
On the Memory Access Patterns of
Supercomputer Applications:

Benchmark Selection and Its Implications
Richard C. Murphy, Member, IEEE, and Peter M. Kogge, Fellow, IEEE

Abstract—This paper compares the System Performance Evaluation Cooperative (SPEC) Integer and Floating-Point suites to a set of

real-world applications for high-performance computing at Sandia National Laboratories. These applications focus on the high-end

scientific and engineering domains; however, the techniques presented in this paper are applicable to any application domain. The

applications are compared in terms of three memory properties: 1) temporal locality (or reuse over time), 2) spatial locality (or the use

of data “near” data that has already been accessed), and 3) data intensiveness (or the number of unique bytes the application

accesses). The results show that real-world applications exhibit significantly less spatial locality, often exhibit less temporal locality,

and have much larger data sets than the SPEC benchmark suite. They further quantitatively demonstrate the memory properties of

real supercomputing applications.

Index Terms—Performance analysis and design aids, measurement techniques, measurement, evaluation, modeling, simulation of

multiple-processor systems.

Ç

1 INTRODUCTION

THE selection of benchmarks relevant to the super-
computing community is challenging at best. In

particular, there is a discrepancy between the workloads
that are most extensively studied by the computer
architecture community and the codes relevant to high-
performance computing. This paper examines these differ-
ences quantitatively in terms of the memory characteristics of
a set of a real applications from the high-end science and
engineering domain as they compare to the System Perfor-
mance Evaluation Cooperative (SPEC) CPU2000 benchmark
suite and more general High Performance Computing (HPC)
benchmarks. The purpose of this paper is twofold: 1) to
demonstrate what general memory characteristics the com-
puter architecture community should look for when identify-
ing benchmarks relevant to HPC (and how they differ from
SPEC) and 2) to quantitatively explain the application’s
memory characteristics to the HPC community, which often
relies on intuition when discussing memory locality. Finally,
although most studies discuss temporal and spatial locality
when referring to memory performance, this work introduces
a new measure, data intensiveness, that serves as the biggest
differentiator in application properties between real applica-
tions and benchmarks. These techniques can be applied to

any architecture-independent comparison of any bench-
mark or application suite and this study could be repeated
for other markets of interest. The three key characteristics
of the application are:

1. Temporal locality: The reuse over time of a data item
from memory.

2. Spatial locality: The use of data items in memory near
other items that have already been used.

3. Data intensiveness: The amount of unique data the
application accesses.

Quantifying each of these three measurements is
extremely difficult (see Sections 4 and 2). Beyond
quantitatively defining the measurements, there are two
fundamental problems: first, choosing the applications to
measure and, second, performing the measurement in an
architecture-independent fashion that allows general con-
clusions to be drawn about the application rather than
specific observations of the application’s performance on
one particular architecture. This paper addresses the
former problem by using a suite of real codes that
consume significant computation time at Sandia National
Laboratories, and it addresses the latter by defining the
metrics to be orthogonal to each other and measuring
them in an architecture independent fashion. Conse-
quently, these results (and the techniques used to generate
them) are applicable for comparing any set of benchmarks
or application memory properties without regard to how
those properties perform on any particular architectural
implementation.

The remainder of this paper is organized as follows:
Section 2 examines the extensive related work in measuring
spatial and temporal locality, as well as the application’s
working sets; Section 3 describes the Sandia integer and
floating-point applications, as well as the SPEC suite;
Section 4 quantitatively defines the measures of temporal

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007 937

. R.C. Murphy is with the Scalable Computing Systems Group, Sandia
National Laboratories, PO Box 5800, MS-1319, Albuquerque, NM 87185-
1319. E-mail: rcmurph@sandia.gov. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the US
Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

. P.M. Kogge is with the Computer Science and Engineering Department,
University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, IN 46556.
E-mail: kogge@cse.nd.edu.

Manuscript received 6 Oct. 2006; revised 20 Dec. 2006; accepted 2 Jan. 2007;
published online 28 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0395-1006.
Digital Object Identifier no. 10.1109/TC.2007.1039.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

locality, spatial locality, and data intensiveness; Section 5
compares the application’s properties; Section 6 presents
the results; and Section 7 ends with the conclusions.

2 RELATED WORK

Beyond the somewhat intuitive definitions of spatial and

temporal locality provided in computer architecture text-

books [14], [27], there have been numerous attempts to

quantitatively define spatial and temporal locality [37].

Early research in computer architecture [7] examined

working sets or the data actively being used by a program,

in the context of paging. That work focused on efficiently

capturing the working set in limited core memory and has

been an active area of research [9], [31], [35].
More recent work is oriented toward addressing the

memory wall. It examines the spatial and temporal locality
properties of cache accesses and represents modern hier-
archical memory structures [6], [10], [32]. Compiler writers
have also extensively examined the locality properties of
applications in the context of code generation and optimi-
zation [11], [12].

In addition to definitions that are continuously refined,
the methodology for modeling and measuring the working
set has evolved continuously. Early analytical models were
validated by small experiments [7], [9], [31], [35], whereas
modern techniques have focused on the use of trace-based
analysis and full system simulation [18], [21], [32].

Because of its preeminence in computer architecture
benchmarks, the SPEC suite has been extensively analyzed
[12], [18], [19], [21], [33], as have other relevant workloads
such as database and online transaction processing (OLTP)
applications [3], [6], [20].

Finally, the construction of specialized benchmarks such
as the HPC Challenge RandomAccess benchmark [8] or the
STREAM benchmark [22] is specifically to address memory
performance. Real-world applications on a number of
platforms have been studied extensively [26], [36].

