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ABSTRACT
As the distribution of the video over the Internet becomes main-
stream and its consumption moves from the computer to the TV
screen, user expectation for high quality is constantly increasing.
In this context, it is crucial for content providers to understand if
and how video quality affects user engagement and how to best
invest their resources to optimize video quality. This paper is a
first step towards addressing these questions. We use a unique
dataset that spans different content types, including short video on
demand (VoD), long VoD, and live content from popular video con-
tent providers. Using client-side instrumentation, we measure qual-
ity metrics such as the join time, buffering ratio, average bitrate,
rendering quality, and rate of buffering events.

We quantify user engagement both at a per-video (or view) level
and a per-user (or viewer) level. In particular, we find that the per-
centage of time spent in buffering (buffering ratio) has the largest
impact on the user engagement across all types of content. How-
ever, the magnitude of this impact depends on the content type,
with live content being the most impacted. For example, a 1% in-
crease in buffering ratio can reduce user engagement by more than
three minutes for a 90-minute live video event. We also see that the
average bitrate plays a significantly more important role in the case
of live content than VoD content.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [measurement techniques, perfor-
mance attributes] ; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/server

General Terms
Human Factors, Measurement, Performance

Keywords
Video quality, Engagement, Measurement

1. INTRODUCTION
Video content constitutes a dominant fraction of Internet traffic

today. Further, several analysts forecast that this contribution is set
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to increase in the next few years [2, 29]. This trend is fueled by
the ever decreasing cost of content delivery and the emergence of
new subscription- and ad-based business models. Premier exam-
ples are Netflix which now has reached 20 million US subscribers,
and Hulu which distributes over one billion videos per month. Fur-
thermore, Netflix reports that video distribution over the Internet is
significantly cheaper than mailing DVDs [7].

As video distribution over the Internet goes mainstream and it
is increasingly consumed on bigger screens, users’ expectations for
quality have dramatically increased: when watching on the TV any-
thing less than SD quality is not acceptable. To meet this challenge,
content publishers and delivery providers have made tremendous
strides in improving the server-side and network-level performance
using measurement-driven insights of real systems (e.g., [12,25,33,
35]) and using these insights for better system design (e.g., for more
efficient caching [18]). Similarly, there have been several user stud-
ies in controlled lab settings to evaluate how quality affects user ex-
perience for different types of media content (e.g., [13,23,28,38]).
There has, however, been very little work on understanding how the
quality of Internet video affects user engagement in the wild and at
scale.

In the spirit of Herbert Simon’s articulation of attention eco-
nomics, the overabundance of video content increases the onus on
content providers to maximize their ability to attract users’ atten-
tion [36]. In this respect, it becomes critical to systematically un-
derstand the interplay between video quality and user engagement
for different types of content. This knowledge can help providers to
better invest their network and server resources toward optimizing
the quality metrics that really matter [3]. Thus, we would like to
answer fundamental questions such as:

1. How much does quality matter–Does poor video quality sig-
nificantly reduce user engagement?

2. Do different metrics vary in the degree in which they impact
the user engagement?

3. Do the critical quality metrics differ across content genres and
across different granularities of user engagement?

This paper is a step toward answering these questions. We do so
using a dataset which is unique in two respects:

1. Client-side: We measure a range of video quality metrics using
lightweight client-side instrumentation. This provides critical
insights into what is happening at the client that cannot be ob-
served at the server node alone.

2. Scale: We present summary results from over 2 million unique
views from over 1 million viewers. The videos span several
popular mainstream content providers and thus representative
of Internet video traffic today.



Using this dataset, we analyze the impact of quality on engage-
ment along three dimensions:

• Quality metrics: We measure several quality metrics that we
describe in more detail in the next section. At a high level,
these capture characteristics of the start up latency, the rate at
which the video was encoded, how much and how frequently
the user experienced a buffering event, and what was the ob-
served quality of the video rendered to the user.
• Time-scales of user engagement: We quantify the user en-

gagement at the granularity of an individual view (i.e., a single
video being watched) and viewer, the latter aggregated over all
views associated with a distinct user. In this paper, we focus
specifically on quantifying engagement in terms of the total
play time and the number of videos viewed.
• Types of video content We partition our data based on video

type and length into short VoD, long VoD, and live, to represent
the three broad types of video content being served today.

To identify the critical quality metrics and to understand the de-
pendencies among these metrics, we employ the well known con-
cepts of correlation and information gain from the data mining lit-
erature [32]. Further, we augment this qualitative study with re-
gression based analysis to measure the quantitative impact for the
most important metric(s). Our main observations are:

• The percentage of time spent in buffering (buffering ratio) has
the largest impact on the user engagement across all types of
content. However, this impact is quantitatively different for dif-
ferent content types, with live content being the most impacted.
For a highly popular 90 minute soccer game, for example, an
increase of the buffering ratio of only 1% can lead to more than
three minutes of reduction in the user engagement.
• The average bitrate at which the content is streamed has a sig-

nificantly higher impact on live content than on VoD content.
• The quality metrics affect not only the per-view engagement

but also the number of views watched by a viewer over a time
period. Further, the join time which seems non-critical at the
view-level, becomes more critical for determining viewer-level
engagement.

These results have significant implications on how content providers
can best use their resources to maximize user engagement. Reduc-
ing the buffering ratio can significantly increase the engagement
for all content types, minimizing the rate of buffering events can
improve the engagement for long VoD and live content, and in-
creasing the average bitrate can increase the engagement for live
content. Access to such knowledge implies the ability to optimize
engagement. Ultimately, increasing engagement results in more
revenue for ad supported businesses as the content providers can
play more ads, as well as for subscription based services as better
quality increases the user retention rate.

