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Abstract—Campus and enterprise wireless networks are in- information and use it to determine the channel assignment. We

creasingly characterized by ubiquitous coverage and rising traffic espouse traditional channel optimization objectives and show
demands. Efficiently assigning channels to access points (APS) in

these networks can significantly affect the performance and capacity NOW they can be modified to incorporate the WLAN ftraffic
of the WLANs. The state-of-the-art approaches assign channels demands. Of course, computing optimal channel assignments

statically, without considering prevailing traffic demands. In this  for traffic-aware objectives is NP-Hard. Hence, we develop
paper, we show that the quality of a channel assignment can be ’

improved significantly by incorporating observed traffic demands Simple techniques (based on Simulated Annealing) for quickly

at APs and clients into the assignment process. We refer to this computing close-to-optimal assignments. We show these channel
as traffic-aware channel assignmentWe conduct extensive frace- agsignments can closely track the prevailing network conditions.

driven and synthetic simulations and identify deployment scenarios . . .

where traffic-awareness is likely to be of great help, and scenarios 10 be effective, we must address a few practical issues.

where the benefit is minimal. We address key practical issues in (1) The effectiveness of a channel assignment depends on the

using traffic awareness, including measuring an interference graph, ayailability of an accurate interference map for the WLAN. Since
handling non-binary interference, collecting traffic demands, and

predicting future demands based on historical information. We Wireless signal propagation and interference patterns are hard to
present an implementation of our assignment scheme for a 25-node predict using simple heuristics [3], we directly measure wireless

WLAN testbed. Our testbed experiments show that traffic-aware jnterference using active probes. This is done at coarser time-
assignments offers superior network performance under a wide . . . . .
range of real network configurations. On the whole, our approach Scales than collection of demand information. (2) While existing
is simple yet effective. It can be incorporated into existing WLANs work assumes binary wireless interference, we find that in real
with little modification to the wireless nodes or infrastructure. networks interference across links may not be binary (e.g., two
senders may carrier sense each other sometimes but not always
due to variation of RSS). We present simple and effective channel
Enterprises and university campuses are deploying WLANSsignment schemes for handling non-binary interference. (3)
at a remarkable rate and effectively managing such netwoi®sr approach requires timely and accurate estimation of traffic
becomes increasingly important. The broadcast nature of wirelggsnands. For this, we simply leverage the SNMP network usage
communication makes the task of supporting good end-user gwatistics that most APs export. In addition, we develop simple
perience very difficult. Emerging trends such as rapidly growingpproaches for predicting upcoming traffic demands using only
densities and increasing traffic volumes only exacerbate thigtorical SNMP samples and extend our traffic-aware channel as-
problem (see [15] for a detailed analysis). Traditionally, carefglgnment algorithms to use these predicted demands. (4) Finally,
channel assignmeritas provided some respite to end-users. We address the issue of the overhead experienced by clients when
the common case, network administrators conduct detailed sfieir APs switch channels frequently due to fluctuating traffic
surveys and manually try various configurations to determiigads. We describe and evaluate a suite of simple approaches to
the right channel and placement for APs. The state-of-the-gitnimize this overhead.
research [20], [22] also offers similastatic solutions. While  On the whole, the traffic-aware approach we propose requires
there are other solutions for supporting better performance viery few modifications to existing wireless nodes and infras-
dense deployments [5], channel assignment is attractive duert@ture. It is effective and simple to use. In our evaluation,
its simplicity and no need for client modification. we first conduct extensive simulations over real topologies and
Unfortunately, existing approaches to channel assignments tedfic demands (available publicly at [13] and [16]), as well as
insufficient for enterprise WLAN deployment and usage patternsver several synthetic settings. We start by considering a setting
Indeed, recent work has shown the traffic volumes in a WLANhere perfect information about current and future demands is
can vary significantly both across APs and across time [15]. &vailable. These baseline analyses help establish the potential
the future, as more devices and newer applications contend enefits of traffic-aware channel assignment algorithms. Our sim-
wireless access, the variability in traffic will increase furtheulation results show that being traffic-aware could substantially
Due to traffic variability in current and future networks, thémprove the quality of a channel assignment in terms of total
performance of static channel assignment is bound to suffer. network throughput. The exact level of improvement from traffic-
Researchers in the wire-line world faced a similar probleawareness depends on the deployment scenario, e.g. the density
when static routing weights were proven to be insufficiertf wireless nodes, the traffic volumes, and the spatial distribution
for achieving robust intra-domain routing. Several researches traffic demands. Our key finding is that traffic awareness
advocated that routing weights be tuned to observed traféiffers the most benefit when the demands in a WLAN are highly
demands [8], [9], [32]. Motivated by the vast success of these agikewed. We investigate the quality of traffic-aware assignments
proaches in the IP world, our paper asks the following questiathat are computed using predicted demands, and find that their
Does the quality of a channel assignment improve when dynamparformance is within 5% of the ones obtained with access to
traffic demands in the WLAN are taken into account? perfect information. In addition, we also inject artificial errors to
To answer this question, we develop and systematically stublgffic demands, and our evaluation shows that the traffic-aware
the notion oftraffic-aware channel assignmefar WLANs. Our channel assignment is robust against these errors.
approach is simple: at regular intervals, collect traffic demandFinally, we implement and evaluate the traffic-aware channel
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assignment algorithms in a 25-node wireless testbed, deploy&els which are in direct range of some station, where the station
on two floors of an office building. We find that traffic-awares either the client, or an AP within range of the client. This set of
channel assignment is very effective in real wireless networR®s is called the conflict set and the channel assignment problem
under a range of network configurations. It benefits both TG® formulated as a conflict set coloring problem with the aim
and UDP flows. Traffic-aware assignment also interacts well withi minimizing the conflicts amongst the clients. A randomized
multi-rate adaptation by reducing interference and allowing dataarch algorithm is used to find an efficient channel assignment.
communication to use higher data rates. In addition, we find thdbwever, this approach only takes client locations into account
traffic-aware channel assignment not only improves average reatd assumes that all wireless nodes exhibit the same level of
work performance, but also helps avoid very inefficient channattivity at all times. In our work, we show the potential benefit of
assignments that could arise from traffic-agnostic approachegaking into account the instantaneous levels of activity of different
wireless nodes. We also show how to predict future trends in

] ] ] activity based on historical information.
We first review past work on the channel assignment problem.tq channel assignment scheme used in [4] is similar to [22].

Then we consider the channel hopping approach which has bagfyeq et al. [4] use a conflict graph to represent inter-AP, AP-
U_SEd to Ieve_rage the benefit of _the entlre_z ffeq‘Je”CY SPeCtWfant and inter-client interference. An utility function is defined
Finally, we discuss related work in IP traffic engineering. as per the requirements of the system. The channel assignment
A. Channel Assignment is carried out in two phases. In the first phase, only the conflicts

Channel assignment for improving the efficiency of spectruﬁ{nongSt the AEs are considered. A randomized search algorlihm
usage is a well-studied problem. In particular, the problem higsused to assign chgnpels amongst the AP so that the Ut,'“ty
received much attention in the context of cellular networks [1d]! (e system is maximized. In the paper, the authors consider
In general, approaches for cellular channel allocation are Jffily in terms of reducing the total number of access-point
suitable for our purposes (i.e., traffic-aware channel assignm&Rpflicts. In the second phase, conflicts involving the clients are
in WLANS): Cells in a cellular network are arranged in a Ver§9n3|dereq. Every AP locally trle_s to change its channel so that
regular fashion and have uniform, large coverage areas, unlﬁl@nt copfllcts are reduced, keeping constant the nu_mber of ||_1ter-
the regions covered by indoor access points (APs). As a restiff, conflicts. In our approach, we propose a new utility function
channel assignment in cellular networks is a static, one-time ta4ff1ich takes into account the varying traffic at APs and the clients.
In contrast, depending on the number and location of clients,R€cently, several commercial “spectrum management” prod-
load on APs and the presence or movement of obstacles, chaM¢&s have been developed to automate channel aSS|g_nment across
assignment across WLAN APs may need to change over tim¥/LANS. Some of these products perform dynamic channel

We review past approaches to channel assignment app"ecg%actlon based on the current operating condltlpns (e.0. Aut_oCeII
two different settings: enterprise/campus WLANSs, and muIti—th)m Propagate Networks [7] and Alcatel OmniAccess AirView
mesh networks. We note our focus is on the first setting. oftware [6]). A few of these also offer interference mitigation

. L . via transmit power control, and load balancing across APs.
Campuses/Enterprises. Assigning channels across APs P 9

L . . Infortunately, due to their proprietary nature, very little is known
WLANS has trgd|t|onally been fl static one—nms approach [17 bout the design of these products, their potential benefits, the
First, net-admins conduct an “RF site survey” of the camp

. ) . erating conditions they work best under, and reasons for their
and determine the location and the number of APs required rlings (if any). In our work, we provide a thorough analysis

: : |
adequate coverage. Then, the admin manually configures A?{ghese issues for traffic-aware channel assignment. We believe
that our observations will be crucial to the design of future

Il. RELATED WORK

with 802.11's non-overlapping channels to ensure that close
APs operate on different channels when possible. We show |