3 APPLICATIONS AND BENCHMARKS

This section describes a set of floating-point and integer
applications from Sandia National Laboratories, as well as
the SPEC Floating Point and Integer benchmark suites to
which they will be compared. The HPC Challenge
RandomAccess benchmark, which measures random mem-
ory accesses in Giga-Updates per Second (GUPS), and the
STREAM benchmark, which measures effective bandwidth,
are used as comparison points to show very basic memory
characteristics. Finally, LINPACK, the standard super-
computing benchmark used to generate the Top 500 list,
is included for comparison. In the case of Message Passing
Interface (MPI) codes, the user portion of MPI calls is
included in the trace.

3.1 Floating-Point Benchmarks

Real scientific applications tend to be significantly different

from common processor benchmarks such as the SPEC suite.

Their data sets are larger, the applications themselves are

more complex, and they are designed to run on large-scale

machines. The following benchmarks were selected to

represent critical problems in supercomputing seen by the

largest scale deployments in the United States. The input

sets were all chosen to be representative of real problems or,

when they are benchmark problems, they are the typical

performance evaluation benchmarks used during new

system deployment. Two of the codes are benchmarks,

sPPM (see Section 3.1.5), which is part of the ASCI 7x

benchmark suite (that sets requirements for the ASCI

Purple supercomputer), and Cube3, which is used as a

simple driver for the Trilinos linear algebra package. The

sPPM code is a slightly simplified version of a real-world

problem and, in the case of Trilinos, linear algebra is so

fundamental to many areas of scientific computing that

studying core kernels is significantly important.

All of the codes are written for massively parallel

processors (MPPs) using the MPI programming model, but,

for the purposes of this study, were traced as a single node run

of the application. Even without the use of MPI, the codes are

structured to be MPI scalable. Other benchmarking (both

performance register and trace-based) has shown that the

local memory access patterns for a single node of the

application and serial runs are substantially the same.

3.1.1 Large-Scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS)

LAMMPS represents a classic molecular dynamics simula-

tion designed to represent systems at the atomic or

molecular level [28], [29]. The program is used to simulate

proteins in solution, liquid crystals, polymers, zeolites, and

simple Lenard-Jones systems. The version under study is

written in C++ and two significant inputs were chosen for

analysis:

. Lenard-Jones mixture. This input simulated a 2,048-
atom system consisting of three different types.

. Chain. This simulates 32,000 atoms and 31,680 bonds.

LAMMPS consists of approximately 30,000 lines of code.

3.1.2 CTH

CTH is a multimaterial, large deformation, strong shock

wave, and solid mechanics code developed over the last three

decades at Sandia National Laboratories [16]. CTH has

models for multiphase, elastic viscoplastic, porous, and

explosive materials. CTH supports multiple types of meshes:

. three-dimensional (3D) rectangular meshes,

. two-dimensional rectangular and cylindrical meshes,
and

. one-dimensional rectilinear, cylindrical, and spheri-
cal meshes.

It uses second-order accurate numerical methods to

reduce dispersion and dissipation and produce accurate,

efficient results. CTH is used extensively within the

Department of Energy laboratory complexes for studying

armor/antiarmor interactions, warhead design, high-explo-

sive initiation physics, and weapons safety issues. It

consists of approximately 500,000 lines of Fortran and C.

938 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

CTH has two modes of operation: with or without
adaptive mesh refinement (AMR).1 AMR changes the
application properties significantly and is useful for only
certain types of input problems. One AMR problem and
two non-AMR problems were chosen for analysis.

Three input sets were examined:

. 2-Gas. The input set uses an 80� 80� 80 mesh to
simulate two gases intersecting on a 45-degree plane.
This is the most “benchmark-like” (simple) input set
and is included to better understand how represen-
tative it is of real problems.

. Explosively formed projectile (EFP). The simulation
represents a simple EFP that was designed by Sandia
National Laboratories staff. The original design was
a combined experimental and modeling activity
where design changes were evaluated computation-
ally before hardware was fabricated for testing. The
design features a concave copper liner that is formed
into an effective fragment by the focusing of shock
waves from the detonation of the high explosive.
The measured fragment size, shape, and velocity is
accurately (within 5 percent) modeled by CTH.

. CuSt AMR. This input problem simulates a
4.52 km/s impact of a 4-mm copper ball on a steel
plate at a 90-degree angle. AMR is used in this
problem.

3.1.3 Cube3

Cube3 is meant to be a generic linear solver and drives the
Trilinos [15] frameworks for parallel linear and eigensolvers.
Cube3 mimics a finite-element analysis problem by creating a
beam of hexagonal elements, then assembling and solving a
linear system. The problem can be varied by width, depth,
and degrees of freedom (temperature, pressure, velocity, or
whatever physical modeling the problem is meant to
represent). The physical problem is 3D. The number of
equations in the linear system is equal to the number of nodes
in the mesh multiplied by the degrees of freedom at each
node. There are two variants, based on how the sparse
matrices are stored:

. CRS—a 55� 55 sparse compressed row system.

. VBR—a 32� 16 variable block row system.

These systems were chosen to represent a large system of
equations.

3.1.4 MPSalsa

MPSalsa performs high-resolution 3D simulations of react-
ing flow problems [34]. These problems require both fluid
flow and chemical kinetics modeling.