The rest of the paper is organized as follows. Section 2 provides
an overview of our dataset and also scopes the problem space in
terms of the quality metrics, types of video content, and granulari-
ties of engagement. Section 3 motivates the types of questions we
are interested in and briefly describes the techniques we use to ad-
dress these. Sections 4 and 5 apply these analysis techniques for
different types of video content to understand the impact of differ-
ent metrics for the view- and viewer-level notions of user engage-
ment respectively. We summarize two important lessons that we
learned in the course of our work and also point out a key direction
of future work in Section 6. Section 7 describes our work in the
context of other related work before we conclude in Section 8.
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Figure 1: An illustration of a video session life time and as-
sociated video player events. Our client-side instrumentation
collects statistics directly from the video player, providing high
fidelity data about the playback session.

2. PRELIMINARIES AND DATASETS
We begin this section with an overview of how our dataset was

collected. Then, we scope the three dimensions of the problem
space: user engagement, video quality metrics, and types of video
content.

2.1 Data Collection
We have implemented a highly scalable and available real-time

data collection and processing system. The system consists of two
parts: (a) a client-resident instrumentation library in the video player,
and (b) a data aggregation and processing service that runs in data
centers. Our client library gets loaded when Internet users watch
video on our affiliates’ sites. The library listens to events from the
video player and additionally polls for statistics from the player.
Because the instrumentation is on the client side we are able to
collect very high fidelity raw data, process raw client data to gener-
ate higher level information on the client side, and transmit fine-
grained reports back to our data center in real time with mini-
mal overhead. Our data aggregation back-end receives real time
information and archives all data redundantly in HDFS [4]. We
utilize a proprietary system for real time stream processing and
Hadoop [4] and Hive [5] for batch data processing. We collect
and process 0.5TB of data on average per day from various affili-
ates over a diverse spectrum of end users, video content, Internet
service providers, and content delivery networks.

Video player instrumentation: Figure 1 illustrates the life time
of a video session as observed at the client. The video player goes
through multiple states (connecting and joining, playing, paused,
buffering, stopped). Player events or user actions change the state
of a video player. For example, the player goes to paused state
if the user presses the pause button on the screen, or if the video
buffer becomes empty then the player goes in to buffering state. By
instrumenting the client, we can observe all player states and events
and also collect statistics about the play back.

We acknowledge that the players used by our affiliates differ in
their choice of adaptation and optimization algorithms; e.g., select-
ing the bitrate or server in response to changes in network or host
conditions. Note, however, that the focus of this paper is not to
design optimal adaptation algorithms or evaluate the effectiveness
of such algorithms. Rather, our goal is to understand the impact
of quality on engagement in the wild. In other words, we take the
player setup as a given and evaluate the impact of quality on user
engagement. To this end, we present results from different affil-
iate providers that are diverse in their player setup and choice of
optimizations and adaptation algorithms.



2.2 Engagement Metrics
Qualitatively, engagement is a reflection of user involvement and

interaction. We focus on engagement at two levels:
1. View level: A user watching a single video continuously is a

view. For example, this could be watching a movie trailer clip,
an episode of a TV serial, or a football game. The view-level
engagement metric of interest is simply play time, the duration
of the viewing session.

2. Viewer level: To capture the aggregate experience of a sin-
gle viewer (i.e., an end-user as identified by a unique system-
generated clientid), we study the viewer-level engagement met-
rics for each unique viewer. The two metrics we use are num-
ber of views per viewer, and the total play time across all videos
watched by the viewer.

We do acknowledge that there are other aspects of user engage-
ment beyond play time and number of views. Our choice of these
metrics is based on two reasons. First, these metrics can be mea-
sured directly and objectively. For example, things like how fo-
cused or distracted the user was while watching the video or whether
the user is likely to give a positive recommendation are subjective
and hard to quantify. Second, these metrics can be translated into
providers’ business objectives. Direct revenue objectives include
number of advertisement impressions watched and recurring sub-
scription to the service. The above engagement metrics fit well
with these objectives. For example, play time is directly associated
with the number (and thus revenue) of ad impressions. Addition-
ally, user satisfaction with content quality is reflected in the play
time. Similarly, viewer-level metrics can be projected to ad-driven
and recurring subscription models.

2.3 Quality Metrics
In our study, we use five industry-standard video quality met-

rics [3]. We summarize these below.

1. Join time (JoinTime): Measured in seconds, this metric rep-
resents the duration from the player initiates a connection to a
video server till the time sufficient player video buffer has filled
up and the player starts rendering video frames (i.e., moves to
playing state). In Figure 1, join time is the duration of the join-
ing state.

2. Buffering ratio (BufRatio): Represented as a percentage, this
metric is the fraction of the total session time (i.e., playing plus
buffering time) spent in buffering. This is an aggregate metric
that can capture periods of long video “freeze” observed by the
user. As illustrated in Figure 1, the player goes into a buffering
state when the video buffer becomes empty and moves out of
buffering (back to playing state) when the buffer is replenished.

3. Rate of buffering events (RateBuf ): BufRatio does not cap-
ture the frequency of induced interruptions observed by the
user. For example, a video session that experiences “video stut-
tering” where each interruption is small but the total number of
interruptions is high, might not have a high buffering ratio, but
may be just as annoying to a user. Thus, we use the rate of
buffering events #buffer events

session duration
.

4. Average bitrate (AvgBitrate): A single video session can
have multiple bitrates played if the video player can switch
between different bitrate streams. Average bitrate, measured
in kilobits per second, is the average of the bitrates played
weighted by the duration each bit rate is played.

5. Rendering quality (RendQual ): Rendering rate (frames per
second) is central to user’s visual perception. Rendering rate
may drop due to several reasons. For example, the video player

Dataset # videos # viewers (100K)
LiveA 107 4.5
LiveB 194 0.8
LvodA 115 8.2
LvodB 87 4.9
SvodA 43 4.3
SvodB 53 1.9
LiveH 3 29

Table 1: Summary of the datasets in our study. We select videos
with at least 1000 views over a one week period.

may drop frames to keep up with the stream if the CPU is over-
loaded. Rendering rate may drop due to network congestion if
the buffer becomes empty (causing rendering rate to become
zero). Note that most Internet video streaming uses TCP (e.g.,
RTMP, HTTP chunk streaming). Thus, network packet loss
does not directly cause a frame drop. Rather, it could deplete
the client buffer due to reduced throughput. To normalize ren-
dering performance across videos, which may have different
encoded frame rates, we define rendering quality as the ratio
of the rendered frames per second to the encoded frames per
second of the stream played.

