
Confused, Timid, and Unstable:
Picking a Video Streaming Rate is Hard

Te-Yuan Huang Nikhil Handigol Brandon Heller Nick McKeown Ramesh Johari
Stanford University

{huangty,nikhilh,brandonh,nickm,ramesh.johari}@stanford.edu

ABSTRACT
Today’s commercial video streaming services use dynamic
rate selection to provide a high-quality user experience. Most
services host content on standard HTTP servers in CDNs, so
rate selection must occur at the client. We measure three
popular video streaming services – Hulu, Netflix, and Vudu
– and find that accurate client-side bandwidth estimation above
the HTTP layer is hard. As a result, rate selection based on
inaccurate estimates can trigger a feedback loop, leading to
undesirably variable and low-quality video. We call this phe-
nomenon the downward spiral effect, and we measure it on
all three services, present insights into its root causes, and
validate initial solutions to prevent it.

1. INTRODUCTION
Video streaming is a huge and growing fraction of In-

ternet traffic, with Netflix and Youtube alone account-
ing for over 50% of the peak download traffic in the
US [17]. Several big video streaming services run over
HTTP and TCP (e.g. Hulu, Netflix, Vudu, YouTube)
and stream data to the client from one or more third-
party commercial CDNs (e.g. Akamai, Level3 or Lime-
light). Streaming over HTTP has several benefits: It
is standardized across CDNs (allowing a portable video
streaming service), it is well-established (which means
the CDNs have already made sure service can reach
through NATs to end-hosts), and cheap (the service is
simple, commoditized and the CDNs compete on price).
These benefits have made possible the huge growth in
affordable, high-quality movie and TV streaming, for
our viewing delight.

When video is streamed over HTTP, the video service
provider relies on TCP to find the available bandwidth
and choose a video rate accordingly. For example, if a
client estimates that there is 1.5Mb/s available in the
network, it might request the server to stream video
compressed to 1.3Mb/s (or the highest video rate avail-
able at or below 1.5Mb/s). The video streaming service
provider must walk a tightrope: If they pick a video
rate that is too high, the viewer will experience annoy-
ing rebuffering events; if they pick a streaming rate that
is too low, the viewer will experience poor video quality.

0 100 200 300 400 500 600 700 800 900
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1400

1750

Video Playback Rate

Competing Flow's
Throughput

Figure 1: (Service A) A video starts stream-
ing at 1.75Mb/s over a 5Mb/s network. After
395 seconds, a second flow starts (from the same
server). The video could stream at 1.75Mb/s
(given its fair share of 2.5Mb/s), but instead
drops down to 235kb/s.

In both cases, the experience degrades, and user may
take their viewing elsewhere [9]. It is therefore impor-
tant for a video streaming service to select the highest
safe video rate.

This paper describes a measurement study of three
popular HTTP-based video streaming services (Hulu,
Netflix, and Vudu) to see how well they pick the video
rate. According to the latest Consumer Reports [20],
Netflix is the most popular video streaming provider,
while Vudu is one of the most satisfying streaming ser-
vices. Hulu is also popular for its TV content. Our
results show that when the home network is quiet, all
three do a good job and pick a rate close to the max-
imum possible given the available network bandwidth.
But all three services do a poor job when there is com-
peting traffic (e.g. from another video stream, a backup,
or a large download). Figure 1 shows a typical example
in which the video is streamed at only 1/7th of its fair
share of the available network bandwidth.

1

We attribute the problem to the difficulty of select-
ing the best video rate from “above” HTTP. We will
present evidence that all three video streaming services
underestimate available bandwidth because of interac-
tions between the video playback buffer, HTTP and
TCP’s congestion control algorithm. In some cases the
cause is on-off scheduling when the playback buffer fills,
causing TCP to re-enter slow-start (Section 5.1). In all
cases, it appears that when the bit rate is reduced, the
client has less accurate data upon which to estimate the
available bandwidth. When bandwidth estimates are
scant or noisy, it is perhaps safer to stream at a lower
rate and avoid wreaking havoc in home networks. On
the other hand, given how well TCP shares bandwidth
among long-lived flows, the video service provider could
safely send at a higher rate and rely on TCP to be a
good neighbor.

We explore the bandwidth estimation problem in each
of the three video services. Throughout the paper we
refer to the services by the names A, B and C. All of
our results can be reproduced by observing the services
externally, so the data is not confidential. However, we
refer to the services as A, B, and C to stress that the
paper is not a comparison of the services; rather, we
wish to show that any HTTP-based streaming service
must wrestle with the problem of picking a streaming
rate based on observations above HTTP.

Our measurements lead us to recommendations, which
we demonstrate by trace-driven emulations of the video
services: ensure that TCP achieves its fair share by us-
ing sufficiently large HTTP requests, take advantage of
a large playback buffer (a client typically holds several
minutes of video), do not focus on keeping the playback
buffer full (this will naturally fall foul of TCP dynam-
ics), be less conservative in trying higher video rates,
and rely on TCP to prevent the video stream from tak-
ing more than its fair share.

In what comes next we describe how the three video
services work, then demonstrate in Section 4 how badly
they perform in the presence of a competing flow. In
Section 5 we explain why each service picks a much
lower video rate than necessary and explain how this
condition depends on the interaction between HTTP,
TCP and conservatism. We describe ways to pick rates
more accurately in Section 6 and validate rate selection
changes. In Section 7 we describe related work, then
conclude in Section 8.

2. HOW VIDEO STREAMING WORKS
To understand why the video streaming services all

suffer from the same problem, we first need to under-
stand how they work. The information will later be
useful for deploying a local proxy as well as for enabling
our own emulator to download video segments from the

!"#$%&'#(&#'$

!"#$%&"'

(#)$%*"#'

+,-'.'

+,-'/'

+,-'0'

1%*")'(234"#'

.5'6"78"9:'1%*")'

/5';9"'+,-'0'<%:=':)>"?'@'

05'A":&='1%*")'<%:='@'

B5'@)>"?'$"#%C"*5''

,"2%$"#'1%*")'

Figure 2: Common architecture of video stream-
ing services over HTTP.

CDNs directly.1 We start out with the similarities be-
fore describing unique aspects to each. All three video
streaming services share the following features:

1. Video content is streamed over HTTP from third
party CDN providers.

2. The video service runs on several different clients
(e.g. web browser plugin, game console, TV).

3. Watching a video has two phases: authentication
and streaming (see Figure 2).

4. Authentication (over HTTPS) : When a client re-
quests a video, the service provider authenticates
the user account and directs the client to a CDN
holding the video. The video service provider tells
the client what video streaming rates are available
and issues a token for each rate.

