi-
vidual demands (specifically the BSSs containing such nodes)

are assigned to non-overlapping channels. However, to obtain
an effective channel assignment, we must understand how the
send and receive demands of interfering nodes affect each other.
Observe that whenever two nodes A and B are in interference
range, the transmissions of one node will affect not only the
transmissions at the other node but also the receptions at the other
node. The former effect is a manifestation of 802.11’s carrier
sense and back off mechanisms. The latter occurs due to packet
collisions that can arise in hidden-terminal settings.

Using this insight, we scale the channel separation between A
and B with the following “weight”:

WA,B = SA × SB + SA ×RB + SB ×RA,

whereS is the send demand, andR is the receive demand. Intu-
itively, if we abuse notation and letSA (RA) denote the fraction
of time A’s transmissions (receptions) acquire the medium, the
first term reflects theprobability of A and B’s transmissions
interfering with each other. The second (third) terms reflects the
probability of A’s (B’s) transmissions interfering with B’s (A’s)
receptions.

Using the above weights, we can define the followingtraffic-
aware, client-awaremetric:

Maximize :
∑

i,j∈A∪B,BSS(j)6=BSS(i)

Wi,j × Separation(i, j).

Similarly, we can define a traffic-aware, client-agnostic metric:

Maximize :
∑

i,j∈A,j 6=i

Wi,j × Separation(i, j).

B. Efficient Algorithms for Computing Channel Assignments

Since optimizing channel assignment is NP-hard [22], we use
simulated annealing (SA) [31] to obtain near-optimal assignments
for each metric.

SA is appropriate in this context since it can iteratively improve
the solution while avoiding being stuck in local optima. To
achieve good performance and to speed up the convergence, we
use an informed initialization algorithm that is inspired by the
Chaitin’s approach to the register allocation problem [12].

1) Initialization Algorithms:We first describe an initialization
algorithm that does not consider traffic demands and treats every
node equally. Then we extend it to account for different traffic
demands at each node. The initializationdoes nottake clients
into account, irrespective of whether the metric in question is
client-aware or client-agnostic. When client-aware metrics are
used, we rely on SA in Section III-B2 to effectively incorporate
client-side information.

Figure 2 shows the algorithm for the traffic-agnostic case. The
intuition of the algorithm is to defer channel assignment for APs
that have many conflicts with other APs. This is because for
such APs, the choice of the channel is very important, and more
restrictive, as it depends on the channels assigned to neighboring
APs. Also, when an AP has few conflicts, we have a greater
amount of flexibility in assigning channels. For such APs, we
can even assign channels without knowing the channels chosen
for the neighbors. In this algorithm, K refers to the number of
non-overlapping channels.

To extend the initial assignment to the traffic-aware case, we
do the following: First, we modify the degree used in step #2
and #3 by weighing it with total traffic as follows:degree(i) =



1) Construct a conflict graph G for APs in the WLAN, where
there is an edge between any two nodes if they interfere.

2) For any vertices in the conflict graph that has degree less than
K, choose the one with maximum degree and delete it and its
associated edges from the graph and push it onto a stack.
Repeat until no vertices with degree less than K remain.

3) If the resulting graph is non-empty, choose the vertex with
maximum degree and remove it from the conflict graph and
push it onto the stack. Go to step 2.

4) For all the vertices on the stack, pop one vertex at a time,
add it back into the graph and color it with a color that is
different from all its neighbors (up to this point).
If a vertex cannot be colored, mark it.

5) For the marked vertices, assign them a color that results in
minimum interference, where interference is calculated as
# interfering APs assigned the same color.

Fig. 2. Initialization algorithm for channel assignment.

∑
j∈G interfere(i, j), whereinterfere(i, j) = 0 if i andj are

not in interference range;interfere(i, j) = sent(j) + recv(j)
otherwise. Notesent(j) and recv(j) are sent and received
traffic at nodej normalized by the link bandwidth. Second, in
step #5, we assign marked vertices with a color that results in
minimum interference, where the interference at nodei from
node j is defined asinterference(i, j) = 0 if i and j are
on separate channels or not in interference range, otherwise
interference(i, j) = sent(j) + recv(j). We then choose the
color that results in the minimum value ofinterference(i, j)
summed over allj ∈ A and j 6= i.

2) Further Improvement via Simulated Annealing (SA):We
further improve the initial channel assignment obtained above by
using an iterative search. We have compared several options for
the search, including random walk, SA, and greedy search. We
found that SA offers faster convergence and better assignment.

SA is inspired by the metal annealing process. In each iter-
ation, we randomly assign one of the APs (and its clients) to
a different channel. If the new assignment is better, we update
the current assignment to the new one. Otherwise, we update
the current assignment to the new one with the probability
e(fnew−fcurr)/T , whereT is current temperature,fnew andfcurr

are the values of objective functions under the new and current
channel assignments. The temperature gradually decreases so we
are more likely to accept a worse solution initially and avoid
being stuck at local optimal. As the temperature approaches 0,
we progressively move in the direction of improving the objective
function. We set the initial temperature to 10, and each iteration
reduces temperature to 0.999 of the current value. We use 1000
iterations and the output is the best solution over all iterations.
We note the execution time of this approach is sufficient for
practical WLAN settings (e.g., it takes well under 1 second for
SA to compute the optimized metric value in the traces we study).

C. Practical Issues

We address several practical issues in channel assignment.
1) Measuring the Interference Graph:The effectiveness of a

channel assignment depends on the availability of an accurate in-
terference map. Three measurement and modeling techniques [3],
[4], [30] have been proposed recently to estimate wireless in-
terference. The first scheme [3] directly measures link-based
interference using broadcast probes. This is the approach we
use for our evaluation due to its simplicity. The second scheme
improves the scalability of the first approach by developing an
interference model based on RSSI measurement. Each sender

sends a series of broadcast probes, and all other nodes measure
the received signal strength. Then a model is used to estimate
the sending rate based on received signal strength and carrier
sense threshold, and estimate the delivery rate based on SNR. In
this way, onlyO(N) broadcast probes are required for measuring
interference inN -node network. The third scheme, proposed by
[4], sends coordinated probes from APs to clients. For example,
APs A1 andA2 estimate the interference on linksA1−C1 and
A2 − C2 by sending a probe onA1 − C1 and then sends a
probe onA2 − C2 at the same time whenC1 sends ACK to
A1. If C1’s ACK is not received, it indicates two links interfere;
otherwise, they do not interfere. To further enhance the robustness
of this approach (e.g., packet collision caused by an accidental
transmission from somewhere else, or data and ACK sent time
is slightly different), one can measure multiple times and use
consistent collisions to indicate interference.

