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ABSTRACT

Adaptive (video) streaming over HTTP is gradually being
adopted, as it offers significant advantages in terms of both
user-perceived quality and resource utilization for content
and network service providers. In this paper, we focus
on the rate-adaptation mechanisms of adaptive streaming
and experimentally evaluate two major commercial players
(Smooth Streaming, Netflix) and one open source player
(OSMF). Our experiments cover three important operating
conditions. First, how does an adaptive video player react
to either persistent or short-term changes in the underlying
network available bandwidth? Can the player quickly
converge to the maximum sustainable bitrate? Second,
what happens when two adaptive video players compete for
available bandwidth in the bottleneck link? Can they share
the resources in a stable and fair manner? And third, how
does adaptive streaming perform with live content? Is the
player able to sustain a short playback delay? We identify
major differences between the three players, and significant
inefficiencies in each of them.
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C.4 [Computer Systems Organization|: Performance of
Systems

General Terms

Performance, Measurement, Algorithms
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1. INTRODUCTION

Video has long been viewed as the “next killer
application”. Over the last 20 years, the various instances
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of packet video have been thought of as demanding
applications that would never work satisfactorily over
best-effort IP networks. That pessimistic view actually
led to the creation of novel network architectures and
QoS mechanisms, which were not deployed in a large-scale,
though. Eventually, over the last three to four years
video-based applications, and video streaming in particular,
have become utterly popular generating more than half
of the aggregate Internet traffic. Perhaps, surprisingly
though, video streaming today runs over IP without any
specialized support from the network. This has become
possible through the gradual development of highly efficient
video compression methods, the penetration of broadband
access technologies, and the development of adaptive video
players that can compensate for the unpredictability of the
underlying network through sophisticated rate-adaptation,
playback buffering, and error recovery and concealment
methods.

Another conventional wisdom has been that video
streaming would never work well over TCP, due to the
throughput variations caused by TCP’s congestion control
and the potentially large retransmission delays. As a
consequence, most of the earlier video streaming research
has assumed that the underlying transport protocol is UDP
(or RTP over UDP), which considerably simplifies the
design and modeling of adaptive streaming applications.
In practice, however, two points became clear in the last
few years. First, TCP’s congestion control mechanisms
and reliability requirement do not necessarily hurt the
performance of video streaming, especially if the video player
is able to adapt to large throughput variations. Second, the
use of TCP, and of HTTP over TCP in particular, greatly
simplifies the traversal of firewalls and NATs.

The first wave of HTTP-based video streaming
applications used the simple progressive download method,
in which a TCP connection simply transfers the entire
movie file as quickly as possible. The shortcomings of that
approach are many, however. One major issue is that all
clients receive the same encoding of the video, despite the
large variations in the underlying available bandwidth both
across different clients and across time for the same client.
This has recently led to the development of a new wave
of HTTP-based streaming applications that we refer to as
adaptive streaming over HTTP (For a general overview of
video streaming protocols and adaptive streaming, refer
to [2]). Several recent players, such as Microsoft’s Smooth



Streaming, Adobe OSMF, as well as the players developed
or used by Netflix, Move Networks and others, use this
approach. In adaptive streaming, the server maintains
multiple profiles of the same video, encoded in different
bitrates and quality levels. Further, the video object is
partitioned in fragments, typically a few seconds long. A
player can then request different fragments at different
encoding bitrates, depending on the underlying network
conditions. Notice that it is the player that decides what
bitrate to request for any fragment, improving server-side
scalability. Another benefit of this approach is that the
player can control its playback buffer size by dynamically
adjusting the rate at which new fragments are requested.

Adaptive streaming over HTTP is a new technology. It
is not yet clear whether the existing commercial players
perform well, especially under dynamic network conditions.
Further, the complex interactions between TCP’s congestion
control and the application’s rate-adaptation mechanisms
create a “nested double feedback loop” - the dynamics of
such interacting control systems can be notoriously complex
and hard to predict. As a first step towards understanding
and improving such video streaming mechanisms, this paper
experimentally evaluates two commercial adaptive video
players over HTTP (Microsoft’s Smooth Streaming and the
player used by Netflix) and one open source player (Adobe
OSMF). Our experiments cover three important operating
conditions. First, how does an adaptive video player react
to either persistent or short-term changes in the underlying
network available bandwidth? Can the player quickly
converge to the maximum sustainable bitrate? Second,
what happens when two adaptive video players compete for
available bandwidth in the bottleneck link? Can they share
that resource in a stable and fair manner? And third, how
does adaptive streaming perform with live content? Is the
player able to sustain a short playback delay? We identify
major differences between the three players, and significant
inefficiencies in each of them.

