
Vivisecting YouTube: An Active Measurement Study

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 11-012

Vivisecting YouTube: An Active Measurement Study

Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-li

Zhang

July 11, 2011

Vivisecting YouTube: An Active Measurement Study

Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang
Department of Computer Science & Engineering, University of Minnesota

{viadhi,sourj,yingying,zhzhang}@cs.umn.edu

ABSTRACT

We build a distributed active measurement infrastructure to

uncover the internals of the YouTube video delivery sys-

tem. We deduce the key design features behind the YouTube

video delivery system by collecting and analyzing a large

amount of video playback logs, DNS mappings and latency

data and by performing additional measurements to verify

the findings. We find that the design of the YouTube video

delivery system consists of three major components: a “flat”

video id space, multiple DNS namespaces reflecting a multi-

layered logical organization of video servers, and a 3-tier

physical cache hierarchy. Further, YouTube employs a set of

sophisticated mechanisms to handle video delivery dynam-

ics such as cache misses and load sharing among its globally

distributed cache locations and datacenters.

1. INTRODUCTION

Since its inception in 2005, YouTube has seen explo-
sive growth in its popularity; today it is indisputably
the world’s largest video sharing site [16]. Given the
traffic volume, geographical span and scale of opera-
tions, the design of YouTube’s content delivery infras-
tructure is perhaps one of the most challenging engi-
neering tasks (in the context of most recent Internet de-
velopment). Before Google took over YouTube in late
2006 [7] and subsequently re-structured the YouTube
video delivery infrastructure, it was known that YouTube
employed several data centers in US [2] as well as third-
party content delivery networks [9,17] to stream videos
to users. Since Google’s take-over, YouTube has grown
rapidly and became several-fold larger both in terms of
users and videos. For instance, using inter-domain traf-
fic collected in 2007 and 2009 at hundreds of ISPs across
the world, the authors of a recent study [8] show that
Google has become one of the top five inter-domain traf-
fic contributors in 2009 (while not even among the top
10 in 2007); a large portion of Google’s traffic can be at-
tributed to YouTube. While it is widely expected that
Google has incorporated the YouTube delivery system
into its own vast Internet infrastructure in the past few
years, little is known how Google leverages its engineer-
ing talents and resources to re-design and re-structure

the YouTube video delivery infrastructure to meet the
rapidly growing user demands as well as performance
expectations.
This paper attempts to “reverse-engineer” the YouTube

video delivery system through large-scale active mea-
surement, data collection and analysis. The rationale
behind our YouTube vivisection study is multi-fold. First
of all, we are not simply interested in uncovering, e.g.,
where YouTube video cache servers or data centers are
located, but more in the design principles underlying
Google’s re-structuring of the YouTube video delivery
system. For instance, we are particularly interested in
answering the following important design questions: i)
how does YouTube design and deploy a scalable and dis-
tributed delivery infrastructure to match the geograph-
ical span of its users and meet varying user demands?
ii) how does YouTube perform load-balancing across its
large pool of Flash video servers (and multiple loca-
tions)? iii) given the sheer volume of YouTube videos
which renders it too costly, if not nearly impossible, to
replicate content at all locations, what strategies does
YouTube use to quickly find the right content to de-
liver to users? and iv) how does YouTube handle the
vastly differing popularity of videos in addressing the
questions ii) and iii) above?
Answer to these questions are very important for fu-

ture large-scale content providers and content delivery
system designers because YouTube video delivery sys-
tem represents one of the “best practices” in Internet-
scale content delivery system. Additionally, because of
the significant volume of traffic that YouTube generates,
this reverse-engineering work also helps Internet service
providers to understand how YouTube traffic might im-
pact their traffic patterns. It is with these goals in
mind that we set out to uncover the internals of the
YouTube video delivery system by building a globally
distributed active measurement infrastructure, and to
deduce its underlying design principles through careful
and extensive data analysis and experiments. In the
following we briefly outline our work.
The global scale of the YouTube video delivery sys-

tem and the use of separate servers to service the stan-

1

dard HTML content vs. video content (see Section 2.1)
pose several challenges in actively measuring, and col-
lecting data from the YouTube video delivery system.
To address these challenges, we have developed a dis-
tributed active measurement platform with more than
1000 vantage points spanning five continents. As de-
scribed in Section 2.2, our globally distributed mea-
surement platform consists of three key components: i)
PlanetLab nodes that are used for crawling the YouTube
website, performing DNS resolutions, and YouTube video
playback; ii) open recursive DNS servers to provide
additional vantage points to perform DNS resolutions;
and iii) emulated YouTube Flash video players running
on PlanetLab nodes and two 24-node compute clus-
ters in our lab for downloading and “playing back”
YouTube videos and for larges-scale data analysis. This
distributed active measurement platform enables us to
play half a million YouTube videos , and collect exten-
sive YouTube DNS mappings at each vantage point, and
detailed video playback traces.
Through careful and systematic data analysis and in-

ference and by conducting extensive experiments to test
and understand the behavior of the YouTube video de-
livery system, we not only geo-locate (a large portion
of) YouTube video server locations and map out its
cache hierarchy, but also uncover and deduce the log-
ical design of the YouTube video delivery system and
the key mechanisms it employ to handle delivery dy-
namics. We provide a high-level summary of the key
findings regarding the YouTube design below, and refer
the reader to Section 3 for more specifics.
• The design of the YouTube video delivery system

consists of three components: a “flat” video id space,
a multi-layered logical server organization consisting of
five anycast1 namespaces (and two unicast namespaces),
and a 3-tiered physical cache hierarchy with (at least) 38
primary locations, 8 secondary and 5 tertiary locations.
• YouTube assigns a fixed-length (unique) identifier

to each video and employs a fixed hashing to map the
video id space to the logical namespaces. Such a fixed
video-id-to-hostname mapping makes it easy for YouTube
web servers to generate URLs referencing videos that
users are interested in without knowing where each video
is located or currently cached.
• YouTube leverages (coarse-grained) locality-aware

DNS resolution to service user video requests by map-
ping the (first-layer) logical hostnames to physical video
servers (IP addresses) in primary cache locations that
are reasonably close to users. To perform finer-grained
dynamic load-balancing and handle cache misses, YouTube

1In this paper by an anycast (DNS) namespace we mean that
each (DNS) hostname in the space is – by design– mapped
to multiple IP addresses (“physical” video servers). In con-
trast, a unicast hostname is mapped to a single (unique) IP
address.

employs a clever and complex mix of dynamic HTTP
redirections and additional rounds of DNS resolution
(of anycast and unicast hostnames). More specifically,
YouTube utilizes the layered anycast namespaces to
redirect video requests across the physical cache hier-
archy , and the unicast namespaces to redirect video
requests from one video server to another within the
same location or tier.
In a nutshell, by introducing multiple (layered) DNS

namespaces and employing a fixed mapping of the video
id space to the DNS namespaces, YouTube cleverly lever-
ages the existing DNS system and the HTTP protocol
to map its logical server cache hierarchy to the physi-
cal delivery infrastructure – this enables a scalable, ro-
bust and flexible design. In Section 4, Section 5 and
Section 6 we present more details regarding how we de-
rive these findings, including analysis performed, the
methods used, and additional experiments conducted
to verify and validate the findings. In Section 7 we will
summarize the lessons learned, state how YouTube de-
sign differs from other CDNs, and briefly discuss what
insights these lessons may shed on the design of large-
scale Internet content delivery systems in general.