We choose the first approach due to its simplicity. Our channel
assignment approaches can be directly combined with and benefit
from other scalable and accurate interference measurement tech-
niques. In the first scheme, we have one node, sayA, broadcast
packets as fast as it can for 1 minute. LetRA denote A’s
broadcast rate when it broadcasts alone. Then, we have two
nodes, sayA and B, broadcast simultaneously as fast as they
can for 1 minute.RAB

A denotesA’s broadcast rate whenA
andB are simultaneously sending. Similarly,RAB

B denotesB’s
broadcast rate whenA and B are simultaneously sending. We
then computeBR = RAB

A +RAB
B

RA+RB
. WhenBR is close to 1, it means

that nodesA andB do not interfere. WhenBR is close to 0.5, it
means that these two nodes take turns in transmitting packets and
hence interfere with each other. To apply the channel assignment
metrics in Section III-A, we convert the measured BR to a binary
interference metric as follows: WhenBR > 0.9, the two nodes
are considered not to interfere with each other; otherwise, they
are considered to interfere. This interference information is then
directly used as the input to the channel assignment algorithms.

The probing-based approach assumes that nodes are immobile.
APs can be safely assumed to be stationary, but not clients.
Hence this approach may not be effective at capturing the inter-
ference graph induced by clients, which impacts the traffic-aware,
client aware metric. While the traffic-aware, client-aware metric
gives the best performance, our evaluation shows that traffic-
awareness alone (i.e. traffic-aware, client-agnostic metric) can
offer significant improvement compared with any traffic-agnostic
metric. Finally, we note that it is possible to accommodate client-
awareness partially using radio resource management techniques,
such as 802.11K client report [1].

2) Handling Non-binary Interference:Wireless interference
in real networks may not be binary and convertingBR into
a binary metric loses accuracy. Thus, we extend our channel
assignment approach to work with the measuredBR. Fig-
ure 3 outlines our extension. As it shows, we first convert
BR to a value ranging from 0 to 1, where 0 indicates no
interference, 1 indicates complete interference, and any val-
ues in between indicate partial interference. This value only
depends on the locations of nodes A and B, so it is called
LocInterf . In addition, we also compute interference across
channels based on their channel separation, which is referred
to ChannelInterf . As LocInterf , ChannelInterf ranges
from 0 to 1, where 0 means no interference, 1 means complete



interference, and other values in between means partial interfer-
ence. The final interference metric is the product ofLocInterf
and ChannelInterf . The traffic-agnostic, client-agnostic as-
signment aims to minimize

∑
i,j∈A OverallInterf(i, j), and

the traffic-aware, client-agnostic assignment aims to minimize∑
i,j∈A OverallInterf(i, j) ∗ W (i, j), whereW (i, j) = Si ×

Sj + Si × Rj + Sj × Ri as defined in Section III-A2. Similar
modifications apply to traffic-agnostic, client-aware and traffic-
aware, client-aware metrics. Note that our simulation evaluation
uses the channel assignment for binary interference, since NS-
2 only has binary interference model and in such cases the
performance of channel assignments for non-binary interference
is similar to those for binary interference. Our testbed evaluation
uses the channel assignment for non-binary interference, and we
observe they out-perform binary interference-based assignment
due to presence of non-binary interference in real networks.

BR = min(1, max(0.5, BR)); // ensure BR within range 0.5 .. 1
LocInterf = 2− 2×BR; // map BR to range 0 .. 1
ChannelDiff = min(|Ci − Cj |, 5);
ChannelInterf = 1− ChannelDiff ∗ 0.2;
OverallInterf = ChannelInterf ∗ LocInterf ;

Fig. 3. Handling non-binary interference.

3) Estimating Traffic Demand Information:The computation
of traffic-aware metrics requires current WLAN demand infor-
mation. We approximate this using SNMP statistics.

Enterprises routinely employ SNMP-based [11] tools to mon-
itor and manage their WLANs. Most commercial APs export an
SNMP management interface that provides the following byte
counts every five minutes: (1) bytes sent by the AP (IfOutOct);
(2) bytes received at the AP (IfInOct); and, (3) the number of
active clients currently associated with the AP (NumClients). To
illustrate, we can calculate the send demands of APs and clients
as Send AP Demand[t − 5, t] = IfOutOct(t)−IfOutOct(t−5)

∆(t)

andSend Client Demand[t−5, t] = IfInOct(t)−IfInOct(t−5)
∆(t)·NumClients(t) .

Receive demands can be computed in a similar fashion. We
note it is possible to obtain finer grained per-client demand
information by correlating SNMP,syslog , and tcpdump
statistics [21].

4) Predicting Traffic Demands:Traffic-aware channel assign-
ment accurately reflects network performance only whencurrent
demand information is available. In practice, we can only use the
past information to predict the traffic demands at the current or
future time intervals. To address this issue, we present simple
algorithms for estimating future demands based on historical
measurements (e.g., the previous SNMP data). We can then use
predicted demands in channel assignment.

We must address two important issues: (1) How to use
historical data to identify trends in demands and to predict
future demands reasonably accurately? (2) How to enhance the
robustness of resulting assignment against significant variation in
traffic demands? Next, we present a family of practical traffic-
aware algorithms for channel assignment. These algorithms offer
varying degrees of trade-offs between these issues, and we
evaluate them in Section V.

Exponentially-Weighted Average (EWMA). This approach pre-
dicts AP demands at timet by using a weighted moving average
of demands in previous intervals. More recent demands are given
larger weight:Dem Pred(t) = w ·Dem Actual(t− 1) + (1−

w) · Dem Pred(t − 1). We set the weightw = 0.9. We use
EWMA to first estimate the AP demand. We also estimate the
number of active clients using EWMA. We then combine the two
estimates to derive the predicted client demands.

Optimal for the Previous Interval (PREV). Here, the channel
assignment for timet is simply the optimal channel assignment
for the traffic demands in timet−1 (or the most recently sampled
time interval, if there are no samples available fort−1). In other
words, PREV is simply EWMA withw = 1. PREV is more
sensitive to short term traffic fluctuations than EWMA.

Optimal Over a Time Window (PREV N). There are sev-
eral traffic patterns where PREV could be ineffective, e.g.,
periodic bursty traffic. Our next approach, PREVN, tries to
address this drawback by simultaneously optimizing the assign-
ment for all traffic demands observed over a history window.
Given an optimization metric, PREVN will derive a channel
assignment that maximizes thetotal value of the metric for
the traffic demands from the pastN intervals: Optimize :∑

i=1..N Metric(Demands(t−N)).
Peak Demand in a Window (PEAK N). This is a variant of
PREV N: Instead of optimizing for all sets of demands in a
time window, PEAK N obtains the optimal channel assignment
for the“worst-case” demand-set within the history window. This
allows the channel assignment to be more responsive to sudden
increases in aggregate network utilization.

5) Limitations: The traffic-aware metrics do not capture two
key factors: (1) multi-rate adaptation and (2) the dependence
of wireless cell capacity on the number of clients and their
transmission rates. Incorporating these factors can complicate
matters since it requires real time measurement of the received
signal strength and/or the rates at clients.

Since our metrics do not capture multi-rate adaption, we say
they are “rate agnostic”. In Section VI, we evaluate the impact
of ignoring multi-rate using testbed experiments. We find rate-
agnostic traffic-aware channel assignment interacts well with
multi-rate adaptation. When clients and APs are close to each
other, traffic-aware assignment offers similar improvement with
and without multi-rate adaptation. This is because in both cases
almost all communications use the highest data rate. When clients
and APs are farther apart, traffic-aware channel assignment can
offer larger improvement under multi-rate adaptation, because
it reduces interference and allows communication to use higher
data rates.