3.1.5 sPPM

The sPPM [5] benchmark is part of the Advanced Simula-
tion and Computing (ASCI) Purple benchmark suite, as
well as the 7x application list for ASCI Red Storm. It solves a
3D gas dynamics problem on a uniform Cartesian mesh
using a simplified version of the Piecewise Parabolic

Method (PPM) code. The hydrodynamics algorithm re-
quires three separate sweeps through the mesh per time
step. Each sweep requires approximately 680 flops to
update the state variables for each cell. The sPPM code
contains over 4,000 lines of mixed Fortran 77 and
C routines. The problem solved by sPPM involves a simple
but strong (about Mach 5) shock propagating through a gas
with a density discontinuity.

3.2 Integer Benchmarks

Although floating-point applications represent the classic
supercomputing workload, problems in discrete mathe-
matics, particularly graph theory, are becoming increas-
ingly prevalent. Perhaps the most significant of these are
fundamental graph theory algorithms. These routines are
important in the fields of proteomics, genomics, data
mining, pattern matching, and computational geometry
(particularly as applied to medicine). Furthermore, their
performance emphasizes the critical need to address the
von Neumann bottleneck in a novel way. The data
structures in question are very large, sparse, and referenced
indirectly (for example, through pointers) rather than as
regular arrays. Despite their vital importance, these
applications are significantly underrepresented in computer
architecture research and there is currently little joint work
between architects and graph algorithm developers.

In general, the integer codes are more “benchmark”
problems (in the sense that they use nonproduction input
sets), heavily weighted toward graph theory codes, than are
the floating-point benchmarks.

3.2.1 Graph Partitioning

There are two large-scale graph partitioning heuristics
included here: Chaco [13] and Metis [17]. Graph partition-
ing is used extensively in automation for very large scale
integration (VLSI) circuit design, static and dynamic load
balancing on parallel machines, and numerous other
applications. The input set in this work consists of a
143,437 vertex and 409,593 edge graph to be partitioned into
1,024 balanced parts (with minimum edge cut between
partitions).

3.2.2 Depth-First Search (DFS)

DFS implements a Depth-First Search on a graph with
2,097,152 vertices and 25,690,112 edges. DFS is used
extensively in higher level algorithms, including identifying
connected components, tree and cycle detection, solving the
two-coloring problem, finding Articulation Vertices (for
example, the vertex in a connected graph that, when
deleted, will cause the graph to become a disconnected
graph), and topological sorting.

3.2.3 Shortest Path

Shortest Path computes the shortest path on a graph of
1,048,576 vertices and 7,864,320 edges, and incorporates a
breadth first search. Extensive applications exist in real-
world path planning and networking and communications.

3.2.4 Isomorphism

The graph isomorphism problem determines whether or
not two graphs have the same shape or structure. Two
graphs are isomorphic if there exists a one-to-one mapping
between vertices and edges in the graph (independent of

MURPHY AND KOGGE: ON THE MEMORY ACCESS PATTERNS OF SUPERCOMPUTER APPLICATIONS: BENCHMARK SELECTION AND ITS... 939

1. AMR typically uses graph partitioning as part of the refinement, two
algorithms for which are part of the integer benchmarks under study. One
of the most interesting results of including a code like CTH in a “benchmark
suite” is its complexity.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

how those vertices and edges are labeled). The problem
under study confirms that two graphs of 250,000 vertices
and 10 million edges are isomorphic. There are numerous
applications in finding similarity (particularly, subgraph
isomorphism) and relationships between two differently
labeled graphs.

3.2.5 Basic Local Alignment Search Tool (BLAST)

The BLAST [1] is the most heavily used method for quickly
searching nucleotide and protein databases in biology. The
algorithm attempts to find both local and global alignment
of DNA nucleotides, as well as to identify regions of
similarity embedded in two proteins. BLAST is implemen-
ted as a dynamic programming algorithm.

The input sequence chosen was obtained by training a
hidden Markov model on approximately 15 examples of
piggyBac transposons from various organisms. This model
was used to search the newly assembled Aedes aegypti
genome (a mosquito). The best result from this search was
the sequence used in the blast search. The target sequence
obtained was blasted against the entire Aedes aegypti
sequence to identify other genes that could be piggyBac
transposons and to double check that the subsequence is
actually a transposon.

3.2.6 Zchaff

The zChaff program implements the Chaff heuristic [23] for
finding solutions to the Boolean satisfiability problem. A
formula in propositional logic is satisfiable if there exists an
assignment of truth values to each of its variables that will
make the formula true. Satisfiability is critical in circuit
validation, software validation, theorem proving, model
analysis and verification, and path planning. The zChaff
input comes from circuit verification and consists of
1,534 Boolean variables, 132,295 clauses with five instances,
that are all satisfiable.

3.3 SPEC

The SPEC CPU2000 suite is by far the most currently
studied benchmark suite for processor performance [4].
This work uses both the SPEC-Integer and SPEC-FP
components of the suite, as summarized in Tables 1 and
2, respectively, as its baseline comparison for benchmark
evaluation.

3.3.1 SPEC Integer Benchmarks

The SPEC Integer Suite, summarized in Table 1, is by far the
most studied half of the SPEC suite. It is meant to generally

represent workstation class problems. Compiling (176.gcc),
compression (164.gzip and 256.bzip2), and systems admin-
istration tasks (253.perlbmk) have many input sets in the
suite. These tasks tend to be somewhat streaming on
average (the perl benchmarks, in particular, perform a lot of
line-by-line processing of data files). The more scientific and
engineering-oriented benchmarks (175.vpr, 181.mcf,
252.eon, 254.gap, 255.vortex, and 300.twolf) are somewhat
more comparable to the Sandia integer benchmark suite.
However, selectively choosing benchmarks from SPEC
produces generally less accurate comparisons than using
the entire suite (although it would lessen the computational
requirements for analysis significantly).