Related Work. Before we delve into our work of
reverse-engineering the YouTube video delivery system,
we briefly discuss several pieces of related work. Most
existing studies of YouTube mainly focus on user be-
haviors or the system performance. For instance, the
authors in [3,4] examined the YouTube video popularity
distribution, popularity evolution, and its related user
behaviors and key elements that shape the popularity
distribution using data-driven analysis. The authors
in [6] investigate the (top 100 most viewed) YouTube
video file characteristics and usage patterns such as the
number of users, requests, as seen from the perspective
of an edge network. Similarly, [12] compares multiple
video service providers in terms of data center loca-
tions and user perceived delay. Another study [17] an-
alyzed network traces for YouTube traffic at a campus
network to understand benefits of alternative content
distribution strategies. In a recent study carried in [2],
the authors utilize the Netflow traffic data passively col-
lected at various locations within a tier-1 ISP to uncover
the locations of YouTube data center locations, and in-
fer the load-balancing strategy employed by YouTube
at the time. The focus of the study is on the impact
of YouTube load-balancing on the ISP traffic dynam-
ics, from the perspective of the tier-1 ISP. As the data
used in the study is from spring 2008, the results re-
flect the YouTube delivery infrastructure pre Google re-
structuring. Another work that is similar to this paper
is presented in [15]. In [15], Torres et al. examine data
collected from multiple networks to uncover the server
selection strategies YouTube uses. Our work differs sig-
nificantly from [15] because the focus of our work is to

2

uncover the overall architecture (see Section 3), and not
just how YouTube does server selection. To the best of
our knowledge, our work is the first study that attempts
to reverse engineer the current YouTube video delivery
system to understand its overall architecture. Initial
results from this research also appear in [1].

2. YOUTUBE BASICS AND ACTIVE MEA-

SUREMENT PLATFORM

In this section we first briefly describe the basics
of YouTube video delivery, in particular, the roles of
YouTube web servers and Flash video servers. We then
provide an overview of our distributed active YouTube
measurement and data collection platform.

2.1 YouTube Video Delivery Basics

Figure 1: YouTube Typical Steps involved in
YouTube Video Delivery.

Users typically go to the YouTube website and watch
videos using a web browser equipped with the Adobe
Flash Player plug-in, where videos are streamed from
(individual) YouTube Flash video servers (separate from
the YouTube web servers). In the following, we provide
a brief overview of the sequence of steps involved when
a user goes to the YouTube website and watches a video
directly from the website. The steps are schematically
shown in Fig. 1. Each YouTube video is identified by a
URL (more specifically, the 11-literal string after v= is
the video id, namely, tObjCw WgKs, in the example URL
below). When a user goes to the YouTube website, or
clicks on any URL of the form
http://www.youtube.com/watch?v=tObjCw WgKs on an
existing YouTube web page using her browser, the browser
first resolves the hostname www.youtube.com using the
local DNS server (LDNS). The HTTP request from the
user is then directed to one of the YouTube web servers
returned by the YouTube DNS system. The web server
returns a HTML page with one or more embedded (i.e.,
invisible) URLs of certain forms, e.g.,
v23.lscache5.c.youtube.com, pointing to the Flash
video server.

When the user clicks the playback button of an em-
bedded Flash video object on the page (or when the
video starts automatically), another round of DNS reso-
lution occurs, resolving, say, v23.lscache5.c.youtube.com,
to one of the many YouTube (front-end2) Flash video
servers, which then streams the video to the user’s browser.
In fact, the YouTube front-end video server first re-
solved may redirect (via the HTTP request redirection)
the video request to another video server, which may
again redirect the request, until it finally reaches a video
server that is able to stream the video to the user’s
browser. Hence multiple additional rounds of DNS res-
olutions (and HTTP redirections) may happen before
the video is finally delivered to the user.
In summary, YouTube uses separate (web vs. Flash

video) servers to deliver HTML webpages and videos
to users. Furthermore, YouTube uses both DNS resolu-
tion and HTTP redirection (as part of the Flash video
delivery operations) to select appropriate video servers
for video delivery to users. Clearly, these strategies
are needed so as to to take into account factors such
as user locality, availability (and popularity) of videos
at various video servers, the status of video servers
(e.g., how busy a video server is), and so forth. This
logical structure of YouTube video delivery as well as
its globally distributed physical delivery infrastructure
pose several challenges in actively measuring and col-
lecting data from the YouTube delivery system. For
example, one cannot simply crawl the YouTube website
and perform DNS resolutions to uncover YouTube video
servers, due to the Flash video objects used by video
playback and multiple redirections among video servers
(many of which are not directly visible on YouTube web
pages) within a multi-tiered video server cache hierar-
chy deployed by YouTube (see Section 3).

2.2 Active Measurement Platform

The globally distributed video delivery infrastructure
of YouTube necessitates a geographically dispersed (ac-
tive) measurement platform. As shall be clear later, the
YouTube (or rather, Google) DNS system takes into
account the locality of users (or rather the local DNS
servers issuing the DNS requests) to resolve its DNS
names to IP addresses: when the YouTube DNS sys-
tem receives a DNS request from a local DNS server (of
a user), only IP addresses (of a web server or a video
server) “close” to the local DNS server – purportedly
also “close” to the user making a video request – are
returned. Hence in order to uncover as many YouTube

2We refer to the YouTube Flash video servers with DNS-
resolvable public IP addresses as the front-end video servers,
as we understand that they are likely supported by multiple
physical machines behind the scene, or even a number of
back-end video server clusters. This is especially likely to
be the case for YouTube secondary and tertiary video cache
servers, see Section 3.

3

servers as possible, we need a large number of vantage
points that are geographically dispersed to collect data.

Figure 2: Our Active Measurement Platform.

To address the challenges posed by the YouTube global
delivery infrastructure, we have developed a distributed
active measurement and data collection platform con-
sisting of the following three key components (see Fig.2):
i) PlanetLab nodes that are used for both crawling the
YouTube website, performing DNS resolutions, as well
as functioning as proxy servers for YouTube video play-
back (see below); ii) open recursive DNS servers that are
used for issuing DNS requests and verifying DNS reso-
lution results; and iii) emulated YouTube Flash video
players running on PlanetLab nodes and two 24-node
compute clusters in our lab and a proxy web server
architecture using the PlanetLab nodes for forwarding
YouTube videos to our compute clusters for video play-
back. Our platform utilizes 471 PlanetLab nodes that
are distributed at 271 geographical dispersed sites (uni-
versity campuses, organization or companies), and 843
open recursive DNS servers located at various ISPs and
organizations.
As alluded to earlier , simply crawling YouTube web-

site and web pages to extract URLs that reference YouTube
videos is insufficient; one needs to actually play those
Flash videos to uncover the tiered video cache servers
and the process of YouTube redirections among them.
To circumvent this difficulty, we developed an emu-
lated YouTube Flash video player in Python which em-
ulates the two-stage process involved in playing back a
YouTube video: In the first stage, our emulated video
player first connects to the YouTube’s website to down-
load a web page, and extracts the URL referencing a
Flash video object. In the second stage, after resolv-
ing the DNS name contained in the URL, our emu-
lated video player connects to the YouTube Flash video
server thus resolved, and follows the HTTP protocol
to download the video object, and records a detailed
log of the process. Note that during this process, mul-
tiple HTTP request redirections and DNS resolutions
may be involved before the Flash video objects can be

“downloaded” for playback. The detailed text-based
logs recorded for each step of the process contain a va-
riety of information such as the hostnames and URLs
involved in each step, the HTTP request and response
messages and their status codes, the basic HTML pay-
load and timestamps for each of the steps. In particular,
when there is a failure on the server side, for example,
due to the file is not available temporarily, or the server
is overloaded and fails to retrieve the video from an up-
stream or back-end server, the emulated player records
the HTTP error code sent by the server.
In addition to playing back all the videos using the