Why we do not report rate of bitrate switching? In this paper,
we avoid reporting the impact of bitrate switching for two reasons.
First, in our measurements we found that the majority of sessions
have either 0, 1, or 2 bitrate switches. Now, such a small discrete
range of values introduces a spurious relationship between engage-
ment (play time) and the rate of switching.1 That is, the rate of
switches is ≈ 1

PlayTime
or ≈ 2

PlayTime
. This introduces an ar-

tificial dependency between the variables! Second, only two of
our datasets report the rates of bitrate switching; we want to avoid
reaching general conclusions from the specific bitrate adaptation
algorithms they use.

2.4 Dataset
We collect close to four terabytes of data each week. On aver-

age, one week of our data captures measurements over 300 mil-
lion views watched by about 100 million unique viewers across
all of our affiliate content providers. The analysis in this paper is
based the data collected from five of our affiliates during the fall
of 2010. These providers serve a large volume of video content
and consistently appear in the Top-500 sites in overall popularity
rankings [1]. Thus, these are representative of a significant volume
of Internet video traffic. We organize the data into three content
types. Within each content type we use a pair of datasets, each
corresponding to a different provider. We choose diverse providers
in order to eliminate any biases induced by the particular provider
or the player-specific optimizations and algorithms they use. For
live content, we use additional data from the largest live Internet
video streaming sports event of 2010: the FIFA World Cup. Ta-
ble 1 summarizes the total number of unique videos and views for
each dataset, described below. To ensure that our analysis is sta-
tistically meaningful, we only select videos that have at least 1000
views over the week-long period.

• Long VoD: Long VoD clips have video length of at least 35
minutes and at most 60 minutes. They are often full episodes
of TV shows. The two long VoD datasets are labeled as LvodA
and LvodB .
• Short VoD: We categorize video clips as short VoD if the video

length is at least 2 and at most 5 minutes. These are often

1This discretization effect does not occur with RateBuf .
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Figure 2: CDFs for four quality metrics for dataset LvodA.
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Figure 3: Qualitative relationships between four quality metrics and the play time for a video from LvodA.

trailers, short interviews, and short skits. The two short VoD
datasets are labeled as SvodA and SvodB .
• Live: Sports events and news feeds are typically delivered as

live video streams. There are two key differences between the
VoD-type content and live streams. First, the client buffers in
this case are sized such that the viewer does not lag more than
a few seconds behind the video source. Second, all viewers
are roughly synchronized in time. The two live datasets are
labeled LiveA and LiveB . As a special case study, dataset
LiveH corresponds to the three of the final World Cup games
with almost a million viewers per game on average (1.2 million
viewers for the last game from this dataset).

3. ANALYSIS TECHNIQUES
In this section, we begin with real-world measurements to mo-

tivate the types of questions we want to answer and explain our
analysis methodology toward addressing these questions.

3.1 Overview
To put our work in perspective, Figure 2 shows the cumula-

tive distribution functions (CDF) of four quality metrics for dataset
LvodA. As expected, most viewing sessions experience very good
quality, i.e., have very low BufRatio, low JoinTime , and rela-
tively high RendQual . However, the number of views that suffer
from quality issues is not trivial. In particular, 7% of views ex-
perience BufRatio larger than 10%, 5% of views have JoinTime
larger than 10s, and 37% of views have RendQual lower than 90%.
Finally, only a relatively small fraction of views receive the highest
bit rate. Given that a non-negligible number of views experience
quality issues, it is critical for content providers to understand if
improving the quality of these sessions could have potentially in-
creased the user engagement.

To understand how the quality could potentially impact the en-
gagement, we consider one video object each from LiveA and
LvodA. For this video, we bin the different sessions based on the
value of the quality metrics and calculate the average play time for
each bin. Figures 3 and 4 show how the four quality metrics inter-
act with the play time. Looking at the trends visually confirms that

quality matters. At the same time, these initial visualizations spark
several questions:

• How do we identify which metrics matter the most?
• Are these quality metrics independent or are they manifesta-

tions of the same underlying phenomenon? In other words,
is the observed relationship between the engagement and the
quality metric M really due to M or due to a hidden relation-
ship between M and another more critical metric M’?
• How do we quantify how important a quality metric is?
• Can we explain the seemingly counter-intuitive behaviors? For

example, RendQual is actually negatively correlated for the
LiveA video (Figure 4(d)), while the AvgBitrate shows an
unexpected non-monotone trend for LvodA (Figure 3(c)).

To address the first two questions, we use the well-known con-
cepts of correlation and information gain from the data mining lit-
erature that we describe next. To measure the quantitative impact,
we also use linear regression based models for the most important
metric(s). Finally, we use domain-specific insights and experiments
in controlled settings to explain the anomalous observations.

3.2 Correlation
The natural approach to quantify the interaction between a pair

of variables is the correlation. Here, we are interested in quanti-
fying the magnitude and direction of the relationship between the
engagement metric and the quality metrics.

To avoid making assumptions about the nature of the relation-
ships between the variables, we choose the Kendall correlation, in-
stead of the Pearson correlation. The Kendall correlation is a rank
correlation that does not make any assumption about the underly-
ing distributions, noise, or the nature of the relationships. (Pearson
correlation assumes that the noise in the data is Gaussian and that
the relationship is roughly linear.)

Given the raw data–a vector of (x,y) values where each x is the
measured quality metric and y the engagement metric (play time or
number of views)–we bin it based on the value of the quality metric.
We choose bin sizes that are appropriate for each quality metric of
interest: for JoinTime , we use 0.5 second intervals, for BufRatio
and RendQual we use 1% bins, for RateBuf we use 0.01/min
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Figure 4: Qualitative relationships between four quality metrics and the play time for a video from LiveA.

sized bins, and for AvgBitrate we use 20 kbps-sized bins. For
each bin, we compute the empirical mean of the engagement metric
across the sessions/viewers that fall in the bin.