. . . commercial offerings.
this paper that such static approaches result in poor performance g

in the face of shifting traffic demands. Multihop mesh networks. Raniwala et al. [27], [28] address
There are several research proposals for channel assignni@@tlimitations of a single-NIC architecture where the entire
in campus WLANS [4], [20], [22], [23]. However, unlike our mesh network has to operate on a single channel. They propose
paper, none of them consider the benefit of tailoring the chan§8UiPping mesh network nodes with multiple network interface
assignment to prevaiiing traffic demands. For exampie, Lee @@_rds to utilize mUIUpIe Orthogonal channels. The different cards
al [20] advocate identifying “expected high-demand points” if&n operate on different channels. The approach must first decide
a given WLAN depioyment and assigning channels so as \M‘llch interface is used to communicate with a set of neigthI‘S
maximize signal strength at the demand points. This is stillad then which channel is assigned to that interface. The goal
static, one-time approach. here is to ensure that neighboring nodes are assigned to the
Mishra et. al [22] argue that AP-centric channel assignment &g2me channel. In contrast, WLAN settings require neighboring
proaches (like [20]) capture the interference amongst the APs, Bits t0 be assigned to distinct channels to mitigate interference.
do not account for the interference observed due to clients. THigvertheless, we believe that the core idea of traffic-aware
identify scenarios where client-AP and client-client interferené@annel assignment can be applicable to mesh network settings
reduces the throughput of the system. They propose that cliefgswell.
have a better view of interference (since interference directl
impacts their performance), and therefore channel assignment
must take client-side views of interference into account. TheyChannel hopping is another approach which has been used
identify the interference at the client in two ways: (1) considerintp improve the performance of wireless networks [10], [23]. In
all the APs in the range of the client and (2) considering all thee channel hopping approach, the wireless nodes spend a fixed
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amount of time on a single channel, called a slot, and then switch I1l. T RAFFIC-AWARE CHANNEL ASSIGNMENT
to a subsequent channel as given by the hopping sequence. In thg,e o4 of channel assignment is to ensure that wireless

WLAN scenario, the hopplng sequence s defmeq for the APs a0dyeq belonging to distinct Basic Service Sets (BSSs), but
al] th'e cl!ents associated o an A,P change their channels aI% in interference range, operate on distinct channels whenever
with It Similar to the channel assignment schemes, t_he changBlsible. A wireless Basic Service Set (BSS) includes an access
hopping approach has been studied for both the multi-hop m nt (AP) and all clients associated with it. An entire BSS must

networks and WLANS. operate on a single channel, and only nodes belonging to different

Bahl et al. [10] advocate a new link-layer mechanism callgglsss can interfere.

SSCH, wherein neighboring mesh nodes perform synchronizedsjyen that modern 802.11 wireless technologies offer very few
channel hops to better exploit frequency diversity. As this schemgn.-overlapping channels (e.g., both 802.11b and 802.11g offer 3
is applied for multihop mesh networks, the focus of the thegych channels: 1, 6, and 11), channel assignment can essentially
channel scheduling scheme is to ensure nodes are synchronizegifiewed as an optimization problem: what is the best way to
a slot and there is less overlap amongst nodes not communicagififcate the available channels to BSSs so as to optimize a given
with each other. metric or objective?

In [23], the authors use channel hopping to solve the channelA good optimization metric should satisfy two important
assignment problem for WLANs. The AP computes its hoppirgpnditions: (i) it should be easy and efficient to compute given
sequence such that its observes less interference. It first obtainshannel assignment, and (i) it should reflect the WLAN
the hopping sequence of the interfering APs. For each slot, fherformance. In Section IlI-A, we present an overview of metrics
AP finds the appropriate channel which minimizes interferenasommonly used in channel assignment. We argue that these
Channel hopping ensures that one AP is not associated witinatrics suffer from key drawbacks and, therefore, fail to satisfy
bad channel for a long time and the network as whole usege@ndition (ii) above. In order to address these drawbacks, the
'good’ static assignment. The evaluation results presented in thetrics should béraffic-aware i.e. they should capture prevail-
paper show that using channel hopping improves the fairnessirgj traffic demands in the WLAN. In Section llI-A we show how
the system, but degrades the throughput when compared to ttheonstruct traffic-aware metrics.
channel assignment approach in [22]. Choosing an appropriate optimization metric is only a part

The throughput under a channel hopping with hopping sef the problem. Computing the optimal channel assignment,
quence:C,, Cs, ... C, is the average throughput over theeven for the simplest metrics, is known to be NP-hard [22].
channels used in the sequence. In comparison, channel assigrSection 11I-B, we develop efficient heuristics for computing
ment aims to assign the best combination of channels, whiglese-to-optimal assignments for traffic-aware metrics.
is likely to be better than the average throughput used over allA practical implementation of traffic-aware channel assign-
channel sequences. We mainly aim to improve the performartoent must address a few key challenges such as how to measure
of wireless LANs and hence focus on the channel assignmewiteless interference, how to cope with realistic wireless interfer-
We later show in our evaluation that using traffic information fognce patterns, and how to measure and predict traffic demands.We
computing intelligent channel assignments does not degrade digcuss and address these challenges in Section IlI-C.
fairness in throughput allocation at APs. Finally, in Section IlI-D, we summarize the traffic-aware
channel assignment approach using a simple flow-chart.

C. Traffic Engineering in ISP Networks A. Optimization Metrics for Channel Assignment
Common optimization metrics attempt to quantify the extent of

Traffic demands have been shown to have tremendous utiterference in a WLAN due to a given channel assignment. One
ity for network provisioning and route optimization in ISPexample is the “channel separation” metric, which maximizes the
networks [8], [9], [32]. A wide range of traffic engineeringdifference in the channels of interfering nodes.
approaches have been developed to incorporate traffic demand¥he channel separation metric is computed as follows:
At a high level, these approaches maintain a history of obserdest C; denote the channel assigned to AP Also, if
traffic demand matrices, and optimize routing for the represent&Ps ; and ; are within interference range of each other,
tive traffic demands extracted from the observed traffic durinfgfine Separation(i,j) = min(|C; — Cj|,5), otherwise
a certain history window. They differ in how representativ§eparation(i,j) = 5. We use “5" as an upper-bound of channel
demands are derived. For example, Agrawal et al. [2] useseparation, because channels 1, 6, 11 in 802.11b/g are considered
traffic matrix in a one-hour window during daily peaks as thas orthogonal. IfA denotes the set of APs, then the channel
representative demand. Zhang et al. [33], [34] consider multieparation objective is:
representative traffic matrices and find an optimal set of routes

to minimize expected or worst-case cost for these representative Magimize : Y Separation(i, j).
matrices. TeXCP [18] and MATE [14] conduct online traffic i,j€A
engineering and react to instantaneous traffic demand. This metric is easy to compute, given the interference graph.

Inspired by these results from the IP wireline world, we ask However, this metric fails to reflect the performance of the
whether being traffic-aware has similar benefits for managimgtwork due to two reasons: (1) The metric ignores whether
wireless network spectrum. We also seek to develop a parallel #et wireless nodes are active. In fact, the nodes are assumed
of approaches for deriving traffic demand information in wireleds always be active. In practice, some wireless nodes are more
LANS. active than others. Since the number of available non-overlapping
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are assigned to non-overlapping channels. However, to obtain
an effective channel assignment, we must understand how the
send and receive demands of interfering nodes affect each other.
Observe that whenever two nodes A and B are in interference
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(a) Dartmouth: LibBldg (Sent data) (b) IBM: MBIdg (Sent Data) sense and back off mechanisms. The latter occurs due to packet
Fig. 1. Time series of traffic for a heavily loaded and moderately loaded A@)HIS!OHS t_ha_t can arise In hidden-terminal settings.
from LibBldg in the Dartmouth Data (a) and MBIdg in the IBM data (b). Using this insight, we scale the channel separation between A

and B with the following “weight”:

channels is very small (only 3 in 802.11b/g), taking the activity
of nodes into account can result in better channel assignments.
(2) The metric ignores clients completely. In practice, minimizingshereS is the send demand, aiélis the receive demand. Intu-
interference introduced by client transmissions is also importaitively, if we abuse notation and le&f, (R4) denote the fraction
Our analysis of real wireless traces shows that clients transmiittime A's transmissions (receptions) acquire the medium, the
a significant volume of traffic. As we show later, these twéirst term reflects therobability of A and B's transmissions
drawbacks result in poor channel assignments in terms of oveiaterfering with each other. The second (third) terms reflects the
network performance. Due to the above two properties, we refapbability of A's (B’s) transmissions interfering with B’s (A's)
to the traditional metric atraffic-agnostic and client-agnostic receptions.

1) Client-awarenessWhen the interference graph induced by Using the above weights, we can define the followiraffic-
clients is availableclient-aware channel assignment becomesware, client-awaremetric:
possible. The corresponding metric is:

WA7B:SAXSB+SAXRB+SBXRA,

Maximize : Z W, ; x Separation(i, j).
Maximize : Z Separation(i, 7). ,jEAUB,BSS(j)#BSS(i)
i,j€AUB,BSS(i)#BSS(5) Similarly, we can define a traffic-aware, client-agnostic metric:

Here B denotes the set of clients in the network. Also, nodegs

in the sum must belong to different BSSs. This metric is designed
to capture the channel separation between any two interfering
APs, any two interfering clients that are associated with differeBt Efficient Algorithms for Computing Channel Assignments
APs, and an interfering AP-client pair. Note, however, that the Since optimizing channel assignment is NP-hard [22], we use
metric is still traffic-agnostic. Mishra et. al [22] propose a trafficsimulated annealing (SA) [31] to obtain near-optimal assignments
agnostic, client-aware metric similar to this one. for each metric.