5. Streaming: The client picks a video rate and re-
quests a video by presenting a token (as a creden-
tial) to the designated CDN.

6. Picking a video rate: The client starts up with
a pre-configured starting video rate. The client
monitors the arriving traffic to pick the video rate.
Because the service runs over “vanilla HTTP”, the
client makes the decision and the CDN server is
not involved in picking the video rate.2

Although the three services are very similar, they dif-
fer from each other in some important ways.

Service A: Our measurements for Service A are based
on a web-browser client. The Service A client sends
HTTP “byte range” requests to the CDN, requesting
four second chunks of video over a persistent TCP con-
nection. Unless it switches to a new rate, the client
reads the whole video from the same server. The client

1Even though we are able to download the video segments,
only the legitimate player would be able to play the video.
2Services that control both the server and the client (e.g.
YouTube) can involve the server and the client when picking
a rate.

2

Provider Platform Download Strategy
Service A Web Browser Segment-by-segment download (Persistent connection)
Service B Sony PlayStation 3 Segment-by-segment download (New connection)
Service C Sony PlayStation 3 Progressive download (Open-ended download)

Table 1: Summary of the download strategies of the three services.

Provider HTTP Request Format Available Playback Rates (kb/s)
Service A GET /filename/byte range?token 235, 375, 560, 750, 1050, 1400, 1750(SD), 2350, 3600(HD)

Service B GET /filename/clip num?br=bitrate&token 650, 1000, 1500, 2000, 2500, 3200

Service C GET /filename?token SD: 1000, 1500, 2000
HD: 3000, 4500, 6750, 9000

Table 2: Summary of the available playback rates for each of the three services.

always starts out requesting the lowest video rate, con-
tinuously estimates the available bandwidth, and only
picks a higher rate if it believes it can sustain it.

Service B: Service B’s desktop client runs over a
proprietary protocol, thus our measurements for Service
B are based on its client on the Sony PlayStation 3
(PS3), which operates over HTTP. The Service B’s PS3
client also requests one segment at a time, but each
segment is stored as a seperate file and each request for
a new segment is sent over a new TCP connection. Each
request is for about eight seconds of video. The video
rate is specified in the HTTP GET request; it starts at
one of the two lowest playback rates, and steps up as it
detects more bandwidth is available.

Service C: Our measurements for Service C are also
based on its PS3 client, which has access to a broader
range of video qualities compare to its desktop client.
The Service C’s PS3 client sends an open-ended HTTP re-
quest; i.e., it requests the whole file in one go. To
change video rate, the client must reset the TCP con-
nection and request a new filename. While Service A
controls the occupancy of the playback buffer by varying
the rate at which they request new segments, Service B
and Service C rely on the TCP receive window: when
the playback buffer is full, TCP reduces the receive win-
dow to slow down the server.

Table 1 and Table 2 summarize the three services.

3. MEASUREMENT SETUP
In this section we describe our experimental setup

and measurement approach. In particular, we describe
how to control bottleneck bandwidth (including the use
of a local proxy to eliminate network path variation);
how to measure the playback rate; and the competing
traffic we employ.

3.1 Bandwidth Control and Proxy
Our experiments measure the behavior of video streams

from Services A, B and C when they compete with
other TCP flows. To create a controlled environment,
where we can set the bottleneck link rate, we make all

!"#$%&'#(&#'$

)#'*+,-$

./)0

./)1

./)2

+(345$

Figure 3: Our experimental setup includes a
NetFPGA bandwidth limiter and a proxy.

the video streams pass through a rate limiter between
the CDN and the client. Figure 3 shows how we place
a NetFPGA machine [14] in-line to limit bandwidth.
In most cases we limit the bandwidth to 5Mb/s, and
the buffer size to 120kbit, sufficient to sustain 100%
throughput with a 4–20 ms RTT. We use these configu-
ration parameters throughout the paper, unless stated
otherwise. The competing flow always passes through
the NetFPGA too, and it shares the bottleneck link
with the video stream.

In instances where we want a tightly controlled ex-
periment we download videos from a local proxy instead
of the CDN, so as to eliminate any variance caused by
the location of the CDN server, or in the Internet paths.

3.2 Measuring the Video Playback Rate
To understand the system dynamics, we need to know

what video playback rate the client picks. Because this
information is not externally visible, we have to deduce
the mapping between the filenames requested by the
client, and the playback rate of the video inside the file.
We developed a different technique for each service.

Service A: To figure out the mapping between file-
names and the corresponding video rates, we first ex-
tract tokens from our traces and get the size of each
file (via HTTP). We divide the file size by the duration
of the video to get the rough video playback rate. The
Service A client provides a debug window for users to
monitor the current video playback rate, and we use
this to validate our mapping.

3

0 100 200 300 400 500 600 700 800 900
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1400

1750

Video Playback Rate

Competing Flow's
Throughput

Video Flow's
Throughput

(a) Service A. Network bottleneck set to 5Mb/s.
RTT from client to server is 20ms.

0 100 200 300 400 500 600 700 800
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

650

1000

1500

2000

2500

3200

Video Playback Rate

Competing Flow's Throughput

Video Flow's
Throughput

Zero Window
Advertisement

(b) Service B. Network bottleneck set to 5Mb/s.
RTT from client to server is 20ms.

0 100 200 300 400 500 600
Time (s)

0

5000

10000

15000

20000

kb
/s

3000
4500

6750

9000

Video TCP
Throughput

Competing Flow's
Throughput

Video Playback Rate

(c) Service C HD. Network bottleneck set to
22Mb/s.

0 100 200 300 400 500
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

1000

1500

2000

Video TCP
Throughput

Competing Flow's Throughput

Video Playback Rate

(d) Service C SD. Network bottleneck set to
5Mb/s.

Figure 4: The downward spiral effect is visible in all three services.

Service B: Unfortunately, Service B doesn’t provide
a “debug” facility to validate the video playback rate.
However, one of the parameters in the client’s HTTP re-
quest seems to indicate the requesting video playback
rate. But we needed to verify this. While the segment
size requested with parameter 3200 kb/s is about 3.1
times larger than the segments with 1000 kb/s, the same
relationship does not hold between other video rates.
Instead, we use an indirect method of verification. We
set the link bandwidth to a value slightly higher than
each of the parameter values and see if the client con-
verges to requesting with that parameter value. The
value of the parameter indeed closely follows the band-
width setting. For example, when we set the available
bandwidth to 3,350 kb/s, the HTTP parameter con-
verges to 3200. Similarly, when we set the bandwidth
to 1,650 kb/s, the HTTP parameter converges to 1500.