1.1 Related Work

Even though there is extensive previous work on
rate-adaptive video streaming over UDP, transport of
rate-adaptive video streaming over TCP, and HTTP
in particular, presents unique challenges and has not
been studied in depth in the past. A good overview
of multi-bitrate video streaming over HTTP was given
by Zambelli [17], focusing on Microsoft’s IIS Smooth
Streaming. Adobe has provided an overview of HTTP
Dynamic Streaming on the Adobe Flash platform [1]. Cicco
et al. [3] experimentally investigated the performance of
the Akamai HD Network for Dynamic Streaming for Flash
over HTTP. They studied how the player reacted to abrupt
changes in the available bandwidth and how it shared the
network bottleneck with a greedy TCP flow. Kuschnig et
al. [9] evaluated and compared three server-side rate-control
algorithms for adaptive TCP streaming of H.264/SVC
video. The same authors have proposed a receiver-driven
transport mechanism that uses multiple HT'TP streams and
different priorities for certain parts of the media stream
[10]. The end-result is to reduce throughput fluctuations,
and thus, improve video streaming over TCP. Tullimas et
al. [15] also proposed a receiver-driven TCP-based method
for video streaming over the Internet, called MultiTCP,
aimed at providing resilience against short-term bandwidth

fluctuations and controlling the sending rate by using
multiple TCP connections. Hsiao et al. [8] proposed
a method called Receiver-based Delay Control (RDC) to
avoid congestion by delaying TCP ACK generation at the
receiver based on notifications from routers. Wang et al.
[16] developed discrete-time Markov models to investigate
the performance of TCP for both live and stored media
streaming.  Their models provide guidelines indicating
the circumstances under which TCP streaming leads to
satisfactory performance. For instance, they show that TCP
provides good streaming performance when the achievable
TCP throughput is roughly twice the media bitrate, with
only a few seconds of startup delay. Goel et al. [7] showed
that the latency at the application layer, which occurs as a
result of throughput-optimized TCP implementations, could
be minimized by dynamically tuning TCP’s send buffer.
They developed an adaptive buffer-size tuning technique
that aimed at reducing this latency. Feng et. al [5]
proposed and evaluated a priority-based technique for the
delivery of compressed prerecorded video streams across
best-effort networks. This technique uses a multi-level
priority queue in conjunction with a delivery window to
smooth the video frame rate, while allowing it to adapt to
changing network conditions. Prangl et al. [13] proposed
and evaluated a TCP-based perceptual QoS improvement
mechanism. Their approach is based on media content
adaptation (transcoding), applied at the application layer
at the server. Deshpande [4] proposed an approach that
allowed the player to employ single or multiple concurrent
HTTP connections to receive streaming media and switch
between the connections dynamically.

1.2 Paper Outline

In Section 2, we describe our experimental approach, the
various tests we perform for each player, and the metrics we
focus on. Sections 3, 4 and 5 focus on the Smooth Streaming,
Netflix, and OSMF players, respectively. Section 6 focuses
on the competition effects that take place when two adaptive
players share the same bottleneck. Section 7 focuses on live
video using the Smooth Streaming player. We summarize
what we learn for each player and conclude the paper in
Section 8.

2. METHODOLOGY AND METRICS

In this section, we give an overview of our experimental
methodology and describe the metrics we focus on. The
host that runs the various video players also runs a packet
sniffer (Wireshark [12]) and a network emulator (DummyNet
[14]). Wireshark allows us to capture and analyze offline the
traffic from and to the HT'TP server. DummyNet allows us
to control the downstream available bandwidth (also referred
to as awvail-bw) that our host can receive. That host is
connected to the Georgia Tech campus network through a
Fast Ethernet interface. When we do not limit the avail-bw
using DummyNet, the video players always select the highest
rate streams; thus, when DummyNet limits the avail-bw to
relatively low bitrates (1-5 Mbps) we expect that it is also
the downstream path’s end-to-end bottleneck.

In the following, we study various throughput-related
metrics:

1. The avail-bw refers to the bitrate of the bottleneck that
we emulate using DummyNet. The TCP connections that
transfer video and audio streams cannot exceed (collectively)



that bitrate at any point in time.

2. The 2-sec connection throughput refers to the download
throughput of a TCP connection that carries video or audio
traffic, measured over the last two seconds.

3. The running average of a connection’s throughput refers
to a running average of the 2-sec connection throughput
measurements. If A(t;) is the 2-sec connection throughput in
the i’th time interval, the running average of the connection
throughput is:

oo JOA(ic) + (1= 0)A(t) i>0
)= A(to) i=0

In the experiments, we use 6 = 0.8.

4. The (audio or video) fragment throughput refers to the
download throughput for a particular fragment, i.e., the size
of that fragment divided by the corresponding download
duration. Note that, if a fragment is downloaded in every
two seconds, the fragment throughput can be much higher
than the 2-sec connection throughput in the same time
interval (because the connection can be idle during part
of that time interval). As will be shown later, some video
players estimate the avail-bw using fragment throughput
measurements.

We also estimate the playback buffer size at the player
(measured in seconds), separately for audio and video.
We can accurately estimate the playback buffer size for
players that provide a timestamp (an offset value that
indicates the location of the fragment in the stream) in
their HT'TP fragment requests. Suppose that two successive,
say video, requests are sent at times ¢1 and t2 (t1 < t2)

with timestamps t/l and t/2 (t/l < tlg), respectively (all times
measured in seconds). The playback buffer duration in
seconds for video at time t> can be then estimated as:

B(ts) = [B(t1) — (t2 — t1) + (ta — t1)]F

where [z]T denotes the maximum of z and 0. This method
works accurately because, as will be clear in the following
sections, the player requests are not pipelined: a request for
a new fragment is sent only after the previous fragment has
been fully received.

