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Abstract

We report on our experience with the hardware transactional
memory (HTM) feature of two pre-production revisions of
a new commercial multicore processor. Our experience in-
cludes a number of promising results using HTM to improve
performance in a variety of contexts, and also identifiesssom
ways in which the feature could be improved to make it even
better. We give detailed accounts of our experiences,rgari
techniques we used to achieve the results we have, as well a;
describing challenges we faced in doing so.

Categories and Subject Descriptors C.1.4 Hardware]:
Parallel Architectures; D.1.3 Spftware]: Concurrent
Programming—Parallel Programming

General Terms Design, Experimentation, Performance.
Keywords Hardware, transactional memory, synchroniza-
tion.

1. Introduction

The “multicore revoluton” occuring in the computing indus-
try brings many benefits in reducing costs of power, cool-
ing, administration, and machine room real estate, busd al

other cores, but this approach entails difficult trade -
ple approaches quickly develop bottlenecks that prevent th
application from taking advantage of additional cores,levhi
more complex ones are error prone and difficult to under-
stand, maintain, and extend.

Transactional Memory (TM) (9) has received a great deal
of research attention in recent years as a promising tech-
nology for alleviating the difficulty of writing multithrezed

gode that is scalable, efficient, and correct. The essence of

TM is the ability to ensure that multiple memory accesses
can be done “atomically”, so that the programmer does not
have to think about these acceses being interleaved with
those of another thread. Using such an approach, the pro-
grammer specifiewhat should be done atomically, leaving
the system to determint@ow this is achieved. This relieves
the programmer of the burden of worrying about locking
conventions, deadlock, etc.

TM-related techniques have been proposed in many con-
texts, ranging from the original “bounded” HTM of Herlihy
and Moss (9), to a number of “unbounded” HTM proposals
(1; 21; 23), numerous software transactional memory (STM)
approaches (7; 8; 15), and some approaches that combine
hardware and software in various ways (4; 22; 12; 2).

brings some unprecedented challenges. Developers can no Proposals for unbounded HTM implementations are in-

longer hide the cost of new features by relying on next year’s

processors to run their single-threaded code twice as fast.

Instead, for an application to take advantage of advances in
technology, it must be able to effectively exploit more ore
as they become available. This is often surprisingly difficu

A key factor is the difficulty of reasoning about many
things happening at the same time. The traditional approach
to dealing with this problem is to use locks to make certain
critical sections of code execute without interferencenfro
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complete and too complex and risky to appear in commercial
processors in the near future. Substantial progress has bee
made in improving STM designs in recent years, and robust
and practical systems are emerging. But implementing TM
in software entails significant overhead, and there is grgwi
interest in hardware support to improve its performance.

If programmed directly, bounded HTM implementations
impose unreasonable constraints on programmers, who must
ensure that a transaction does not access more than a fixed,
architecture-specific number of cache lines. However,st ha
been shown (4; 13; 17) that such implementations can be
useful nonetheless by combining them with software that
can exploit HTM to improve performance, but does not
depend on any particular hardware transaction succeeding.

Because such techniques do not depend on any particu-
lar transaction succeeding, they can be used batheffort