Service C: Like Service A, Service C also has a map-
ping between the requested filename and the video play-
back rate. Unfortunately, Service C does not directly

tell us the current rate. However, because the TCP
flow is limited by the receive window when the playback
buffer is full, the average TCP throughput matches the
video playback rate. We confirmed that the converged
receiver-limited TCP throughput reflects the rate infor-
mation embedded in the requested filename.

The video rates available from each of the three ser-
vices are summarized in Table 2; some playback rates
may not be available for some videos.

3.3 The Competing Flows
The competing flow is a TCP flow doing a long file

download. However, to eliminate any unfairness due
to variations in network path properties, we make sure
that the competing flow is served by the same CDN,
and usually by the same server. For Service A and
Service C, the competing flow is generated by an open-
ended byte range request to the file with the highest
rate. Further, we use the DNS cache to make sure that
the competing flow comes from same termination point

4

(the server or the load-balancer) as the video flow. For
Service B, since the files are stored as small segments,
an open-ended request only creates short-lived flows.
Instead, we generate the competing flow by requesting
the Flash version of the same video stored in the same
CDN, using rtmpdump [19] over TCP.

4. THE DOWNWARD SPIRAL EFFECT
All three services suffer from what we call the “down-

ward spiral effect” – a dramatic anomalous drop in the
video playback rate in the presence of a competing TCP
flow. The problem is starkly visible in Figure 4. In
all four graphs, the video stream starts out alone, and
then competes with another TCP flow. As soon as the
competing flow starts up, the client mysteriously picks
a video playback rate that is far below the available
bandwidth. Our goal is to understand why this hap-
pens.

To give us a first inkling into what is going on, we cal-
culate the upper bound of what the client might believe
the instantaneous available bandwidth to be, by mea-
suring the arrival rate of the last chunk. Specifically,
we calculate the throughput upper bound by having the
size of a received video segment, divided by the time it
took to arrive (the time from when the first byte arrived
until the last byte arrived), which excludes the initial
server response time. In all of the graphs, the video
playback rate chosen by the client is quite strongly cor-
related with the calculated throughput. As we will see,
herein lies the problem: If the client is selecting the
video rate based on some function of the throughput
it perceived, and the throughput is so different from
the actual available bandwidth, then it is not surpris-
ing the client does such a poor job. Let’s now see what
goes wrong for each service in turn.

4.1 Service A
Fig. 4(a) shows the playback rate of a Service A

video session, along with the client’s perceived through-
put over time. Starting out, the video stream is the
only flow and the client requests the highest video rate
(1750kb/s). The competing flow begins after 400 sec-
onds; the video rate steadily drops until it reaches the
lowest rate (235kb/s), and it stays there most of the
time until the competing flow stops. In theory, both
flows should be able to stream at 2.5Mb/s (their fair
share of the link) and the client should continue to
stream at 1750kb/s.

We repeated the experiment 76 times over four days.
In 67 cases (91%) the downward spiral happens, and the
client picks either the lowest rate, or bounces between
the two or three lowest rates. In just seven cases (9%)
was the client able to maintain a playback rate above
1400kb/s. To ensure accuracy and eliminate problems
introduced by competing flows with different character-

0 200 400 600 800 1000 1200
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1400

1750

Video Playback Rate

Competing Flow's
Throughput

Video
Perceived
Throughput

Figure 5: (Service A) The client manages to
maintain the highest playback rate if we disable
automatic rate selection.

istics (e.g. TCP flows with different RTTs), we make
the competing flow request for the same video file (en-
coded at 1750kb/s) from the same CDN. Unlike the
video flow, the competing flow is just a simple TCP file
download and its download speed is only dictated by
TCP congestion control algorithm and not capped by
the video client.3

Why does throughput of the video flow drop so much
below available fair-share bandwidth? Is it an inherent
characteristic of streaming video over HTTP, or is the
client simply picking the wrong video rate?

We first confirm that the available bandwidth really
is available for streaming video. We do this using a
feature provided by the Service A client that allows
users to manually select a video rate and disable the
client’s automatic rate selection algorithm. We repeat
the above experiment, but with a slight modification.
As soon as the client picks a lower rate, we manually
force the video to play at 1750kb/s. Figure 5 shows the
results. Interestingly, not only can the client maintain
the playback rate of 1750kb/s without causing rebuffer-
ing events, the throughput also increases. This suggests
that the downward spiral effect is caused by underesti-
mation of the available bandwidth in the client’s rate
selection algorithm. The bandwidth is available, but
the client needs to go grab it.

4.2 Service B
Figure 4(b) shows the same downward spiral effect

in Service B. As before, the bottleneck bandwidth is
5Mb/s and the RTT is around 20 ms. We start a video
streaming session first, allow it to settle at its highest
rate (3200kb/s) and then start a competing flow after

3To eliminate variation caused by congestion at the server,
we verified that the same problem occurs if we download
the competing video file from a different server at the same
CDN.

5

160 170 180 190 200 210
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

Playout Buffer is full

(a) TCP throughput before and after the buffer
fills.

0 50 100 150 200 250 300
Time (s)

0

1

2

3

4

5

6

7

Re
qu

es
t I

nt
er

va
l (

s)

Playout Buffer is full

(b) Request interval before and after the buffer
fills.

Figure 6: (Service A) Before and after the playback buffer fills at 185 seconds.

337 seconds, by reading the same video file from the
same server.

The client should drop the video rate to 2500kb/s
(its fair share of the available bandwidth). Instead, it
steps all the way to the lowest rate offered by Service B,
650kb/s and occasionally to 1000kb/s. The throughput
plummets too.

4.3 Service C
We observe the downward spiral effect in Service C

as well. Since Service C does not automatically switch
between its HD and SD bitrates, we do two separate
experiments.

In the HD experiment, as shown in Fig. 4(c), we set
the bottleneck bandwidth to 22Mb/s. To start with, the
client picks the highest HD video rate (9Mb/s). When
the client’s playback buffer is full, the video flow is lim-
ited by the receive window, and the perceived through-
put converges to the same value as the playback rate.
We start the competing flow at 100 seconds download-
ing the same video file (9Mb/s video rate) from the
same CDN.

Each flow has 11Mb/s available to it, plenty for the
client to continue playing at 9Mb/s. But instead, the
client resets the connection and switches to 4.5Mb/s
and then 3Mb/s, before bouncing around several rates.

SD is similar. We set the bottleneck bandwidth to
5Mb/s, and the client correctly picks the highest rate
(2000kb/s) to start with, as shown in Figure 4(d). When
we start the competing flow, the video client drops down
to 1000kb/s even though its share is 2.5Mb/s. Since
Service C only offers three SD rates, we focus on its HD
service in the rest of the paper.