We test each player under the same set of avail-bw
conditions and variations. In the first round of tests, we
examine the behavior of a player when the avail-bw is not
limited by DummyNet; this “blue-sky” test allows us to
observe the player’s start-up and steady-state behavior -
in the same experiments we also observe what happens
when the user skips to a future point in the video clip.
In the second round of tests, we apply persistent avail-bw
variations (both increases and decreases) that last for tens
of seconds. Such variations are common in practice when
the cross traffic in the path’s bottleneck varies significantly
due to arriving or departing traffic from other users. A
good player should react to such variations by decreasing or
increasing the requested bitrate. In the third round of tests,
we apply positive and negative spikes in the path’s avail-bw
that last for just few seconds - such variations are common
in 802.11 WLANS for instance. For such short-term drops,
the player should be able to maintain a constant requested
bitrate using its playback buffer. For short-term avail-bw
increases, the player could be conservative and stay at its

current rate to avoid unnecessary bitrate variations. Due
to space constraints, we do not show results from all these
experiments for each player; we select only those results that
are more interesting and provide new insight.

All experiments were performed on a Windows Vista
Home Premium version 6.0.6002 laptop with an Intel(R)
Core(TM)2 Duo P8400 2.26 GHz processor, 3.00 GB
physical memory, and an ATI Radeon Graphics Processor
(0x5C4) with 512 MB dedicated memory.

3. MICROSOFT SMOOTH STREAMING

In the following experiments, we use Microsoft Silverlight
Version 4.0.50524.0. In a Smooth Streaming manifest
file, the server declares the available audio and video
bitrates and the resolution for each content (among other
information). The manifest file also contains the duration
of every audio and video fragment. After the player has
received the manifest file, it generates successive HTTP
requests for audio and video fragments. Each HTTP
request from the player contains the name of the content,
the requested bitrate, and a timestamp that points to the
beginning of the corresponding fragment. This timestamp
is determined using the per-fragment information provided
in the manifest. The following is an example of a Smooth
Streaming HTTP request.

GET (..)/BigBuckBunny720p.ism/
QualityLevels(2040000) /Fragments(video=400000000)
HTTP/1.1

In this example, the requested bitrate is 2.04 Mbps and
the fragment timestamp is 40 s.

The Smooth Streaming player maintains two TCP
connections with the server. At any point in time, one of the
two connections is used for transferring audio and the other
for video fragments. Under certain conditions, however, the
player switches the audio and video streams between the two
connections - it is not clear to us when/how the player takes
this decision. This way, although at any point in time one
connection is transferring video fragments, over the course of
streaming, both connections get the chance to transfer video
fragments. The benefit of such switching is that neither of
the connections would stay idle for a long time, keeping the
server from falling back to slow-start. Moreover, the two
connections would maintain a large congestion window.

Sometimes the player aborts a TCP connection and
opens a new one - this probably happens when the former
connection provides very low throughput. Also, when the
user jumps to a different point in the stream, the player
aborts the existing TCP connections, if they are not idle, and
opens new connections to request the appropriate fragments.
At that point, the contents of the playback buffer are
flushed.

In the following experiments we watch a sample video
clip (“Big Buck Bunny”) provided by Microsoft at the IIS
Web site:

http://wuw.iis.net/media/experiencesmoothstreaming

The manifest file declares eight video encoding bitrates
between 0.35 Mbps and 2.75 Mbps and one audio encoding
bitrate (64 Kbps). We represent an encoding bitrate of r
Mbps as Pr, (e.g., P2.75). Each video fragment (except the



last) has the same duration: 7=2 s. The audio fragments
are approximately of the same duration.

3.1 Behavior under Unrestricted avail-bw

Figure 1 shows the various throughput metrics,
considering only the video stream, in a typical experiment
without restricting the avail-bw using DummyNet. t=0
corresponds to the time when the Wireshark capture starts.
Note that the player starts from the lowest encoding bitrate
and it quickly, within the first 5-10 seconds, climbs to the
highest encoding bitrate. As the per-fragment throughput
measurements indicate, the highest encoding bitrate (Pa.75)
is significantly lower than the avail-bw in the end-to-end
path. The player upshifts to the highest encoding profile
from the lowest one in four transitions. In other words, it
seems that the player avoids large jumps in the requested
bitrate (more than two successive bitrates) - the goal is
probably to avoid annoying the user with sudden quality
transitions, providing a dynamic but smooth watching
experience.

Smooth Streaming Player, Section 3.1
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Figure 1: Per-fragment throughput, average

TCP throughput and the requested bitrate for
video traffic under unrestricted avail-bw conditions.
Playback starts at around t=5 s, almost 2 s after the
user clicked PLAY.