We compute the Kendall correlation between the mean-per-bin
vector and the values of the bin indices. We use this “binned” cor-
relation metric for two reasons. First, we observed that the correla-
tion coefficient2 was biased by a large mass of users that had high
quality but very low play time, possibly because of low user inter-
est. Our primary goal, in this paper, is not to study user interest in
the specific content. Rather, we want to understand if and how the
quality impacts user engagement. To this end, we look at the aver-
age value for each bin and compute the correlation on the binned
data. The second reason is scale. Computing the rank correlation
is computationally expensive at the scale of analysis we target. The
binned correlation retains the qualitative properties that we want to
highlight with lower compute cost.

3.3 Information Gain
Correlations are useful for quantifying the interaction between

variables when the relationship is roughly monotone (either increas-
ing or decreasing). As Figure 3(c) shows, this may not always be
the case. Further, we want to move beyond the single metric analy-
sis. First, we want to understand if a pair (or a set) of quality metrics
are complementary or if they capture the same effects. As an exam-
ple, consider RendQual in Figure 3; RendQual could reflect ei-
ther a network issue or a client-side CPU issue. Because BufRatio
is also correlated with PlayTime , we suspect that RendQual is
mirroring the same effect. Identifying and uncovering these hidden
relationships, however, is tedious. Second, content providers may
want to know the top k metrics that they should to optimize to im-
prove user engagement. Correlation-based analysis cannot answer
such questions.

To address the above challenges, we augment the correlation
analysis using the notion of information gain [32], which is based
on the concept of entropy. The entropy of random variable Y is
H(Y ) =

∑
i P [Y = yi] log

1
P [Y =yi]

, where P [Y = yi] is the
probability that Y = yi. The conditional entropy of Y given an-
other random variable X is defined as H(Y |X) =

∑
j P [X =

Xj ]H(Y |X = xj) and the information gain is then H(Y ) −
H(Y |X), and the relative information gain is H(Y )−H(Y |X)

H(Y )
. Intu-

itively, this metric quantifies how our knowledge of X reduces the
uncertainty in Y .

Specifically, we want to quantify what a quality metric informs
us about the engagement; e.g., what does knowing the AvgBitrate
or BufRatio tell us about the play time distribution? As with the
correlation, we bin the data into discrete bins with the same bin
specifications. For the play time, we choose different bin sizes de-
pending on the duration of the content. From this binned data, we
compute H(Y |X1, . . . , XN ), where Y is the discretized play time

2This happens with Pearson and Spearman correlation metrics also.

and X1, . . . , XN are quality metrics. From this estimate, we cal-
culate the relative information gain.

Note that these two classes of analysis techniques are comple-
mentary. Correlation provides a first-order summary of monotone
relationships between engagement and quality. The information
gain can corroborate the correlation or augment it when the re-
lationship is not monotone. Further, it provides a more in-depth
understanding of the interaction between the quality metrics by ex-
tending to the multivariate case.

3.4 Regression
Rank correlation and information gain are largely qualitative anal-

yses. It is also useful to understand the quantitative impact of a
quality metric on user engagement. Specifically, we want to an-
swer questions of the form: What is the expected improvement in
the engagement if we optimize a specific quality metric by a given
amount?

For quantitative analysis, we rely on regression. However, as the
visualizations show, the relationships between the quality metrics
and the engagement are not always obvious and several of the met-
rics have intrinsic dependencies. Thus, directly applying regres-
sion techniques with complex non-linear parameters could lead to
models that lack a physically meaningful interpretation. While our
ultimate goal is to extract the relative quantitative impact of the
different metrics, doing so rigorously is outside the scope of this
paper.

As a simpler alternative, we use linear regression based curve
fitting to quantify the impact of specific ranges of the most critical
quality metric. However, we do so only after visually confirming
that the relationship is approximately linear over the range of inter-
est. This allows us to employ simple linear data fitting models that
are also easy to interpret.

4. VIEW LEVEL ENGAGEMENT
The engagement metric of interest at the view level is PlayTime .

We begin with long VoD content, then proceed to live and short
VoD content. In each case, we start with the basic correlation based
analysis and augment it with information gain based analysis. Note
that we compute the binned correlation and information gain coeffi-
cients on a per-video-object basis. Then we look at the distribution
of the coefficients across all video objects. Having identified the
most critical metric(s), we quantify the impact of improving this
quality using a linear regression model over a specific range of the
quality metric.

In summary, we find that BufRatio consistently has the highest
impact on user engagement among all quality metrics. For exam-
ple, for a 90 minutes live event, an increase of BufRatio by 1%
can decrease PlayTime by over 3 minutes. Interestingly, the rela-
tive impact of the other metrics depend on the content type. For
live video, RateBuf is slightly more negatively correlated with
PlayTime as compared to long VoD; because the player buffer



is small there is little time to recover when the bandwidth fluctu-
ates. Our analysis also shows that higher bitrates are more likely to
improve user engagement for live content. In contrast to live and
long VoD videos, for short videos RendQual exhibits correlation
similar to BufRatio. We also find that various metrics are not inde-
pendent. Finally, we explain some of the anomalous observations
from Section 3 in more depth.

4.1 Long VoD Content
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Figure 5: Distribution of the Kendall rank correlation coeffi-
cient between the quality metrics and play time for LvodA.

Figure 5 shows the distribution of the correlation coefficients for
the quality metrics for dataset LvodA. We include both absolute
value and signed values to measure the magnitude and the nature (
i.e., increasing or decreasing) of the correlation. We summarize the
median values for both datasets in Table 2. The results are consis-
tent across both datasets for the common quality metrics BufRatio,
JoinTime , and RendQual . Recall that the two datasets corre-
spond to two different content providers; these results confirm that
our observations are not unique to dataset LvodA.