Flash video player emulator, We also play a large num-
ber videos using standard web browsers such as Mozilla
Firefox and record all the HTTP and DNS transactions.
We use this experiment to verify that our emulator was
functioning correctly and the data we collected was not
biased because of the use of an emulator. Due to the
resource constraints on the PlanetLab nodes, we cannot
run standard browsers directly on them to play those
YouTube videos. Hence we configure the PlanetLab
nodes to function as proxy servers using Squid [13], and
run Firefox on two 24-node compute clusters in our
lab. As proxy servers, the PlanetLab nodes forward
all HTTP requests and replies to the browsers running
on our back-end compute clusters; but to YouTube
the video requests appear to come from the PlanetLab
nodes that are geographically dispersed across multiple
continents. This is crucial, as we need a large number of
geographically dispersed client machines. In addition,
our emulated YouTube Flash video player can be con-
figured to use an open recursive DNS server (instead of
the default local DNS server of a PlanetLab node) for
resolving YouTube DNS names, contact the YouTube
video servers thus resolved to download and play back
videos, and record a detailed log of the process. This
capability enables us to use the 843 open recursive DNS
servers as additional vantage points. Hence we have a
total of 1, 314 globally distributed vantage points for
active YouTube measurement and data collection.
Testing and Verification. Before we deployed the ac-
tive measurement and data collection platform, we went
through a careful testing and verification process to en-
sure the correctness of our platform. We selected a set of
85 geographically dispersed PlanetLab nodes as proxy
servers and a list of several hundreds YouTube videos
with varying popularity crawled from the YouTube web-
site. We “manually” played back these videos in our lab
machines using the PlanetLab nodes as proxy servers,
and recorded a detailed log of each process. We com-
pared these “manually” collected datasets with those
collected via our emulated YouTube Flash video play-
ers (using the same set of PlanetLab nodes as proxy
servers), verify the consistency of the manually and au-
tomatically collected datasets across different Planet-

4

Lab nodes to ensure the correctness of our platform.

2.3 Measurement Methodology and Datasets

Given the globally distributed active measurement
platform described above, in this section we outline the
methodology used (and the various steps involved) for
collecting YouTube data, and describe the datasets thus
collected. We conclude by briefly commenting on the
completeness (or incompleteness) of the datasets. We
make our data and code publicly available at
http://networking.cs.umn.edu/youtubedata for the ben-
efit of the community.
We adopt a multi-step process to collect, measure,

and analyze YouTube data. First, we crawl the YouTube
website from geographically dispersed vantage points
using the PlanetLab nodes to collect a list of videos,
record their view counts and other relevant metadata,
and extract the URLs referencing the videos. Second,
we feed the URLs referencing the videos to our emulated
YouTube Flash video players, download and “playback”
the Flash video objects from the 471 globally distributed
vantage points, perform DNS resolutions from these
vantage points, and record the entire playback processes
including HTTP logs. This yields a collection of de-
tailed video playback traces. Third, using the video
playback traces, we extract all the DNS name and IP
address mappings from the DNS resolution processes,
analyze the structures of the DNS names, and perform
ping latency measurements from the PlanetLab nodes
to the IP addresses, and so forth. Furthermore, we also
extract the HTTP request redirection sequences, ana-
lyze and model these sequences to understand YouTube
redirection logic. We repeat the entire process multiple
times by extracting additional videos and playing back
them, or repeating the process using the same set (or a
subset) of videos.
Furthermore, based on our initial analysis of the YouTube

DNS namespace structures and HTTP request redirec-
tion sequences, we have also conducted extensive “ex-
periments” to further test and understand the behavior
of the YouTube video delivery system. For instance,
we uploaded our own videos on the YouTube website
to test how YouTube handles “cold” (rarely viewed)
videos. We also issued video download and playback
requests to specific YouTube video servers to test the
relations between the YouTube video id space and DNS
namespaces as well as to understand the factors influ-
encing the redirection decision process. (See Sections 5
and 6.3 for the discussion of some of these experiments.)
In the following we summarize the main datasets we
have collected and used in this study.
YouTube Videos and View Counts. We started by
first crawling the YouTube homepage (www.youtube.com)
from geographically dispersed vantage points using the
PlanetLab nodes. We parsed the YouTube homepage to

extract an initial list of (unique) videos and the URLs
referencing them. Using this initial list as the seeds, we
performed a breadth-first search: we crawled the web-
page for each video from each PlanetLab node, and ex-
tracted the list of related videos; we then crawled the
web-page for each related video, and extracted the list
of its related videos, and so forth. We repeated this
process until each “seed” video yielded at least 10, 000
unique videos (from each vantage point). The above
method of collecting YouTube videos tends to be bi-
ased towards popular videos (at various geographical
regions). To mitigate this bias, we take multiple steps.
First, we add our own short empty videos to the list.
We also search YouTube for different keywords and add
to our list only those videos that have very small view
counts. After all these steps, we have a list of 434K
videos (including their video ids, the (most recent) view-
count and other relevant information).
Video Playback Traces and HTTP Logs. Using
the list of videos we collected, we fed the URLs ref-
erencing the videos to our emulated YouTube Flash
video players to download and “playback” the Flash
video objects from the 471 globally distributed van-
tage points. We recorded the entire playback process
for each video at each vantage point. This includes,
among other things, the DNS resolution mappings, all
the URLs, HTTP GET requests and the HTTP re-
sponses involved in the playback of each video. This
yields a collection of detailed video playback traces and
HTTP logs. These traces and logs play a critical role
in our analysis and understanding the YouTube DNS
namespace structures, video server cache hierarchy and
HTTP request redirection logic and decision process.
YouTube DNS Names, IP Addresses and DNS-
to-IP Resolution Mappings. Using the video play-
back traces, we extracted all the DNS name and IP
address mappings from the DNS resolution processes
at each vantage points. In total, we extracted 6, 150
YouTube DNS names from all the video playback traces.
We repeated the DNS resolution processes multiple times
at different times of the day using the PlanetLab nodes
and open recursive DNS servers to test and verify the
DNS-to-IP address mappings, to obtain additional map-
pings (if any), and to check for the completeness of the
mappings. In total, we obtained a total of 5, 883 IP
addresses for the YouTube DNS names we collected.
Other Data and Experiments. In addition to the
above datasets, we also performed other measurements
and collected additional data. For instance, we per-
formed the round-trip-delay (RTT) measurements over
time from each PlanetLab node used in our active mea-
surement platform to each of the 5, 883 IP addresses
(YouTube video servers), and collected several RTT
datasets that are used for geo-locating the YouTube
video servers (see Section 5). As mentioned earlier,

5

Figure 3: YouTube Architectural Design.

we also conducted extensive experiments to further test
and understand the behavior of the YouTube video de-
livery system, and collected the relevant measurement
data and logs for each experiment.
(In)Completeness of Our Measurement Data. We
conclude this section by briefly commenting on the com-
pleteness and incompleteness of the collected datasets.
Clearly, the list of videos we collected represents only a
small sample of all YouTube videos. In addition, due to
the bias inherent in our crawling process, the videos col-
lected tend to be popular videos (especially the initial
video seeds used for the breadth-first search process),
and those that are related to the popular videos. To
partially correct this bias, we uploaded several videos
of our own, the explicit purpose to test and under-
stand how “cold” videos affect the YouTube delivery
process, in particular redirection decisions. In terms
of the YouTube DNS names and namespaces used for
YouTube video delivery, we believe that they are (nearly)
complete, with the possible exception of the unicast
r.xxx·xxx.c.youtube.com namespaces (see Section 3).
We are also confident that the YouTube IP addresses we
collected represent a large majority of video servers and
cache locations deployed by YouTube Ḣowever, the de-
sign of the DNS namespaces and cache hierarchy makes
it easier for YouTube to deploy additional video servers
at existing and new locations to meet user demands.
Nonetheless, we believe that any incompleteness due
to the missing DNS name-to-IP-address mappings does
not fundamentally affect the key findings of our study.

3. SUMMARY OF KEY FINDINGS

In this section we provide a summary of our key find-
ings regarding the design and operations of the YouTube
global video delivery system. This serves as the road
map for the ensuing sections, where we will provide
specifics as to how we arrive at these findings, including
the data analysis and inference as well as experiments
we have performed to verify the findings.