2) Traffic-awarenessThe previous two metrics do not take SA is appropriate in this context since it can iteratively improve
into account the actual traffic volumes or periods of activitthe solution while avoiding being stuck in local optima. To
of individual clients and APs. Thus, these metrics may foreghieve good performance and to speed up the convergence, we
interfering but relatively inactive APs or clients to operate onse an informed initialization algorithm that is inspired by the
non-overlapping channels, whereas a smarter channel assignn#iitin’s approach to the register allocation problem [12].
would have re-used these channels to mitigate interference at) Initialization Algorithms:We first describe an initialization
other active network locations. algorithm that does not consider traffic demands and treats every

In order to verify that traffic varies across BSSs, we examinewde equally. Then we extend it to account for different traffic
the traffic demands at APs from publicly-available traces (cireemands at each node. The initializatidoes nottake clients
2004 [15]). Figure 1 shows that traffic volumes could varinto account, irrespective of whether the metric in question is
substantially both across APs and across time. We observe similé&nt-aware or client-agnostic. When client-aware metrics are
variation among client traffic. Such variation prevents traffiaised, we rely on SA in Section 11I-B2 to effectively incorporate
agnostic metrics from fully exploiting the capacity of the wirelesslient-side information.
medium. Figure 2 shows the algorithm for the traffic-agnostic case. The

Incorporating traffic volumes and activity of wireless nodeimtuition of the algorithm is to defer channel assignment for APs
requires a simple change to the client-aware metric. Before othiat have many conflicts with other APs. This is because for
lining this modification, we define the terdemandinformally. such APs, the choice of the channel is very important, and more
The sending demandf a node is the aggregate amount of dateestrictive, as it depends on the channels assigned to neighboring
(excluding link-layer ACKSs) it wishes to transmit per unit timeAPs. Also, when an AP has few conflicts, we have a greater
In the case of a client, there is a single recipient- its AP; in tremount of flexibility in assigning channels. For such APs, we
case of an AP, all of its clients could be recipients. Similarlgan even assign channels without knowing the channels chosen
the receiving demands the amount of data (excluding link-layerfor the neighbors. In this algorithm, K refers to the number of
ACKSs) the node wishes to receive from various transmitters. non-overlapping channels.

To incorporate traffic-awareness into channel assignment, welo extend the initial assignment to the traffic-aware case, we
simply need to ensure that interfering nodes with high inddo the following: First, we modify the degree used in step #2
vidual demands (specifically the BSSs containing such nodesid #3 by weighing it with total traffic as followslegree(i) =

Maximize : Z W, ; x Separation(i, ).
i,JEA, i



1) Construct a conflict graph G for APs in the WLAN, wherel  sends a series of broadcast probes, and all other nodes measure

there is an edge between any two nodes if they interfere. . . . .
2) For any vertices in the conflict graph that has degree les thalil® received signal strength. Then a model is used to estimate

K, choose the one with maximum degree and delete it and it¢he sending rate based on received signal strength and carrier
?eséspoecelx?tﬁr?ti?%%e\?efrrt?cngs”\}ﬁtﬁrgggrgg(feggstl?]gnokgt?e?n 2}2“- sense threshold, and estimate the delivery rate based on SNR. In
3) If the resulting graph is non-empty, choose the vertex with _thls way, onIyO(N) broadcast probes are required for measuring
maximum degree and remove it from the conflict graph and interference inV-node network. The third scheme, proposed by

2 'F;lé?halilt t%rét?/ etkr]t?cztsagﬁ tﬁg ;ct)aitlfppgb one vertex at a timd [4], sends coordinated probes from APs to clients. For example,
add it back into the graph and color it with a color that is| ~APSAL and A2 estimate the interference on linksl — C'1 and
different from all its neighbors (up to this point). A2 — C2 by sending a probe oml — C1 and then sends a

5) Ilioar \t/r?gen)l(a?ﬁgg(i/tetr)t?cggloargcsji’gw?rr]l;rl# a color that results fin probe onA2 — C'2 at the same time whe’l sends ACK to
minimum interference, where interference is calculated ag A1 If C'1's ACK is not received, it indicates two links interfere;

# interfering APs assigned the same color. otherwise, they do not interfere. To further enhance the robustness

of this approach (e.g., packet collision caused by an accidental
transmission from somewhere else, or data and ACK sent time
is slightly different), one can measure multiple times and use

Fig. 2. Initialization algorithm for channel assignment.

> jeq inter fere(i, j), whereinter fere(i, j) = 0 if i andj are

G rerf ) e ) '~ consistent collisions to indicate interference.
notin |_nter erence rar?ge/nterfere(?,g) = sent(j) + mcv(j.) We choose the first approach due to its simplicity. Our channel
otherwise. Notesent(j) and recv(j) are sent and received

. assignment approaches can be directly combined with and benefit

traffic at nodej normalized by the link bandwidth. Second, i :
: : . rom other scalable and accurate interference measurement tech-
step #5, we assign marked vertices with a color that results In

minimum interference, where the interference at nodeom oo In the first scheme, we have one node, Aagroadcast
O . ! o . . packets as fast as it can for 1 minute. LBy denote A’s
node j is defined asinter ference(i,j) = 0 if ¢ and j are

N broadcast rate when it broadcasts alone. Then, we have two
on separate channels or not in interference range, otherwis

e ;
n /A and B, br imultan I f h
inter ference(i,j) = sent(j) + recv(j). We then choose the Odes, say a d ’Atj)goadcaSI S , ultaneously as fast as they
. 7 , .., can for 1 minute.R4” denotesA’s broadcast rate wheml
color that results in the minimum value éhter ference(i, j) . : - AB )
summed over alj € A andj # i and B are simultaneously sending. Similarliz~ denotesB’s
2) Further Im rovementjviaz'SimuIated Annealing (SAYe broadcast rate whepiA andAB are simultaneously sending. We
B B
P g n computeBR = 24 +tE5° \WhenBR is close to 1, it means

further improve the initial channel assignment obtained above % Rat+Rp ; :
using an iterative search. We have compared several optionst tnodesd and 53 do not interfere. Whei £ is close t0 0.5, it

the search, including random walk, SA, and greedy search ans that these two nodes take turns in transmitting packets and

found that SA offers faster convergence and better assignme gnce interfere with each other. To apply the channel assignment
SA is inspired by the metal annealing process. In each it'gp_etrics in Section IlI-A, we convert the measured BR to a binary

ation, we randomly assign one of the APs (and its clients) %terferer?ge mdetrlct ‘?S fotIIO\]ivs: WhtﬁﬁR >h0.£t)f,1 th.e ttvr\]lo nc_)desth
a different channel. If the new assignment is better, we upd consiaered not to intertere with €ach other, otherwise, they

the current assignment to the new one. Otherwise, we UDda;fg considered to interfere. This interference information is then

the current assignment to the new one with the probabili rectly used as the input to the channel assignment algorithms.
eUnew—Teurr)/T \WhereT is current temperaturee, and four The probing-based approach assumes that nodes are immobile.

are the values of objective functions under the new and curréffS can be safely assumed to be stationary, but not clients.
channel assignments. The temperature gradually decreases sb'@°€ this approach may not be effgcuye at capturing _the inter-
are more likely to accept a worse solution initially and avoiffrence graph induced by clients, which impacts the traffic-aware,
being stuck at local optimal. As the temperature approachescb?nt aware metric. While the trafnc-awar_e, client-aware metrl_c
we progressively move in the direction of improving the objectivéves the best performance, our evaluation shows that traffic-
function. We set the initial temperature to 10, and each iteratigi/areness alone (i.e. traffic-aware, client-agnostic metric) can
reduces temperature to 0.999 of the current value. We use 168" Significant improvement compared with any traffic-agnostic
iterations and the output is the best solution over all iteratiof8€tric. Finally, we note that it is possible to accommodate client-
We note the execution time of this approach is sufficient fépvareness partlally_usmg radio resource management techniques,
practical WLAN settings (e.g., it takes well under 1 second f&Uch as 802.11K client report [1].

SA to compute the optimized metric value in the traces we study).2) Handling Non-binary InterferenceWireless interference

in real networks may not be binary and convertiBg? into

a binary metric loses accuracy. Thus, we extend our channel

We address several practical issues in channel assignmentassignment approach to work with the measuB®. Fig-

1) Measuring the Interference GrapiThe effectiveness of a ure 3 outlines our extension. As it shows, we first convert
channel assignment depends on the availability of an accurate#R to a value ranging from O to 1, where O indicates no
terference map. Three measurement and modeling techniquesif@grference, 1 indicates complete interference, and any val-
[4], [30] have been proposed recently to estimate wireless imes in between indicate partial interference. This value only
terference. The first scheme [3] directly measures link-basdédpends on the locations of nodes A and B, so it is called
interference using broadcast probes. This is the approach ineInterf. In addition, we also compute interference across
use for our evaluation due to its simplicity. The second scherokannels based on their channel separation, which is referred
improves the scalability of the first approach by developing da Channellnter f. As LocInterf, Channellnterf ranges
interference model based on RSSI measurement. Each seifien O to 1, where 0 means no interference, 1 means complete

C. Practical Issues



interference, and other values in between means partial interfei-- Dem_Pred(t — 1). We set the weightv = 0.9. We use
ence. The final interference metric is the productietinterf EWMA to first estimate the AP demand. We also estimate the
and Channellnter f. The traffic-agnostic, client-agnostic asnumber of active clients using EWMA. We then combine the two
signment aims to minimize_, ;. , OverallInter f(i,j), and estimates to derive the predicted client demands.

the traffic-aware, client-agnostic assignment aims to minimi@ptima| for the Previous Interval (PREV). Here, the channel
> i jea OverallInter f(i, j) = W (i, j), whereW(i,j) = S; X  assignment for time is simply the optimal channel assignment
Sj+8; x Rj +5; x R; as defined in Section IlI-A2. Similar for the traffic demands in time—1 (or the most recently sampled
modifications apply to traffic-agnostic, client-aware and traffigime interval, if there are no samples available fer1). In other
aware, client-aware metrics. Note that our simulation evaluatigiprds, PREV is simply EWMA withw = 1. PREV is more
uses the channel assignment for binary interference, since Ngnsitive to short term traffic fluctuations than EWMA.