The result shows that BufRatio has the strongest correlation
with PlayTime . Intuitively, we expect a higher BufRatio to de-
crease PlayTime (i.e., a negative correlation) and a higher RendQual
to increase PlayTime (i.e., a positive correlation). Figure 5(b) con-
firms this intuition regarding the nature of these relationships. We
notice that JoinTime has little impact on the play duration. Sur-
prisingly, AvgBitrate has very low correlation as well.

Next, we proceed to check if the univariate information gain
analysis corroborates or complements the correlation results in Fig-
ure 6. Interestingly, the relative order between RateBuf and BufRatio
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Figure 6: Distribution of the univariate gain between the qual-
ity metrics and play time, for dataset LvodA.

Quality metric Correlation coefficient
LvodB LvodA

JoinTime -0.17 -0.23
BufRatio -0.61 -0.67
RendQual 0.38 0.41

Table 2: Median values of the Kendall rank correlation coeffi-
cients for LvodA and LvodB . We do not show AvgBitrate and
RateBuf for LvodB because the player did not switch bitrates
or gather buffering event data. For the remaining metrics the
results are consistent with dataset LvodA.

is reversed compared to Figure 5. The reason (see Figure 7) is that
most of the probability mass is in the first bin (0-1% BufRatio)
and the entropy here is the same as the overall distribution. Conse-
quently, the information gain for BufRatio is low; RateBuf does
not suffer this problem (not shown) and has higher information
gain. We also see that AvgBitrate has high information gain even
though its correlation was very low. We revisit this observation in
Section 4.1.1.
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Figure 7: Visualizing why buffering ratio does not result in a
high information gain even though it is correlated.

So far we have looked at each quality metric in isolation. A
natural question is: Does combining two metrics provide more
insights? For example, BufRatio and RendQual may be corre-
lated with each other. In this case knowing that both correlate with
PlayTime does not add new information. To evaluate this, we
show the distribution of the bivariate relative information gain in
Figure 8. For clarity, rather than showing all pairwise combina-
tions, for each metric we include the bivariate combination with
the highest relative information gain. For all metrics, the combina-
tion with the AvgBitrate provides the highest bivariate information



gain. Also, even though BufRatio, RateBuf , and RendQual had
strong correlations in Figure 5(a), their combinations do not add
much new information because they are inherently correlated.
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Figure 8: Distribution of the best bivariate relative information
gains for LvodA

4.1.1 Strange behavior in AvgBitrate

Between Figures 5 and 6, we notice that AvgBitrate is the met-
ric with the weakest correlation but the second highest information
gain. This observation is related to Figure 3 from Section 3. The
relationship between PlayTime and AvgBitrate is not monotone;
it shows a peak between the 800-1000 Kbps, is low on either side
of this region, and increases slightly at the highest rate. Because
of this non-monotone relationship, the correlation is low. However,
knowing the value of AvgBitrate allows us predict the PlayTime;
there is a non-trivial information gain.

Now this explains why the information gain is high and the cor-
relation is low, but does not tell us why the PlayTime is low for
the 1000-1600 Kbps band. The reason is that the values of bitrates
in this range correspond to clients having to switch bitrates be-
cause of buffering induced by poor network conditions. Thus, the
PlayTime is low here mostly as a consequence of buffering, which
we already observed to be the most critical factor. This also points
out the need for robust bitrate selection and adaptation algorithms.

4.2 Live Content
Figure 9 shows the distribution of the correlation coefficients for

dataset LiveA. The median values for the two datasets are sum-
marized in Table 3. We notice one key difference with respect to
the LvodA results: AvgBitrate is more strongly correlated for live
content. Similar to dataset LvodA, BufRatio is strongly corre-
lated, while JoinTime is weakly correlated.

Quality metric Correlation coefficient
LiveB LiveA

JoinTime -0.49 -0.36
BufRatio -0.81 -0.67
RendQual -0.16 -0.09

Table 3: Median values of the Kendall rank correlation coeffi-
cients for LiveA and LiveB . We do not show AvgBitrate and
RateBuf because they do not apply to LiveB . For the remain-
ing metrics the results are consistent with dataset LiveA.

For both long VoD and live content, BufRatio is a critical met-
ric. Interestingly, for live, we see that RateBuf has a much stronger
negative correlation with PlayTime . This suggests that the Live
users are more sensitive to each buffering event compared to the
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Figure 9: Distribution of the Kendall rank correlation coeffi-
cient between the quality metrics and play time for LiveA.

Long VoD audience. Investigating this further, we find that the
average buffering duration is much smaller for long VoD (3 sec-
onds), compared to live (7s), i.e., each buffering event in the case
of live content is more disruptive. Because the buffer sizes in long
VoD are larger, the system fares better in face of fluctuations in
link bandwidth. Furthermore, the system can be more proactive
in predicting buffering and hence preventing it by switching to an-
other server, or switching bitrates. Consequently, there are fewer
and shorter buffering events for long VoD. For live, on the other
hand, the buffer is shorter, to ensure that the stream is current. As
a result, the system is less able to proactively predict throughput
fluctuations, which increases both the number and the duration of
buffering events. Figure 10 further confirms that AvgBitrate is a
critical metric and that JoinTime is less critical for Live content.
The bivariate results (not shown for brevity) mimic the same effects
from Figure 8, where the combination with AvgBitrate provides
the best information gains.

4.2.1 Why is RendQual negatively correlated?
We noticed an anomalous behavior for PlayTime vs. RendQual

for live content in Figure 4(d). The previous results from both
LiveA and LiveB datasets further confirm that this is not an anomaly
specific to the video shown earlier, but a more pervasive phenomenon
in live content.

To illustrate why this negative correlation arises, we focus on the
relationship between the RendQual and PlayTime for a particular
live video in Figure 11. We see a surprisingly large fraction of
viewers with low rendering quality and high play time. Further, the
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Figure 10: Distribution of the univariate gain between the qual-
ity metrics and play time for LiveA.