3.1 Overall Architecture

As schematically shown in Fig. 3, the design of the
YouTube video delivery system consists of three major
components: the video id space, the multi-layered or-
ganization of multiple anycast DNS namespaces (repre-
senting “logical” video servers), and a 3-tier “physical”
server cache hierarchy with (at least) 38 primary loca-
tions, 8 secondary locations and 5 tertiary locations.
YouTube Video Id Space. Each YouTube video is
“uniquely” identified using a “flat” identifier of 11 lit-
erals long, where each literal can be [A-Z], [0-9], - or
(see Section 4 for details). The total size of the YouTube
video id space is effectively 6411.
Three-Tier (Physical) Server Cache Hierarchy
and Their Locations. Using the YouTube IP ad-
dresses seen in our datasets, we geo-map the YouTube
“physical” video server cache locations, which are dis-
persed at five continents (see Fig. 4). Through in-depth
analysis of our datasets, we deduce that YouTube em-
ploys a 3-tier physical cache hierarchy with (at least)
38 primary cache locations, 8 secondary and 5 tertiary
cache locations. About 10 of the primary cache loca-
tions are co-located within ISP networks (e.g., Com-
cast and Bell-Canada), which we refer to as non-Google
cache locations. Each location contains varying number
of IP addresses (“physical” video servers), and there are
some overlapping between the primary and secondary
locations.
Multi-Layered Anycast DNS Namespaces. YouTube
videos and (physical) cache hierarchy are tied together
by a set of (logical) anycast namespaces as well as uni-
cast namespaces. YouTube defines five (anycast) DNS
namespaces, which are organized in multiple layers, each
layer representing a collection of logical video servers
with certain roles. Logical video servers at each layer
are mapped to IP addresses (of “physical” video servers
residing) at various locations within a particular tier of
the physical cache hierarchy. As shown in Table 1, there
are a total of five anycast namespaces, which we refer to
as, lscache, nonxt, tccache, cache and altcache names-
paces; each namespace has a specific format. Columns
4-6 show the total number of IPs, prefixes, and locations
each DNS namespace is mapped.
The first two namespaces, lscache and nonxt, contain

192 DNS names representing 192 logical video servers;
and as will be shown later, they are mapped to the
primary cache locations in the YouTube physical cache
hierarchy. The tccache namespace also contains 192
DNS names representing 192 logical video servers; but
they are mapped to the secondary cache locations in
the YouTube physical cache hierarchy. The last two
namespaces, cache and altcache, contain 64 DNS names
representing 64 logical video servers; they are mapped
to the tertiary cache locations in the YouTube physical
cache hierarchy.
Unicast Namespaces. In addition, for each IP ad-

6

Table 1: Youtube Anycast (first five) and Unicast (last two) Namespaces.
DNS namespace format # hostnames # IPs # prefixes # locations any/uni-cast

lscache v[1-24].lscache[1-8].c.youtube.com 192 4, 999 97 38 anycast

nonxt v[1-24].nonxt[1-8].c.youtube.com 192 4, 315 68 30 anycast
tccache tc.v[1-24].cache[1-8].c.youtube.com 192 636 15 8 anycast
cache v[1-8].cache[1-8].c.youtube.com 64 320 5 5 anycast

altcache alt1.v[1-24].cache[1-8].c.youtube.com 64 320 5 5 anycast

rhost r[1-24].city[01-16][s,g,t][0-16].c.youtube.com 5, 044 5, 044 79 37 unicast
rhostisp r[1-24].isp-city[1-3].c.youtube.com 402 402 19 13 unicast

Figure 4: Geographical distribution of YouTube
Video Cache Locations.

dress (a“physical” video server), YouTube also defines
a (unique) unicast DNS hostname. Namely, there is a
one-to-one mapping between this hostname and the IP
address. As shown in Table 1, the unicast hostnames
have two formats; we refer to the collection of host-
names of each format as the rhost and rhostisp (unicast)
namespaces. The rhost namespace covers the IP ad-
dresses (physical video servers) residing in Google cache
locations, whereas rhostisp namespace covers those in
non-Google cache locations
Last but not the least, we remark that only the host-

names belonging to the lscache namespace are gener-
ally visible in the URLs or HTML pages referencing
videos. DNS names belonging to the other four anycast
namespaces as well as the two unicast namespaces oc-
cur mostly only in the URLs used in dynamic HTTP
request redirections during video playback. The five lay-
ered anycast namespaces and two unicast namespaces
play a critical role in dynamic HTTP request redirec-
tion mechanisms employed by YouTube (see below and
Section 6.3).

3.2 Mechanisms and Strategies

The introduction of the layered organizations of logi-
cal video servers via multiple namespaces enables YouTube
to employ several mechanisms and strategies to i) map
videos to logical video servers via a fixed mapping, and
ii) map logical video servers to physical video servers at
various locations of its physical cache hierarchy through
both (semi-static) DNS resolution and (dynamic) HTTP
redirection mechanisms. This leads to scalable and ro-
bust operations of the YouTube video delivery system

via flexible strategies, and allows YouTube to, for in-
stance, effectively perform load balancing and handle
cache misses.
Fixed Mapping between Video Id Space and Log-

ical Video Servers (Anycast DNS Namespaces).
YouTube adopts a fixed mapping to map each video id
uniquely to one of the 192 DNS names in the lscache
namespace. In other words, the video id space is uni-
formly divided into 192 sectors, and each lscache DNS
name – representing a logical video cache server – is
responsible for a fixed sector. This fixed mapping be-
tween the video id space to the lscache DNS names-
pace (logical video servers) makes it easier for individual
YouTube front-end web servers (www.youtube.com) to
generate – independently and in a distributed fashion –
HTML pages with embedded URLs pointing to the rel-
evant video(s) users are interested in, regardless where
users are located or how logical servers are mapped to
physical video servers or cache locations. Furthermore,
there is also a fixed and consistent mapping between
the (anycast) namespaces. For example, there is one-to-
one mapping between the 192 hostnames of the lscache
namespace and those of the tccache namespace. The
same also holds for the mappings between other any-
cast namespaces (see Section 5 for details). These
fixed mappings make it easy for each (physical) video
server to decide – given its logical name – what portion
of videos it is responsible for serving.
(Coarse-grained) Locality-Aware Video Cache

Selection via DNS Resolution. YouTube employs
locality-aware DNS resolution to serve user video re-
quests regionally by mapping lscache hostnames (logical
video servers) to physical video servers (IP addresses)
residing in primary cache locations reasonably close to
users. This server selection strategy is fairly coarse-
grained: based on our study, DNS queries for each lscache
hostname from more than vantage points, are mapped
to approximately 75 IP addresses distributed across the
38 primary cache locations; where each PlanetLab node
site generally sees only one IP address per lscache host-
name at a time (with some variations across the Planet-
Lab node sites or over time, see Section 6.1 for details).
Background fetch and DynamicHTTP Request

Redirection. The DNS resolution mechanism, while
locality-aware, is generally agnostic of server load or

7

whether a server has the requested video in cache or not.
Since the size difference of the primary cache locations
can be quite large (ranging from 9 to 626 IP addresses
per location) and the user demand is also likely to vary
from one region to another, dynamic load-balancing is
needed. Further, the cache size at each location may
also differ significantly, and videos cached at each loca-
tion can change over time (e.g., due to the differing pop-
ularity of videos), cache misses are inevitable: depend-
ing on how busy a video server at the primary location,
it may either directly fetch (e.g., via the Google internal
backbone network) the missed video in the background
from another video server which has the video cached
and serve the client directly, or redirect the request to
another video server at a secondary or tertiary location.
Our analysis and experiments show that more than 18%
times, a user video request is redirected from a primary
video cache server selected via DNS lscache name reso-
lution to another video server.
YouTube employs a clever and complex mix of dy-

namic HTTP redirections and additional rounds of DNS
resolution (of anycast and unicast hostnames) to per-
form finer-grained dynamic load-balancing and to han-
dle cache misses. For instance, our investigation shows
that YouTube utilizes the layered anycast namespaces
to redirect video requests i) from one location to an-
other location (especially from a non-Google primary
cache location to a Google primary cache location via
the use of nonxt namespace, also one tertiary cache lo-
cation to another via the use of the altcache names-
pace); and ii) from a Google cache location in one tier
to another tier (the primary to secondary or tertiary, or
the second to tertiary via the use of the tccache, cache
and altcache namespaces). There is a strict ordering
as to how the anycast namespaces are used for redirec-
tion (see Fig. 7). At each step of the redirection pro-
cess, the corresponding anycast hostname is resolved
to an IP address via DNS. YouTube also utilizes the
unicast namespaces to dynamically redirect a video re-
quest from one video server to a specific server usually
(more than 90% of times) within the same cache loca-
tion, and occasionally in a different location. The use of
the layered anycast (and unicast) namespaces enables
to enforce an strict ordering and control the redirection
process. On the other hand, each redirection (and DNS
resolution) process incurs additional delay: YouTube
uses both a redirection count and a tag to keep track
of the redirection sequences. Up to 9 redirections may
happen, although they are rarely observed in the video
playback traces we collected.