D. Putting It All Together
Measure interference graph

Predict traffic demands for 
next interval using EWMA

Initialize channel assignment using 
algorithm in Figure 2

Compute traffic aware 
channel assignment

using Simulated Annealing

New assignment ≠
old assignment?

Change channel assignment

Obtain demands using SNMP

Yes

No

Fig. 4. Outline of traffic-aware channel assignment.
Figure 4 summarizes the steps in traffic-aware channel assign-

ment. The first step, measuring the interference graph, can be



conducted infrequently (e.g., a few times a day under light traffic
load). All other steps are repeated at the timescale of collection of
traffic demands, e.g., every 5 minutes. The traffic-aware channel
assignment approach requires no modifications to the clients or
the standard. When clients are willing to cooperate (e.g., by
measuring client-side interference and/or using more efficient re-
association scheme described in Section VII), the benefit of our
channel assignment increases further.

IV. EVALUATION APPROACH

To understand the benefits of traffic-awareness in different
operating conditions, we use two sets of experiments: (1) First,
we conduct simulations using both real and synthetic traffic
demands and WLANs topologies (Section IV-A). While the
simulations allow us to explore the benefits of traffic-awareness
in a range of operating conditions, they abstract away important
real world effects. (2) To account for such effects, we implement
our approach over a modest-sized wireless testbed and evaluate
its performance using several field experiments. In Section IV-B,
we provide details of our wireless nodes and the traffic demands
we imposed in our testbed experiments. We describe the imple-
mentation in Section VI.

A. Simulation Methodology

We use the publicly available version 2.29 of NS-2 with
support for multiple non-overlapping channels. We use 802.11b
and enforce 11 Mbps medium bit rate with RTS/CTS enabled
and transmission range set to 60 meters (with corresponding
interference range = 120 m). We generate constant bit rate (CBR)
traffic at a specified rate with data packet sizes of 1024 bytes.
Unless otherwise stated, the traffic is bi-directional (from APs
to clients and vice versa) and symmetric: the send demand at
an AP is same as its receive demand. The traffic generated by
APs is uniformly distributed to all clients. We study the effect
on TCP traffic in our testbed experiments (Section VI). We use
the Simulated Annealing approach of Section III-B to optimize
the channel separation metrics.

Since these are controlled simulations, we assume that lo-
cations of all wireless nodes are known and use free-space
propagation models [29] to estimate if two nodes are interfering
with each other. In our simulations, all interference is binary. To
evaluate the effectiveness of an assignment, we compute thetotal
throughputover all connections.

1) Synthetic Scenarios:First, we use synthetic scenarios to
understand when traffic-aware channel assignment is beneficial.
We generate synthetic topologies and traffic traces using the
approach in [22], [24]. Specifically, we generate topologies that
consist of 50 APs and 200 clients in a given area. Like [22],
[24], we generate 15 random topologies, where each client has,
on average, 4 APs in its communication range.

Different from [22], [24], we generate two types of constant-
bit-rate (CBR) UDP traffic to shed light on how traffic distri-
bution affects the benefits of traffic-aware assignments. The two
types of demands are (i) uniform random traffic demands and
(ii) hotspottraffic demands. In uniform random traffic, each AP
is randomly assigned a demand from 0 to the maximum CBR
throughput on a wireless link (3.6 Mbps for our NS-2 settings).
In hotspot traffic demands, a specified number of “hotspots” are
created as follows. Each hotspot is formed by randomly selecting
an AP and all the other APs within its communication range. All

APs in the hotspots have traffic demands uniformly distributed
between 0 and 3.6 Mbps, and all other APs have traffic demands
uniformly distributed between 0 and 10 Kbps. Each send demand
is simulated by creating CBR flows from an AP to its client and
each receive demand is simulated by creating flow from client
to its AP.

2) Trace-driven Simulation:In addition to synthetic scenarios,
we also conduct trace-driven simulations over two publicly
available wireless data sets: the first was collected at Dartmouth
College [13], [15] in 2004 and the second dataset was collected at
the IBM T.J. Watson Research Center [16] in August 2002. These
simulations allow us to explore the benefits of traffic-awareness
in real WLAN deployments with real traffic patterns.

Dartmouth Traces. We analyze the data collected between Feb
10th and Feb 12th, 2004. In our analysis, we focus on two
buildings - “ResBldg94” and “LibBldg2” - containing 12 and
20 access points, respectively. Other buildings of similar type
(e.g. other ResBldg’s) have fewer access points.

The Dartmouth traces include SNMP statistics and number of
active clients per AP sampled every 5 minutes at all APs. We
use the SNMP statistics and client-AP association information to
derive AP and client-side demands (in Mbps) for every 5 minute
interval. In addition, the data contains geographic coordinates for
the APs. There is no client location information, so we assume
that clients are randomly distributed around their APs within a
circle of radius 20m.

IBM Traces. Similar to the Dartmouth data, the IBM traces
contain SNMP statistics and number of active clients per AP for
three different buildings: “SBldg”, “MBldg” and “LBldg”. We
focus on “MBldg”, which has 33 APs. Unlike the Dartmouth
data, we did not have the locations of the APs. Instead, we
constructed synthetic coordinates for the APs by placing them
at hand-picked locations in a 5-storied building spanning a
235x100m lot. We analyze the data collected between Aug 11,
2002 and Aug 13, 2002.

Our trace-driven simulations progress in rounds, where a single
round covers a given SNMP measurement interval. Within a
round, we apply the channel assignment algorithm, as described
in Section III-B, to optimize the channel separation metrics. As
mentioned earlier, we quantify the effectiveness of an assignment
by computing the aggregate throughput over all connections.

To study the benefits of traffic-awareness, in our simulations,
we focus on intervals with≥ 50% simultaneously active APs.
We consider an AP to be active if the total volume of traffic
it sends and receives exceeds 10 Kbps. Also, while trace-driven
simulation captures real usage patterns, it has a major limitation
– its throughput is limited by the capacity of the current provision
scheme (e.g., if channel assignment in use was ineffective, the
throughput of the traces would be too low to see benefits of
improved channel assignment). To address this limitation, we
scale up the traffic demands in these intervals (on average, we
scale 60X across all buildings). Note that 60X scale up is chosen
to ensure that the performance is not limited by the capacity of
the existing deployment, even though we also observe benefits
of traffic-aware assignment under smaller scale-up values.

B. Experimental Approach

In addition to simulation, we also implement the channel
assignment algorithms in a wireless testbed. Testbed evaluation



is valuable because it allows us to evaluate the performance of
different channel assignments with realistic wireless signal prop-
agation, interference patterns, and multi-rate adaptation schemes.