It should be noted that the SPEC suite is specifically
designed to emphasize computational rather then memory
performance. Indeed, other benchmark suites, such as the
STREAM benchmark or RandomAccess, focus much more
extensively on memory performance. However, given the
nature of the memory wall, what is important is a mix of the
two. SPEC, in this work, represents the baseline only
because it is, architecturally, the most studied benchmark
suite. Indeed, a benchmark such as RandomAccess would
undoubtedly overemphasize the memory performance at
the expense of computation, as compared to the real-world
codes in the Sandia suite.

3.3.2 SPEC Floating-Point Benchmarks

The SPEC-FP suite is summarized in Table 2 and primarily
represents scientific applications. At first glance, these
applications would appear very similar to the Sandia
Floating-Point suite; however, the scale of the applications
(in terms of execution time, code complexity, and input set
size) differs significantly.

3.4 RandomAccess

The RandomAccess benchmark is part of the HPC
Challenge suite [8] and measures the performance of the
memory system by updating random entries in a very large
table that is unlikely to be cached. This benchmark is
specifically designed to exhibit very low spatial and
temporal locality and a very large data set (as the table
update involves very little computation). It represents the
most extreme of memory intensive codes and is used as a
comparison point to the benchmarks and real applications
in this work.

940 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

TABLE 1
SPEC CPU2000 Integer Suite

TABLE 2
SPEC Floating-Point Suite

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

3.5 STREAM

The STREAM benchmark [22] is used to measure sustain-
able bandwidth on a platform and does so via four simple
operations performed noncontiguously on three large
arrays:

. Copy: aðiÞ ¼ bðiÞ.

. Scale: aðiÞ ¼ q � bðiÞ.

. Sum: aðiÞ ¼ bðiÞ þ cðiÞ.

. Triad: aðiÞ ¼ bðiÞ þ q � cðiÞ.
To measure the performance of main memory, the

STREAM rule is that the data size is scaled to four times
the size of the platform’s L2 cache. Because this work is
focused on architecture independent numbers, each array
size was scaled to 32 Mbyte, which is reasonably large for a
workstation.

4 METHODOLOGY AND METRICS

This work evaluates the temporal and spatial locality
characteristics of applications separately. This section
describes the methodology used in this work and formally
defines the temporal locality, spatial locality, and data
intensiveness measures.

4.1 Methodology

The applications in this were each traced using the Amber
instruction trace generator [2] for the PowerPC. Trace files
containing four billion sequential instructions were gener-
ated by identifying and capturing each instruction executed
in critical sections of the program. The starting point for
each trace was chosen using a combination of performance
register profiling of the memory system, code reading, and,
in the case of SPEC, accumulated knowledge of good
sampling points. The advice of application experts was also
used for the Sandia codes. The traces typically represent
multiple executions of the main loop (multiple time steps
for the Sandia floating-point benchmarks). These traces
have been used extensively in other work and are well
understood [25].

4.2 Temporal Locality

The application’s temporal working set describes its temporal
locality. As in prior work [25], a temporal working set of sizeN
is modeled as an N byte, fully associative, true least recently
used cache with native machine word sized blocks. The hit
rate of that cache is used to describe the effectiveness of the
fixed-size temporal working set at capturing the applica-
tion’s data set. The same work found that the greatest
differentiation between conventional and supercomputer
applications occurred in the 32-64 Kbytes level one cache
sized region of the temporal working set. The temporal
locality in this work is given by a temporal working set of
size 64 Kbytes. The temporal working set is measured over
a long-studied four billion instruction trace from the core of
each application. The number of instructions is held
constant for each application. This puts the much shorter
running SPEC benchmark suite on comparable footing to
the longer running supercomputing applications.

It should be noted that there is significant latitude in the
choice of temporal working set size. The choice of a level one
cache sized working set is given for two reasons: 1) It has
been demonstrated to offer the greatest differentiation of

applications between the floating-point benchmarks in this
suite and SPEC FP and 2) although there is no direct map
to a conventionally constructed L1 cache, the L1 hit rate
strongly impacts performance. There are two other
compelling choices for temporal working set size:

1. Level 2 cache sized. This is in the 1-8 Mbytes region.
Arguably, the hit rate of the cache closest to memory
most impacts performance (given very long memory
latencies).

2. Infinite. This describes the temporal hit rate required
to capture the application’s total data set size.

Given N memory accesses, H of which hit the cache
described above, the temporal locality is given by H

N .

4.3 Spatial Locality

Measuring the spatial locality of an application may be the
most challenging aspect of this work. Significant prior work
has examined it as the application’s stride of memory
access. The critical measurement is how quickly the
application consumes all of the data presented to it in a
cache block. Thus, given a cache block size and a fixed
interval of instructions, the spatial locality can be described
as the ratio of data that the application actually uses
(through a load or store) to the cache line size. This work
uses an instruction interval of 1,000 instructions and a cache
block size of 64 bytes. For this work, every 1,000 instruction
window in the application’s four billion instruction trace is
examined for unique loads and stores. Those loads and
stores are then clustered into 64-byte blocks and the ratio of
used to unused data in the block is computed. The block
size is chosen as a typical conventional cache system’s block
size. There is much more latitude in the instruction window
size. It must be large enough to allow for meaningful
computation, while being small enough to report differ-
entiation in the application’s spatial locality. For example, a
window size of the number of instructions in the applica-
tion should report that virtually all cache lines are
100 percent used. The 1,000 instruction window was chosen
based on prior experience with the applications [24].