4. VIDEO ID SPACE & NAMESPACE MAP-

PING

YouTube references each video using a unique “flat”
video id, consisting of 11 literals. We refer to the collec-

tion of all video ids as the video id space. In this section
we briefly discuss how YouTube videos are distributed
in this video id space using a list of YouTube video ids we
have collected. We also study how YouTube maps video
ids to the (anycast) DNS namespaces – especially the
lscache namespace corresponding to its primary cache
locations.

4.1 YouTube Video Ids and Their Distribution

Each YouTube video is “uniquely” identified using
a “flat” identifier of 11 literals long. While we find
that the literals in the first 10 positions can be one
of the following 64 symbols: {a-Z, 0-9, , -}, only 16 of
these 64 symbols appear in the 11th (last) position. For
instance, around 27K out of the 434K YouTube video
ids in our list have 0 as the last symbol, but the three
symbols after 0, namely, 1, 2, 3, do not appear in the last
position in any of the video ids in our list. The same
observation holds for other symbols. In other words,
while the size of the YouTube video id space is 6411,
the theoretical upper bound on the number of videos in
YouTube is 6311 × 16, still an astronomical number.
Analyzing the 434K video ids in our list, we find that

they are uniformly distributed in the video id space. To
demonstrate this, we calculate the frequency of each
symbol at any of the first 10 positions in the video ids,
and the results are shown in the Figure 5. In this figure,
the x-axis represents the 64 symbols, and y-axis is the
probability of occurrence of each symbol at one of the
first 10 positions. We see that each symbol has roughly
the same probability of appearing at any position in the
video ids. The same distribution holds regardless of the
popularity of videos. We further verify this finding by
collecting a large number of additional video ids as well
as by randomly sampling the video id space by querying
the YouTube data API.

4.2 Video Id to Anycast Hostname Mapping

As mentioned in Section 3, YouTube employs multi-
ple anycast namespaces (see Table 1) to logically repre-
sent its (front-end) Flash video servers or caches that
are geographically dispersed. In this section we explore
the relation between YouTube videos (or rather, video
ids) and these namespaces, in particular, the lscache
namespace corresponding to video servers located at its
primary cache locations. In other words, given a video
requested by a user, we investigate how YouTube de-
cides what DNS name representing a logical video server
is responsible to deliver that video.
We first note that only DNS names belonging to the

lscache namespace are generally visible in the URLs
contained in the YouTube webpages; DNS names be-
longing to other namespaces only appear in URLs in
subsequent HTTP redirection requests (see Section 6.3).
We perform a systematic analysis of the YouTube web-

8

10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

Symbol id

P
ro

b
a

b
ili

ty
 o

f
o

c
c
u

rr
e

n
c
e

 a
t

a
g

iv
e

n
 p

o
s
it
io

n
 i
n

 t
h

e
 v

id
e

o
id

Position1

Position2

Position3

Position4

Position5

Position6

Position7

Position8

Position9

Position10

Figure 5: Distribution of video ids with

respect to first symbol

50 100 150
0

500

1000

1500

2000

l scache hostnames

N
u
m

b
e
r

o
f

v
i
d
e
o
s

Figure 6: Number of videos

mapped to each lscache hostname.

rhostrhost

rhost

rhost

rhostisp

lscache
(Non-Google)

tccache

cachealtcache

nonxt (Google)
lscache
(Google)

Primary

Secondary

Tertiary

Figure 7: YouTube namespace hi-

erarchy and redirection order.

pages, HTTP logs and video playback traces to investi-
gate the relation of YouTube video ids and namespaces.
We find that each video id is always mapped to a fixed
hostname, out of the 192 possible names (logical servers)
in the lscache namespace, regardless of location and
time. For example, a video identified using the video id
MQCNuv2QxQY always maps to v23.lscache1.c.youtube.com
lscache name from all the PlanetLab nodes at all times.
Moreover, when redirection happens, each video id is
always mapped to a fixed hostname (out of 192 names)
in the nonxt or tccache namespace, and to a fixed host-
name (out of 64 names) in the cache or altcache names-
pace. We also perform experiments to verify these find-
ings by directly requesting videos from different host-
names. When we attempt to download a video from a
different anycast hostname than the one the video id
is mapped to, we are always redirected to the correct
anycast hostname. As an aside, we find that in contrast
we can request any video from any of the unicast host-
names. Hence the mappings between video ids and the
unicast namespaces are not fixed or unique.
Moreover, we find that YouTube employs a fixed map-

ping from the video id space to anycast namespaces such
that the number of video ids that map to each anycast
hostname are nearly equally distributed. To demon-
strate this, we plot the number of video ids that map
to each of the lscache hostnames in Figure 6, using the
collection of video ids we have collected. We see that
there are approximately equal number of videos mapped
to each of the lscache hostnames. We conclude that
YouTube employs a fixed mapping which maps video
ids uniformly to the anycast namespaces.
There are several advantages of using such a fixed

mapping. First of all, the web servers that handle user
requests can independently generate URLs referencing
individual videos that users are interested in, without
knowledge of where videos are stored and which video
servers should be used to service the requested videos.
Such a mapping also guarantees that, at least at the log-
ical level, video loads are distributed (nearly) uniformly,
as each anycast hostname (a logical video server) is re-
sponsible for a (roughly equal) sector of the flat video id

space (recall that video ids are uniformly distributed in
this space). This enables YouTube to employ a combi-
nation of locality-aware DNS, HTTP redirection (both
among and across anycast and unicast namespaces) to
perform load-balancing and handle cache misses among
the (physical) video servers (see Section 6 for details).

5. CACHE NAMESPACES & HIERARCHY

YouTube define and employ a total of 5 anycast names-
paces as well as two sets of unicast hostnames of the for-
mats (rhost and rhostisp), respectively. Based on our
datasets, these anycast and unicast names are resolved
to a collection of nearly 6000 IP addresses (“physical”
video cache servers) that are distributed across the globe.
Table 1 provides a summary of these namespaces, the
number of IP addresses and locations they map to,
and so forth. We utilize a combination of geo-mapping
methods to geo-locate YouTube cache locations. Fur-
thermore, we explore the correlations between the any-
cast and unicast namespaces and IP addresses they re-
solve to and investigate the relations among the anycast
and unicast namespaces themselves to uncover and un-
roll the YouTube 3-tier cache hierarchy. In the following
we present our methods and findings.