Another important observation is that during the initial
time period, the player asks for video fragments much more
frequently than once every 7 seconds. Further analysis of
the per-fragment interarrivals and download times shows
that the player operates in one of two states: Buffering
and Steady-State. In the former, the player requests a new
fragment as soon as the previous fragment was downloaded.
Note that the player does not use HT'TP pipelining - it
does not request a fragment if the previous fragment has
not been fully received. In Steady-State, on the other
hand, the player requests a new fragment either 7 seconds
after the previous fragment was requested (if it took less
than 7 seconds to download that fragment) or as soon
as the previous fragment was received (otherwise). In
other words, in the Buffering state the player aims to
maximize its fragment request rate so that it can build
up a target playback buffer as soon as possible. In
Steady-State, the player aims to maintain a constant
playback buffer, requesting one fragment every 7 seconds
(recall that each fragment corresponds to 7 seconds of
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Figure 2: Interarrival and download times of video
fragments under unrestricted avail-bw conditions.
Each fragment is two seconds long.

content). We estimated the target video playback buffer
size, as described in Section 2, to be about 30 seconds.
The time it takes to reach Steady-State depends on the
avail-bw - as the avail-bw increases, it takes less time
to accumulate the 30-second playback buffer. We have
consistently observed that the player does not sacrifice
quality, requesting low-bitrate encodings, to fill up its
playback buffer sooner. Another interesting observation is
that the player does not request a video bitrate whose frame
resolution (as declared at the manifest file) is larger than the
resolution of the display window.

3.2 Behavior of the Audio Stream

Audio fragments are of the same duration with video
fragments, at least in the movies we experimented with.
Even though audio fragments are much smaller in bytes
than video fragments, the Smooth Streaming player does
not attempt to accumulate a larger audio playback buffer
than the corresponding video buffer (around 30 s). Also,
when the avail-bw drops, the player does not try to request
audio fragments more frequently than video fragments (it
would be able to do so). Overall, it appears that the Smooth
Streaming player attempts to keep the audio and video
stream download processes as much in sync as possible.

3.3 Behavior
Variations

In this section, we summarize a number of experiments
in which the avail-bw goes through four significant and
persistent transitions, as shown in Figure 3. First, note that,
as expected, the per-fragment throughput is never higher
than the avail-bw. Instead, the per-fragment throughput
tracks quite well the avail-bw variations for most of the
time; part of the avail-bw, however, is consumed by audio
fragments and, more importantly, TCP throughput can vary
significantly after packet loss events.

We next focus on the requested video bitrate as the
avail-bw changes. Initially, the avail-bw is 5 Mbps and the
player requests the P» o4 profile because it is constrained by
the resolution of the display window (if we were watching
the video in full-screen mode, the player would request the
highest P».75 profile). The playback buffer (shown in Figure

under Persistent avail-bw
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Figure 3: Per-fragment throughput, average TCP
throughput and the requested bitrate for the
video traffic under persistent avail-bw variations.
Playback starts at around t=10 s, almost 3 s after
the user clicked PrAy.
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Figure 4: Video playback buffer size in seconds
under persistent avail-bw variations.

4) has reached its 30 s target by t=40 s and the player is in
Steady-State.

At time t=73 s, the avail-bw is dropped to 2 Mbps - that
is not sufficient for the P2 04 encoding because we also need
some capacity for the audio traffic and for various header
overheads. The player reacts by switching to the next lower
profile (P1.52) but after some significant delay (almost 25
seconds). During that time period, the playback buffer
has decreased by only 3 seconds (the decrease is not large
because the avail-bw is just barely less than the cumulative
requested traffic). The large reaction delay indicates that
the player does not react to avail-bw changes based on the
latest per-fragment throughput measurements. Instead, it
averages those per-fragment measurements over a longer
time period so that it acts based on a smoother estimate
of the avail-bw variations. The playback buffer size returns
to its 30 s target after the player has switched to the P 52
profile.

The avail-bw increase at t=193 s is quickly followed by
an appropriate increase in the requested encoding bitrate.

Again, the switching delay indicates that the Smooth
Streaming player is conservative, preferring to estimate
reliably the avail-bw (using several per-fragment throughput
measurements) instead of acting opportunistically based on
the latest fragment throughput measurement.

The avail-bw decrease at t=303 s is even larger (from
5 Mbps to 1 Mbps) and the player reacts by adjusting
the requested bitrate in four transitions. The requested
bitrates are not always successive. After those transitions,
the request bitrate converges to an appropriate value Py 63,
much less than the avail-bw. It is interesting that the player
could have settled at the next higher bitrate (FPo.g4) - in that
case, the aggregate throughput (including the audio stream)
would be 0.94 Mbps. That is too close to the avail-bw (1
Mbps), however. This implies that Smooth Streaming is
conservative: it prefers to maintain a safety margin between
the avail-bw and its requested bitrate. We think that this
is wise, given that the video bitrate can vary significantly
around its nominal encoding value due to the variable bitrate
(VBR) nature of video compression.

Another interesting observation is that the player avoids
large transitions in the requested bitrate - such quality
transitions can be annoying to the viewer. Also, the upward
transitions are faster than the downward transitions - still,
however, it can take several tens of seconds until the player
has switched to the highest sustainable bitrate.

3.4 Behavior under Short-term avail-bw
Variations

In this section, we summarize a number of experiments
in which the avail-bw goes through positive or negative
“spikes” that last for only few seconds, as shown in Figures 5
and 7. The spikes last for 2 s, 5 s and 10 s, respectively.
Such short-term avail-bw variations are common in practice,
especially in 802.11 WLAN networks. We think that a good
adaptive player should be able to compensate for such spikes
using its playback buffer, without causing short-term rate
adaptations that can be annoying to the user.

Smooth Streaming Player, Section 3.4, First Experiment
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requested bitrate for the video traffic under positive
avail-bw spikes. Playback starts at around t=7 s,
almost 4 s after the user clicked PrAy.