5. WALKING THE DOWNWARD SPIRAL

To understand how the downward spiral happens, we
examine each service in turn. Although each service
enters the downward spiral for a slightly different rea-
son, there is enough commonality for us to focus first
on Service A (and Fig. 4(a)) and then describe how the
other two services differ.

5.1 Initial Condition: No Competing Flow
In the absence of a competing flow (first 400 sec-

onds), the Service A client correctly chooses the high-
est playback rate. Because the available network band-
width (5Mb/s) is much higher than the playback rate
(1750kb/s), the client busily fills up its playback buffer,
and the bottleneck link is kept fully occupied. Eventu-
ally the playback buffer fills (after 185 seconds) and the
client pauses to let it drain a little before issuing new
requests. Figure 6(a) shows how the TCP throughput
varies before and after the playback buffer fills up. Af-
ter the buffer is full, the client enters a periodic ON-
OFF sequence. As we will see shortly, the ON-OFF
sequence is a part of the problem (but only one part).
Before the buffer fills, the client requests a new 4 second
chunk of video every 1.5 seconds on average (because it
is filling the buffer). Figure 6(b) confirms that after the
buffer is full, the client requests a new 4 second chunk
every 4 seconds, on average. The problem is that dur-
ing the 4 second OFF period, the TCP congestion win-
dow (cwnd) times out—due to inactivity longer than
200ms—and resets cwnd to its initial value of 10 pack-
ets [5, 6]. Even though the client is using an existing
persistent TCP connection, the cwnd needs to ramp up
from slow start for each new segment download.

It is natural to ask if the repeated dropping back
to slow-start reduces the client’s perceived throughput,
causing it to switch to a lower rate. With no competing
flow, it appears the answer is ‘no’. We verify this by

6

measuring the throughput for many requests. We set
the bottleneck link rate to be 2.5Mb/s, and use traces
collected from actual sessions to replay the requests over
a persistent connection to the same server, and pause
the requests at the same interval as the pauses in the
trace. Figure 7(a) shows the CDF of throughput the
client perceived for requests corresponding to various
playback rates. The perceived throughput is pretty ac-
curate. Except for some minor variation, the perceived
throughput accurately reflects the available bandwidth,
and explains why the client picks the correct rate.

5.2 The Trigger: With a Competing Flow
Things go wrong when the competing flows starts (af-

ter 400 seconds). Figure 7(b) shows the throughput
client perceived are mostly much too low, when there
is a competing flow.4 If we look at the progression of
cwnd for the video flow after it resumes from a pause,
we can tell how the server opens up the window dif-
ferently when there is a competing flow. Because we
don’t control the server (it belongs to the CDN) we in-
stead use our local proxy to serve both the video traffic
and the competing flow, and use the tcp probe ker-
nel module to log the cwnd values. The video traffic
here is generated by requesting a 235kbps video seg-
ment. Figure 8(a) shows how cwnd evolves, starting
from the initial value of 10 at 1.5 seconds, then repeat-
edly being beaten down by the competing wget flow. The
competing wget flow has already filled the buffer during
the OFF period, and so the video flow sees very high
packet loss. Worse still, the chunk is finished before
cwnd climbs up again, and we re-enter the OFF period.
The process will repeat for every ON-OFF period, and
the throughput is held artificially low.

For comparison, and to understand the problem bet-
ter, Figure 8(b) shows the result of the same experiment
with a chunk size five times larger. With a larger chunk
size, the cwnd has longer to climb up from the initial
value; and has a much greater likelihood of reaching the
correct steady state value.

Now that we know the throughput client perceived is
very low (because of TCP), we would like to better un-
derstand how the client reacts to the low throughputs.
We can track the client’s behavior as we steadily reduce
the available bandwidth, as shown in Figure 9. We start
with a bottleneck link rate of 5Mb/s (and no competing
flow), and then drop it 2.5Mb/s (to mimic a competing
flow), then keep dropping it by 100kb/s every 3 minutes.
The dashed line shows the available bandwidth, while

4In Figure 7(b), the bottleneck bandwidth is set to 5Mb/s so
that the available fair-share of bandwidth (2.5Mb/s) is the
same as in Figure 7(a). Note that some chunk downloads
are able to get more than its fair share, this is because the
competing flow experiences losses and has not ramped up to
its fair share yet. This is the reason why some of the CDF
curves does not end with 100% at 2.5Mb/s in Figure 7(b).

the solid line shows the video rate picked by the client.
Clearly, the client chooses the video rate conservatively.
When available bandwidth drops from from 5Mb/s to
2.5Mb/s, the video rate goes down to 1400kb/s, and so
on.

We can now put the two pieces together. Figure 7(b)
tells us that in the presence of a competing flow, a client
streaming at a playback rate of 1750kb/s perceives a
throughput of less than 2Mb/s for 60% of the requests.
Figure 9 tells us that with a perceived throughput of
2Mb/s, the client reduces its playback rate to 1050kb/s.
Thus, 60% of the time the playback rate goes down to
1050kb/s once the competing flow starts.

It is interesting to observe that the Service A client
is behaving quite rationally given the throughput it re-
ceives. The problem is that because it observes the
throughput above TCP, it is not aware that TCP itself
is having trouble reaching its fair share of the band-
width. Coupled with a (natural) tendency to pick rates
conservatively, the rate drops down.

5.3 The Spiral: Low Playback Rate
Finally, there is one more phenomenon driving the

video rate to its lowest rate. Recall that each HTTP re-
quest is for four seconds of video. When the video rate
is lower, the four-second segment is smaller, as shown
in Figure 10. With a smaller segment, the video flow
becomes more susceptible to perceive lower throughput,
as shown in Figure 7(b). With a lower throughput, the
client reduces the playback rate, creating a vicious cy-
cle as shown in Figure 11. The feedback loop will con-
tinue until it reaches a steady state where the perceived
available bandwidth is large enough to keep the rate se-
lection algorithm at the chosen rate. In the worst case,
the feedback loop creates a “death spiral” and brings
the playback rate all the way down to its lowest value.

To summarize, when the playout buffer is full, the
client enters a periodic ON-OFF sequence. The OFF
period makes the TCP connection idle for too long and
reset its congestion window. Also during the OFF pe-
riod, the competing tcp flow fills the router buffer, so
the video flow sees high packet loss once it is back to the
ON period. Worse still, the video could finish download-
ing its video chunk before its cwnd climbs up to its fair
share and thus re-enters the OFF period. This process
repeats for every ON-OFF period; as the consequence,
the video flow underestimates the available bandwidth
and switches to a lower video rate. When switching to a
lower rate, the client requests for a smaller video chunk,
which makes the video flow further underestimate the
available bandwidth, forming a vicious cycle.