BufRatio values for these users is also very low. In other words,
these users have no network issues, but see a drop in RendQual ,
but continue to watch the video for a long duration despite this poor
frame rate.
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Figure 11: Scatter plot between the play time and rendering
quality. Notice that there are a lot of points where the rendering
quality is very low but the play time is very high.

We speculate that this counter-intuitive negative correlation be-
tween RendQual and PlayTime arises out of a combination of
two effects. The first effect has to do with user behavior. Unlike
long VoD viewers (e.g., TV episodes), live video viewers are also
likely to run the video player in background (e.g., listening to the
sports commentary). In such situations the browser is either mini-
mized or the player is in a hidden browser tab. The second effect is
an optimization by the player to reduce the CPU consumption when
the video is being played in the background. In these cases, the
player decreases the frame rendering rate to reduce CPU use. We
replicated the above scenarios–minimizing the browser or playing
a video in a background window–in a controlled setup and found
that the player indeed drops the RendQual to 20% (e.g., rendering
6-7 out of 30 frames per second). Curiously, the PlayTime peak in
Figure 4(d) also occurs at a 20% RendQual . These controlled ex-
periments confirm our hypothesis that the anomalous relationship
is in fact due to these player optimizations for users playing the
video in the background.

4.2.2 Case study with high impact events
A particular concern for live content providers is whether the

observations from typical events can be applied to high impact
events [22]. To address this concern, we consider the LiveH dataset.

Because the data collected during the corresponding period of
time does not provide the RendQual and RateBuf , we only fo-
cus on BufRatio and AvgBitrate , which we observed as the most
critical metrics for live content in the previous discussion. Fig-
ures 12(a) and 12(b) show that the trends and correlation coeffi-
cients for LiveH1 match closely with the results for datasets LiveA
and LiveB . We also confirmed that the values for LiveH2 and
LiveH3 are almost identical to LiveH1 ; we do not show these for
brevity. These results, though preliminary, suggest that our obser-
vations apply to such singular events as well.
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Figure 12: Impact of two quality metrics for LiveH1 , one of the
three final games from the 2010 FIFA World Cup. A linear data
fit is shown over the 0-10% subrange of BufRatio. The results
for LiveH2 and LiveH3 are almost identical and not shown for
brevity.

With respect to the average bitrate, the play time peaks around
a bitrate of 1.2 Mbps. Beyond that value, however, the engage-
ment decreases. The reason for this behavior is similar to the previ-
ous observation in Section 4.1.1. Most end-users (e.g., DSL, cable
broadband users) cannot sustain such a high bandwidth stream. As
a consequence, the player encounters buffering and also switches to
a lower bitrate midstream. As we already saw, buffering adversely
impacts the user experience.

Quality metric Correlation coefficient
SvodB SvodA

JoinTime 0.06 0.12
BufRatio -0.53 -0.38
RendQual 0.34 0.33

Table 4: Median values of the Kendall rank correlation coeffi-
cients for SvodA and SvodB . We do not show AvgBitrate and
RateBuf because the player did not switch bitrates and did not
gather buffering event data. The results are consistent with
SvodA.

4.3 Short VoD Content
Finally, we consider the short VoD category. For both datasets

SvodA and SvodB the player uses a discrete set of 2-3 bitrates
(without switching) and was not instrumented to gather buffering
event data. Thus, we do not show the AvgBitrate (it is meaningless
to compute the correlation on 2 points) and RateBuf . Figure 13
shows the distribution of the correlation coefficients for SvodA and
Table 4 summarizes the median values for both datasets.

We notice similarities between long and short VoD: BufRatio
and RendQual are the most critical metrics that impact PlayTime .
Further, BufRatio and RendQual are themselves strongly corre-
lated (not shown). As before, JoinTime is weakly correlated. For
brevity, we do not show the univariate/bivariate information gain
results for short VoD because they mirror the results from the cor-
relation analysis.
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Figure 13: Distribution of the Kendall rank correlation coeffi-
cient between the quality metrics and play time for SvodA. We
do not show AvgBitrate and RateBuf because the player did
not switch bitrates and did not gather buffering event data.

4.4 Quantitative Impact
As we discussed earlier and as our measurements so far high-

light, the interaction between the PlayTime and the quality metrics
can be quite complex. Thus, we avoid blindly applying quantitative
regression models on our dataset. Instead, we only apply regression
when we can visually confirm that this has a meaningful real-world
interpretation and when the relationship is roughly linear. Thus, we
restrict this analysis to the most critical metric, BufRatio. Further,
we only apply regression to the 0-10% range of BufRatio, where
we confirmed a simple linear relationship.

We notice that the distribution of the linear-fit slopes are very
similar within the same content type in Figure 14. The median
magnitudes of the slopes are one for long VoD, two for live, and
close to zero for short VoD. That is, BufRatio has the strongest
quantitative impact on live, then on long VoD, then on short VoD.

Figure 12(a) also includes linear data fits on the 0-10% subrange
for BufRatio for the LiveH data. These show that, within the se-
lected subrange, a 1% increase in BufRatio can reduce the average
play time by more than three minutes (assuming a game duration
of 90 minutes). Conversely, providers can increase the average user
engagement by more than three minutes by investing resources to
reduce BufRatio by 1%.

4.5 Summary of view-level analysis
The key observations from the view-level analysis are:
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Figure 14: CDF of the linear-fit slopes between PlayTime and
the 0-10% subrange of BufRatio.

• For long and short VoD content, BufRatio is the most impor-
tant quality metric.
• For live content, AvgBitrate in addition to BufRatio is a key

quality metric. Additionally, the requirement of small buffer
for live videos exacerbates buffering events.
• A 1% increase in BufRatio can decrease 1 to 3 minutes of

viewing time.
• JoinTime has significantly lower impact on view-level en-

gagement than the other metrics.
• Finally, our analysis for the negative correlation of RendQual

in live video highlights the need to put the statistics in the con-
text of actual user and system behavior.