5.1 Geo-mapping YouTube Cache Locations

Using our initial datasets as well as performing addi-
tional DNS resolutions over time using a large number
of vantage points, we collect a total of 5, 883 unique
IP addresses that the anycast and unicast names are
resolved to. We employ a combination of heuristic geo-
mapping methods to geolocate each of these IP ad-
dresses and classify them into 47 distinct cache loca-
tions. Due to space limitation, in the following we
briefly describe the key ideas behind our geolocation
framework here.
First of all, we find that the 5 anycast and 2 uni-

cast namespaces map essentially to the same set of IP
addresses: about 93% of the 5, 883 IP addresses have
a (unique) unicast name associated with them. Sec-
ond, based on the ownership of the IP address prefixes
(WHOIS lookups [5]), the IP addresses can be sepa-

9

rated into two groups: 80% of the IP prefixes come from
addresses assigned to Google/YouTube, remaining 20%
of the prefixes coming from address space assigned to
other ISPs such as Comcast and Bell-Canada (hereafter
referred to as non-Google addresses/prefixes). The for-
mer have the unicast names of the form rhost , whereas
the latter rhostisp. More specifically, these two unicast
namespaces are of the following two forms:
a) r[1-24].city[01-16][s,g,t][0-16].c.youtube.com,
b) r[1-24].isp-city[1-3].c.youtube.com.
Here isp represents the short name for the ISP (e.g.,
bell-canada) to which the corresponding IP address be-
long, and city is a 3 letter code representing the city
name, which usually refers to the nearest airport, (e.g.,
syd).
Clearly, the unicast names indicate that Google/YouTube

have video caches co-located within other ISP networks
(referred to as non-Google locations) as well as within
its own (referred to as Google locations). The 3-letter
city code provides a hint as to where the corresponding
YouTube cache is located (at the granularity of a city or
metro-area). We verify these city locations by perform-
ing round trip delay measurements, and find that these
embedded city codes indeed point to the correct loca-
tions. We also verify that the caches residing within
the ISP address spaces are indeed located inside the
said ISPs’ network (and at the right city locations) by
performing traceroutes to those addresses.
To geo-locate and classify those IP addresses that do

not have an associated unicast name in our datasets and
to further validate the geo-locations of YouTube video
caches, we conduct pair-wise round-trip measurements
from each PlanetLab node to all of the YouTube IP ad-
dresses. Using these measurements as well as the round
trip delay logs in the collected video playback traces, we
perform geo-location clustering similar to the approach
used by GeoPing [10]. We consider the delay between
an IP address and a set of PlanetLab nodes (vantage
points) as the feature vector representing the IP ad-
dress. Next, we cluster all these IP addresses using k-
means clustering algorithm, and use euclidean distance
between the feature vectors as a distance measure. We
assign each cluster a location, if we have at least one IP
address in that cluster for which the location is already
known using its unicast hostname. We have only three
clusters in which no IP addresses in the cluster have an
associated unicast name. Based on the nearest Planet-
Lab nodes for these clusters in terms of the round trip
delay, we classify them into a coarser level geographi-
cal location. This yields a total of 47 cache locations.
We plot them (including both Google and non-Google
cache locations) on a world map in Figure 4.

5.2 Unveiling the YouTube Cache Hierarchy

We perform extensive and in-depth analysis of our

datasets, in particular, the DNS resolution logs and
video playback traces, to investigate the mappings be-
tween YouTube namespaces and IP addresses and to
uncover the relations between the 5 anycast names-
paces as well as between the anycast and unicast names-
paces. Based on the HTTP redirection sequences (see
Section 6.3 for a more detailed analysis), there is a clear
hierarchy among the 5 anycast namespaces, as shown
in Fig. 7: A video server mapped to a lscache hostname
(in short, a lscache server) may redirect a video request
to the corresponding tccache server, or directly to the
corresponding cache server, but never the other way
around. A tccache video server may redirect a video
request to the corresponding cache sever but it never
redirects it back to a lscache server; and a cache video
server may redirect a video request to the corresponding
altcache sever, but never the other way around. Fur-
thermore, there is one-to-one correspondence between
the IP addresses that the 5 anycast namespaces map
to and the unicast namespaces (the shaded spaces in
Fig. 7, as we will see in Section 6.3), YouTube uti-
lizes unicast hostnames for redirecting video requests
from one server to another server within the same any-
cast namespace (and the nonxt namespace is used for
redirections from non-Google cache locations to Google
cache locations). Based on these analyses, we deduce
that the YouTube cache locations are organized into a
3-tiered hierarchy: there are roughly primary cache lo-
cations geographically dispersed across the world (most
are owned by Google, some are co-located within ISP
networks); there are 8 secondary and 5 tertiary cache
locations in US and Europe and owned by Google only.
We discuss each tier below in more details below.
• Primary Video Caches. The lscache anycast

namespace consisting of 192 hostnames of the form v[1-
24].lscache[1-8].c.youtube.com plays a key role in YouTube
video delivery. These names are the ones that appear
in the host name part of the URLs embedded in the
HTML pages generated by YouTube web servers when
users access the YouTube website. In our datasets, the
192 lscache hostnames map to a total of 4, 999 IP ad-
dresses belonging to both Google and other ISPs. Based
on our geo-location clustering, these IP addresses are
distributed in 38 locations. We refer to these cache
locations to which the lscache namespace maps to as
the YouTube primary cache locations, as user video
viewing requests are first handled by the (Flash) video
servers (IP addresses) in these locations. We note that
the lscache namespace maps to both Google and non-
Google primary cache locations3.
Interestingly, the nonxt anycast namespace, also con-

sisting of 192 hostnames of the form v[1-24].nonxt[1-
8].c.youtube.com, maps to a subset of the IP addresses

3Non-Google locations host only YouTube primary video
caches.

10

that the lscache namespace maps: namely, only those
IP addresses belonging to Google (and thus with the
unicast hostnames in the rhost namespace). In other
words, the nonxt anycast namespace covers exactly the
set of IP addresses belonging to Google primary cache
locations. More in-depth analysis reveals that nonxt
hostnames only appear in the URLs of HTTP redi-
rection requests generated by video servers located in
non-Google primary cache locations. Hence we deduce
that the nonxt anycast namespace is only used by video
servers in non-Google primary cache locations to redi-
rect a user video request for service at a Google primary
cache location (see Section 6.3).
• Secondary Video Caches. The tccache anycast

namespace, consisting of 192 hostnames of the form
tc.v[1-24].cache[1-8].c.youtube.com, maps to a set of 636
IP addresses belonging to Google only. These IP ad-
dresses are mostly disjoint from the 4, 999 IP addresses
that the lscache and nonxt namespaces map to, with a
small number of exceptions.4 They all have a unique
rhost unicast hostname, and are distributed at only 8
locations, 4 in Europe and 4 in US. We refer to these
cache locations that the tccache namespace maps to as
the secondary cache locations: they are the locations
where video servers in Google primary cache locations
often redirect user video requests to, and they occa-
sionally also redirect user video requests to the tertiary
cache locations described below.
• Tertiary Video Caches. The cache and altcache

anycast namespaces, both consisting of 64 hostnames
of the form v[1-8].cache[1-8].c.youtube.com and alt1.v[1-
8].cache[1-8].c.youtube.com and respectively, map to the
same small set of 320 IP addresses belonging to Google
only. These IP addresses all have a unique rhost uni-
cast hostname, and are distributed at only 5 locations,
2 in Europe and 3 in US. We refer to these cache loca-
tions that these two namespaces map to as the tertiary
cache locations: they are the last resort for YouTube
HTTP video redirections; an altcache hostname is used
when a video server in one tertiary cache location wants
to redirect a request to a different tertiary cache loca-
tion. This implies that Google DNS servers are con-
figured in such a manner that while a cache hostname,
e.g., v1.cache1.c.youtube.com, is mapped to one tertiary
cache location (that is perhaps relatively close to the
user issuing the DNS query), the corresponding altcache
hostname (i.e., alt1.v1.cache1.c.youtube.com) is always
mapped to a different tertiary cache location (that is
perhaps farther away from the user). See Section 6.1 for
more in-depth analysis of YouTube DNS resolution.