5.4 With Different Network Conditions
Our experiments so far were all for the same CDN.

Fig. 12 shows different behavior for different CDN. The

7

0 500 1000 1500 2000 2500
Throughput (kb/s)

0

20

40

60

80

100

CD
F

(%
)

Video Rate 235kb/s
Video Rate 375kb/s
Video Rate 560kb/s
Video Rate 750kb/s
Video Rate 1050kb/s
Video Rate 1400kb/s
Video Rate 1750kb/s

(a) Service A with no competing flow.

0 500 1000 1500 2000 2500
Throughput (kb/s)

0

20

40

60

80

100

CD
F

(%
)

Video Rate 235kb/s
Video Rate 375kb/s
Video Rate 560kb/s
Video Rate 750kb/s
Video Rate 1050kb/s
Video Rate 1400kb/s
Video Rate 1750kb/s

(b) Service A with one competing flow.

Figure 7: (Service A) Throughput at HTTP layer with and without a competing flow.

0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

2

4

6

8

10

12

14

16

18

TC
P

Co
ng

es
tio

n
W

in
do

w
 (s

eg
m

en
t)

Competing Flow
Client Emulator

(a) A 235kbps Segment.

6 7 8 9 10 11 12
Time(s)

2

4

6

8

10

12

14

16

18

TC
P

Co
ng

es
tio

n
W

in
do

w
 (s

eg
m

en
t)

Competing Flow
Client Emulator

(b) Concate five contigu-
ous 235kbps segments into
one.

Figure 8: (Service A) The evolution of cwnd for
different segment sizes.

0 500 1000 1500 2000 2500 3000 3500 4000
Time(s)

0

500

1000

1500

2000

2500

3000

Av
ai

la
bl

e
Ba

nd
w

id
th

/R
eq

ue
st

 R
at

e
(k

bp
s)

Video Playout Rate
Available Bandwidth

Figure 9: (Service A) The client picks a video
rate depending on the available bandwidth. The
horizontal gray lines are the available rates.

audio(64) 235 375 560 750 1050 1400 1750
Video Rate (kbps)

0

200

400

600

800

1000

1200

1400

1600

Se
gm

en
t S

iz
e

(K
B)

Figure 10: (Service A) The segment size for dif-
ferent video rates.

Video&Plays&at&
1750kb/s&(Fig.&7a)&

Lower&Throughput&
(Fig.&7b)&

Compe&ng)Flow))
Starts)

Conserva&sm)

Select&a&Lower&
Video&Rate&(Fig.&9)&

Reduced&Segment&
Size&(Fig.&10)&

In&the&absence&of&compeIng&flow,&
the&client&correctly&chooses&the&
highest&video&rate.&

When&compeIng&flow&comes&in,&
the&client&starts&underesImaIng&
the&available&bandwidth&due&to&the&
dynamics&discussed&in&Sec.&5.2.&

The&underesImaIon&combined&
with&conservaIsm&leads&the&client&
to&select&a&lower&video&rate.&

When&selecIng&a&lower&video&
rate,&the&requesIng&segment&size&
would&also&be&smaller.&With&a&
smaller&segment,&the&video&flow&
becomes&more&suscepIble&to&get&
lower&throughput.&&

Figure 11: (Service A) The feedback loop.

8

0 200 400 600 800 1000 1200
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

Video Flow Throughput

Compete Flow Throughput

Video Plyaback Rate

Figure 12: (Service A) When streaming from
another CDN, the playback rate stabilizes at
1050kb/s.

0 1000 2000 3000 4000 5000
Throughput (kb/s)

0

20

40

60

80

100

Fr
ac

tio
n

(%
)

750kb/s - CDN-1
1050kb/s - CDN-1
1400kb/s - CDN-1
1750kb/s - CDN-1
750kb/s - CDN-2
1050kb/s - CDN-2
1400kb/s - CDN-2
1750kb/s - CDN-2

Figure 13: (Service A) Different network path
properties (CDNs) lead to different perceived
throughput.

path properties are different, and Fig. 13 shows that the
perceived throughput is higher — hence the Service A
client picks a higher rate (1050kb/s).

For comparison, we asked 10 volunteers to rerun this
experiment with Service A in their home network con-
nected to different ISPs, such as AT&T DSL, Comcast,
Verizon and university residences. Even though there
was sufficient available bandwidth for the highest video
rate, even with the competing flow, seven people re-
ported a rate of only 235kb/s-560kb/s.

5.5 Service B
Service B also exhibits ON-OFF behavior, but at the

TCP level and not the HTTP level, i.e., the pause could
happen while downloading a video segment. When its
video playback buffer is full, the client would stop tak-
ing data from the TCP socket buffer. Eventually, the

102 103 104 105

OFF Duration(ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

(%
)

Figure 14: (Service B) Almost all the OFF pe-
riods in a single video session are greater than
RTO (200ms).

0 500 1000 1500 2000 2500
Download size between successive zero window ads (KBytes)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

(%
)

Figure 15: (Service B) When the video stream
is receiver-limited, the effective segment size is
small.

TCP socket buffer would also be full and triggers the
TCP flow control to pause the server by sending a zero
window advertisement. In Fig. 4(b), each zero window
advertisement is marked by a hexagon. The client starts
issuing zero window advertisements at around 100s, and
continues to do so until a few seconds after the compet-
ing flow starts. Fig. 14 shows the CDF of the duration
of the OFF periods. Almost all the pauses are longer
than 200ms, and so cwnd is reset to its initial value.
Thus, Service B effectively exhibits an ON-OFF behav-
ior similar to that of Service A.

Worse still, during an ON period Service B does not
request many bytes; Fig. 15 shows that over half of the
time, it reads only 800kbytes, which is not enough for
the cwnd to climb up to its steady state before the next
OFF period. As the result, Fig. 4(b) and Fig. 16(b)
show that the TCP throughput is only around 1Mbps
to 1.5Mbps, causing Service B to pick a video rate of

9

0 500 1000 1500 2000 2500
Throughput (kb/s)

0

20

40

60

80

100

CD
F

(%
)

Video Rate 650kb/s
Video Rate 1000kb/s
Video Rate 1500kb/s
Video Rate 2000kb/s
Video Rate 2500kb/s
Video Rate 3200kb/s

(a) Service B with no competing flow.

0 500 1000 1500 2000 2500
Throughput (kbps)

0

20

40

60

80

100

CD
F

(%
)

playout rate 650kbps
playout rate 1000kbps
playout rate 1500kbps
playout rate 2000kbps
playout rate 2500kbps
playout rate 3200kbps

(b) Service B with one competing flow.

Figure 16: (Service B) The TCP throughput changes in the presence of a competing flow.