5. VIEWER LEVEL ENGAGEMENT
Content providers also want to understand if good video quality

improves customer retention or if it encourages users to try more
videos. To address these questions we analyze the user engagement
at the viewer level in this section. For brevity, we highlight the
key results and do not duplicate the full analysis as in the previous
section.

For this analysis, we look at the number of views per viewer and
the total play time aggregated over all videos watched by the viewer
in a one week interval. Recall that at the view level we filtered the
data to only look at videos with at least 1000 views. At the viewer
level, however, we look at the aggregate number of views and play
time per viewer across all objects irrespective of that video’s pop-
ularity. For each viewer we correlate the average of each quality
metric with the two engagement metrics.

Figure 15 visually confirms that the quality metrics also impact
the number of views. One curious observation is that the number
of views increases in the range 1–15 seconds before starting to de-
crease. We also see a similar effect for BufRatio, where the first
few bins have fewer total views. This effect does not, however, oc-
cur for the total play time. We speculate that this is an effect of
user interest. Many users have very good quality but little interest
in the content; they “sample” the content and leave without return-
ing. Users who are actually interested in the content are more tol-
erant of longer join times (and buffering). However, the tolerance
drops beyond a certain point (around 15 seconds for JoinTime).
Figure 16 summarizes the values of the correlation coefficients for
the six datasets. The values are qualitatively consistent across the
different datasets and also similar to the trends we observed at the
view level. One significant difference is that while JoinTime is
uninteresting at the view level, it has a more pronounced impact
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Figure 15: Visualizing the impact of JoinTime and BufRatio on the number of views and play time for LvodA
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Figure 16: Viewer-level correlations w.r.t the number of views
and play time. AvgBitrate and RateBuf values do not apply
for LvodB ,LiveB ,SvodA, and SvodB .

on the total play time at the viewer level. This has interesting sys-
tem design implications. For example, consider a scenario where a
provider decides to increase the buffer size to alleviate the buffering
issues. However, increasing buffer size can increase join time. The
above result shows that doing so without evaluating the impact at
the viewer level may be counterproductive, as increasing the buffer
size may reduce the likelihood of a viewer visiting the site again.

As with the view-level analysis, we complement the qualitative
correlations with quantitative results. Figure 17 shows linear data
fitting for the total play time as a function of the buffering ratio
for LvodA and LiveA. This shows that reducing BufRatio by 1%
translates to an effective increase the total play time by 1.2 minutes
for long VoD content and by 2.4 minutes for live content on average
per user.
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Figure 17: Linear data fitting between the buffering ratio and
the total play time, for datasets LvodA and LiveA.

Summary of viewer-level analysis:

• Both the number of views and the total play time are impacted
by the quality metrics.
• The quality metrics that impact the view level engagement con-

sistently impact the viewer level engagement. We confirm that
these results are consistent across different datasets.
• The correlation between the engagement metrics and the qual-

ity metrics becomes visually and quantitatively even more strik-
ing at the viewer level.
• Additionally, the join time, which seemed less relevant at the

view level, has non-trivial impact at the viewer level.

6. DISCUSSION
The findings presented in this paper are the result of an iterative

process that included more false starts and misleading interpreta-
tions than we care to admit. We present two of the main lessons we
learned in this process. Then, we discuss an important direction of
future research for Internet video measurement.

6.1 The need for complementary analysis
All of you are right. The reason every one of you is
telling it differently is because each one of you touched
a different part of the elephant. So, actually the ele-
phant has all the features you mentioned. [10]

For the Long VoD case, we observed that the correlation coeffi-
cient for the average bitrate was weak, but the univariate informa-
tion gain was high. The process of trying to explain this discrep-
ancy led us to visualize the behaviors similar to Figure 3(c). In this
case, the correlation was weak because the relationship was non-
monotone. The information gain, however, was high because the
intermediate bins near the natural modes had significantly lower
engagement and consequently low entropy in the play time distri-
bution.

This observation guided us to a different phenomenon, sessions
that were forced to switch rates because of poor network quality.



If we had restricted ourselves to a purely correlation-based anal-
ysis, we may have missed this effect and incorrectly inferred that
AvgBitrate was not important. This highlights the value of using
multiple views from complementary analysis techniques in dealing
with large datasets.

6.2 The importance of context

Lies, damned lies, and statistics

Our second lesson is that while statistical data mining techniques
are excellent tools, they need to be used with caution and with a ju-
dicious appreciation of the context in which they are applied. That
is, we need to take the results of these analysis together with the
context of the human and operating factors. For example, naively
acting on the observation that the rendering quality is negatively
correlated for live content can lead to an incorrect understanding
of its impact on engagement. As we saw, this negative correla-
tion is the outcome of both user behavior and player optimizations.
Users who intend to watch a live event for a long time may run
these in background windows; the player cognizant of this back-
ground window effect tries to reduce CPU consumption by reduc-
ing the rendering quality. This highlights the importance of backing
the statistical analysis with a more in-depth domain knowledge and
controlled experiments in replicating the observations.

6.3 Toward a video quality index
Our ultimate vision is to use measurement-driven insights to de-

velop an empirical Internet video quality index, analogous to the
notion of mean opinion scores and subjective quality indices [8,9].
Given that there are multiple quality metrics, it is difficult for video
providers and consumers to objectively compare different video
services. At the same time, the lack of a concrete metric makes
it difficult for delivery infrastructures and researchers to focus their
efforts. If we can derive such a quality index, content providers and
consumers can use it to choose delivery services while researchers
and delivery providers can use it to guide their efforts for develop-
ing better algorithms for video delivery and adaptation.