We set up a wireless testbed that consists of 25 DELL
Dimensions 1100 PCs. The testbed spans two floors of an office
building. Each machine has a 2.66 GHz Intel Celeron D Processor
and runs Fedora Core 4 Linux. Each is equipped with 802.11
a/b/g NetGear WAG511 using MadWiFi. We run the experiments
late at night to avoid interference with the resident wireless
network. We conduct two sets of experiments. (1) For the first
experiment, we use a subset of our testbed (12 nodes). Half
of the PCs act as APs and the other half act as clients, and
each AP has one client. We construct several ”toy” demands for
our smaller scale testbed. In the small testbed, we use a binary
interference graph and evaluate the client-agnostic, traffic-aware
metric against the client-agnostic, traffic-aware approach. (2) For
the second experiment, we use the entire testbed. There are 8 APs
and 17 clients, with all but one AP having 2 clients. The loss
rates from the AP to its clients vary from 0 to larger values (up
to 40%). We evaluate both traffic-aware metrics (client-aware
and client-agnostic) against a client-agnostic, traffic-agnostic
baseline. We impose Zipfian demands across the APs in our
testbed. We try several different slopes for the Zipf-curve: a
slopeα means that the topi-th demand is proportional to1/iα;
we vary α from 0 to 2, where 0 represents uniform demands
and a largerα indicates more skewed demands. The demands
generated from these slope values are listed in Table V. For
each slope value, we evaluate 5 different random mappings
of the generated demands to each AP and report the average
throughput over these 1 minute runs. Each mapping can give
a different traffic-aware channel assignment. We measure non-
binary wireless interference in the second testbed using broadcast
probes (described in Section III-C1) once before the experiments
start and use the same interference graph for all runs. This way
the quality of channel assignment is also subject to the temporal
variation in the interference graph, which is more realistic.

We generate either constant-bit-rate UDP or TCP traffic from
APs to clients with packet size of 1024 bytes. For both forms
of traffic, we measure the throughput using nuttcp [25]. We
enforce a specified demand in TCP traffic by utilizing the rate
limiting function in nuttcp, which places an appropriate upper-
bound on TCP’s congestion window. We use the same set of
traffic demands for TCP and UDP and assume these demands
are known a priori.

V. SIMULATION RESULTS

We now present our evaluation from NS-2 simulations. As
mentioned earlier, we quantify the effectiveness of a channel
assignment by computing the total throughput achieved by all
network flows under the assignment. We first simulate synthetic
topologies and show that the benefit of traffic-awareness is larger
when the load is imbalanced. Then we compare different channel
assignments using trace-driven simulations under accurate and
inaccurate traffic demands.

A. Simulations on Synthetic Settings

As described in Chapter IV-A1, we create two types of
demands to understand the benefit of traffic-aware assignment -
uniform and hotspots. Figure 5 shows the cumulative distribution
function(CDF) of improvement of traffic-aware channel schemes

over their traffic-agnostic counterparts under each demand type.
The CDF is plotted over the 15 random topologies that we
simulated.

As we can see, the improvement of traffic-awareness is mostly
within 15% under uniform demands, whereas the improvement
under hotspots traffic is significantly higher: in 20-35% cases, the
improvement is over 20%, and in 10% cases, the improvement
is over 50% in 1 hotspot and over 30% in 2 hotspots. The
improvement in 1-hotspot case is higher than 2-hotspot case
because with 2 hotspots (based on our generation) a large
fraction of the network has high load and hence high channel
utilization. Nevertheless we still observe up to 48% improvement
in 2-hotspot case. These results suggest that the traffic-aware
assignment is most useful for hotspots-style scenarios.

The benefit is larger under hotspots than uniform demands
because traffic-aware assignment aims to assign APs with high
load to non-overlapping channels as much as possible; this
significantly increases the overall throughput when the demands
are highly skewed. Also, we observe the throughput (in absolute
values) is highest when the channel assignment is both traffic-
aware and client-aware.

Note that in Figure 5(a) there are a small number of cases
where we observe negative throughput improvement. This is
because the current channel separation metric (even after incorpo-
rating traffic and client awareness) is not perfect. For example,
consider a setting where two APs do not interfere with each
other but some of their clients do. The current metric only takes
into account the interference between the clients, and ignores
the additional effect of head-of-line blocking at APs caused by
the interference at their clients. We believe that our traffic-aware
metrics can be improved further to correlate more strongly with
network performance. We leave this for future work.

B. Trace-Driven Simulation Results

Next we compare different channel assignments using simula-
tion based on real traffic traces described in subsection IV. First,
we present a comparison of the performance improvement from
traffic-awareness relative to traffic-agnostic assignment. Then,
we investigate if traffic-aware assignment introduces unfairness
into a WLAN by favoring transfers at heavily loaded APs. We
also study the relation between the benefits of traffic awareness
and the density of the WLAN network (in terms of the mean
distance between wireless nodes) Finally, we present an eval-
uation of practical demand prediction algorithms discussed in
subsection III-C3.

1) Performance Benefits of Traffic-awareness:First we com-
pare four channel separation metrics assuming that we have
perfect knowledge of traffic-demands. Figure 6 shows a CDF
of performance improvement of various channel assignments
against a traffic-agnostic/client-agnostic baseline. We note that
the average throughput improvement is 4.0%-5.9% after incor-
porating client-side information alone; it raises to 5.2%-11.5% by
incorporating traffic-demands alone; and further to 8.3-12.8% by
incorporating both traffic-demands and client-side information.

As we can see in Figure 6, the client-aware/traffic-aware metric
shows improvement over the client-agnostic/traffic-aware metric
for LibBldg2 and MBldg. However, the improvement is less for
ResBldg94. To see why the client-aware metric does not provide
as much improvement in ResBldg94, we examine the interference
patterns in the buildings. If a client interferes with the same set
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(a) uniform demands (b) hotspot demands (c) hotspots demands (2 hotspots)

Fig. 5. Comparison of traffic-aware schemes against their traffic-agnostic counterparts in synthetic topologies.
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Fig. 6. Comparison of various channel assignment schemes against a traffic-agnostic, client-agnostic channel assignment approach as the baseline.

of APs as the AP it is associated with, then the benefit of client-
aware channel assignment becomes smaller. However, if clients
interfere with a different set of APs than that of the AP they are
associated with, client interference becomes more important. We
report the average number of clients that fall into the two former
categories in the left and right columns of Table I, respectively.
For ResBldg94, a relatively higher proportion of clients have
the same interference pattern as their APs, and thus client-aware
channel assignment has less impact. In comparison, LibBldg2
and MBldg see larger benefit of client-aware channel assignment
since more clients interfere with different APs.

Interfere with same APs Interfere with different APs
ResBldg94 58.4 5.75
LibBldg2 14.9 6.56
MBldg 59.2 24.8

TABLE I
DETAILED BREAK-DOWN OF CLIENT-SIDE INTERFERENCE.

As in the synthetic case, the extent of improvement is traffic-
dependent. When traffic is more evenly distributed, we see little
improvement from traffic-aware assignment. When traffic is more
heterogeneous, the improvement is larger. For instance, we com-
puted the classic Jain’s fairness index for demands corresponding
to the interval with the maximum improvement of 40% and
for the interval corresponding to the median improvement of
10%, both in Figure 6(a). (Jain’s fairness index is defined as
(
∑

xi)2/(n ∗ ∑
xi

2) for demandsx1...xn.) We note that the
fairness in the former case is almost one half of the fairness
for median-case demands. This further confirms that the more
imbalanced the traffic demands, the larger benefit from using
traffic-aware assignment.