Figure 5 shows the case of positive spikes. Here, we
repeat the three spikes twice, each time with a different
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under positive avail-bw spikes.

increase magnitude. The Smooth Streaming player ignores
the 2-second spikes and the smaller 5-second spike. On the
other hand, it reacts to the 10-second spikes by increasing
the requesting video bitrate. Unfortunately, it does so too
late (sometimes after the end of the spike) and for too long
(almost till 40 s after the end of the spike). During the
time periods that the requested bitrate is higher than the
avail-bw, the playback buffer size obviously shrinks, making
the player more vulnerable to freeze events (See Figure 6).
This experiment confirms that the player reacts, not to the
latest fragment download throughput, but to a smoothed
estimate of those measurements that can be unrelated to
the current avail-bw conditions.

Figures 7 and 8 show similar results in the case of negative
spikes. Here, the spikes reduce the avail-bw from 2 Mbps
to 1 Mbps. The player reacts to all three spikes, even the
spike that lasts for only 2 s. Unfortunately, the player reacts
too late and for too long: it requests a lower bitrate after
the end of each negative spike and it stays at that lower
bitrate long for 40-80 s. During those periods, the user would
unnecessarily experience a lower video quality.

Smooth Streaming Player, Section 3.4, Second Experiment
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Figure 7: Average TCP throughput and the
requested bitrate for the video traffic under negative
avail-bw spikes. Playback starts at around t=9 s,
almost 3 s after the user clicked Pray.
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4. NETFLIX PLAYER

The Netflix player uses Microsoft’s Silverlight for media
representation, but a different rate-adaptation logic. The
Netflix player also maintains two TCP connections with
the server, and it manages these TCP connections similarly
with the Smooth Streaming player. As will become clear,
however, the Netflix player does not send audio and video
fragment requests at the same pace. Also, the format of
the manifest file and requests are different. Further, most
of the initial communication between the player and server,
including the transfer of the manifest file, is done over SSL.
We decrypted the manifest file using a Firefox plugin utility
called Tamper Data that accesses the corresponding private
key in Firefox. Video and audio fragments are delivered
in wmv and wma formats, respectively. An example of a
Netflix fragment request follows:

GET /sa2/946/1876632946 .wmv
/range/2212059-22520587token=1283923056
_d6£6112068075f1fb60cc48eabb9eabb&random
=1799513140 HTTP/1.1

Netflix requests do not correspond to a certain time
duration of audio or video. Instead, each request specifies
a range of bytes in a particular encoding profile. Thus,
we cannot estimate the playback buffer size as described
in Section 2. We can only approximate that buffer size
assuming that the actual encoding rate for each fragment
is equal to the corresponding nominal bitrate for that
fragment (e.g., a range of 8 Mb at the P;.go encoding profile
corresponds to 8 seconds worth of video) - obviously this is
only an approximation but it gives us a rough estimate of
the playback buffer size.

After the user clicks the PLAY button, the player starts
by performing some TCP transfers, probably to measure
the capacity of the underlying path. Then it starts
buffering audio and video fragments, but without starting
the playback yet. The playback starts either after a certain
number of seconds, or when the buffer size reaches a target
point. If that buffer is depleted at some point, the Netflix
player prefers to stop the playback, showing a message that



the player is adjusting to a slower connection. The playback
resumes when the buffer size reaches a target point.

In the following experiments we watch the movie “Mary
and Max”. The manifest file provides five video encoding
bitrates between 500 Kbps and 3.8 Mbps and two audio
encoding bitrates (64 Kbps and 128 Kbps).

4.1 Behavior under Unrestricted avail-bw

Figure 9 shows the various throughput metrics,
considering only the video stream, in a typical experiment
without using DummyNet to restrict the avail-bw. The
interarrival of video fragment requests and the download
times for each video fragment are shown in Figure 10.
In this experiment, the playback started about 13 s after
the user clicked PrLAay. The playback delay can be much
larger depending on the initial avail-bw (even up to few
minutes). During this interval, several security checks are
also performed before the player starts buffering and the
playback begins [11]. For the first few fragments, the
player starts from the lowest encoding bitrate and requests
a number of fragments from all the available bitrates. Then,
the player stays at that highest bitrate for the duration of
the experiment.
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Figure 9: Per-fragment throughput, average

TCP throughput and the requested bitrate for
video traffic under unrestricted avail-bw conditions.
Playback starts at around t=24 s, almost 16 s after
the user clicked PLAY.

During the first 55 s of streaming, until t=75 s, the
player is clearly in the Buffering state: it requests a new
video fragment right after the previous fragment has been
downloaded. The achieved TCP throughput in this path is
about 30 Mbps, allowing the player to quickly accumulate
a large playback buffer. We estimated the size of the
playback buffer at the end of the Buffering state (t=75 s)
at about 300 s worth of video - this is an order of magnitude
larger than the playback buffer size we observed for Smooth
Streaming.

When the player switches to Steady-State, video
fragments are requested almost every three seconds, with
significant variation, however.
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Figure 10: Interarrival and download times of video
fragments under unrestricted avail-bw conditions.