2 only has binary interference model and in such cases tB timal Over a Time Window (PREV_N). There are sev-
performance of channel assignments for non-binary interfere | traffic patterns where PREV could be ineffective, e.g
is similar to those for binary interference. Our testbed evaluatign . i bursty traffic. Our next approach, PREY/ tries o

uses the channel assignment for non-binary interference, andé’&%ress this drawback by simultaneously optimizing the assign-

observe they out-perform_ binar_y interferenqe-based assignmﬁ.%tm for all traffic demands observed over a history window.
due to presence of non-binary interference in real networks. Given an optimization metric, PREW will derive a channel

assignment that maximizes thetal value of the metric for

BR = min(1, maz(0.5, BR)); // ensure BR within range 0.5 .. 1 ; ; . . .
LocInterf =2 — 2 x BR: /' map BR to range 0 .. 1 the traffic demands from the past intervals: Optimize :

ChannelDif f = min(|C, — Cj, 5); Y i1 N Metric(Demands(t — N)).

Channellnter f =1 — ChannelDif f + 0.2; Peak Demand in a Window (PEAK_N). This is a variant of

Overallinterf = Channellnter f » LocInterf; PREV_N: Instead of optimizing for all sets of demands in a
Fig. 3. Handling non-binary interference. time window, PEAK N obtains the optimal channel assignment

for the “worst-case” demand-set within the history window. This

3) Estimating Traffic Demand Informationfhe computation ! !
@llows the channel assignment to be more responsive to sudden

of traffic-aware metrics requires current WLAN demand info . =
mation. We approximate this using SNMP statistics. increases in aggregate network utilization.

Enterprises routinely employ SNMP-based [11] tools to mon- 5) Limitations: The' traffic-aware 'metrlcs do not capture two
itor and manage their WLANs. Most commercial APs export alﬁey factors: (1) multl-r_ate adaptation and (2) 'Fhe dependen_ce
SNMP management interface that provides the following by?é W|re_le§S cell capacity on t_he number of clients and the|r
counts every five minutes: (1) bytes sent by the ABGtOCY: transmission rates. Incorporating these factors can complicate
(2) bytes received at the ARfINOCY); and, (3) the number,of matters since it requires real time measurement of the received
active clients currently associated with the ARu(Client$. To S|gn'al strength "f[“.]d/ O(; the :ates tat chenfﬁ te adanti
illustrate, we can calculate the send demands of APs and clieptg'"c€ Our MELrCs do not capture multi-rate adaption, we say

as Send_AP_Demand[t — 5,1] = IfOutOct(t);I{OutOct(t—5) the_y arg rate agnostlc . In Section VI, We_ evaluate th_e impact
A1) B of ignoring multi-rate using testbed experiments. We find rate-

andSend Client D dlt—5.1] = IfInOct(t)—1IfInOct(t—5) ) . ) - .
end_Client_Demand[t =5,t] = “=XGy Numetients(t] - agnostic traffic-aware channel assignment interacts well with

Receive demands can be computed in a similar fashion. Iti-rate adaptation. When clients and APs are close to each
note it is possible to obtain finer grained per-client demangher traffic-aware assignment offers similar improvement with
information by correlating SNMPsyslog , and tcpdump  gng without multi-rate adaptation. This is because in both cases
statistics [21]. almost all communications use the highest data rate. When clients
4) Predicting Traffic DemandsTraffic-aware channel assign-ang APs are farther apart, traffic-aware channel assignment can
ment accurately reflects network performance only whiement  ffer |arger improvement under multi-rate adaptation, because

demand information is available. In practice, we can only use tj&educes interference and allows communication to use higher
past information to predict the traffic demands at the current git5 rates.

future time intervals. To address this issue, we present simp|
algorithms for estimating future demands based on histori
measurements (e.g., the previous SNMP data). We can then use
predicted demands in channel assignment.

We must address two important issues: (1) How to use
historical data to identify trends in demands and to predict
future demands reasonably accurately? (2) How to enhance the
robustness of resulting assignment against significant variation in
traffic demands? Next, we present a family of practical traffic-
aware algorithms for channel assignment. These algorithms offer
varying degrees of trade-offs between these issues, and we
evaluate them in Section V. e

Exponentially-Weighted Average (EWMA). This approach pre- - :
dicts AP demands :fit tlrr_leby using a weighted moving average Fig. 4. Outline of traffic-aware channel assignment. _
of demands in previous intervals. More recent demands are giverfrigure 4 summarizes the steps in traffic-aware channel assign-
larger weight:Dem_Pred(t) = w- Dem_Actual(t — 1)+ (1 — ment. The first step, measuring the interference graph, can be

e .
i Putting It All Together

Obtain demands using SNMP

Predict traffic demands for

next interval using EWMA

Initialize channel assignment using

algorithm in Figure 2

Computetraffic aware
channel assignment
using Simulated Annealing
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conducted infrequently (e.g., a few times a day under light traff/d®s in the hotspots have traffic demands uniformly distributed
load). All other steps are repeated at the timescale of collectionbaftween 0 and 3.6 Mbps, and all other APs have traffic demands
traffic demands, e.g., every 5 minutes. The traffic-aware channeiformly distributed between 0 and 10 Kbps. Each send demand
assignment approach requires no modifications to the clientsiosimulated by creating CBR flows from an AP to its client and
the standard. When clients are willing to cooperate (e.g., bpch receive demand is simulated by creating flow from client
measuring client-side interference and/or using more efficient te-its AP.
association scheme described in Section VII), the benefit of our2) Trace-driven Simulationtn addition to synthetic scenarios,
channel assignment increases further. we also conduct trace-driven simulations over two publicly
available wireless data sets: the first was collected at Dartmouth
College [13], [15] in 2004 and the second dataset was collected at
To understand the benefits of traffic-awareness in differejfe IBM T.J. Watson Research Center [16] in August 2002. These
operating conditions, we use two sets of experiments: (1) Firgfmulations allow us to explore the benefits of traffic-awareness
we conduct simulations using both real and synthetic traffig real WLAN deployments with real traffic patterns.

d.e mands and WLANS topologies (Secu_on IV'A)'. While thF\Dartmouth Traces. We analyze the data collected between Feb
simulations allow us to explore the benefits of trafﬂc—awarenefqth and Feb 12th, 2004. In our analysis, we focus on two
in a range of operating conditions, they abstract away importan ildings - “ResBIdé94” aﬁd “LibBldg2” - c;)ntaining 12 and

real world effects. (2) To accou_nt for S.UCh effects, we mplemegg access points, respectively. Other buildings of similar type
our approach over a modest-sized wireless testbed and eval(ate

Lég.tg. other ResBldg’s) have fewer access points.

its performance using several field experiments. In Section IV- “The Dartmouth traces include SNMP statistics and number of
we provide details of our wireless nodes and the traffic demands‘[. . i
ctive clients per AP sampled every 5 minutes at all APs. We

we |mp.ose.d In ou.r testbed experiments. We describe the |mp3%e the SNMP statistics and client-AP association information to
mentation in Section VI.

derive AP and client-side demands (in Mbps) for every 5 minute
A. Simulation Methodology interval. In addition, the data contains geographic coordinates for

We use the publicly available version 2.29 of NS-2 withhe ARs. There is no clientilogation information,'so we assume
support for multiple non-overlapping channels. We use 8021&?_@'[ clients are randomly distributed around their APs within a
and enforce 11 Mbps medium bit rate with RTS/CTS enabl&#cle of radius 20m.
and transmission range set to 60 meters (with correspondi@M Traces. Similar to the Dartmouth data, the IBM traces
interference range = 120 m). We generate constant bit rate (CBf®htain SNMP statistics and number of active clients per AP for
traffic at a specified rate with data packet sizes of 1024 bytelstee different buildings: “SBldg”, “MBIldg” and “LBldg”. We
Unless otherwise stated, the traffic is bi-directional (from AFscus on “MBIdg”, which has 33 APs. Unlike the Dartmouth
to clients and vice versa) and symmetric: the send demanddata, we did not have the locations of the APs. Instead, we
an AP is same as its receive demand. The traffic generateddoystructed synthetic coordinates for the APs by placing them
APs is uniformly distributed to all clients. We study the effecat hand-picked locations in a 5-storied building spanning a
on TCP traffic in our testbed experiments (Section VI). We ug85x100m lot. We analyze the data collected between Aug 11,
the Simulated Annealing approach of Section IlI-B to optimiz2002 and Aug 13, 2002.
the channel separation metrics. Our trace-driven simulations progress in rounds, where a single

Since these are controlled simulations, we assume that found covers a given SNMP measurement interval. Within a
cations of all wireless nodes are known and use free-spaoend, we apply the channel assignment algorithm, as described
propagation models [29] to estimate if two nodes are interferimg Section I11-B, to optimize the channel separation metrics. As
with each other. In our simulations, all interference is binary. Tmentioned earlier, we quantify the effectiveness of an assignment
evaluate the effectiveness of an assignment, we computettle by computing the aggregate throughput over all connections.
throughputover all connections. To study the benefits of traffic-awareness, in our simulations,

1) Synthetic ScenariosFirst, we use synthetic scenarios tave focus on intervals with> 50% simultaneously active APs.
understand when traffic-aware channel assignment is benefiofggé consider an AP to be active if the total volume of traffic
We generate synthetic topologies and traffic traces using fh&ends and receives exceeds 10 Kbps. Also, while trace-driven
approach in [22], [24]. Specifically, we generate topologies thsiimulation captures real usage patterns, it has a major limitation
consist of 50 APs and 200 clients in a given area. Like [22],its throughput is limited by the capacity of the current provision
[24], we generate 15 random topologies, where each client hssheme (e.qg., if channel assignment in use was ineffective, the
on average, 4 APs in its communication range. throughput of the traces would be too low to see benefits of

Different from [22], [24], we generate two types of constanimproved channel assignment). To address this limitation, we
bit-rate (CBR) UDP traffic to shed light on how traffic distri-scale up the traffic demands in these intervals (on average, we
bution affects the benefits of traffic-aware assignments. The teale 60X across all buildings). Note that 60X scale up is chosen
types of demands are (i) uniform random traffic demands atwlensure that the performance is not limited by the capacity of
(i) hotspottraffic demands. In uniform random traffic, each ARhe existing deployment, even though we also observe benefits
is randomly assigned a demand from O to the maximum CRBR traffic-aware assignment under smaller scale-up values.
throughput on a wireless link (3.6 Mbps for our NS-2 settings). .