Figure 7 compares the performance improvement of the two
traffic-aware metrics against their traffic-agnostic counter-parts.
The average improvement of traffic-aware/client-agnostic metric
over traffic-agnostic/client-agnostic is 5.2-11.5%, whereas the
average improvement of traffic-aware/client-aware over traffic-
agnostic/client-aware is 2.4-8.6%. The former improvement is
larger because the baseline performance is worse. For ResBldg
(Figure 7(a)), the largest improvement of traffic-awareness is
> 35% for either metric.

Approach Fairness
ResBldg LibBldg MBldg

Traffic-agnostic/client-agnostic 0.89 0.87 0.85
Traffic-unaware/client-aware 0.91 0.89 0.87
Traffic-aware/client-agnostic 0.89 0.90 0.86
Traffic-aware/client-aware 0.91 0.91 0.87

TABLE II
IMPACT OF TRAFFIC-AWARENESS ON FAIRNESS
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Fig. 8. Comparison of various traffic-aware schemes against their traffic-agnostic
counterparts under Zipf-distributed traffic demands.

2) Fairness: Next we ask if traffic-awareness creates unfair-
ness among APs. We consider the ratio of the actual throughput
obtained at the AP to its original demand and compute Jain’s
fairness index over this ratio for all individual flows. As sum-
marized in Table II, all the algorithms result in similar fairness.
This suggests that benefits from traffic-aware assignment do not
come at the expense of the fairness in throughput allocation to
individual flows.

3) Impact of Zipf-distributed Demands:In the above simu-
lations, we assumed that the demand of an AP was equally
distributed across its clients and its client demands were also
equal. Now, we study the benefits under a more skewed client
demand distribution.

Figure 8 compares various channel assignment schemes
against a traffic-agnostic, client-agnostic channel assignment ap-
proach as the baseline when Zipf-distributed traffic demands are
used for ResBldg. Compared with Figure 6(a), we observe the
relative performance of various algorithms is similar.

Note that the total traffic rate to and from each AP is the same
in both cases. The lack of any significant difference between
uniform and Zipfian client demands indicates that the aggregate
traffic volume in a BSS is a more important factor in traffic-aware
assignment than the actual distribution of the traffic among clients
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Fig. 7. Comparison of various traffic-aware schemes against their traffic-agnostic counterparts.

in the BSS.
4) Impact of Network Density:We now study the relationship

between the density of a WLAN deployment and the benefits of
traffic-awareness. More specifically, we want to understand if the
benefits are higher in dense deployments.

Figure 9 shows the performance improvement when we vary
transmission range, and consequently, the average number of
interfering AP pairs. The improvement tends to first increase
with density and then decrease. This is because when the
network density is low, very few APs interfere with each other
and all channel assignments yield similar throughput. When
network density is higher, a better channel assignment can allow
more nodes to simultaneously transmit, thereby increasing total
throughput. As network density increases further, all the channels
are fully utilized everywhere regardless of channel assignments
and the benefits of traffic-aware channel assignment are reduced.
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Fig. 9. Improvement in performance as a function of density for ResBldg.
Figure (a) plots the average improvement in throughput performance. Figure (b)
plots the CDF of the throughput improvement at different densities.

5) Evaluation of Practical Traffic-aware Algorithms:In the
previous evaluation, we assume that traffic-aware channel assign-
ments have perfect knowledge of traffic-demands. In practice,
such information is not known a priori, but has to be estimated
based on historical information. A natural question arises: can the
prediction error offset the potential gain of traffic-aware channel
assignment?

EWMA Previous Peak2 Peak4
ResBldg 0.48 0.49 0.70 1.02
LibBldg 0.43 0.47 0.57 0.80
MBldg 0.76 0.91 1.03 1.25

TABLE III
PREDICTION ERROR

To answer this question, we first compute the error in predict-
ing traffic demands using various prediction algorithms described
in subsection III-C. We quantify the prediction error using mean
absolute error (MAE), defined as

P
i |predicti−actuali|P

i actuali
. Table III

shows the error involved in predicting the total demand (both
send and receive demands) at the APs. As shown in Table III,
the best prediction algorithm is EWMA, which results in MAE
ranging from 0.43 to 0.76. This prediction error is still quite sig-
nificant. Large prediction errors are not surprising since wireless
traffic at each AP haslow aggregationand is much harder to

predict than traffic in an ISP backbone. Such high variability in
traffic poses challenges to traffic-aware assignment schemes.

Next we evaluate the performance of channel assignment using
predicted demands, and compare it with the case where the true
demands are known(the “oracle”). We evaluate the improvement
seen by two traffic-aware metrics over their traffic-agnostic
counterpart. Figure 10 compares the client-aware metric, while
Figure 11 compares the client-unaware metric. The performance
of the prediction algorithms closely tracks the the oracle. Com-
pared with the oracle the degradation of predictive algorithms is
within 6% (e.g. see the EWMA algorithm for client-unaware in
ResBldg94). Compared with the traffic-agnostic algorithm, the
improvement is still substantial. The performance degradation
for client-unaware channel assignment is less than that for the
client-aware channel assignment. For client-aware, we have to
predict the client side demands too and this further increases
the prediction error. The median improvement for client-unaware
channel assignment is8.13% while for client-aware channel
assignment it is5.26% (both values for ResBldg94).
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Fig. 10. Comparison of client-unaware channel assignments using various
prediction algorithms.
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Fig. 11. Comparison of client-aware channel assignments using various
prediction algorithms.

Our evaluations suggest that even though wireless traffic is
hard to predict accurately, it is still possible to apply traffic-
aware channel assignments, since the assignments are reasonably
robust against prediction errors. The robustness arises from the
fact that traffic-aware channel assignment does not need accurate
demands but only the rough spatial demand distribution, so that
it can allocate more channels to areas that need them most. To
confirm this further, we conduct simulations where we introduce
Gaussian errors into the traffic demands.

6) Impact of Incorrect Information:To evaluate the robustness
of traffic-aware channel assignment, we “poison” the traffic
demands with artificially generated error and use the poisoned
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Fig. 12. Comparison of traffic-aware schemes against their traffic-agnostic
counterparts under Gaussian distributed errors with mean=0 and different standard
deviation.

demands as input to channel assignment. Figure 12 shows the
CDF of performance improvement of traffic-aware channel as-
signment schemes against their traffic-agnostic counterparts when
we add errors with different standard deviation. As we would
expect, the performance improvement increases as the standard
deviation of the error decreases. Moreover, we observe that even
when the standard deviation is 0.5, the performance improvement
is close to that under no error. This is true for both client-agnostic
and client-aware assignments. These results further demonstrate
the robustness of traffic-aware assignment to a range of possible
errors in the demand information.

VI. I MPLEMENTATION AND EXPERIMENT RESULTS

We implement the channel assignment algorithms as follows.
We have a centralized controller that takes traffic demands and
the interference graph among wireless nodes as the input and
computes channel assignments for the channel separation metrics
defined in Section III. Then the controller disseminates the new
channel assignment to the APs by establishing ssh connections
through the back-end Ethernet connection, and remotely sets the
APs’ channels usingiwconfig . After all APs’ channels have
been changed, the controller remotely starts thenuttcp [25]
program with the specified traffic demands to measure network
performance. For our evaluation, the controller collects the
throughput reports from all APs again via the back-end Ethernet
connection after each experiment.