HTM, which differs from bounded HTM in that it may com-  transaction fails. In Sections 4 through 8, we present tesul
mit transactions that are much larger than a bounded HTM from our experiments using HTM in a number of contexts.
feature would, but it is also not required to guarantee to-com  We use HTM to implement simple operations such as
mit all transactions up to a certain size. This added flexybil  incrementing a counter and a double compare-and-swap
considerably simplifies the task of integrating HTM into a (DCAS); we then use the DCAS to reimplement some com-
commercial processor, because the processor can respond tponents of the Ja¥ concurrency libraries. Next, we ex-
difficult events and conditions by simply aborting the trans periment with transactional hash tables and red-blaclstree
action. Furthermore, because the software is configured tousing a compiler and library supporting Hybrid TM (HyTM)
take advantage of whichever HTM transactons that commit (4) and Phased TM (PhTM) (13); these use HTM to boost
successfully, it can automatically adapt to take advantdge performance, but transparently revert to software if uasuc
future improvements to the HTM feature. cessful. We then experiment with Transactional Lock Efisio
Sun’s architects (3) have built a multicore processor— (TLE), using HTM to execute lock-based critical sections in
code namedRock—that supports a form of best-effort hard- parallel if they do not conflict; we have experimented with
ware transactional memory. This paper reports on our re-this technique through simple wrappers in C and C++ pro-
cent experience experimenting with this HTM feature. The grams, as well as with standard lock-based Java code using
work described in this paper involved two pre-production a modified JVM. In particular, in Section 8, we report on our
revisions of the Rock chip: the first, which we'll call R1, success using Rock’s HTM feature to accelerate a parallel
was the first revision that included the HTM feature and the Minimum Spanning Forest algorithm due to Kang and Bader
second—R2-was the subsequent revision, which included(10). Discussion and conclusions are in Sections 9 and 10.
changes made in response to our feedback on the first.
In each case, our first priority was to test that the HTM
feature worked as expected and gave correct results. We de—2 . Background
veloped some specific tests to evaluate the functionafity, a Rock (3) is a multicore SPAR® processor that uses ag-
we have also built consistency checks into all of the bench- gressive speculation to provide high single-thread perfor
marks discussed in this paper. In addition to our testing, mance in addition to high system throughput. For example,
Rock’s HTM feature has been tested using a variety of tools 0n load misses, Rock runs ahead speculatively in order to
that generate random transactions and test for correctbeha issue subsequent memory requests early.
ior, for example TSOTool (14). This extensive testing hasno ~ Speculation is enabled by a checkpoint architecture: Be-
revealed any correctness problems. fore speculating, Rock checkpoints the architecturalestat
Next, we experimented with using the HTM feature. We Of the processor. While speculating, Rock ensures that ef-
used the benchmarks from our work with the ATMTP sim- fects of the speculative execution are not observed by other
ulator (5), and added a couple more, including a real appli- threads (for example, speculative stores are gated in @ stor
cation. As with ATMTP, we achieved some encouraging re- buffer until the stores can be safely committed to memory).
sults but also encountered some challenges. One set of chalThe hardware can revert back to the previous checkpoint
lenges with R1 was that Rock provided identical feedback and re-execute from there—perhaps in a more conservative
about why a transaction failed in different situations tteat ~ mode—if the speculation turns out to have taken a wrong
quired different responses. Based on our feedback, the RockPath, if some hardware resource is exhausted, or if an excep-
architects refined feedback about transaction failureken t  tion or other uncommon event occurs during speculation.
second revision R2. Our work with R2 began by repeating ~ Rock uses these same mechanisms to implement a best-
the evaluation we had done with R1 and examining these effort HTM feature: it provides new instructions that allow
changes, which were found to behave as expected. user code to specify when to begin and end speculation, and
Because of the timing of our work relative to the various €nsures that the section of code between these instructions
paper deadlines, our work with the second revision is less €xecutes atomically and in its entirety, or not at all.
mature than our work with the first. In particular, our work The new instructions are calletikpt andcommit. The
with R2 was with an early-run chip, which was not rated for chkpt instruction provides a pc-relativieil address; if the
full-speed execution. We do not expect our results to changetransaction started by the instruction aborts for any neaso
qualitatively when we are able to run on a full-speed chip. control resumes at this fail address, and any instructigns e

There are also a number of areas where we have not yet ha@CUted since thEhkpt instruction do not take effect. Aborts
time to investigate as fully as we would like. can be explicitly caused by software, which is important for

many of the uses described in this paper. By convention we
use the following unconditional trap instruction for thisrp
Roadmap We begin with some background about Rock in pose:ta %xcc, %g0 + 15.
Section 2. Then, in Section 3 we describe the tests we used When a transaction aborts, feedback about the cause of
to determine whether transactions succeed and fail in thethe abort is provided in the CPS (Checkpoint Status) registe
cases we expect, and also what feedback Rock gives when avhich has the same bits as described by Moir et al. (16), plus



three additional bits that are not supported by their sitoula
The full set of CPS bits is shown in Table 1, along with
examples of reasons the bits might be set. We discuss the
CPS register in more detail in the next section.

Each Rock chip has 16 cores, each capable of executing
two threads, for a total of 32 threads in the defeSdbut
Execution (SE) mode (3). It can also be configured to ded-
icate the resources of both hardware threads in a core to a
single software thread. This allows a more aggressive form
of speculation, calle@multaneous Scout Execution (SSE),
in which one hardware thread can continue to fetch new in-
structions while the other replays instructions that haaerb
deferred while waiting for a high-latency event such as a
cache miss to be resolved. (Rock has a “deferred queue”
in which speculatively executed instructions that depemd o
loads that miss in the cache are held pending the cache fill; if
the number of deferred instructions exceeds the size of this
gueue, the transaction fails.) In addition to providing enor

save-restoreRock fails transactions that executeae in-

struction and subsequently executeestore instruc-
tion, setting CPS to 0x8 = INST. This pattern is com-
monly associated with function calls; we discuss this is-
sue further in Sections 6 and 7.