650 1000 1500 2000 2500 3200
Video Playback Rate (kb/s)

0

1000

2000

3000

4000

5000

Se
gm

en
t S

iz
e

(K
By

te
)

Figure 17: (Service B) Segment size varies with
video playback rate.

1000kb/s, or even 650kb/s. As we saw earlier, when
competing with another flow, the smaller the request,
the higher the likelihood of perceiving a lower through-
put. The problem would be even worse if it was cou-
pled with a conservative rate selection algorithm. For-
tunately, Service B is not nearly as conservative as the
other two services, as shown in Fig. 18.

Similar to Service A, the segment size gets smaller
with decreasing playback rate – from 3MByte to 1MByte
as shown in Fig. 17. However, segment size does not
play a significant role in the downward spiral effect of
Service B, since the ON-OFF behavior is at the TCP
level and the number of bytes for each ON period is not
determined by segment size.

5.6 Service C
Service C performs an open-ended download, instead

of segment-by-segment. Thus, it is not constrained by
segment size, and does not pause between HTTP re-

0 500 1000 1500 2000 2500
Time (s)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Av
ai

la
bl

e
Ba

nd
w

id
th

/P
la

yo
ut

 R
at

e
(k

bp
s)

Video Playout Rate
Available Bandwidth
Zero Window Advertisement

Figure 18: (Service B) While not too conserva-
tive, the client is limited by its TCP throughput.

quests. It only slows down when the receive window
fills, and so reduces the number of bytes in flight. How-
ever, the OFF period for Service C is less than an RTO
and therefore does not trigger TCP to reset its window
size. The problem with Service C is mainly caused by
its conservativeness and being sensitive to temporal be-
haviors in TCP. Figure 19 shows the conservativeness
of Service C, it steps down to 3Mb/s even when the
available bandwidth is more than 9Mb/s. As shown in
Figure 4(c), Service C regulates itself at 9Mb/s after its
playout buffer is full. Thus, the competing flow would
take over the rest of the 13Mb/s available bandwidth
when it starts and make Service C to perceive less than
9Mb/s of available bandwidth. As the consequence, the
video flow steps down to the video rate of 3Mb/s. Since
Service C does open-ended download, it has to reset the
current TCP connection to stop downloading the cur-
rent video file and starts a new connection for the file
with the newly selected rate. This would make the video

10

0 500 1000 1500 2000 25000

2000

4000

6000

8000

10000

12000

14000

16000
Video Playout Rate
Video TCP Tput
Available Bandwidth

Figure 19: (Service C) The client is conservative
in its rate selection.

flow perceives less bandwidth during the transition, as
TCP needs to go through the phase of connection es-
tablishment and slow start. Thus, we can see that even
though Service C is able to perceive a higher through-
put and switches to a higher video rate after TCP ramps
up, the overhead of transition makes it easily to switch
down again after a short period.

6. ACTIVELY INTERVENING
We can verify our explanation in Section 5 by modi-

fying the system. For example, a modified server might
tell the client the highest rate achieved during a chunk
download, or an augmented HTTP interface might re-
port the recent bandwidth history to the client. Un-
fortunately, this is not an option for our three services,
because they use unmodified HTTP CDN services. The
experiments we describe next therefore leave the ecosys-
tem unchanged, and only require client changes. Our
intent is not to propose a new client design, but rather
to confirm our understanding of the root causes of the
downward spiral by trying small changes to the algo-
rithm.

6.1 The Custom Client
For brevity, we focus on Service A. Our approach is

to replay a movie, using the same CDN and chunks
as Service A, but using our own client algorithm. The
three services keep their algorithms secret, but our mea-
surements provide a reasonable baseline. For Service A,
Figure 9 indicates the bandwidth below which the client
picks a lower video rate. Assume that Service A esti-
mates bandwidth by simply dividing the download size
by the download time and passing it through a fixed-
size moving-average filter. We can estimate the size of
the filter by measuring how long it takes from when
the bandwidth drops until the client picks a new rate.
A number of traces from Service A suggest a filter with
10 samples, though the true algorithm is probably more
nuanced.

0 200 400 600 800 1000
Time (s)

0

1000

2000

3000

4000

5000

Vi
de

o
Ra

te
 (k

b/
s)

Buffer Status

Video Throughput

Video Rate

0

50

100

150

200

250

Vi
de

o
Se

gm
en

ts
 in

 B
uf

fe
r (

Se
co

nd
)

Figure 20: Custom client, similar to Service A
– equally conservative, with a 10-sample moving
average filter – displays the downward spiral.

To closely mimic the Service A client, our custom
client requests the movie chunks from the same loca-
tions in the CDN: We capture the chunk map given to
the client after authentication, which locates the movie
chunks for each supported playback rate. This means
our client will experience the same chunk-size variation
over the course of the movie, and when it shifts play-
back rate, the chunk size will change as well. Since
our custom client uses tokens from an earlier playback,
the CDN cannot tell the difference between our custom
client and the real Service A client. To further match
Service A, the playback buffer is set to 240 seconds, the
client uses a single persistent connection to the server,
and it pauses when the buffer is full. We first validate
the client, then consider three changes: (1) being less
conservative, (2) changing the filtering method, and (3)
aggregating chunks.

6.2 Validating our Custom Client
Figure 20 shows the custom client in action. After

downloading each segment, the custom client selects the
playback rate based on Service A’s conservative rate
selection algorithm, observed in Figure 9. Once the
playback buffer is full we introduce a competing flow.
Like the real client, the playback rate drops suddenly
when the competing flow starts, then fluctuates over
the course of the movie. The downward spiral does not
bottom out, which we suspect is due to some suttble
differences between Service A’s algorithm and ours.

6.3 Less Conservative
Bandwidth estimates based on download sizes and

durations tend to under-report the available bandwidth,
especially in the presence of a competing flow. If the al-
gorithm is conservative, it exacerbates the problem. We
try a less conservative algorithm, with a conservatism
of 10% instead of 40%. Conservatism of 40% means the

11

0 200 400 600 800 1000
Time (s)

0

1000

2000

3000

4000

5000

Vi
de

o
Ra

te
 (k

b/
s)

Buffer Status

Video Throughput

Video Rate

0

50

100

150

200

250

Vi
de

o
Se

gm
en

ts
 in

 B
uf

fe
r (

Se
co

nd
)

Figure 21: Custom client – without the conser-
vatism, but with a 10-sample moving average
filter.