A. Testbed 1

First, we use a smaller-scale testbed of 12-nodes to understand
the potential benefits of traffic-aware channel assignment. Most
of the 12 nodes interfere with each other. We generate possible
but undesirable traffic-agnostic assignments by iteratively assign-
ing the two access points with the highest remaining demands to
the same channel. Such assignment is possible because traffic-
agnostic assignment tries to balance the number of interfering
APs on a channel without considering their traffic load. Ta-
ble IV compares throughput under traffic-agnostic and traffic-
aware channel assignments in eight different settings, derived
from changing the following three factors: (i) TCP vs. UDP, (ii)
with fixed rate and with multi-rate adaptation, and (iii) with and
without RTS/CTS. When using a fixed rate, the data rate is set
to 1 Mbps. In the throughput distribution column, APs assigned
to channel 1 are in boldface, ones assigned to channel 6 are in
italics, and ones assigned to channel 11 are in normal font.

We make the following observations. First, traffic-aware chan-
nel assignment consistently out-performs traffic-agnostic channel
assignment. The largest improvement is 90.73%. The only ex-
ception arises in the first traffic demand under TCP, with multi-
rate and RTS/CTS, where traffic-aware assignment yields 5.43%

lower throughput. A closer examination reveals that the perfor-
mance loss is caused by inaccurate assumption of interference
patterns. We assume that all nodes interfere with each other,
which is indeed the typical case in the testbed. However wireless
interference relationships change over time. In this particular
experiment, the fourth and fifth APs do not always interfere with
each other, and achieve total throughput of 29.12 Mbps, which
is significantly higher than 25.27 Mbps – the highest throughput
that a single channel observed from our testbed.

Second, the throughput improvement has a strong correlation
with “fairness index”; this is the Jain fairness index computed
over the traffic demands. We calculate the Jain fairness index
as described in Section V-B2. A lower index indicates more
imbalance in traffic distribution, and results in larger benefit from
traffic-aware channel assignment. These results are consistent
with our simulation. Moreover, we observe that traffic-aware
channel assignment not only benefits UDP traffic (e.g. streaming
media or delay sensitive traffic), but also significantly improves
TCP throughput (e.g. elastic large file downloads). Therefore
traffic-awareness could benefit a wide variety of applications
running over wireless links.

Third, we observe similar performance with and without
RTS/CTS. We also note that the relative performance improve-
ment from traffic-aware assignment under multi-rate adaptation
is comparable to that without using multi-rate. This is because
the clients and APs are close together, and their links generally
operate at the highest data rate under both traffic-aware and
traffic-agnostic assignments. When the client-AP link quality
degrades, we expect a higher benefit of traffic-aware assignment,
because traffic-aware assignment helps reduce interference and
allow links to operate at higher data rates. We observe this
phenomenon in our larger testbed, which we describe next.

B. Testbed 2

After evaluating the channel assignment in the subset of the
testbed, we evaluate our channel assignment scheme on the entire
testbed. As mentioned in Section IV-B, in our evaluation, we
generate Zipf-distributed traffic demands with different slopes,
where a larger slope indicates a higher imbalance in traffic
pattern. The demands generated from these slope values are listed
in Table V.

α APi1 APi2 APi3 APi4 APi5 APi6 APi7 APi8
0.0 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340
0.5 0.622 0.440 0.359 0.311 0.278 0.254 0.235 0.220
1.0 1.000 0.500 0.333 0.250 0.200 0.167 0.143 0.125
1.5 0.943 0.943 0.333 0.181 0.118 0.084 0.064 0.051
2.0 0.778 0.778 0.778 0.195 0.086 0.049 0.031 0.022

TABLE V
NORMALIZED ZIPFIAN DEMANDS IN THE TESTBED.

Since the effect of RTS/CTS is small as shown in Sec-
tion VI-A, here we mainly focus on the other two factors, namely
TCP/UDP and multi-rate adaptation.

Figure 13 and 14 show the overall network throughput over
5 runs under fixed-rate and multi-rate, respectively. We make
the following observations. First, as we would expect, client-
aware, traffic-aware performs the best, and client-agnostic, traffic-
aware out-performs client-agnostic, traffic-agnostic. Second, the
throughput variance of traffic-agnostic metric is generally higher
than that of the traffic-aware metrics. This is because the traffic-
agnostic metric ignores traffic demands, and different channel



Normalized traffic demands Throughput for traffic-aware Throughput for traffic-unaware Improv- Fair-
(AP1, AP2, AP3, AP4, AP5, AP6) assignment (Mbps) assignment (Mbps) ement ness

Distribution Total Distribution Total
UDP Results - Fixed Rate

(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (0.80,0.28, 0.28, 0.43, 0.42, 0.28) 2.49 (0.66, 0.28,0.28, 0.42, 0.43, 0.28) 2.35 5.98% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.51, 0.17, 0.67, 0.51, 0.17, 0.72) 2.74 (0.51,0.17, 0.46, 0.51,0.17, 0.41) 2.22 23.35% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 0.47, 0.80,0.81, 0.39) 2.47 (0.00, 0.00, 0.45, 0.40, 0.45,0.42) 1.73 42.88% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (0.17,0.00, 0.42, 0.17, 0.17,0.80) 1.73 (0.17, 0.00, 0.42,0.17, 0.17, 0.45) 1.38 24.95% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 0.82, 0.00,0.80, 0.82) 2.45 (0.00, 0.00, 0.49,0.00, 0.80, 0.38) 1.67 46.55% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,0.81, 0.00,0.00, 0.83) 1.64 (0.00, 0.00, 0.47,0.00, 0.00, 0.40) 0.86 89.90% 0.33

TCP Results - Fixed Rate
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (0.74,0.28, 0.18, 0.39, 0.41, 0.28) 2.30 (0.58, 0.28,0.28, 0.42, 0.42, 0.28) 2.27 1.04% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.46, 0.17, 0.60, 0.50, 0.17, 0.69) 2.59 (0.48,0.17, 0.43, 0.49,0.17, 0.39) 2.13 21.99% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 0.39, 0.76,0.77, 0.41) 2.34 (0.00, 0.00, 0.42, 0.40, 0.38,0.40) 1.61 45.66% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (0.17,0.00, 0.42, 0.17, 0.17,0.78) 1.71 (0.17, 0.00, 0.39,0.17, 0.17, 0.43) 1.33 28.98% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 0.77, 0.00,0.76, 0.76) 2.29 (0.00, 0.00, 0.42,0.00, 0.77, 0.39) 1.59 44.03% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,0.77, 0.00,0.00, 0.76) 1.54 (0.00, 0.00, 0.42,0.00, 0.00, 0.39) 0.81 89.32% 0.33