In hotspot traffic demands, a specified number of “hotspots” dfe EXPerimental Approach
created as follows. Each hotspot is formed by randomly selectingn addition to simulation, we also implement the channel
an AP and all the other APs within its communication range. Aflssignment algorithms in a wireless testbed. Testbed evaluation

IV. EVALUATION APPROACH



is valuable because it allows us to evaluate the performanceogér their traffic-agnostic counterparts under each demand type.
different channel assignments with realistic wireless signal prophe CDF is plotted over the 15 random topologies that we
agation, interference patterns, and multi-rate adaptation schensésaulated.

We set up a wireless testbed that consists of 25 DELL As we can see, the improvement of traffic-awareness is mostly
Dimensions 1100 PCs. The testbed spans two floors of an offigihin 15% under uniform demands, whereas the improvement
building. Each machine has a 2.66 GHz Intel Celeron D Processmider hotspots traffic is significantly higher: in 20-35% cases, the
and runs Fedora Core 4 Linux. Each is equipped with 802.Irhprovement is over 20%, and in 10% cases, the improvement
a/b/g NetGear WAG511 using MadWiFi. We run the experimenis over 50% in 1 hotspot and over 30% in 2 hotspots. The
late at night to avoid interference with the resident wirelessiprovement in 1-hotspot case is higher than 2-hotspot case
network. We conduct two sets of experiments. (1) For the filsecause with 2 hotspots (based on our generation) a large
experiment, we use a subset of our testbed (12 nodes). Hadiction of the network has high load and hence high channel
of the PCs act as APs and the other half act as clients, artdization. Nevertheless we still observe up to 48% improvement
each AP has one client. We construct several "toy” demands for 2-hotspot case. These results suggest that the traffic-aware
our smaller scale testbed. In the small testbed, we use a binasgignment is most useful for hotspots-style scenarios.
interference graph and evaluate the client-agnostic, traffic-awardhe benefit is larger under hotspots than uniform demands
metric against the client-agnostic, traffic-aware approach. (2) Hmcause traffic-aware assignment aims to assign APs with high
the second experiment, we use the entire testbed. There are 8 lbBd to non-overlapping channels as much as possible; this
and 17 clients, with all but one AP having 2 clients. The lossignificantly increases the overall throughput when the demands
rates from the AP to its clients vary from 0 to larger values (ugre highly skewed. Also, we observe the throughput (in absolute
to 40%). We evaluate both traffic-aware metrics (client-awawalues) is highest when the channel assignment is both traffic-
and client-agnostic) against a client-agnostic, traffic-agnostisvare and client-aware.
baseline. We impose Zipfian demands across the APs in oulNote that in Figure 5(a) there are a small number of cases
testbed. We try several different slopes for the Zipf-curve: where we observe negative throughput improvement. This is
slopea means that the topth demand is proportional to/i®; because the current channel separation metric (even after incorpo-
we vary o from 0 to 2, where 0 represents uniform demandsting traffic and client awareness) is not perfect. For example,
and a largera indicates more skewed demands. The demandgnsider a setting where two APs do not interfere with each
generated from these slope values are listed in Table V. Faher but some of their clients do. The current metric only takes
each slope value, we evaluate 5 different random mappirigto account the interference between the clients, and ignores
of the generated demands to each AP and report the avertigeadditional effect of head-of-line blocking at APs caused by
throughput over these 1 minute runs. Each mapping can gibhe interference at their clients. We believe that our traffic-aware
a different traffic-aware channel assignment. We measure nametrics can be improved further to correlate more strongly with
binary wireless interference in the second testbed using broadeestvork performance. We leave this for future work.
probes (described in Section IlI-C1) once before the experime%t_s Trace-Driven Simulation Results
start and use the same interference graph for all runs. This wa

the quality of channel assignment is also subject to the tempor_alﬁIext we compare different channel assignments using simula-

variation in the interference graph, which is more realistic tion based on real traffic traces described in subsection IV. First,

We generate either constant-bit-rate UDP or TCP traffic froli€ Présent a comparison of the performance improvement from
APs to clients with packet size of 1024 bytes. For both forrﬁgafflc-awareness relative to traffic-agnostic assignment. Then,

of traffic, we measure the throughput using nuttcp [25]. Wae investigate if traffic-aware assignment introduces unfairness
enforce a specified demand in TCP traffic by utilizing the rafBt® @ WLAN by favoring transfers at heavily loaded APs. We
limiting function in nuttcp, which places an appropriate uppeﬁ'so study the relation between the benefits of traffic awareness

bound on TCP'’s congestion window. We use the same set3jid the density of the WLAN network (in terms of the mean

traffic demands for TCP and UDP and assume these demafjfiance between wireless nodes) Finally, we present an eval-
are known a priori. uation of practical demand prediction algorithms discussed in

subsection III-C3.
V. SIMULATION RESULTS 1) Performance Benefits of Traffic-awarenegdrst we com-

We now present our evaluation from NS-2 simulations. Agare four channel separation metrics assuming that we have
mentioned earlier, we quantify the effectiveness of a chanmérfect knowledge of traffic-demands. Figure 6 shows a CDF
assignment by computing the total throughput achieved by 8fi performance improvement of various channel assignments
network flows under the assignment. We first simulate synthe@igainst a traffic-agnostic/client-agnostic baseline. We note that
topologies and show that the benefit of traffic-awareness is lar§fé¢ average throughput improvement is 4.0%-5.9% after incor-
when the load is imbalanced. Then we compare different chanRerating client-side information alone; it raises to 5.2%-11.5% by

assignments using trace-driven simulations under accurate Hprporating traffic-demands alone; and further to 8.3-12.8% by
inaccurate traffic demands. incorporating both traffic-demands and client-side information.

As we can see in Figure 6, the client-aware/traffic-aware metric
shows improvement over the client-agnostic/traffic-aware metric
As described in Chapter IV-Al, we create two types dbr LibBldg2 and MBIdg. However, the improvement is less for
demands to understand the benefit of traffic-aware assignmefesBldg94. To see why the client-aware metric does not provide
uniform and hotspots. Figure 5 shows the cumulative distributi@s much improvement in ResBldg94, we examine the interference
function(CDF) of improvement of traffic-aware channel schemgsitterns in the buildings. If a client interferes with the same set

A. Simulations on Synthetic Settings
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Fig. 5. Comparison of traffic-aware schemes against their traffic-agnostic counterparts in synthetic topologies.
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Fig. 6. Comparison of various channel assignment schemes against a traffic-agnostic, client-agnostic channel assignment approach as the baseline.

L . . . . Approach Fairness

of APs as the AP it is associated with, then the benefit of client- PP esBIdg | LibBldg g
aware channel assignment becomes smaller. However, if clients [Traffic-agnosticiclient-agnostic 0.89 0.87 0.85
interfere with a different set of APs than that of the AP they are | Traffic-unaware/clientaware | 0.91 0.89 0.87

iated with. client interf b . tant. Wi Traffic-aware/client-agnostic 0.89 0.90 0.86
associated with, client interference becomes more important. We |raffic-aware/client-aware 091 0.0T 087
report the average number of clients that fall into the two former TABLE Il
categories in the left and right columns of Table I, respectively. IMPACT OF TRAFFIGAWARENESS ON FAIRNESS

For ResBIldg94, a relatively higher proportion of clients have
the same interference pattern as their APs, and thus client-aware
channel assignment has less impact. In comparison, LibBldg2
and MBIdg see larger benefit of client-aware channel assignment
since more clients interfere with different APs.