4.2 Behavior of the Audio Stream

Audio fragments in the Netflix player are significantly
larger than the ones in Smooth Streaming. Specifically,
an audio fragment is typically 30 s long. Thus, after the
player has reached Steady-State, a new audio fragment
is requested every 30 s. Further, it appears that this
player does not attempt to keep the audio and video stream
download processes in sync; it can be that the audio
playback buffer size is significantly larger than the video
playback buffer size.

4.3 Behavior
Variations

Figure 11 shows the various throughput-related metrics
in the case of persistent avail-bw variations. As in the
experiment with unrestricted avail-bw, the player first
requests few fragments at all possible encodings. Within
the first 40 s it converges to the highest sustainable bitrate
(P1.50) for that avail-bw (2 Mbps). It should be noted that
in this experiment the player never leaves the Buffering
state (based on analysis of the video fragment request
interarrivals).

When the avail-bw drops to 1 Mbps, the player
reacts within about 20 s, which implies that its avail-bw
estimator is based on a smoothed version of the underlying
per-fragment throughput, as opposed to the instantaneous
and latest such measurement. It is interesting that the
selected profile at that phase (Pi.o0) is not sustainable,
however, because it is exactly equal to the avail-bw (some
avail-bw is consumed by audio traffic and other header
overheads). Thus, the playback buffer size slowly decreases,
forcing the player between 320 and 400 s to occasionally
switch to the next lower bitrate. This observation implies
that the Netflix player prefers to utilize a certain high bitrate
even when the avail-bw is insufficient, as long as the player
has accumulated more than a certain playback buffer size.
We make the same observation from 450 to 500 s. During
that interval, the player switches to a profile (P.60) that
is much higher than the avail-bw (2 Mbps). The player
can do this, without causing any problems, because it has
accumulated a sufficiently large playback buffer size at that
point.

In summary, it appears that the Netflix player is more

under Persistent avail-bw



aggressive than Smooth Streaming, trying to deliver the
highest possible encoding rate even when the latter is more
than the avail-bw, as long as the playback buffer size is
sufficiently large.
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Figure 11: Average TCP throughput and the

requested bitrate for the video traffic under

persistent avail-bw variations. Playback starts at

around t=20 s, almost 13 s after the user clicked

Pray.

4.4 Behavior under Short-term avail-bw
Variations

Figure 12 shows how the Netflix player reacts to positive
avail-bw spikes, while Figure 13 shows how it reacts to
negative avail-bw spikes. We cannot compare directly
the results of these experiments to the corresponding
experiments with Smooth Streaming, because the video
encoding profiles are different between the movies in these
two experiments. As in the case of persistent avail-bw
variations, we observe that the Netflix player is rather
aggressive, reacting to large increases in avail-bw even if they
are short-lived. As opposed to Smooth Streaming, which
often reacts too late and for too long, Netflix reacts faster,
while the spike is still present, even though the reaction can
still last much longer after the spike.

On the other hand, in the experiment with negative
avail-bw spikes, the Netflix player does not switch to a lower
bitrate. It prefers to compensate for the lack of avail-bw
using the large playback buffer size that it has previously
accumulated.

5. ADOBE OSMF

We have repeated the same set of tests with Adobe’s
sample OSMF player, using Flash version 10.1.102.64 with
player version WIN 10.1.102.64 and OSMF library version
1.0. In the following experiments, we watch a movie trailer
(“Freeway”) provided by Akamai’s HD-video demo Web site
for Adobe HTTP Dynamic Streaming:

http://wwwns.akamai.com/hdnetwork/demo/flash/zeri/

Note that the player used in this Web site was not built
specifically to showcase HT'TP Dynamic Streaming.

The manifest file declares eight encoding bitrates for
this trailer between 0.25 Mbps and 3.00 Mbps. In this
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Figure 12: Average TCP throughput and the

requested bitrate for the video traffic under positive
avail-bw spikes. Playback starts at around t=20 s,
almost 16 s after the user clicked PrLAY.
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Figure 13: Average TCP throughput and the
requested bitrate for the video traffic under negative
avail-bw spikes. Playback starts at around t=37 s,
almost 31 s after the user clicked PrLAy.

player, each server file (FAF format) contains one segment
of the movie. A segment can contain multiple fragments.
The duration of each fragment is determined by the
server. The HTTP requests that the player generates
include a fragment number instead of a timestamp or a
byte range. An example of an OSMF HTTP request follows:

GET /content/inoutedit-mbr
/inoutedit_h264_3000Segl-Fragb HTTP/1.1

Note that the requested bitrate is shown in the request
(3000 Kbps) together with the requested segment and
fragment numbers. The player maintains one TCP
connection with the server and receives all fragments
through this connection. The player might shut down the
connection and open a new one if the user jumps to a
different point in the stream and the connection is not idle.
According to information provided by the player itself, the
target playback buffer seems to be less than 10 seconds.



Figure 14 shows that initially the player requests one
fragment at the lowest available profile and then quickly
climbs to the largest possible one. But, it does not
converge to that profile and continues switching between
profiles occasionally. When the avail-bw is dropped to
2 Mbps at t=139 s, the player fails to converge to the
highest sustainable profile (P;.7). Instead, it keeps switching
between profiles, often using the lowest and highest ones
(Po.25 and P3.00). The user observes several dropped frames
and freeze events, which is an indication of a depleted
playback buffer.
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Figure 14: Per-fragment throughput, the requested
bitrate for the video traffic and average TCP
throughput under persistent avail-bw variations.
Playback starts at around t=13 s, almost 3 s after
the user clicked PrAy.