Given U1;000 unique bytes accessed in an average interval
of 1,000 instructions that are clustered into L 64-byte cache
lines, the spatial locality is given by U

64L .

4.4 Data Intensiveness

One critical yet often overlooked metric of an application’s
memory performance is its data intensiveness or the total
amount of unique data that the application accesses
(regardless of ordering) over a fixed interval of instructions.
Over the course of the entire application, this would be the
application’s memory footprint. This is not fully captured
by the measurements given above and it is nearly
impossible to determine from a cache miss rate. This differs
from the application’s memory footprint because it only
includes program data that is accessed via a load or store
(where the memory footprint would also include program
text). Because a cache represents a single instantiation used
to capture an application’s working set, a high miss rate
could be more indicative of the application accessing a
relatively small amount of memory in a temporal order that
is poorly suited to the cache’s parameters or that the
application exhibits very low spatial locality. It is not
necessarily indicative of the application accessing a large

MURPHY AND KOGGE: ON THE MEMORY ACCESS PATTERNS OF SUPERCOMPUTER APPLICATIONS: BENCHMARK SELECTION AND ITS... 941

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

data set, which is critical to supercomputing application
performance. This work presents the data intensiveness as
the total number of unique bytes that the application’s trace
accessed over its four billion instruction interval.

This is directly measured by counting the total number
of unique bytes accessed over the given interval of four
billion instructions. This is the same as the unique bytes
measure given above, except it is measured over a larger
interval (U4billion).

4.5 An Example

Fig. 1 shows an example instruction sequence. Assuming
that this is the entire sequence under analysis, each of the
metrics given above is computed as follows:

Temporal Locality. This is the hit rate of a fully
associative cache. The first three loads in the sequence (of
0xA0000, 0xA0004, and 0xB0000) miss the cache. The final
store (to 0xA0000) hits the item in the cache that was loaded
with three memory references prior. Thus, the temporal
locality is

1 hit

4 memory references
¼ 0:25:

Spatial Locality. This is the ratio of used to unused bytes
in a 64-byte cache line. Assuming that each load request is
32 bits, there are two unique lines requested, 0xA0000 (to
0xA0040) and 0xB0000 (to 0xB0040). Two 32-bit words are
consumed from 0xA0000 and one 32-bit word from
0xB0000. The spatial locality is calculated as

12 consumed bytes

128 requested bytes
¼ 0:09375:

Data intensiveness. This is the total number of unique
bytes consumed by the stream. In this case, three unique
32-bit words are requested, for a total of 12 bytes.

5 INITIAL OBSERVATIONS OF PROGRAM

CHARACTERISTICS

Fig. 2 shows the instruction mix breakdown for the
benchmark suites. Of particular importance is that the
Sandia Floating-Point applications perform significantly
more integer operations than their SPEC-FP counterparts,
in excess of 1.66 times the number of integer operations, in
fact. This is largely due to the complexity of the Sandia
applications (with many configuration operations requiring
integer tests, table lookups requiring integer index calcula-
tions, and so forth), as well as their typically more
complicated memory addressing patterns [30]. This is
largely due to the complexity of the algorithm and the fact
that significantly more indirection is used in memory

address calculations. Additionally, in the case of the
floating-point applications, although the Sandia applica-
tions perform only about 1.5 percent more total memory
references than their SPEC-FP counterparts, the Sandia
codes perform 11 percent more loads and only about
2/3 the number of stores, indicating that the results
produced require more memory inputs to produce fewer
memory outputs. The configuration complexity can also be
seen in that the Sandia codes perform about 11 percent
more branches than their SPEC counterparts.

In terms of the integer applications, the Sandia codes
perform about 12.8 percent fewer memory references over
the same number of instructions; however, those references
are significantly harder to capture in a cache. The biggest
difference is that the Sandia Integer codes perform
4.23 times the number of floating-point operations as their
SPEC Integer counterparts. This is explained by the fact that
three of the Sandia Integer benchmarks perform somewhat
significant floating-point computations.

Table 3 summarizes the three Sandia Integer Suite
applications with significant floating-point work: Chaco,
DFS, and Isomorphism. Their floating-point ratios are quite
a bit below the median for SPEC FP (28.69 percent) but
above the Sandia Floating-Point median (10.67 percent).
They are in the integer category because their primary
computation is an integer graph manipulation, whereas
CTH is in the floating-point category even though runs
have a lower floating-point percentage (a mean over its
three input runs of 6.83 percent), but the floating-point
work is the primary computation. For example, Chaco is a
multilevel partitioner and uses spectral partitioning in its
base case, which requires the computation of an eigenvector

942 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

Fig. 1. An example of temporal locality, spatial locality, and data

intensiveness.

Fig. 2. Benchmark suite mean instruction mix.

TABLE 3
Sandia Integer Applications with

Significant Floating-Point Computation

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

(a floating-point operation). However, graph partitioning is
fundamentally a combinatorial algorithm and, conse-
quently, in the integer category. In the case of CTH, which
is a floating-point application with a large number of
integer operations, it is a shock physics code. The flops
fundamentally represent the “real work” and the integer
operations can be accounted for by the complexity of the
algorithms and the large number of table lookups employed
by CTH to find configuration parameters. In either case, the
SPEC-FP suite is significantly more floating-point intensive.

6 RESULTS

The experimental results given by the metrics from Section 4
are presented below. Each graph depicts the temporal
locality on the x-axis and the spatial locality on the y-axis.
The area of each circle on the graph depicts each
application’s relative data intensiveness (or the total
amount of unique data consumed over the instruction
stream).