Percentage Improvement
=
5
T

client-awareftraffic-agnostic J—
-20 client-agnostic/raffic-aware ~ ---=---

Interfere with same APY Interfere with different APs | dlenawreaficanye
ResBIdg94 58.4 .75 o1 0z 03 04 05 06 07 08 08 1
LibBldg2 14.9 6.56 Cumulative Fraction
MBIdg 59.2 24.8

Fig. 8. Comparison of various traffic-aware schemes against their traffic-agnostic
TABLE | counterparts under Zipf-distributed traffic demands.
DETAILED BREAK-DOWN OF CLIENT-SIDE INTERFERENCE

2) Fairness: Next we ask if traffic-awareness creates unfair-
As in the synthetic case, the extent of improvement is traffigeess among APs. We consider the ratio of the actual throughput
dependent. When traffic is more evenly distributed, we see liti®tained at the AP to its original demand and compute Jain’s
improvement from traffic-aware assignment. When traffic is mofgirness index over this ratio for all individual flows. As sum-
heterogeneous, the improvement is larger. For instance, we cenarized in Table Il, all the algorithms result in similar fairness.
puted the classic Jain’s fairness index for demands correspondimgs suggests that benefits from traffic-aware assignment do not
to the interval with the maximum improvement of 40% andome at the expense of the fairness in throughput allocation to
for the interval corresponding to the median improvement @fdividual flows.
10%, both in F|gure 6(a). (Jain's fairness index is defined as3) |mpact of Zipf-distributed Demanddn the above simu-
(X xi)?/(n + Y- a;?) for demandsz;...z,.) We note that the |ations, we assumed that the demand of an AP was equally
faimess in the former case is almost one half of the faimegstibuted across its clients and its client demands were also
for median-case demands. This further confirms that the mefgual. Now, we study the benefits under a more skewed client
imbalanced the traffic demands, the larger benefit from usigg@mand distribution.
traffic-aware assignment. Figure 8 compares various channel assignment schemes
Figure 7 compares the performance improvement of the twgainst a traffic-agnostic, client-agnostic channel assignment ap-
traffic-aware metrics against their traffic-agnostic counter-parfsroach as the baseline when Zipf-distributed traffic demands are
The average improvement of traffic-aware/client-agnostic mettieed for ResBldg. Compared with Figure 6(a), we observe the
over traffic-agnostic/client-agnostic is 5.2-11.5%, whereas thelative performance of various algorithms is similar.
average improvement of traffic-aware/client-aware over traffic- Note that the total traffic rate to and from each AP is the same
agnostic/client-aware is 2.4-8.6%. The former improvement ji$ both cases. The lack of any significant difference between
larger because the baseline performance is worse. For ResBigiform and Zipfian client demands indicates that the aggregate
(Figure 7(a)), the largest improvement of traffic-awareness tigffic volume in a BSS is a more important factor in traffic-aware
> 35% for either metric. assignment than the actual distribution of the traffic among clients
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Fig. 7. Comparison of various traffic-aware schemes against their traffic-agnostic counterparts.

in the BSS. predict than traffic in an ISP backbone. Such high variability in

4) Impact of Network DensityWe now study the relationship traffic poses challenges to traffic-aware assignment schemes.
between the density of a WLAN deployment and the benefits ofNext we evaluate the performance of channel assignment using
traffic-awareness. More specifically, we want to understand if theedicted demands, and compare it with the case where the true
benefits are higher in dense deployments. demands are known(the “oracle”). We evaluate the improvement

Figure 9 shows the performance improvement when we ve#gen by two traffic-aware metrics over their traffic-agnostic
transmission range, and consequently, the average numbeg@ifnterpart. Figure 10 compares the client-aware metric, while
interfering AP pairs. The improvement tends to first increaddgure 11 compares the client-unaware metric. The performance
with density and then decrease. This is because when @idhe prediction algorithms closely tracks the the oracle. Com-
network density is low, very few APs interfere with each othgrared with the oracle the degradation of predictive algorithms is
and all channel assignments yield similar throughput. Wheyithin 6% (e.g. see the EWMA algorithm for client-unaware in
network density is higher, a better channel assignment can allB&sBldg94). Compared with the traffic-agnostic algorithm, the
more nodes to simultaneously transmit, thereby increasing tofaprovement is still substantial. The performance degradation
throughput. As network density increases further, all the channé client-unaware channel assignment is less than that for the
are fully utilized everywhere regardless of channel assignmeftient-aware channel assignment. For client-aware, we have to
and the benefits of traffic-aware channel assignment are redugtgdict the client side demands too and this further increases

the prediction error. The median improvement for client-unaware

T T channel assignment i8.13% while for client-aware channel
v assignment it i$.26% (both values for ResBldg94).
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5) Evaluation of Practical Traffic-aware Algorithmdn the Fig. 10.  comparison of client-unaware channel assignments using various
previous evaluation, we assume that traffic-aware channel assigjgdiction algorithms.
ments have perfect knowledge of traffic-demands. In practice,
such information is not known a priori, but has to be estimated.,
based on historical information. A natural question arises: can thé »
prediction error offset the potential gain of traffic-aware channel; *
assignment?

Percent
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Percentage Improvement

EVOWA | Previous | Peaf; | ek e
ResBldg | 0.48 0.49 0.70 1.02 (a) ResBldg94 (b) LibBldg2
LibBIdg 043 0.47 0.57 0.80 Fi . : : . .
g. 11. Comparison of client-aware channel assignments using various
MBIdg 0.76 0.91 1.03 1.25 prediction algorithms. ) o
TABLE Il Our evaluations suggest that even though wireless traffic is
PREDICTION ERROR hard to predict accurately, it is still possible to apply traffic-

To answer this question, we first compute the error in prediciware channel assignments, since the assignments are reasonably
ing traffic demands using various prediction algorithms describesbust against prediction errors. The robustness arises from the
in subsection I1I-C. We quantify the prediction error using meafact that traffic-aware channel assignment does not need accurate
absolute error (MAE), defined a%: ‘p;@;ﬁ;‘;fljt““l”. Table 1l demands but only the rough spatial demand distribution, so that
shows the error involved in predicting the total demand (bothcan allocate more channels to areas that need them most. To
send and receive demands) at the APs. As shown in Table dbnfirm this further, we conduct simulations where we introduce
the best prediction algorithm is EWMA, which results in MAEGaussian errors into the traffic demands.
ranging from 0.43 to 0.76. This prediction error is still quite sig- 6) Impact of Incorrect InformationTo evaluate the robustness
nificant. Large prediction errors are not surprising since wirelesg traffic-aware channel assignment, we “poison” the traffic

traffic at each AP hasow aggregationand is much harder to demands with artificially generated error and use the poisoned




lower throughput. A closer examination reveals that the perfor-
mance loss is caused by inaccurate assumption of interference
patterns. We assume that all nodes interfere with each other,
which is indeed the typical case in the testbed. However wireless
L R - interference relationships change over time. In this particular
° 01 02 03 04 05 06 07 08 09 1 Foor 2 O e 7 02 22 2 experiment, the fourth and fifth APs do not always interfere with

(a) Traffic-aware, client-agnostic (b) Traffic-aware, client-aware each other, and achieve total throughput of 29.12 Mbps, which
S o oo Sred o rs s o e e g gionificantly igher than 25,27 Mbps — the highest throughput
deviation. at a single channel observed from our testbed.

Second, the throughput improvement has a strong correlation

demands as input to channel assignment. Figure 12 shows W& ‘fairess index”; this is the Jain fairness index computed
CDF of performance improvement of traffic-aware channel a8Ye' the traffic demands. We calculate the Jain fairness index
signment schemes against their traffic-agnostic counterparts wigndéscribed in Section V-B2. A lower index indicates more
we add errors with different standard deviation. As we woulgPalance in traffic distribution, and results in larger benefit from
expect, the performance improvement increases as the standf@ffic-aware channel assignment. These results are consistent
deviation of the error decreases. Moreover, we observe that e¥dth our simulation. Moreover, we observe that traffic-aware
when the standard deviation is 0.5, the performance improvemgRgnnel assignment not only benefits UDP traffic (e.g. streaming
is close to that under no error. This is true for both client-agnosfeedia or delay sensitive traffic), but also significantly improves
and client-aware assignments. These results further demonstf&tE throughput (e.g. elastic large file downloads). Therefore
the robustness of traffic-aware assignment to a range of possiffidlic-awareness could benefit a wide variety of applications

ercentage Improvement
ercentage Improvement

Pe
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errors in the demand information. running over wireless links. _ .
Third, we observe similar performance with and without
V1. | MPLEMENTATION AND EXPERIMENT RESULTS RTS/CTS. We also note that the relative performance improve-

We implement the channel assignment algorithms as followrg.em from traffic-aware assignment under multi-rate adaptation

We have a centralized controller that takes traffic demands zf&a‘: ?:Tepne:;ag% tzptza;r\é\"gl]g;é tjcflr;gtlhzrmg;]rgtteﬁe-iihlliiklz bgg:l:;?
the interference graph among wireless nodes as the input %érate at the highest data ratge und,er both traffic—a\?vare an)(/j
computes channel assignments for the channel separation meﬁacf?lc-a nostic asgi nments. When the client-AP link qualit
defined in Section Ill. Then the controller disseminates the n%/v 9 gnments. ) . q y

) . . egrades, we expect a higher benefit of traffic-aware assignment,
channel assignment to the APs by establishing ssh connectipri i . )

. $ cause traffic-aware assignment helps reduce interference and
through the back-end Ethernet connection, and remotely setsaﬁgw links to operate at higher data rates. We observe this
APs’ channels usingvconfig . After all APs' channels have henomenon in E))ur larger tegtbed which We.describe next
been changed, the controller remotely starts nloéicp [25] P 9 ' '
program with the specified traffic demands to measure netw@®k Testbed 2
performance. For our evaluation, the controller collects the
throughput reports from all APs again via the back-end Etherqg
connection after each experiment.