We have also conducted the same set of experiments with
the latest version of the OSMF player obtained from the
following Web site.

http://sourceforge.net/adobe/osmf /home/

Figure 15 shows the various throughput related metrics
in an experiment with the OSMF player version 1.5 under
persistent avail-bw variations. We see a very similar issue
here. The player makes similar problematic rate switchings
and gets into oscillation.

To summarize, we have observed that the OSMF player
fails to converge to a sustainable bitrate especially when
the avail-bw is smaller than or very close to the highest
available bitrate of the media. Instead, it usually oscillates
between the lowest and highest bitrates. The default
rate-adaptation algorithm seems to be tuned for short
variations in the avail-bw. We do not describe here the
rest of the experiments we performed with it, because they
simply confirm that the default rate-adaptation algorithm
deployed in the OSMF player does not function properly
under our test scenarios.
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Figure 15: Per-fragment throughput, the requested
bitrate for the video traffic and average TCP
throughput under persistent avail-bw variations.
Playback starts at around t=11 s, almost 4 s after
the user clicked PrAy.

6. TWO COMPETING PLAYERS

Suppose that two adaptive HT'TP streaming players share
the same bottleneck. This can happen, for instance,
when people in the same house watch two different movies
- in that case the shared bottleneck is probably the
residential broadband access link. Another example of such
competition is when a large number of users watch the same
live event, say a football game. In that case the shared
bottleneck may be an edge network link. There are many
questions in this context. Can the players share the avail-bw
in a stable manner, without experiencing oscillatory bitrate
transitions? Can they share the avail-bw in a fair manner?
How does the number of competing streams affect stability
and fairness?” How do different adaptive players compete
with each other? And how does a player compete with TCP
bulk transfers (including progressive video downloads)? In
this section, we only “touch the surface” of these issues,
considering a simple scenario in which two identical players
(Smooth Streaming) compete at a bottleneck in which the
avail-bw varies between 1-4 Mbps. The idea is that, if we
observe significant problems even in this simple scenario, we
should also expect similar issues in more complex scenarios.

In the following, we present results from two experiments.
It should be noted that such experiments are fundamentally
non-reproducible: there is always some stochasticity in the
way players share the bottleneck’s avail-bw. However, our
observations, at a qualitative level, are consistent across
several similar experiments.

Figure 16 shows the avail-bw variations in the first
experiment, together with the requested bitrates from the
two players. The second player starts about one minute after
the first one. Until that point, the first player was using
the highest profile (Ps.75). After the second player starts,
the two players could have shared the 4 Mbps bottleneck by
switching to Pi .52, however, they do not. Instead, the second
player oscillates between lower profiles. When the avail-bw
drops to 3 Mbps or 2 Mbps, the oscillations continue for
both players. The only stable period during this experiment
is when the avail-bw is limited to 1 Mbps: in that case



both players switch to the lowest profile Py 35 simply because
there is no other bitrate that is sustainable for both players.
Interestingly, when the avail-bw increases to 4 Mbps the
two players start oscillating in a synchronized manner: when
they both switch to P 04 the shared bottleneck is congested.
It seems that both players observe congestion at the same
time, and they react in the same manner lowering their
requested bitrate at about the same time.
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Figure 16: Two Smooth Streaming players compete
for avail-bw. The players start the playback at
around t=7 s and t=57 s, respectively.

The previous experiment reveals some interesting points
about Smooth Streaming. First, it seems that the avail-bw
estimation method in that player considers only time periods
in which fragments are actually downloaded - there is
probably no estimation when the player’s connections are
idle. So, if two players X and Y share the same bottleneck,
and Y is idle while X downloads some fragments, X
can overestimate the avail-bw. Second, it appears that
the Smooth player does not use randomization in the
rate-adaptation logic. Previous studies have shown that a
small degree of randomization was often sufficient to avoid
synchronization and oscillations [6].
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Figure 17: Two Smooth Streaming players compete
for avail-bw. The players start the playback at
around t=12 s and t=77 s, respectively.

Figure 17 shows the results for another run. Here, the
second player stays at the lowest possible bitrate for about
150 s after it starts streaming, while the first player uses
the remaining avail-bw with the highest sustainable bitrate.
This is clearly a very unfair way to share the bottleneck
link. It should be noted that this unfairness is unrelated
to TCP’s well-known unfairness towards connections with
large round-trip times (RTT). In this experiment, both
connections have the same RTT. The unfairness here is
not generated by TCP’s congestion control, but by the
offered load that each application (video player) requests.
The second player estimates the avail-bw to be much
lower, and it does not even try to increase its requested
bitrate. If it had done so, it would likely be able
to obtain a higher bitrate forcing the first player to a
lower bitrate. It appears, however, that the Smooth
player’s rate-adaptation algorithm does not include such
bandwidth-sharing objectives.