0 200 400 600 800 1000
Time (s)

0

1000

2000

3000

4000

5000

Vi
de

o
Ra

te
 (k

b/
s)

Buffer Status

Video Throughput

Video Rate

0

50

100

150

200

250
Vi

de
o

Se
gm

en
ts

 in
 B

uf
fe

r (
Se

co
nd

)

Figure 22: Custom client – without the conser-
vatism, and with 80th percentile filter.

client requests for a video rate at highest of 1.2Mb/s
when perceived 2.0Mb/s; while 10% means it would re-
quest at highest of 1.8Mb/s when perceived 2.0Mb/s.
According to Figure 9, Service A requests video rate
roughly at conservatism of 40%. Figure 21 shows that
the video rate is higher, even though the playback buffer
stays nice and full. The result is higher quality video, a
high playback buffer occupancy (i.e. resilience against
rebuffering) and four minutes of buffering to respond
to changes in bandwidth. Note that even though the
algorithm is less conservative, the underlying TCP will
make sure the algorithm be a “good citizen” and only
gets its fair share of available bandwidth.

6.4 Better Filtering
Averaging filters provide a more stable estimate of

bandwidth, but a single outlier can confuse the algo-
rithm. For example, a few seconds of low-information
movie credits reduces the chunk size and the algorithm
might drop the rate. So instead, we use medians and

0 200 400 600 800 1000
Time (s)

0

1000

2000

3000

4000

5000

Vi
de

o
Ra

te
 (k

b/
s)

Buffer Status

Video Throughput

Video Rate

0

50

100

150

200

250

Vi
de

o
Se

gm
en

ts
 in

 B
uf

fe
r (

Se
co

nd
)

Figure 23: Custom client with increased seg-
ment size (5x).

quantiles to reduce the vulnerability to outliers. Fig-
ure 22 shows what happens if we use only the 80%
quantile of the measured rates of the past ten segment
download. Variation is greatly reduced, and the ma-
jority of the movie plays at the highest-available rate.
The playback buffer has small fluctuations, but is still
far from a rebuffer event.

6.5 Bigger Chunks
As noted earlier, bigger chunks give us better esti-

mates of the available bandwidth, allowing TCP to es-
cape slow-start. Figure 23 shows what happens if our
client aggregates five requests into one. With the larger
chunk size, the perceived throughput is more stable, and
both the playback rate and buffer size are more stable.

In summary, larger chunks let TCP get its fair share
and improve the perceived throughput. Picking higher
rates less conservatively and filtering measurements more
carefully can improve video quality. But we should note
that these improvements are for one movie on one ser-
vice. Given the prevalence of the downward spiral ef-
fect, these should not be interpreted as hard recommen-
dations; merely as added detail to our understanding of
the problem.

7. RELATED WORK
The related work largely considers three overlapping

areas: systems for video streaming; measurements to
understand their performance, and the design and anal-
ysis of rate selection algorithms.

Video Streaming Services. The first category cov-
ers video streaming approaches using HTTP, such as the
commercial ones from Adobe, Apple, and Microsoft de-
scribed in [21], which differ in their alignment of video
switching rates, whether A/V streams are combined,
and whether requests are issued as byte ranges or for
pre-specified chunks. A more recent technique is MPEG
DASH (Dynamic Adaptive Streaming over HTTP) [7]

12

which standardizes the formatting of video content and
leaves open the specific client player algorithm. These
techniques underpin the major commercial services like
YouTube, Netflix, and Hulu.

Video Streaming Measurement. The second cat-
egory measures the performance of individual video stream-
ing clients experiencing local traffic conditions (“in the
lab”), all the way to distributed measurement systems
that compare the performance of thousands of clients
(“in the wild”).

The work most similar to ours is [3], where the au-
thors also parse HTTP messages to determine playback
rates and use a bandwidth limiter to test clients under
varying network conditions. However, [3] focuses on
the unfairness problem among two video players, while
in this work we focus on the unfairness problem be-
tween a video player and a long-lived TCP flow. The
paper considers a significantly different scenario: it fo-
cuses on a video client competing against another video
client. In this context, they observe similar patholo-
gies: poor bandwidth estimation, leading to instabil-
ity. However, they explain their observations entirely
in terms of the application-layer ON-OFF behavior of
video clients; even if one video client perfectly obtained
its fair share when ON, it can fail to correctly estimate
available bandwidth (depending on the amount of over-
lap with the ON periods of the other client). By con-
trast, our paper demonstrates that this is only a symp-
tom of a more general problem: inaccurate bandwidth
estimation occurs even when the competing flow does
not exhibit ON-OFF behavior. As we show in this pa-
per, the problem arises because it is hard to estimate
bandwidth above TCP. Others have identified the same
problem but not explained its causes or validated po-
tential fixes [15, 4].

Measuring the CDN servers rather than clients pro-
vides different insights. In [1], the authors examine the
CDN selection strategy of Hulu, while in [2], the au-
thors look at Netflix. Both papers find a predisposi-
tion for clients to stay with the original CDN, despite
variation between CDNs and over time. In [9], the au-
thors describe lessons learned from a distributed com-
mercial measurement system to understand the effects
of Quality-of-Experience (QoE) metrics on viewer en-
gagement and retention. Rebuffer rates and average
video quality are QoE metrics with measurable impacts
on viewer engagement, which underscores the impor-
tance of getting rate measurement and selection right
in the presence of competing flows.

Other work looks at network characteristics of video
streaming traffic, rather than focusing on client or viewer
experience [18, 11, 23]. In particular, the authors in [18]
show ON-OFF cycle behavior for YouTube and Netflix
and use a model to study aggregates of video client and
their effects on the network. Both CDN and network

traffic papers do not consider local effects on measured
bandwidth or their effects on rate stability.

Rate Selection Algorithms. The third category
is work on rate selection algorithms. This work com-
plements ours, as a control system always benefits from
more accurate measurements. In [8], the authors pro-
pose an algorithm to maintain the playout buffer at
a target level. In [16], the authors implement a dif-
ferent buffer-aware rate selection algorithm and experi-
mentally measure user preferences for gradual and infre-
quent playback rate changes. In [22], the authors model
the rate selection problem as a Markov Decision Process
and use a dynamic programming technique to choose a
streaming strategy that improves QoE. In [13], the au-
thors use simulations to show how parallel HTTP ses-
sions can improve playback quality. Server-side pacing
is another approach to selecting rate used by YouTube,
as described in [10, 12].

8. CONCLUSION
Despite some differences in specific service implemen-

tations, all three services we study display degraded
performance in the presence of competing traffic, well
below the video quality possible if the client used its
fair share of bandwidth. At a high level, our measure-
ment analysis and experiments suggest that the root
cause of this failure is a lack of information. In many
circumstances, the HTTP layer is simply not privy to
continuous high-fidelity feedback about the fair share
at the bottleneck link.