Fig. 3 provides the summary results for each suite of
applications and the RandomAccess memory benchmark.
The Sandia Floating-Point suite exhibits approximately
36 percent greater spatial locality and nearly seven percent
less temporal locality than its SPEC-FP counterpart. The
nearness in temporal locality and increased spatial locality
is somewhat surprising when taken out of context. One
would typically expect scientific applications to be less well
structured. The critical data intensiveness measure proves
the most enlightening. The Sandia FP suite accesses over
2.6 times the amount of data as SPEC FP. The data
intensiveness is the most important differentiator between
the suites. A larger data set size would reflect significantly
worse performance in any real cache implementation.
Without the additional measure, the applications would
appear more comparable. It should be noted that the
increased spatial locality seen in the Sandia Floating-Point
applications is likely because those applications use the MPI
programming model, which generally groups data to be
operated upon into a buffer for transmission over the
network (increasing the spatial locality).

The Sandia integer suite is significantly farther from the
SPEC integer suite in all dimensions. It exhibits close to
30 percent less temporal locality, nearly 40 percent less
spatial locality, and has a unique data set over 5.9 times the
size of the SPEC integer suite.

The LINPACK benchmark shows the highest spatial and
temporal locality of any benchmark and, by far, the smallest
data intensiveness (the dot is hardly visible on the graph). It
is over 3,000 times smaller than any of the real-world Sandia
applications. It exhibits 17 percent less temporal locality
and roughly the same spatial locality as the Sandia FP suite.
The Sandia Integer suite has half the temporal locality and
less than one third the spatial locality.

The STREAM benchmark showed over 100 times less
temporal locality than RandomAccess and 2.4 times the
spatial locality. However, critically, the data intensiveness
for streams is 1/95th that of RandomAccess. The Sandia
Integer Suite is only 1 percent less spatially local than
STREAM, indicating that most of the bandwidth used to
fetch a cache line is wasted.

Although it is expected that RandomAccess exhibits very
low spatial and temporal locality, given its truly random
memory access pattern, its data set is 3.7 times the size of
the Sandia FP suite, 4.5 times the size of the Sandia Integer
suite, and 9.7 times and 26.5 times the SPEC-FP and integer
suites, respectively.

Fig. 4a shows each individual floating-point application
in the Sandia and SPEC suites. On the basis of spatial and
temporal locality measurements alone, the 177.mesa SPEC-
FP benchmark would appear to dominate all others in the
suite. However, it has the second smallest unique data set
size in the entire SPEC suite. In fact, the Sandia FP
applications average over 9 times the data intensiveness
of 177.mesa. There are numerous very small data set
applications in SPEC FP, including 177.mesa, 178.galgel,
179.art, 187.facerec, 188.ammp, and 200.sixtrack. In fact,
virtually all of the applications from SPEC FP that are
“close” to a Sandia application in terms of spatial and
temporal locality exhibit a much smaller unique data set.
The mpsalsa application from the Sandia suite and
183.equake are good examples. Although they are quite
near on the graph, mpsalsa has almost 17 times the unique
data set of equake. The application 183.equake is also very
near the mean spatial and temporal locality point for the
entire Sandia FP suite, except that the Sandia applications
average more than 15 times 183.equake’s data set size.

Unfortunately, it would be extremely difficult to identify
a SPEC-FP application that is “representative” of the Sandia
codes (either individually or on average). Often, researchers
choose a subset of a given benchmark suite’s applications
when presenting the results. Choosing the five applications
in SPEC FP with the largest data intensiveness (168.wup-
wise, 171.swim, 173.applu, 189.lucas, and 301.apsi) and
183.equake (because of its closeness to the average and to
mpsalsa) yields a suite that averages 90 percent of the
Sandia suite’s temporal locality, 86 percent of its temporal
locality, and 75 percent of its data intensiveness. Although
somewhat far from “representative,” particularly, in terms
of data intensiveness, this subset is more representative of
the real applications than the whole.

Several interesting Sandia applications are shown on the
graph. The CTH application exhibits the most temporal
locality but relatively low spatial locality and a relatively

MURPHY AND KOGGE: ON THE MEMORY ACCESS PATTERNS OF SUPERCOMPUTER APPLICATIONS: BENCHMARK SELECTION AND ITS... 943

Fig. 3. Mean temporal versus spatial locality and data intensiveness for

each benchmark suite.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

small data set size. The LAMMPS (lmp) molecular
dynamics code is known to be compute intensive, but it
exhibits a relatively small memory footprint and shows
good memory performance. The temporal and spatial
locality measures are quite low. SPPM exhibits very high
spatial locality, very low temporal locality, and a moderate
data set size.

Fig. 4b depicts the Sandia and SPEC Integer benchmark
suites. These applications are strikingly more different than
the floating-point suite. All of the applications exhibit
relatively low spatial locality, although the majority of
Sandia applications exhibit significantly less spatial locality
than their SPEC counterparts. The DFS code in the Sandia
suite is the most “RandomAccess-like,” with 255.vortex in
the SPEC suite being the closest counterpart in terms of
spatial and temporal locality. 255.vortex’s temporal and
spatial localities are within 25 percent and 15 percent of
DFS’s, respectively. However, once again, DFS’s data set
size is more than 19 times that of 255.vortex’s.

300.twolf actually comes closest in terms of spatial and
temporal locality to representing the “average” Sandia
Integer application; however, the average Sandia code has
nearly 140 times the data set size.