However, as our measurements and lessons show the interactions
between the quality metrics and engagement can be complex, in-
terdependent, and counterintuitive even for a somewhat simplified
view with just three content types and five quality metrics. Further-
more, there are other dimensions that we have not explored rigor-
ously in this paper. For example, we considered three broad genres
of content: Live, Long VoD, and Short VoD. It would also be inter-
esting to analyze the impact of quality for other aspects of content
segmentation. For example, is popular content more/less likely to
be impacted by quality or is the impact likely to differ depending
on the types of events/videos (e.g., news vs. sports vs. sitcoms)?
Our preliminary results in these directions show that the magni-
tude of quality impact is marginally higher for popular videos but
largely independent of content genres. Similarly, there are other
fine-grained quality measures which we have not explored. For ex-
ample, anecdotal evidence suggests that temporal effects can play
a significant role; buffering during the early stages or a sequence of
buffering events are more likely to lead to user frustration. Working
toward such a unified quality index is an active direction of future
research.

7. RELATED WORK
Content popularity: There is an extensive literature on model-
ing content popularity and its subsequent implications for caching
(e.g., [15, 18, 22, 24, 26]). Most of these focus on the heavy-tailed

nature of the access popularity distribution and its system-level im-
pact. Our work on analyzing the interplay between quality and
engagement is orthogonal to this extensive literature. One interest-
ing question (that we address briefly) is to analyze if the impact of
quality is different across different popularity segments. For exam-
ple, providers may want to know if niche video content is more or
less likely to be impacted by poor quality.

User behavior: Yu et al. present a measurement study of a VoD
system deployed by China Telecom [24] focusing on modeling user
arrival patterns and session lengths. They also observe that many
users actually have small session times, possibly because many
users just “sample” a video and leave if the video is of no inter-
est. Removing the potential bias from this phenomenon was one
of the motivations for our binned correlation analysis in Section 3.
Other studies of user behaviors also have significant implications
for VoD system design. For example, there are measurement stud-
ies of channel switching dynamics in IPTV systems (e.g., [19]),
and understanding seek-pause-forward behaviors in streaming sys-
tems (e.g., [16]). As we mentioned in our browser minimization
example for live video, understanding the impact of such behavior
is critical for putting the measurement-driven insights in context.

P2P VoD: In parallel to the reduction of content delivery costs,
there have also been improvements in building robust P2P VoD
systems that can provide performance comparable to a server-side
infrastructure at a fraction of the deployment cost (e.g., [14, 25,
26, 34]). Because these systems operate in more dynamic environ-
ments (e.g., peer churn, low upload bandwidth), it is critical for
them to optimize judiciously and improve the quality metrics that
really matter. While our measurements are based on a server-hosted
infrastructure for video delivery, the insights in understanding the
most critical quality metrics can also be used to guide the design of
P2P VoD systems.

Measurements of deployed video delivery systems: The net-
working community has benefited immensely from measurement
studies of deployed VoD and streaming systems using both “black-
box” inference (e.g., [12, 25, 33, 35]) and “white-box” measure-
ments (e.g., [22,27,30,37]). Our work follows in this rich tradition
of providing insights from real deployments to improve our under-
standing of Internet video delivery. At the same time, we believe
that we have taken a significant step forward in qualitatively and
quantitatively measuring the impact of the video quality on user
engagement.

User perceived quality: There is prior work in the multime-
dia literature on metrics that can capture user perceived quality
(e.g., [23, 38]) and how specific metrics affect the user experience
(e.g., [20]). Our work differs on several key fronts. The first is sim-
ply an issue of timing and scale. Internet video has only recently at-
tained widespread adoption and revisiting user engagement is ever
more relevant now than before. Prior work depend on small-scale
experiments with a few users, while our study is based on real-
world measurements with millions of viewers. Second, these fall
short of linking the perceived quality to the actual user engagement.
Finally, a key difference is with respect to methodology; user stud-
ies and opinions are no doubt useful, but difficult to objectively
evaluate. Our work is an empirical study of engagement in the
wild.

Engagement in other media: The goal of understanding user en-
gagement appears in other content delivery mechanisms as well.
The impact of page load times on user satisfaction is well known
(e.g., [13, 21, 28]). Several commercial providers measure the im-
pact of page load times on user satisfaction (e.g., [6]). Chen et al.
study the impact of quality metrics such as bitrate, jitter, and delay



on call duration in Skype [11] and propose a composite metric to
quantify the combination of these factors. Given that Internet video
has become mainstream only recently, our study provides similar
insights for the impact of video quality on engagement.
Diagnosis: In this paper, we focused on measuring the quality
metrics and how they impact user engagement. A natural follow up
question is whether there are mechanisms to pro-actively diagnose
quality issues to minimize the impact on users (e.g., [17, 31]). We
leave this as a direction for future work.

8. CONCLUSIONS
As the costs of video content creation and dissemination con-

tinue to decrease, there is an abundance of video content on the In-
ternet. Given this setting, it becomes critical for content providers
to understand if and how video quality is likely to impact user en-
gagement. Our study is a first step towards addressing this goal.

We present a systematic analysis of the interplay between three
dimensions of the problem space: quality metrics, content types,
and quantitative measures of engagement. We study industry-standard
quality metrics for Live, Long VoD, and Short VoD content to ana-
lyze engagement at per view and viewer-level.

Our key takeaways are that at the view-level, buffering ratio is
the most important metric across all content genres and the bitrate
is especially critical for Live (sports) content. Additionally, we find
that the join time becomes critical in terms of the viewer-level en-
gagement and thus likely to impact customer retention.

These results have key implications both from commercial and
technical perspectives. In a commercial context, they inform the
policy decisions for content providers to invest their resources to
maximize user engagement. At the same time, from a technical
perspective, they also guide the design of the technical solutions
(e.g., tradeoffs in the choice of a suitable buffer size) and motivate
the need for new solutions (e.g., better pro-active bitrate selection,
rate switching, and buffering techniques).

In the course of our analysis, we also learned two cautionary
lessons that more broadly apply to measurement studies of this
nature: the importance of using multiple complementary analysis
techniques when dealing with large datasets and the importance of
backing these statistical techniques with system-level and user con-
text. We believe our study is a significant step toward an ultimate
vision of developing a unified quality index for Internet video.
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