UDP Results - Multi-rate
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (24.66,9.17, 8.75, 13.99, 13.98, 8.63) 79.18 (19.30, 9.24,9.24, 14.00, 14.00, 9.24) 75.02 5.55% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.80, 5.60, 20.19, 16.47, 5.60, 25.17) 89.84 (16.80,5.60, 14.98, 14.01,5.60, 12.79) 69.78 28.74% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 15.40, 22.65,24.25, 12.94) 75.23 (0.00, 0.00, 19.27, 11.43, 15.16,7.87) 53.72 40.03% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.00, 14.00, 5.60, 5.60,26.08) 56.88 (5.60, 0.00, 14.00,5.60, 5.60, 13.86) 44.66 27.37% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 26.80, 0.00,24.45, 26.02) 77.27 (0.00, 0.00, 16.79,0.00, 23.64, 11.64) 52.07 48.38% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,26.06, 0.00,0.00, 26.80) 52.86 (0.00, 0.00, 16.66,0.00, 0.00, 11.98) 28.64 84.53% 0.33

TCP Results - Multi-rate
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (24.47,8.38, 8.85, 12.34, 13.52, 7.69) 75.25 (18.74, 6.16,9.24, 14.00, 14.00, 9.24) 71.38 5.42% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.80, 5.60, 18.24, 16.80, 5.60, 24.67) 87.71 (16.80,5.60, 13.22, 15.40,5.60, 12.82) 69.44 26.31% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 13.38, 19.92,23.73, 12.56) 69.60 (0.00, 0.00, 13.09, 10.47, 14.48,13.20) 51.24 35.82% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.00, 14.00, 5.60, 5.60,25.50) 56.30 (5.60, 0.00, 13.99,5.60, 5.60, 12.32) 43.11 30.58% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 25.12, 0.00,24.20, 25.18) 74.49 (0.00, 0.00, 14.81,0.00, 23.64, 12.28) 50.73 46.83% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,24.35, 0.00,0.00, 25.64) 49.99 (0.00, 0.00, 15.33,0.00, 0.00, 11.14) 26.46 88.90% 0.33

UDP Results - Fixed Rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (0.75,0.28, 0.26, 0.40, 0.42, 0.26) 2.37 (0.41, 0.28,0.28, 0.42, 0.42, 0.28) 2.10 13.06% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.43, 0.17, 0.61, 0.39, 0.17, 0.68) 2.44 (0.36,0.17, 0.42, 0.42,0.17, 0.35) 1.90 28.90% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 0.42, 0.75,0.76, 0.34) 2.28 (0.00, 0.00, 0.43, 0.43, 0.36,0.38) 1.60 42.73% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (0.17,0.00, 0.42, 0.17, 0.17,0.73) 1.67 (0.17, 0.00, 0.38,0.17, 0.17, 0.42) 1.31 27.47% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 0.76, 0.00,0.77, 0.74) 2.27 (0.00, 0.00, 0.39,0.00, 0.77, 0.42) 1.57 44.35% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,0.77, 0.00,0.00, 0.77) 1.53 (0.00, 0.00, 0.40,0.00, 0.00, 0.41) 0.81 89.76% 0.33

TCP Results - Fixed Rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (0.73,0.27, 0.27, 0.36, 0.42, 0.22) 2.27 (0.44, 0.28,0.28, 0.42, 0.35, 0.28) 2.05 10.37% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.49, 0.17, 0.56, 0.29, 0.17, 0.63) 2.32 (0.37,0.11, 0.38, 0.39,0.17, 0.38) 1.81 28.34% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 0.40, 0.73,0.73, 0.36) 2.22 (0.00, 0.00, 0.46, 0.38, 0.37,0.32) 1.53 45.52% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (0.17,0.00, 0.42, 0.17, 0.17,0.73) 1.66 (0.17, 0.00, 0.38,0.17, 0.17, 0.39) 1.28 30.20% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 0.74, 0.00,0.74, 0.72) 2.20 (0.00, 0.00, 0.40,0.00, 0.73, 0.38) 1.51 45.72% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,0.74, 0.00,0.00, 0.73) 1.47 (0.00, 0.00, 0.35,0.00, 0.00, 0.42) 0.77 90.73% 0.33

UDP Results - Multi-rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (25.27,6.86, 9.01, 11.84, 13.77, 7.90) 74.66 (18.23, 9.24,9.24, 14.00, 13.86, 9.24) 73.81 1.14% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.80, 5.60, 15.41, 13.45, 5.60, 24.61) 81.47 (16.80,5.60, 14.56, 11.53,5.60, 10.65) 64.74 25.83% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 11.72, 17.27,24.37, 13.17) 66.54 (0.00, 0.00, 8.41, 6.72, 18.67,15.10) 48.90 36.07% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.00, 13.84, 3.72, 5.60,24.59) 53.35 (5.60, 0.00, 12.08,3.73, 5.60, 13.53) 40.54 31.60% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 24.21, 0.00,24.95, 24.87) 74.03 (0.00, 0.00, 13.45,0.00, 24.32, 12.11) 49.87 48.44% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,18.90, 0.00,0.00, 24.88) 43.78 (0.00, 0.00, 11.94,0.00, 0.00, 13.46) 25.40 72.32% 0.33

TCP Results - Multi-rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (22.34,5.85, 8.18, 9.27, 14.00, 7.38) 67.00 (15.13, 9.24,9.24, 14.00, 13.99, 9.24) 70.84 -5.43% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (14.58, 5.59, 12.29, 16.80, 5.60, 23.37) 78.23 (16.80,5.60, 11.03, 11.26,5.60, 11.68) 61.96 26.26% 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 12.39, 13.16,23.30, 10.42) 59.26 (0.00, 0.00, 9.55, 4.89, 17.82,12.48) 44.74 32.45% 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.00, 13.17, 5.60, 5.60,23.18) 53.15 (5.60, 0.00, 8.76,5.60, 5.60, 14.46) 40.02 32.80% 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00, 0.00, 21.62, 0.00,22.95, 22.81) 67.37 (0.00, 0.00, 10.64,0.00, 22.41, 13.01) 46.06 46.27% 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,14.96, 0.00,0.00, 23.06) 38.01 (0.00, 0.00, 10.48,0.00, 0.00, 12.97) 23.45 62.11% 0.33

TABLE IV
SUMMARY OF 12-NODE TESTBED EXPERIMENT RESULTS.
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(a) UDP (b) TCP
Fig. 13. Overall network throughput in 25-node testbed under fixed MAC data
rate, where the errorbars show the average and standard deviation.
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Fig. 14. Overall network throughput in 25-node testbed under multi-rate, where
the errorbars show the average and standard deviation.
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Fig. 15. Average and standard deviation of throughput improvement over client-
agnostic, traffic-agnostic baseline.

assignments may appear equally good according to the traffic-
agnostic metric, but its actual performance varies significantly
depending on whether the nodes with high demands happen to
be assigned to non-interfering channels.

Figure 15 further shows the improvement of traffic-aware,
client-agnostic and traffic-aware, client-aware over the traffic-
agnostic, client-agnostic baseline. As it shows, the improvement
of traffic-awareness generally increases with the slopeα. When
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Fig. 16. Jain’s Fairness Index in 25-node testbed under fixed MAC data rate.
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Fig. 17. Jain’s fairness index in 25-node testbed under multi-rate.