7 CONCLUSIONS

This work has measured the temporal and spatial locality and
the relative data intensiveness of a set of real-world Sandia
applications and compared them to the SPEC Integer and
Floating-Point suites, as well as the Random Access memory
benchmark. Although the SPEC-FP suite exhibits greater
temporal locality and less spatial locality than the Sandia
floating-point suite, it averages significantly less data inten-
siveness. This is crucial because the number of unique items
consumed by the application can affect the performance of
hierarchical memory systems more than the average effi-
ciency with which those items are stored in the hierarchy.

The integer suites showed even greater divergence in all
three dimensions (temporal locality, spatial locality, and
data intensiveness). Many of the key integer benchmarks,

which represent applications of emerging importance, are

close to RandomAccess in their behavior.
This work has further quantitatively demonstrated the

difference between a set of real applications (both current

and emerging) relevant to the high-performance computing

community and the most studied set of benchmarks in

computer architecture. The real integer codes are uniformly

harder on the memory system than the SPEC integer suite.

In the case of floating-point codes, the Sandia applications

exhibit a significantly larger data intensiveness and lower

temporal locality. Because of the dominance of the memory

system in achieving performance, this indicates that

architects should focus on codes with significantly larger

data set sizes.
The emerging applications characterized by the Sandia

Integer suite are the most challenging applications (next to

the RandomAccess benchmark). Because of their impor-

tance and their demands on the memory system, they

represent a core group of applications that require sig-

nificant attention.
Finally, beyond a specific study of one application

domain, this work presents an architecture-independent

methodology for quantifying the difference in the memory

properties between any two applications (or suites of

applications). This study can be repeated for other problem

domains of interest (the desktop, multimedia, business, and

so forth).

ACKNOWLEDGMENTS

The authors would like to thank Arun Rodrigues and Keith

Underwood at Sandia National Laboratories for their

valuable comments. The application analysis and data

gathering discussed here used tools that were funded in

part by the US Defense Advanced Research Projects Agency

(DARPA) through Cray, Inc., under the High Productivity

Computing Systems (HPCS) Phase 1 program.

944 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

Fig. 4. (a) Integer and (b) floating-point applications temporal versus spatial locality and data intensiveness.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman,
“Basic Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
pp. 403-410, 1990.

[2] Apple Architecture Performance Groups, Computer Hardware
Understanding Development Tools 2.0 Reference Guide for MacOS X.
Apple Computer, July 2002.

[3] L.A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System
Characterization of Commercial Workloads,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, pp. 3-14, 1998.

[4] D. Citron, J. Hennessy, D. Patterson, and G. Sohi, “The Use and
Abuse of SPEC: An ISCA Panel,” IEEE Micro, vol. 23, no. 4, pp. 73-
77, July/Aug. 2003.

[5] P. Colella and P.R. Woodward, “The Piecewise Parabolic Method
(PPM) for Gas-Dynamical Simulations,” J. Computational Physics,
vol. 54, pp. 174-201, 1984.

[6] Z. Cvetanovic and D. Bhandarkar, “Characterization of Alpha
AXP Performance Using TP and SPEC Workloads,” Proc. 21st Ann.
Int’l Symp. Computer Architecture, pp. 60-70, 1994.

[7] P.J. Denning, “The Working Set Model for Program Behavior,”
Proc. First ACM Symp. Operating System Principles, pp. 15.1-15.12,
1967.

[8] J. Dongarra and P. Luszczek, “Introduction to the HPC Challenge
Benchmark Suite,” Technical Report ICL-UT-05-01, 2005.

[9] D. Ferrari, “A Generative Model of Working Set Dynamics,” Proc.
1981 ACM SIGMETRICS Conf. Measurement and Modeling of
Computer Systems, pp. 52-57, 1981.

[10] J.D. Gee, M.D. Hill, D.N. Pnevmatikatos, and A.J. Smith, “Cache
Performance of the SPEC Benchmark Suite,” Technical Report CS-
TR-1991-1049, 1991.

[11] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equations: An
Analytical Representation of Cache Misses,” Proc. Int’l Conf.
Supercomputing, pp. 317-324, 1997.

[12] S.T. Gurumani and A. Milenkovic, “Execution Characteristics of
SPEC CPU2000 Benchmarks: Intel C++ versus Microsoft VC++,”
Proc. 42nd Ann. Southeast Regional Conf., pp. 261-266, 2004.

[13] B. Hendrickson and R. Leland, “The Chaco User’s Guide—
Version 2.0,” Technical Report SAND94-2692, 1994.

[14] J.L. Hennessy and D.A. Patterson, Computer Architecture a
Quantitative Approach. Morgan Kaufmann, 2002.

[15] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R.
Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H.
Thornquist, R. Tuminaro, J. Willenbring, and A. Williams, “An
Overview of Trilinos,” Technical Report SAND2003-2927, 2003.

[16] E. Hertel, J. Bell, M. Elrick, A. Farnsworth, G. Kerley, J. McGlaun,
S. Petney, S. Silling, P. Taylor, and L. Yarrington, “CTH: A
Software Family for Multi-Dimensional Shock Physics Analysis,”
Proc. 19th Int’l Symp. Shock Waves, pp. 377-382, July 1993.

[17] G. Karypis and V. Kumar, “Multilevel k-Way Partitioning Scheme
for Irregular Graphs,” J. Parallel and Distributed Computing, vol. 48,
no. 1, pp. 96-129, 1998.

[18] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. Baker,
“Performance Characterization of a Quad Pentium Pro SMP Using
OLTP Workloads,” Proc. Int’l Symp. Computer Architecture, pp. 15-
26, 1998.