There are two ways to interpret our observations. On
one hand, we observe that determining the fair share of
bandwidth available at the bottleneck is precisely the
role of TCP. Thus, one path forward might be to sug-
gest that we should design the client to improve infor-
mation flow from TCP to the HTTP layer. In particu-
lar, we should ensure that TCP has a chance to reach
its steady-state fair share; for example, increasing the
chunk size enables this effect.

However, we believe there may be a more radical so-
lution: do not attempt to estimate bandwidth at all! The
video streaming client has two competing goals: attain
the highest bitrate possible while avoiding buffer under-
runs. Thus the objective is not to ensure the buffer stays
full; the objective is to ensure the buffer does not go
empty. Since the buffer holds several minutes of video,
this shift in perspective suggests that if the buffer is full
then the client has picked a rate that is too low. Rather,
the client should increase the bitrate when the buffer is
high and decrease it when the buffer falls low. Though
this sounds aggressive, note that it is exactly the cor-
rect layer separation: it hands off to TCP the objective
of obtaining the fair share of bandwidth, and tries to
always ensure the client picks the highest rate possible.
This suggests an intriguing path forward for future re-

13

search: design video-streaming clients that deliver high
performance by eliminating bandwidth estimation all
together.

Acknowledgment
The authors would like to thank Kok-Kiong Yap, Masayoshi
Kobayashi, Vimalkumar Jeyakumar and Yiannis Yiak-
oumis for helpful discussions that shaped the paper.

9. REFERENCES

[1] V. Adhikari, Y. Guo, F. Hao, V. Hilt, and
Z. Zhang. A tale of three cdns: An active
measurement study of hulu and its cdns.

[2] V. Adhikari, Y. Guo, F. Hao, M. Varvello,
V. Hilt, M. Steiner, and Z.-L. Zhang. Unreeling
netix: Understanding and improving multi-cdn
movie delivery. In IEEE INFOCOM 2012.

[3] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and
A. Begen. What happens when http adaptive
streaming players compete for bandwidth? 2012.

[4] S. Akhshabi, C. Dovrolis, and A. Begen. An
experimental evaluation of rate adaptation
algorithms in adaptive streaming over http. In
ACM MMSYS 2011, San Jose, CA, USA,
Feburary 2011.

[5] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[6] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581 (Proposed
Standard), Apr. 1999. Obsoleted by RFC 5681,
updated by RFC 3390.

[7] MPEG DASH specication (ISO/IEC DIS
23009-1.2), 2011.

[8] L. De Cicco, S. Mascolo, and V. Palmisano.
Feedback control for adaptive live video
streaming. Proc. ACM MMSys, 2011.

[9] F. Dobrian, A. Awan, D. Joseph, A. Ganjam,
J. Zhan, V. Sekar, I. Stoica, and H. Zhang.
Understanding the impact of video quality on user
engagement. In ACM SIGCOMM 2011, Toronto,
Canada, August 2011.

[10] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis.
Trickle: Rate limiting youtube video streaming.
In Annual Technical Conference. USENIX, 2012.

[11] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube
traffic characterization: a view from the edge. In
Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 15–28.
ACM, 2007.

[12] L. Kontothanassis. Content delivery
considerations for different types of internet
video. In ACM MMSYS 2012 (Keynote), Chapel
Hill, NC, USA, Febrary 2012.

[13] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel
adaptive http media streaming. In Computer
Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on,
pages 1–6. IEEE, 2011.

[14] J. W. Lockwood, N. McKeown, G. Watson,
G. Gibb, P. Hartke, J. Naous, R. Raghuraman,
and J. Luo. Netfpga–an open platform for
gigabit-rate network switching and routing. In
MSE ’07: Proceedings of the 2007 IEEE
International Conference on Microelectronic
Systems Education, pages 160–161, 2007.

[15] K. Miller, E. Quacchio, G. Gennari, and
A. Wolisz. Adaptation algorithm for adaptive
streaming over http.

[16] R. Mok, X. Luo, E. Chan, and R. Chang. Qdash:
a qoe-aware dash system. In Proceedings of the
3rd Multimedia Systems Conference, pages 11–22.
ACM, 2012.

[17] Sandvine: Global Internet Phenomena Report.
http://www.sandvine.com/news/pr_detail.

asp?ID=312.
[18] A. Rao, A. Legout, Y. Lim, D. Towsley,

C. Barakat, and W. Dabbous. Network
characteristics of video streaming traffic. In
Proceedings of the Seventh COnference on
emerging Networking EXperiments and
Technologies, page 25. ACM, 2011.

[19] RTMPDump. http://rtmpdump.mplayerhq.hu/.
[20] Consumer Report: Streaming Video Services

Rating. http://www.consumerreports.org/cro/
magazine/2012/09/

best-streaming-video-services/index.htm.
[21] M. Watson. HTTP Adaptive Streaming in

Practice. http://web.cs.wpi.edu/~claypool/
mmsys-2011/Keynote02.pdf.

[22] S. Xiang, L. Cai, and J. Pan. Adaptive scalable
video streaming in wireless networks. In
Proceedings of the 3rd Multimedia Systems
Conference, pages 167–172. ACM, 2012.

[23] M. Zink, K. Suh, Y. Gu, and J. Kurose.
Characteristics of youtube network traffic at a
campus network measurements, models, and
implications. In Computer Networks, Volume 53,
Issue 4, pages 501–514. Elsevier, 2009.

14

http://www.sandvine.com/news/pr_detail.asp?ID=312
http://www.sandvine.com/news/pr_detail.asp?ID=312
http://rtmpdump.mplayerhq.hu/
http://www.consumerreports.org/cro/magazine/2012/09/best-streaming-video-services/index.htm
http://www.consumerreports.org/cro/magazine/2012/09/best-streaming-video-services/index.htm
http://www.consumerreports.org/cro/magazine/2012/09/best-streaming-video-services/index.htm
http://web.cs.wpi.edu/~claypool/mmsys-2011/Keynote02.pdf
http://web.cs.wpi.edu/~claypool/mmsys-2011/Keynote02.pdf

	Introduction
	How Video Streaming Works
	Measurement Setup
	Bandwidth Control and Proxy
	Measuring the Video Playback Rate
	The Competing Flows

	The Downward Spiral Effect
	Service A
	Service B
	Service C

	Walking the Downward Spiral
	Initial Condition: No Competing Flow
	The Trigger: With a Competing Flow
	The Spiral: Low Playback Rate
	With Different Network Conditions
	Service B
	Service C

	Actively intervening
	The Custom Client
	Validating our Custom Client
	Less Conservative
	Better Filtering
	Bigger Chunks

	Related Work
	conclusion
	References