6. VIDEO DELIVERY DYNAMICS

In this section we present our key findings on the

4A few YouTube cache locations function both as primary
and secondary cache locations.

mechanisms and strategies employed by YouTube to
service user requests, perform dynamic load-balancing
and handle potential cache misses. These are achieved
via a combination of (coarse-grained) DNS resolution
and a clever and complex mix of background fetch,
HTTP re-directions and additional rounds of DNS res-
olutions. Before we discuss our findings, we first briefly
discuss the experiments we have designed to measure,
uncover and deduce these mechanisms and strategies
and to validate our findings.
Experimental Methodology. To analyze and under-
stand the YouTube video deliver, we have designed a se-
ries of experiments to learn how various factors such as
video popularity, YouTube cache location and size, and
time of the day affect these redirections. For the video
playbacks, we divide the videos into two sets: i) hot

videos which have a very high number of view counts
(at least 2 million views) including all of the top trend-
ing videos published on the YouTube’s homepage; and
ii.) cold videos which have few than 100 view counts and
never appeared as the top trending videos on YouTube’s
homepage. We randomly select a video from both hot

and cold sets and play them one by one, while the delay
between two consecutive playback requests is modelled
as a Poission process with inter-arrival rate of 10 sec-
onds. For each of video playback request, we record the
detailed logs including timestamps, redirection URLs
(if any) and the IP addresses of the servers involved. In
particular, we also examine the time difference between
the time our client receives ACK for the HTTP GET
request and the time the client sees the first packet of
the HTTP response. We repeat these experiments sev-
eral times using different sets of hot and cold videos,
and conduct them over a period of several months. We
perform extensive and in-depth analysis of the DNS-to-
IP resolution data and video playback traces and HTTP
logs collected from these experiments to analyze, deduce
and uncover the YouTube video dynamics, in particu-
lar, the key factors affecting the fine-grained dynamic
HTTP re-directions.

6.1 Locality-aware DNS Resolution

YouTube employs “locality-aware” DNS resolution to
serve user video requests regionally by directing them
to primary cache locations that are reasonably close to
users. Using our datasets, we find that each hostname in
the primary lscache namespace is mapped to more than
75 unique IP addresses distributed in the distributed
across the 38 primary cache locations. Each PlanetLab
node site generally sees only one IP address per lscache
hostname at a time, with some variations across the
PlanetLab node sites or over time (see below).
To characterize the granularity of locality-aware res-

olutions, we conduct the following analysis. For each
PlanetLab node, we rank all 38 YouTube primary cache

11

10 20 30 40
0

50

100

150

Rank of the YouTube lscache Location

N
u

m
b

e
r

o
f

P
la

n
e

t−
L

a
b

 n
o

d
e

s
 t

h
a

t
h

a
v
e

 a
t

le
a

s
t

o
n

e
 l
s
c
a

c
h

e
 h

o
s
tn

a
m

e
s

m
a

p
p

e
d

 a
t

th
e

 i
th

 r
a

n
k
 l
o

c
a

ti
o

n

Figure 8: Locality aware DNS mappings

for anycast hostnames.

Frankfurt

Frankfurt

Frankfurt

Frankfurt

Frankfurt

Frankfurt

Frankfurt

Frankfurt

L
o

c
a

ti
o

n
 o

f
m

a
p

p
e

d
 I

P

ple1.dmcs.p.lodz.pl (Lodz, Poland)

100 200 300 400 500 600 700 800
Taipei

Taipei

Time in 5 minute intervals

adam.ee.ntu.edu.tw (Taipei, Taiwan)

Figure 9: DNS resolution over time

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Fetch time (in milliseconds)

%
 o

f
re

q
u

e
s
ts

Figure 10: Fetch time distribution

at a YouTube cache server.

locations in the increasing order of round trip network
delay and assign each YouTube location a rank in this
order. Next, we consider the lscache hostname-to-IP
addresses mappings and calculate how they are dis-
tributed with respect to the rank of the correspond-
ing YouTube location for the given PlanetLab node.
For example, if the DNS resolutions of all 192 lscache
hostnames yield a set of 192 unique IP addresses at a
given PlanetLab node, we compute how many of these
belong to the rank-1 YouTube location from the Plan-
etLab node, and so on. In Fig. 8 we plot the number
of PlanetLab nodes which have at least one of lscache
hostnames mapped to an ith rank YouTube location.
As seen in this figure, more than 150 PlanetLab nodes
have at least one of the IP addresses at the closest
YouTube location (in terms of round-trip time mea-
surements). Only a very small number of PlanetLab
nodes have all the lscache hostnames mapped to far-
ther locations. This analysis shows that YouTube DNS
servers generally map each anycast hostname to a near-
by YouTube primary cache location.
Using our DNS mapping data collected over several

months, we also investigate whether YouTube adjusts
the number of IP addresses mapped to each lscache
hostname over time to, say, adapt to the changing loads
at particular cache locations or regions of users. To an-
alyze this, we create a temporal matrix of DNS name to
IP address mapping matrix for each lscache hostname,
where each row in the matrix represents the mappings
of the hostname at a given time from all the Planet-
Lab nodes. Analysis of this matrix reveals two inter-
esting aspects of the way YouTube DNS servers resolve
anycast hostnames to IP addresses. First, we see that
the hostname to IP address mappings may change over
time. Based on how these mappings changed for Plan-
etLab nodes, we can put them into two distinct groups.
In the first group of PlanetLab nodes, the mappings
change during a certain time of the day, and the pattern
repeats every day. In the second group, the set of IP ad-
dresses remains the same over time. Figure 9 provides
an illustration: the top panel shows an example of the
first group, while the bottom panel an example of the

second group. In this figure: the x-axis represents the
time which is divided in the intervals of 5 minutes each,
and y-axis represents the mapped IP address. In the
top panel, at the ple1.dmcs.p.lodz.pl PlanetLab node,
one hostname is mapped to a fixed IP address (belong-
ing to the Frankfurt cache location) most of the time
during the day; however, during the certain hours of
the day we see a large number of distinct IP addresses
for the same hostname. In the bottom panel, one host-
name is always mapped to one of the two IP addresses
(belonging to the Taipei cache location).

6.2 Handling Cache Misses via Backend Fetch-
ing

To handle cache misses, YouTube cache servers use
two different approaches: (a) fetching content from the
backend datacenter and delivering it to the client, or (b)
redirecting the client to some other servers. We study
the difference between the time the client receives the
ACK for the GET request and the time that it receives
the first packet for the HTTP response. We call this
difference “fetch-time”. This “fetch-time” indicates the
time the server took after sending the ACK for the re-
quest and before it started sending the response. In
our analysis, we can clearly put the fetch-times in two
groups: few milliseconds and tens of milliseconds.
We find that when the cache server redirects the client

the fetch-time is very small, generally about 3ms. We
also see about the same fetch-time for most of the hot

videos when the server actually serves the video. For
most of the cold videos when they are not redirected,
this lag is much higher, typically in tens of milliseconds
and vary depending upon cache location. An example
of the distribution is presented in Figure 10 which shows
the distribution of fetch-times of one Google YouTube
cache server observed from a fixed vantage point. There
is a clear gap between the shorter and longer fetch
times. We deduce that large fetch-time is the time it
takes for the cache server to fetch the content from some
backend datacenter (cf. [11]).

6.3 HTTP Redirections Dynamics

12

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
lscache to nonxt redirection

Server IP prefixes

R
e

d
ir
e

c
ti
o

n
 p

ro
b

a
b

ili
ty

Hot videos

Cold videos

(a) Non-Google Cache Locations

50 100 150 200
0

0.2

0.4

0.6

0.8

1
lscache to cache redirection

Server IP prefixes

R
e

d
ir
e

c
ti
o

n
 p

ro
b

a
b

ili
ty

Hot videos

Cold videos

US Europe
Asia

South
America

Oceania

(b) Google Cache Locations

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Server IP prefixes

R
e

d
ir
e

c
ti
o

n
 p

ro
b

a
b

ili
ty

lscache to rhost redirection

Hot videos

Cold videos

US Europe
Asia

South
America

Oceania

(c) Google Cache Locations

Figure 11: Comparison of redirection probabilities.