[19] D.C. Lee, P. Crowley, J.-L. Baer, T.E. Anderson, and B.N. Bershad,
“Execution Characteristics of Desktop Applications on Windows
NT,” Proc. Int’l Symp. Computer Architecture, pp. 27-38, 1998.

[20] J.L. Lo, L.A. Barroso, S.J. Eggers, K. Gharachorloo, H.M. Levy, and
S.S. Parekh, “An Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors,” Proc. Int’l Symp. Com-
puter Architecture, pp. 39-50, 1998.

[21] A.M.G. Maynard, C.M. Donnelly, and B.R. Olszewski, “Contrast-
ing Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” Proc. Sixth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 145-156, 1994.

[22] J.D. McCalpin, Stream: Sustainable Memory Bandwidth in High
Performance Computers, 1997.

[23] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. 38th Design
Automation Conf., June 2001.

[24] R.C. Murphy, “Traveling Threads: A New Multithreaded Execu-
tion Model,” PhD dissertation, Univ. of Notre Dame, May 2006.

[25] R.C. Murphy, A. Rodrigues, P. Kogge, and K. Underwood, “The
Implications of Working Set Analysis on Supercomputing
Memory Hierarchy Design,” Proc. 2005 Int’l Conf. Supercomputing,
pp. 332-340, June 2005.

[26] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier, “Scientific
Computations on Modern Parallel Vector Systems,” Proc. Super-
computing Conf., p. 10, 2004.

[27] D.A. Patterson and J.L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, second ed. Morgan
Kaufmann, 1997.

[28] S.J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecu-
lar Dynamics,” J. Computational Physics, vol. 117, pp. 1-19, 1995.

[29] S.J. Plimpton, R. Pollock, and M. Stevens, “Particle-Mesh Ewald
and rRESPA for Parallel Molecular Dynamics,” Proc. Eighth SIAM
Conf. Parallel Processing for Scientific Computing, Mar. 1997.

[30] A. Rodrigues, R. Murphy, P. Kogge, and K. Underwood,
“Characterizing a New Class of Threads in Scientific Applications
for High End Supercomputers,” Proc. 18th Ann. ACM Int’l Conf.
Supercomputing, pp. 164-174, June 2004.

[31] J. Rodriguez-Rosell, “Empirical Working Set Behavior,” Comm.
ACM, vol. 16, no. 9, pp. 556-560, 1973.

[32] E. Rothberg, J.P. Singh, and A. Gupta, “Working Sets, Cache Sizes
and Node Granularity Issues for Large-Scale Multiprocessors,”
Proc. 20th Ann. Int’l Symp. Computer Architecture, pp. 14-26, 1993.

[33] R. Saavedra and A. Smith, “Analysis of Benchmark Characteristics
and Benchmark Performance Prediction,” ACM Trans. Computer
Systems, vol. 14, no. 4, pp. 344-384, 1996.

[34] J. Shadid, A. Salinger, R. Schmidt, T. Smith, S. Hutchinson, G.
Hennigan, K. Devine, and H. Moffat, “MPSalsa: A Finite Element
Computer Program for Reacting Flow Problems,” Technical
Report SAND 98-2864, 1998.

[35] D.R. Slutz and I.L. Traiger, “A Note on the Calculation of Average
Working Set Size,” Comm. ACM, vol. 17, no. 10, pp. 563-565, 1974.

[36] J.S. Vetter and A. Yoo, “An Empirical Performance Evaluation of
Scalable Scientific Applications,” Proc. Supercomputing Conf., pp. 1-
18, 2002.

[37] J. Weinberg, M. McCracken, A. Snavely, and E. Strohmaier,
“Quantifying Locality in the Memory Access Patterns of HPC
Applications,” Proc. Supercomputing Conf., p. 50, Nov. 2005.

Richard C. Murphy received the PhD degree in
computer engineering from the University of
Notre Dame. He is a computer architect in the
Scalable Systems Group at Sandia National
Laboratories. His research interests include
computer architecture, with a focus on memory
systems and Processing-in-Memory, very large
scale integration (VLSI), and massively parallel
architectures, programming languages, and run-
time systems. From 2000 to 2002, he worked at

Sun Microsystems, focusing on hardware resource management and
dynamic configuration. He is a member of the IEEE.

Peter M. Kogge was with IBM, Federal Systems
Division, from 1968 until 1994. In 1977, he was a
visiting professor in the Electrical and Computer
Engineering Department at the University of
Massachusetts, Amherst. From 1977 through
1994, he was also an adjunct professor in the
Computer Science Department of the State
University of New York at Binghamton. In
August 1994, he joined the University of Notre
Dame as the first holder of the endowed

McCourtney Chair in Computer Science and Engineering (CSE).
Starting in the summer of 1997, he has been a distinguished visiting
scientist at the Center for Integrated Space Microsystems at the Jet
Propulsion Laboratory (JPL). He is also the research thrust leader for
architecture at Notre Dame’s Center for Nano-Science and Technology.
For the 2000 to 2001 academic year, he was the interim Schubmehl-
Prein chairman of the CSE Department at Notre Dame. Starting in
August 2001, he has been the associate dean for research, College of
Engineering. Starting in the Fall of 2003, he also has been a concurrent
professor of electrical engineering. He was named an IEEE fellow in
1990 and an IBM fellow in 1993.

MURPHY AND KOGGE: ON THE MEMORY ACCESS PATTERNS OF SUPERCOMPUTER APPLICATIONS: BENCHMARK SELECTION AND ITS... 945

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:20 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