After evaluating the channel assignment in the subset of the
Istbed, we evaluate our channel assignment scheme on the entire
testbed. As mentioned in Section IV-B, in our evaluation, we
A. Testbed 1 generate Zipf-distributed traffic demands with different slopes,

where a larger slope indicates a higher imbalance in traffic

First, we use a smaller-scale testbed of 12-nodes to understgofler The demands generated from these slope values are listed
the potential benefits of traffic-aware channel assignment. Mgstrple v/

of the 12 nodes interfere with each other. We generate possible

but undesirable traffic-agnostic assignments by iteratively assigne [ APii [ APi; [ APis | APiy [ APis [ APig [ APir | APig

ing the two access points with the highest remaining demands %g 8:2‘212 8:238 8:228 8%‘1“1) gjgég 8:3‘512 gjggg 8:338

the same channel. Such assignment is possible because traffics | 7.000 | 0.500 | 0.333 | 0.250 | 0.200 | 0.167 | 0.143 | 0.125

agnostic assignment tis to balance the number of nterferingS | %45 094 03931 01611 118 otae | aner | 00

APs on a channel without considering their traffic load. Ta=

ble IV compares throughput under traffic-agnostic and traffic- NORMALIZED z|pF|ATNAEIE'5A\r/uDs IN THE TESTBED

aware channel assignments in eight different settings, derived

from changing the following three factors: (i) TCP vs. UDP, (ii) Since the effect of RTS/CTS is small as shown in Sec-

with fixed rate and with multi-rate adaptation, and (iii) with andion VI-A, here we mainly focus on the other two factors, namely

without RTS/CTS. When using a fixed rate, the data rate is SEEP/UDP and multi-rate adaptation.

to 1 Mbps. In the throughput distribution column, APs assigned Figure 13 and 14 show the overall network throughput over

to channel 1 are in boldface, ones assigned to channel 6 ar&iruns under fixed-rate and multi-rate, respectively. We make

italics, and ones assigned to channel 11 are in normal font. the following observations. First, as we would expect, client-
We make the following observations. First, traffic-aware chaaware, traffic-aware performs the best, and client-agnostic, traffic-

nel assignment consistently out-performs traffic-agnostic chanaglare out-performs client-agnostic, traffic-agnostic. Second, the

assignment. The largest improvement is 90.73%. The only @kroughput variance of traffic-agnostic metric is generally higher

ception arises in the first traffic demand under TCP, with multihan that of the traffic-aware metrics. This is because the traffic-

rate and RTS/CTS, where traffic-aware assignment yields 5.43%nostic metric ignores traffic demands, and different channel




Normalized traffic demands Throughput for traffic-aware Throughput for traffic-unaware Improv- | Fair-
(AP1, AP2, AP3, AP4, AP5, AP6) assignment (Mbps) assignment (Mbps) ement ness
Distribution Total Distribution [ Total
UDP Results - Fixed Rate
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33 (0.80,0.28 0.28 0.43 0.42 0.29 2.49 (0.66 0.28,0.28 0.42 0.43 0.28) 2.35 5.98% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.51, 0.17, 0.67, 0.51 0.17, 0.72) 2.74 (0.51,0.17, 0.46 0.51,0.17, 0.47) 2.22 23.35% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00)  (0.0Q 0.0Q 0.47 0.80,0.81, 0.39 2.47 (0.00 0.0Q 0.45 0.40, 0.450.42 173 | 42.88% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00] (0.17,0.00 0.42 0.17, 0.170.8 1.73 (0.17,0.00 0.42,0.17, 0.17, 0.45) 1.38 24.95% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.0 0.00 0.82, 0.00,0.80 0.8 2.45 (0.00 0.0Q 0.49,0.00 0.80 0.38) 1.67 | 46.55% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00)  (0.00, 0.00,0.87, 0.00,0.0G 0.83 1.64 (0.00 0.0Q 0.47,0.00 0.00 0.40) 0.86 89.90% | 0.33
TCP Results - Fixed Rate
(1.00, 0.33,0.33, 0.50, 0.50, 0.33 (0.74,0.28 0.18 0.39 0.41, 0.28 2.30 (0.58 0.28,0.28 0.42 0.42 0.28) 2.27 1.04% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.46 0.17, 0.6Q 0.50 0.17, 0.69) 2.59 (0.48,0.17, 0.4370.49,0.17, 0.39 2.13 21.99% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00)  (0.00 0.0G 0.39 0.76,0.77, 0.47 2.34 (0.0G 0.0Q 0.42 0.40, 0.380.4 161 | 45.66% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (0.17,0.0Q 0.42 0.17, 0.170.7 171 (0.17,0.0Q 0.39,0.17, 0.17, 0.43) 1.33 28.98% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00)  (0.00 0.00 0.77, 0.000.76 0.7 2.29 (0.0G 0.0Q 0.42,0.00 0.77, 0.39) 159 | 44.03% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00)  (0.00, 0.00,0.77, 0.00,0.00 0.7 154 (0.00 0.00 0.42,0.00 0.00 0.39) 0.81 89.32% | 0.33
UDP Results - Multi-rate
(1.00, 0.33,0.33, 0.50, 0.50, 0.33) (24.66,9.17, 8.75 13.99 13.98 8.63 79.18 (19.30 9.24,9.24 14.0Q 14.0Q 9.24) 75.02 5.55% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.8Q 5.60 20.19 16.47 5.60, 25.17) | 89.84 | (16.80,5.60 14.98 14.01,5.60 12.79 | 69.78 | 28.74% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.0Q 0.0Q 15.4Q 22.65,24.25 12.99 75.23 (0.00 0.00 19.27 11.43, 15.16/.87) 53.72 | 40.03% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.0G 14.0Q 5.60, 5.60,26.0§ 56.88 (5.60 0.00 14.00,5.6Q 5.60 13.86) 4466 | 27.37% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00 0.00 26.80, 0.0024.45 26.02 77.27 | (0.00 0.00 16.79,0.00 23.64 11.64) | 52.07 | 48.38% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,26.06 0.00,0.00 26.80 52.86 (0.00 0.00 16.66,0.00 0.00 11.98) 28.64 | 8453% | 0.33
TCP Results - Multi-rate
(1.00, 0.33,0.33, 0.50, 0.50, 0.33) (24.47,8.38 8.85 12.34 13.52 7.69 7525 | (18.746.16,9.24 14.00 14.00 9.24) | 71.38 | 5.42% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.8Q 5.60 18.24 16.8Q 5.60, 24.67) | 87.71 | (16.80,5.60 13.22 15.40,5.60 12.89 | 69.44 | 26.31% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.0G 0.00 13.3§ 19.92,23.73 1256 | 69.60 | (0.00 0.0Q 13.09 10.47, 14.4813.20 | 51.24 | 35.82% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.0G 14.0Q 5.60, 5.60,25.50 56.30 (5.60 0.00 13.99,5.6Q 5.60 12.32) 4311 | 30.58% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.0Q 0.0Q 25.12, 0.0024.2Q 25.1§ 74.49 (0.00 0.00 14.81,0.0Q 23.64 12.28) 50.73 | 46.83% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,24.35 0.00,0.00 25.69 49.99 (0.0G 0.00 15.33,0.00 0.00 11.14) 26.46 | 88.90% | 0.33
UDP Results - Fixed Rate - RTS/CTS
(1.00, 0.33,0.33, 0.50, 0.50, 0.33) (0.75,0.28 0.26 0.40 0.42 0.26) 2.37 (0.41,0.28,0.28 0.42 0.42 0.28) 2.10 13.06% | 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (0.43 0.17, 0.61 0.39 0.17, 0.68) 2.44 (0.36,0.17, 0.42 0.42,0.17, 0.35 1.90 28.90% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00)  (0.00 0.0Q 0.42, 0.75,0.76 0.3 2.28 (0.00 0.00 0.4370.43,0.360.39 160 | 42.73% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00 (0.17,0.0Q 0.42,0.17, 0.170.73 1.67 (0.17,0.0Q 0.38,0.17, 0.17, 0.42) 1.31 27.47% | 054
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00)  (0.00 0.0Q 0.76, 0.000.77 0.7 2.27 (0.00 0.0Q 0.39,0.00 0.77, 0.42) 157 | 4435% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,0.77, 0.00,0.00 0.7 1.53 (0.0G 0.0Q 0.40,0.00 0.00 0.41) 0.81 89.76% | 0.33
TCP Results - Fixed Rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33 (0.73,0.27,0.27,0.36 0.42 0.22 2.27 (0.440.28,0.28 0.42 0.35 0.28) 2.05 10.37% [ 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90 (0.490.17, 0.56 0.29 0.17, 0.63) 2.32 (0.37,0.11, 0.38 0.39,0.17, 0.39 1.81 28.34% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.0Q 0.0Q 0.4Q 0.73,0.73 0.36 2.22 (0.00 0.0Q 0.46 0.38, 0.37,0.39 153 | 4552% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00)  (0.17,0.00 0.42 0.17, 0.170.73 1.66 (0.17,0.0Q 0.38,0.17, 0.17, 0.39) 1.28 30.20% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00)  (0.00 0.0Q 0.74, 0.000.74 0.7 2.20 (0.00 0.00 0.40,0.00 0.73 0.38) 151 | 45.72% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00)  (0.00, 0.00,0.74, 0.00,0.0G 0.73 1.47 (0.0G 0.0Q 0.35,0.00 0.00 0.42) 0.77 90.73% | 0.33
UDP Results - Multi-rate - RTS/CTS
(1.00, 0.33,0.33, 0.50, 0.50, 0.33) (25.27,6.86 9.01, 11.84 13.77, 7.90 74.66 [ (18.23 9.24,9.24 14.00 13.86 9.24) [ 7381 [ 1.14% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (16.8Q 5.60 15.41 13.45 5.60, 24.61) | 81.47 | (16.80,5.6Q 14.56 11.53,5.60 10.65 | 64.74 | 25.83% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.00 0.0Q 11.72 17.27,24.37,13.1) | 66.54 (0.0q 0.0Q 8.41, 6.72, 18.67]15.10 48.90 | 36.07% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.0Q 13.84 3.72, 5.60,24.59 53.35 (5.60 0.00 12.08,3.73 5.60 13.53) 40.54 | 31.60% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.0Q0 0.00 24.21, 0.0024.95 24.87) 74.03 | (0.00 0.0Q 13.45,0.00 24.32 12.11) | 49.87 | 48.44% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,18.9Q 0.00,0.0Q 24.89 43.78 (0.00 0.00 11.94,0.00 0.00 13.46) 2540 | 72.32% | 0.33
TCP Results - Multi-rate - RTS/CTS
(1.00, 0.33, 0.33, 0.50, 0.50, 0.33) (22.34,5.85 8.18 9.27, 14.0Q 7.39 67.00 (15.13 9.24,9.24 14.0Q 13.99 9.24) 70.84 -5.43% 0.82
(0.60, 0.20, 0.90, 0.60, 0.20, 0.90) (14.58 5.59 12.29 16.8Q 5.60, 23.37) | 78.23 | (16.80,5.6Q 11.03 11.26,5.60 11.6§ | 61.96 | 26.26% | 0.80
(0.00, 0.00, 1.00, 1.00, 1.00, 1.00) (0.0G 0.0Q 12.39 13.16,23.30 10.4) | 59.26 (0.00 0.00 9.55 4.89, 17.8212.49 44747 32.45% | 0.67
(0.20, 0.00, 0.50, 0.20, 0.20, 1.00) (5.60,0.00 13.17 5.60, 5.6023.19 53.15 (5.60 0.0Q 8.76,5.60 5.60 14.46) 40.02 | 32.80% | 0.54
(0.00, 0.00, 1.00, 0.00, 1.00, 1.00) (0.00 0.00 21.62, 0.0022.95 22.87) 67.37 | (0.00 0.0Q 10.64,0.00 22.47, 13.01) | 46.06 | 46.27% | 0.50
(0.00, 0.00, 1.00, 0.00, 0.00, 1.00) (0.00, 0.00,14.96 0.00,0.00 23.0§ 38.01 (0.00 0.00 10.48,0.00 0.00 12.97) 2345 [ 62.11% | 0.33
TABLE IV
SUMMARY OF 12-NODE TESTBED EXPERIMENT RESULTS
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2 M | b T — o[ 1
5 21 & 2 %f””*fi/ / i\\\] g L4 ’ i % 161 1
£ L) % i I § 131 s 1 g e i 1
15 19 g 18 . ke i § 121 A //f— gE} i:’ T * ?:
5 1 R ‘ g Ll ] //i:*f%/ £ Lol e g J]r//i’
F o % F o1 * ¢ | 5o S ¢ L e Sl B ]
16 | lont aimestcaiie aware — 15 | lont Sanostcinafic.aware — : M . . . NE | . . .
s client-agnosticltraffic-agnostic - e client-agnosticiiraffic-agnostic - 0.9 o o5 T s 5 0.9 o o5 i s 5
0 05 1 15 2 0 05 1 15 2 Slope Slope
sove sove (a) Client-agnostic, traffic-aware (b) Client-aware, traffic-aware
(a) UDP (b) TCP