7. SMOOTH LIVE STREAMING

We are also interested in the similarities and differences
between live and on-demand adaptive video streaming.
What is the playback delay in the case of live streaming?
Does the player react differently to avail-bw variations when
it streams live content? And how does the player react when
the playback buffer becomes empty? Does it skip fragments
so that it maintains a small playback delay, or does it
increase the playback delay aiming to show all fragments?
We explored these questions with the Smooth Streaming
player. In the following experiments, we used the live video
feed from the Home Shopping Network (HSN) web site:
http://www.hsn.com/hsn-tv_at-4915_xa.aspx?nolnav=1.
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Figure 18: Per-fragment throughput, the requested
bitrate for the video traffic and average TCP
throughput for live video streaming. Playback starts
at around t=20 s.

Figure 18 shows the various throughput metrics and the
requested video bitrate, while Figure 19 shows the estimated
video playback buffer size (in seconds). A first important
difference with on-demand streaming is that the initial
playback buffer size is about 8 s; significantly lower than
the typical playback buffer sizes we observed in on-demand
Smooth Streaming sessions. By the way, even though
this playback delay may sound too large for live content,
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Figure 19: Video playback buffer size in seconds for
live video streaming.

note that even cable TV networks usually enforce a similar
delay (referred to as “profanity delay”) to avoid broadcasting
inappropriate scenes.

A second important point, which is not shown in the
previous graphs but it can be observed by the timestamps
of the HTTP requests, is that the player initially requests
fragments that correspond to about 8 s in the past. This
way, it can start displaying the video without having to
wait for a long initial playback delay; of course, what the
user watches then happened at least 8 s ago. As in the
case of on-demand streaming, the initial fragment request
rate (while the player is in the Buffering state) is higher,
requesting a new fragment as soon as the last fragment is
received.

Other than the previous two points, it appears that
the Smooth Streaming player does not react to avail-bw
variations any different with live content than with
on-demand content. Note that the persistent avail-bw
decreases and increases are followed by similar bitrate
adjustments as in Section 3.

Another interesting point is what happens when the
playback buffer becomes empty. This happened in this
experiment at around t=360 s, when the avail-bw was
decreased to 500 Kbps. During that event the playback
buffer remained practically empty for about 40 s. The player
still receives some fragments during that period but they
would not increase the playback buffer size by more than
a fragment. The player was late to switch to a sufficiently
lower bitrate, and so several fragments were requested at
bitrates (P1.40 and Po.g0) that were higher than the avail-bw.
The end-result was that those fragments took too long to
download, the buffer became depleted, and the playback
stalled for about 27 s.

Arguably, it is reasonable to expect for live streaming that
the player could skip some fragments that take too long to
download, jumping to a later point in the video stream. The
Smooth Streaming implementation for this particular Web
site does not do so, however. It appears that the player aims
to show every single fragment. Consequently, the playback
delay can increase, gradually staying more and more behind
the live broadcast. Indeed, in this case after the avail-bw
increased to 5 Mbps, the playback buffer size increased to

almost 27 s, which is comparable to the typical playback
delay of on-demand content using Smooth Streaming.

8.  CONCLUSIONS

We conducted an experimental evaluation of three
commercial adaptive HTTP streaming players, focusing
on how they react to persistent and short-term avail-bw
variations. Here, we summarize our findings for each player
and conclude the paper.

The Smooth Streaming player is quite effective under
unrestricted avail-bw as well as under persistent avail-bw
variations. It quickly converges to the highest sustainable
bitrate, while it accumulates at the same time a large
playback buffer requesting new fragments (sequentially)
at the highest possible bitrate. This player is rather
conservative in its bitrate switching decisions. First, it
estimates the avail-bw by smoothing the per-fragment
throughput measurements, introducing significant delays
in the rate-adaptation logic. = Second, it avoids large
bitrate changes that could be annoying to the viewer. On
the negative side, the Smooth Streaming player reacts to
short-term avail-bw spikes too late and for too long, causing
either sudden drops in the playback buffer or unnecessary
bitrate reductions. Further, our experiments with two
competing Smooth Streaming players indicate that the
rate-adaptation logic is not able to avoid oscillations, and
it does not aim to reduce unfairness in bandwidth sharing.
The Live Smooth Streaming player behaves similarly, except
that the playback buffer is initially shorter and the player
starts requesting fragments from the recent past.

The Netflix player is similar to Smooth Streaming (they
both use Silverlight for the media representation). However,
we observed that the former showed some important
differences in its rate-adaptation behavior, becoming more
aggressive than the latter and aiming to provide the highest
possible video quality, even at the expense of additional
bitrate changes. Specifically, the Netflix player accumulates
a very large buffer (up to few minutes), it downloads large
chunks of audio in advance of the video stream, and it
occasionally switches to higher bitrates than the avail-bw as
long as the playback buffer is almost full. It shares, however,
the previous shortcomings of Smooth Streaming.

The OSMF player often fails to converge to an appropriate
bitrate even after the avail-bw has stabilized. This player
has been made available so that developers will customize
the code including the rate-adaptation algorithm for HT'TP
Dynamic Streaming for their use case. We do not summarize
any other experiment here.

Overall, it is clear that the existing adaptive HTTP
streaming players are still at their infancy. The technology
is new and it is still not clear how to design an
effective rate-adaptation logic for a complex and demanding
application (video streaming) that has to function on top
of a complex transport protocol (TCP). The interactions
between these two feedback loops (rate-adaptation logic at
the application layer and TCP congestion control at the
transport layer) are not yet understood well. In future
work, we plan to focus on these issues and design improved
rate-adaptation mechanisms.
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