α = 0 (i.e., all traffic demands are the same), the client-agnostic,
traffic-aware metric perform similarly as the client-agnostic,
traffic-agnostic metric. The client-aware, traffic-aware slightly
out-performs both the above metrics by accounting client-side
interference. Asα increases, traffic becomes more concentrated
on a smaller number of nodes and both traffic-aware metrics
see larger improvement. Furthermore, we observe the variance
of throughput improvement can be quite high. This is due to
the performance fluctuation in the traffic-agnostic metric, as
explained earlier. The improvement of traffic-awareness in some
cases can be quite high: we observe up to a 1.52-fold increase
for TCP/fixed-rate, and a 1.8-fold increase for TCP/multi-rate
(see slope 1.5 in Figure 15). The benefit of traffic-awareness is
larger under the multi-rate because traffic-awareness can reduce
interference and allow links to operate at higher data rates.

We now study the impact of Jain’s fairness index on TCP and
UDP traffic for fixed-rate and multi-rate. Figure 16 and Figure 17
shows the fairness index for the different metrics under fixed rate
and multi-rate respectively. It represents the values averaged over
the five runs. We make following observations.
(1) For all the metrics, the Fairness index value is better under
fixed MAC data rate as compared with the multi-rate.
(2) Under both the fixed rate and multi-rate scenarios, for
either UDP or TCP traffic, the fairness index of the metrics is
comparable. This suggests that traffic aware channel assignment
does not degrade the fairness in demand allocation at different
APs.

VII. D ISCUSSION

The evaluation of our algorithms show that we can achieve
effective channel assignments by taking traffic demands into
consideration. However, some practical considerations, such as
the impact of channel switching, have not been analyzed. In this
section we investigate these issues.

A. Channel switching

Channel switching causes two types of overhead: (i) delay
incurred by an AP to change its channel - switching delay, and
(ii) delay incurred for the clients to associate with the AP on
its new channel - re-association delay. As reported in [23], the
switching delay varies from 200us on Intel’s ProWireless to
10-20 ms on NetGear Atheros, Cisco Aironet, and Prism 2.5.

The re-association delay depends on the re-association scheme.
A simple approach, which is implemented by MadWiFi, is for
wireless clients to scan all channels to find the AP with the
highest RSSI. The re-association delay in this case tends to be
long and is dominated by the scanning time. To reduce this time,
an AP can broadcast the new channel before switching so that the
clients can directly switch to the new channel without performing
scanning [26]. To protect against packet losses, the new channel
information can be sent multiple times.

We refer to the above two re-association schemes as (i)
MadWifi default implementation, and (ii) explicit notification.
We evaluate the overhead of channel switching under these
two re-association schemes using testbed experiments. In ex-
plicit notification, the AP broadcasts its new channel 5 times
before switching to protect against packet losses. Figure 18
and Figure 19 summarize the results of a 10 minute transfer
between an AP and its client using both TCP and UDP. The x-
axis tracks how often the AP changes its channel. To evaluate
the impact of frequent channel switching on different transfer
duration, we use on-off traffic, where both on-periods and off-
periods are exponentially distributed. Different lines in the graph
correspond to different average on-period, ranging from 5 to 300
sec. The average off-period duration is 5 seconds. The process
is repeated until 10 minutes elapse. As shown in Figure 18,
there is no degradation under the default re-association scheme
when the switching interval is 2 minutes or higher. For a
smaller switching interval, the overhead of the default scheme
increases. In comparison, as we can see from Figure 19, under
the explicit notification scheme, the overhead is negligible for
all switching intervals, including switching once per 20 seconds.
These results suggest the re-association overhead is negligible
under the explicit notification; even for default implementation,
switching once 5 minutes, as considered in this evaluation, incurs
no performance penalty for both TCP and UDP traffic.
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Fig. 18. Channel switching overhead under MadWiFi default implementation.
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Fig. 19. Channel switching overhead under explicit notifications.

An orthogonal approach to further minimize the impact of
channel switching is to reduce the number of APs that change the
channels. To address this issue, we use the channel assignment
from the previous measurement interval as the starting point in
the simulated annealing algorithm. We can further limit the num-



ber of channel switches by controlling the number of iterations
in simulated annealing. This will bias the outcome of the search
in favor of assignments that are only slightly different from the
current channel assignment. We evaluate the effectiveness of this
approach using our simulations of Dartmouth’s ResBldg.
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Fig. 20. Comparison of various channel assignment schemes against a traffic-
agnostic, client-agnostic channel assignment approach as the baseline.
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Fig. 21. A time series plot of the number of APs that change their channel.

Figure 20 plots the CDF of performance improvement against
the traffic-agnostic, client-agnostic assignment under the en-
hanced approach. We limit the number of simulated annealing
iterations to 5 and 10. Compared with Figure 6(a), we observe
the performance improvement is similar. Figure 21 shows the
number of APs that change their channel over time. Traffic-
aware, client-aware assignment results in at most 3 APs changing
channel (per interval) under 5 iterations in SA, and at most 5
APs changing channels under 10 iterations in SA. The average
numbers of APs that change channels are even lower: 0.93 APs
under 5 iterations and 1.55 APs under 10 iterations. Therefore,
the enhancement is effective in reducing the number of channel
changes without compromising the performance. Another com-
plementary approach is to apply the new channel assignment to
the real network only if it improves the optimization metric by
a thresholdθ. This is not a part of our current implementation
and we hope to incorporate it in our future work.

B. 802.11a

Our analysis has focused on 802.11b and g networks, which
support fewer operating frequencies than 802.11a. It might ap-
pear that traffic-awareness is less critical in 802.11a networks.
However, as WLAN deployment densities grow, and as multiple
independently-administered WLANs operate in close proximity
of each other, we believe that static allocation of non-overlapping
channels—no matter how many—is unlikely to offer good per-
formance.

VIII. S UMMARY OF RESULTS AND CONCLUDING REMARKS

The importance of channel assignment for improving the
efficiency of spectrum usage in WLANs has been well-studied.
Different from the previous work, our work explores the effect of
dynamically adapting the channel assignment to prevailing traffic
conditions. Using extensive simulations and testbed experiments,
we show thattraffic-awarechannel assignment approaches could

significantly improve the quality of the channel assignment in
practice.

We perform a detailed study of the operating conditions under
which traffic-awareness offers maximum benefit. We show that
the benefits of the approach are tightly coupled to the deployment
environment. For example, traffic-awareness is most helpful when
traffic demands are concentrated at a small number of heavily-
loaded APs located close to each other. The approach is of little
use when traffic demands are uniform across the WLAN or when
the WLAN deployment is too sparse. Our testbed experiments
show that the benefits of traffic-awareness extend to both TCP
and UDP traffic, both fixed rate and multi-rate adaptation.

Our paper establishes the importance of traffic-awareness to the
management of wireless LANs. Although our focus has been on
campus and enterprise networks, we believe that the central idea
of this paper – traffic-awareness – is widely applicable to other
scenarios such as multi-hop mesh networks and uncoordinated
deployments.
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