Fig. 13. Overall network throughput in 25-node testbed under fixed MAC d

rate, where the errorbars show the average and standard deviation.
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Fig. 14. Overall network throughput in 25-node testbed under multi-rate, wh
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(b) TCP

the errorbars show the average and standard deviation.

ig. 15. Average and standard deviation of throughput improvement over client-
égnostic, traffic-agnostic baseline.

assignments may appear equally good according to the traffic-
agnostic metric, but its actual performance varies significantly
depending on whether the nodes with high demands happen to
be assigned to non-interfering channels.

Figure 15 further shows the improvement of traffic-aware,
client-agnostic and traffic-aware, client-aware over the traffic-
agnostic, client-agnostic baseline. As it shows, the improvement

%% traffic-awareness generally increases with the slep®#hen
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] The re-association delay depends on the re-association scheme.
\ ] A simple approach, which is implemented by MadWiFi, is for

N wireless clients to scan all channels to find the AP with the

] highest RSSI. The re-association delay in this case tends to be

- ] long and is dominated by the scanning time. To reduce this time,

R 2 2 an AP can broadcast the new channel before switching so that the
(a) UDP (b) TCP clients can directly switch to the new channel without performing
Fig. 16. Jain’s Faimness Index in 25-node testbed under fixed MAC data ragcanning [26]. To protect against packet losses, the new channel
‘ ‘ ‘ s ‘ ‘ ] information can be sent multiple times.
5 °f 5 sl F 1 We refer to the above two re-association schemes as (i)
2 o / i\ ’ ; ] MadWifi default implementation, and (ii) explicit notification.

Do S We evaluate the overhead of channel switching under these
"0 e i 1 o oo ] two re-association schemes using testbed experiments. In ex-
s 5 L, e : : plicit notification, the AP broadcasts its new channel 5 times
before switching to protect against packet losses. Figure 18
(a) UDP (b) TCP . . .
Fig. 17. Jain's faimess index in 25-node testbed under multi-rate. ~ @nd Figure 19 summarize the results of a 10 minute transfer
between an AP and its client using both TCP and UDP. The x-
a = 0 (i.e., all traffic demands are the same), the client-agnostfis tracks how often the AP changes its channel. To evaluate
traffic-aware metric perform similarly as the client-agnostiéh® impact of frequent channel switching on different transfer
traffic-agnostic metric. The client-aware, traffic-aware slightiguration, we use on-off traffic, where both on-periods and oft-
out-performs both the above metrics by accounting client-si@griods are exponentially distributed. Different lines in the graph
interference. Asy increases, traffic becomes more concentrat&g@rrespond to different average on-period, ranging from 5 to 300
on a smaller number of nodes and both traffic-aware metrig8C- The average off-period duration is 5 seconds. The process
see larger improvement. Furthermore, we observe the variaftdepeated until 10 minutes elapse. As shown in Figure 18,
of throughput improvement can be quite high. This is due there is no degradation under the default re-association scheme
the performance fluctuation in the traffic-agnostic metric, ¢hen the switching interval is 2 minutes or higher. For a
explained earlier. The improvement of traffic-awareness in soifi@aller switching interval, the overhead of the default scheme
cases can be quite high: we observe up to a 1.52-fold incref¥@eases. In comparison, as we can see from Figure 19, under
for TCP/fixed-rate, and a 1.8-fold increase for TCP/multi-raf® explicit notification scheme, the overhead is negligible for
(see slope 1.5 in Figure 15). The benefit of traffic-awarenessdfs Switching intervals, including switching once per 20 seconds.
larger under the multi-rate because traffic-awareness can redlig@se results suggest the re-association overhead is negligible
interference and allow links to operate at higher data rates. Under the explicit notification; even for default implementation,
We now study the impact of Jain’s fairess index on TCP afyvitching once 5 minutes, as considered in this evalugtion, incurs
UDP traffic for fixed-rate and multi-rate. Figure 16 and Figure 170 Performance penalty for both TCP and UDP traffic.
shows the fairness index for the different metrics under fixed rate
and multi-rate respectively. It represents the values averaged over o[ ] oof
the five runs. We make following observations. el - ? ol
(1) For all the metrics, the Fairness index value is better unde or E
fixed MAC data rate as compared with the multi-rate. o
(2) Under both the fixed rate and multi-rate scenarios, for os|
either UDP or TCP traffic, the fairness index of the metrics is ;[
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comparable. This suggests that traffic aware channel assignment ° el sec) el (sec)
does not degrade the fairness in demand allocation at different (2) UDP traffic (b) TCP traffic
APs. Fig. 18. Channel switching overhead under MadWiFi default implementation.

VII. DISCUSSION —_— '
] ol
O g T

05|

04 e

The evaluation of our algorithms show that we can achieve,
effective channel assignments by taking traffic demands inte o8
consideration. However, some practical considerations, such as o«[/

Throughput (Mbps)

the impact of channel switching, have not been analyzed. In this ;[ 8] oa| 8]
section we investigate these issues. SN o N T= =
0 100 200 300 400 500 600 0 100 200 300 400 500 600
. ) Interval (sec) Interval (sec)
A. Channel switching (a) UDP traffic (b) TCP traffic

Channel switching causes two types of overhead: (I) deIay Fig. 19. Channel switching overhead under explicit notifications.

incurred by an AP to change its channel - switching delay, andAn orthogonal approach to further minimize the impact of
(i) delay incurred for the clients to associate with the AP oohannel switching is to reduce the number of APs that change the
its new channel - re-association delay. As reported in [23], titbannels. To address this issue, we use the channel assignment
switching delay varies from 20@s on Intel's ProWireless to from the previous measurement interval as the starting point in
10-20 ms on NetGear Atheros, Cisco Aironet, and Prism 2.5.the simulated annealing algorithm. We can further limit the num-



ber of channel switches by controlling the number of iteratiorssgnificantly improve the quality of the channel assignment in
in simulated annealing. This will bias the outcome of the searphactice.
in favor of assignments that are only slightly different from the We perform a detailed study of the operating conditions under
current channel assignment. We evaluate the effectiveness of thiisch traffic-awareness offers maximum benefit. We show that
approach using our simulations of Dartmouth’s ResBldg. the benefits of the approach are tightly coupled to the deployment
environment. For example, traffic-awareness is most helpful when
traffic demands are concentrated at a small number of heavily-
loaded APs located close to each other. The approach is of little
| use when traffic demands are uniform across the WLAN or when
T 1 the WLAN deployment is too sparse. Our testbed experiments
show that the benefits of traffic-awareness extend to both TCP
and UDP traffic, both fixed rate and multi-rate adaptation.

Our paper establishes the importance of traffic-awareness to the
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Comparison of various channel assignment schemes against a traffi@nagement of wireless LANs. Although our focus has been on

Fig. 20.
agnostic, client-agnostic channel assignment approach as the baseline. campus and enterprise networks, we believe that the central idea
of this paper — traffic-awareness — is widely applicable to other

scenarios such as multi-hop mesh networks and uncoordinated

deployments.
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