YouTube employs a clever and complex mix of dy-
namic HTTP redirection mechanisms and additional
rounds of DNS resolutions to perform fine-grained dy-
namic load balancing, handle cache misses, and so forth.
The video redirection logs reveal that HTTP redirec-
tions always follow a specific namespace hierarchy, as
shown in Fig. 7. We examine the key factors affecting
when redirections are performed, e.g., video popularity,
cache location and size, server load and time-of-the day
etc., and present the results. Our analysis of video redi-
rection logs reveals that redirection probability highly
depends on the popularity of the video. However, there
were no significant evidences to show if the factors such
as the location of the YouTube cache and time of the
day influence the redirection probability. In Fig. 11 we
demonstrate how redirection probability is distributed
for hot and cold at both Google and Non-Google loca-
tions. In these figures, x-axis represents the IP prefixes
for the YouTube primary cache servers, which is sorted
based on the region and then based upon the size of
each location. The y-axis represents the probability of
redirection to another namespace. As seen in Fig. 11(a),
at Non-Google locations, cold videos have much higher
probability of being redirected to nonxt namespace than
for the hot videos. In particular, around 5% of the
requests to hot videos experience redirections as com-
pared to more than 24% for the cold videos. Simi-
larly, at Google cache locations, most of the requests
to cold videos are redirected to cache hostnames (see
Fig. 11(b)). It indicates that these redirections are pri-
marily done to handle cache misses by redirecting the
users to the third tier directly. On the other hand, the
redirection probability to tccache and rhost hostnames
does not depend on the popularity of the video. As we
see in Figure 11(c), the probability of redirection for
hot and cold videos to rhost namespace is very similar
at all the Google cache locations. Moreover, a closer
inspection of redirection logs revealed that redirection
rhost hostnames is used to redirect the user to a differ-
ent physical server at the same location, which is more
than 99% of all the redirections to rhost namespace.
This indicates that YouTube performs a much fine gran-
ular load balancing by redirecting the users from possi-

bly a very busy server to a less busy server at the same
location.

6.4 Delay due to Redirections

YouTube’s use of HTTP redirections comes with a
cost. In general, when the client is redirected from one
server to another, it adds to the time before the client
can actually start the video playback. There are three
sources of delay due to redirections. First, each redirect
requires the client to start a new HTTP session with a
different server. Second, the client may need to resolve
the hostname it is being redirected to. And finally, since
the client is being redirected from a nearby location, the
final server that actually delivers the video might be
farther away from it which will add more delay in the
video download time. To account for all these sources
of delays and to compensate for the differences in video
sizes, we analyze the total time spent to download 1MB
of video data starting from the time the client sends
HTTP GET requests to the first lscache server for a
video. We refer to this time as video initialization time.
Figure 12 shows the CDF plot for the video initializa-

tion time observed by one of the PlanetLab nodes. As
seen in this figure, HTTP redirection used by YouTube
servers add a significant overhead to the video initial-
ization time. In particular, our results show that son
an average HTTP redirections increase the video initial-
ization time by more than 33% in comparison to video
initialization time for no redirection scenarios.

7. LESSONS LEARNED & INSIGHTS GAINED

In this paper we set out to reverse-engineer the YouTube
video delivery system by building a globally distributed
active measurement platform. Through careful and ex-
tensive data collection, measurement and analysis, we
have uncovered and geo-located YouTube’s 3-tier phys-
ical video server hierarchy, and deduced the key design
features of the YouTube video delivery system. As ex-
pounded earlier in the paper, YouTube introduces an
elaborate layered logical namespace structure and em-
ploys a number of clever and complex mix of DNS res-
olutions and HTTP redirection techniques to service
user requests regionally while perform dynamic load-

13

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Video Initialization Time (in Second)

c
d
f

planetlab3.cs.surrey.sfu.ca (Surrey, Canada)

No Redirection

Redirection

Figure 12: An example distribution of video initializa-

tion time.

balancing and effectively handle cache misses. This
multi-layered logical namespace (logical server) orga-
nization separating the video (id) space and physical
cache hierarchy also offers YouTube enormous flexibil-
ity. For instance, it can easily deploy additional (phys-
ical) video servers at either an existing or new primary
cache location to meet user demands; it can even change
its server selection or load-balancing strategies, without
significant changes to its software substrate. All these
can be done by simply adding new DNS name-to-IP
address mappings, or altering how such mappings are
performed. Additionally, most aspects of the YouTube
video delivery system do not require any “global” coor-
dination. Local load sharing only requires information
sharing inside a cache location, and the hostname of
the server in higher tier of the cache hierarchy can be
easily computed using the static mapping without any
knowledge of the load etc on those servers. Although
YouTube’s architecture shares some similarity (such as
the use of location-aware DNS resolution) with Akamai
and other CDNs, there are several parts of the archi-
tecture that make YouTube video delivery system dif-
ferent. For instance, Akamai [14] usually relies on very
short TTL (generally 20 seconds) for DNS resolutions
whereas YouTube uses much longer TTL of 5 minutes
and uses HTTP redirections to achieve fine-grain load
balancing. The use of static mapping between objects
and hostnames and among multiple namespaces is also
not common in other CDNs. We believe that these in-
telligent design choices play a role in enabling YouTube
to flexibly meet user demands as well as performance
expectations.
While Google’s YouTube video delivery system repre-

sents an example of the “best practices” in the design of
large-scale content delivery system, its design also poses
several interesting and important questions regarding
alternative system designs, cache placement, content
replication and load balancing strategies. In addition,
the YouTube design is clearly confined and constrained
by the existing Internet architecture. Understanding

the pros and cons in the YouTube design also provides
valuable insights into the future Internet architecture
designs. For instance, the use of the DNS system for
mapping the YouTube logical video servers to the phys-
ical cache locations is at best approximate, as it lacks
the accurate user location information. Redirections are
often necessary, prolonging the response time; request
failure may also occur occasionally when the redirec-
tion upper bound is reached. All these point to many
exciting research questions and important future direc-
tions that are worthwhile to be pursued. In light of
the increasing popularity of large-scale video distribu-
tion – not only relatively short-duration, YouTube-like
videos but also full-length, DVD-quality videos – and
the likely dominance of video streaming/downloads in
the Internet traffic, coupled with the emergence of cloud
computing and services, we believe that successfully ad-
dressing these challenges are critical to both the design
of large-scale content delivery systems as well as the
development and evolution of the future Internet archi-
tecture.

8. REFERENCES
[1] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Reverse

Engineering the YouTube Video Delivery Cloud. In
HotMD’11.

[2] V. K. Adhikari, S. Jain, and Z.-L. Zhang. YouTube Traffic
Dynamics and Its Interplay with a Tier-1 ISP: An ISP
Perspective. In IMC’10.

[3] M. Cha et al. I tube, you tube, everybody tubes: analyzing
the world’s largest user generated content video system. In
IMC’07.

[4] X. Cheng, C. Dale, and J. Liu. Statistics and social
network of youtube videos. In Proc. of IEEE IWQoS, 2008.

[5] L. Daigle. WHOIS Protocol Specification. RFC 3912,
Internet Engineering Task Force, Sept. 2004.

[6] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic
characterization: a view from the edge. In IMC ’07.

[7] Google. Google To Acquire YouTube for $1.65 Billion in
Stock. http://www.google.com/intl/en/press/pressrel/
google_youtube.html.

[8] C. Labovitz et al. Internet inter-domain traffic. In
SIGCOMM’10.

[9] R. Miller. Google-YouTube: Bad News for Limelight?
http://www.datacenterknowledge.com/archives/2006/10/
13/google-youtube-bad-news-for-limelight/.

[10] V. N. Padmanabhan et al. An investigation of geographic
mapping techniques for internet hosts. In SIGCOMM’01.

[11] A. Pathak et al. Measuring and evaluating tcp splitting for
cloud services. In PAM’10.

[12] M. Saxena, U. Sharan, and S. Fahmy. Analyzing video
services in web 2.0: a global perspective. In NOSSDAV’08.

[13] Squid. Squid: Optimising web delivery.
http://www.squid-cache.org.

[14] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E.
Bustamante. Drafting behind akamai. SIGCOMM’06.

[15] R. Torres et al. Dissecting Video Server Selection Strategies
in the YouTube CDN. In ICDCS’11.

[16] YouTube. YouTube statistics.
http://www.youtube.com/t/press_statistics.

[17] M. Zink et al. Characteristics of youtube network traffic at
a campus network - measurements, models, and
implications. Comput. Netw., 2009.

14