tlb missesTo test the effect of DTLB misses on transac-

tions, we remmap the memory to be accessed by a trans-
action before executing it. This has the effect of remov-
ing any TLB mappings for that memory. When we load
from an address that has no TLB mapping, the transac-
tion fails with CPS set to 0x90 = LIPREC. When we
store to such an address, it fails with CPS set to 0x100 =
ST. This is discussed further below. To test the effects of
ITLB misses on transactions, we copied codedeped
memory and then attempted to execute it within a trans-
action. When there was no ITLB mapping present, the
transaction failed setting CPS to 0x10 = PREC.

parallelism, SSE mode also allows some resources of the twotviction This test performs a sequence of loads at cache-line

hardware threads to be combined into one larger resource.
For example, the store buffer accommodates up to 16 stores
in SE mode, but this is increased to 32 in SSE mode.

All data presented in this paper is taken on a single-chip
Rock system running in SSE mode; we have briefly explored
SE mode and we discuss preliminary observations as appro-
priate. We have not yet had an opportunity to experiment
with a multi-chip system, but we hope to do so soon.

3. Examining the CPS register

Our cpstest is designed to confirm our understanding of
the circumstances under which transactions abort, and the
feedback given by the CPS register when they do. It attempts
to execute various unsupported instructions in transastio

as well as synthesizing conditions such as dereferencing a
null, invalid, or misaligned pointer, an infinite loop, vauis

trap and conditional trap instructions, etc. Rather than re
porting all of the outcomes here, we plan to open source it,
so that others may examine it in detail. Below we mention
only a few observations of interest.

First, it is important to understand that a failing transac-
tion can set multiple bits in the CPS register, and furtheamo
that some bits can be set for any of several reasons; Table 1
lists one example reason for each bit, and is not intended to
be exhaustive. As part of our evaluation of R1, we worked
with the Rock architects to compile such an exhaustive list,
and together with output frompstest, we identified sev-
eral cases in which different failure reasons requiring dif
ferent responses resulted in identical feedback in the CPS
register, making it impossible to construct intelligenttso
ware for reacting to transaction failures. As a result, gesn

were made for R2 to disambiguate such cases. The observa-

tions below are all current as of R2, and we do not anticipate
more changes at this time.

stride. The sequence is long enough that the loaded cache
lines cannot all reside in the L1 cache together, which
means these transactions can never succeed. We usually
observe CPS values of 0x80 = LD and 0x40 = SIZ. The
former value indicates that the transaction displaced a
transactionally marked cache line from the L1 cache. The
latter indicates that too many instructions were deferred
due to cache misses. This test also occasionally yields a
CPS value of 0x1 = EXOG. This happens for example if

a context switch happens after the transaction fails and
before the thread reads the CPS register.

cache set tesfThis test performs loads to five different ad-

dresses that map to the same 4-way L1 cache set. AlImost
all transactions in this test fail with CPS set to Ox80 = LD
(we discuss this further below). We also see occasional
instances of EXOG, as discussed above. More interest-
ingly, we also sometimes see the COH bit set in this test.
We were puzzled at first by this, as we did not under-
stand how a read-only, single-threaded test could fail due
to coherence. It turns out that the COH bit is set when
another thread displaces something from the L2 cache
that has been read by a transaction; this results in in-
validating a transactionally marked line in the L1 cache,
and hence the report of “coherence”. Even though there
were no other threads in the test, the operating system’s
idle loop running on a hardware strand that shares an L2
cache with the one executing the transaction does cause
such invalidations. We changed our test to run “spinner”
threads on all idle strands, and the rate of COH aborts in
this test dropped almost to zero.

overflow In this test, we performed stores to 33 different

cache lines. Because Rock transactions are limited by
the size of the store queue, which is 32 entries in the
configuration we report on, all such transactions fail.
They fail with CPS set to 0x100 = ST if there are no



| Mask | Name | Description and example cause

0x001 | EXOG | Exogenous- Intervening code has rumps register contents are invalid.
0x002 | COH Coherence- Conflicting memory operation.

0x004 | TCC Trap Instruction - A trap instruction evaluates to “taken”.

0x008 | INST | Unsupported Instruction - Instruction not supported inside transactions.
0x010 | PREC | Precise Exception Execution generated a precise exception.

0x020 | ASYNC | Async- Received an asynchronous interrupt.

0x040 | SIZ Size- Transaction write set exceeded the size of the store queue.
0x080 | LD Load - Cache line in read set evicted by transaction.

0x100 | ST Store - Data TLB miss on a store.

0x200 | CTI Control transfer - Mispredicted branch.

0x400 | FP Floating point - Divide instruction.

0x800 | UCTI Unresolved control transfer - branch executed without resolving load on which it depends

Table 1. cps register: bit definitions and example failure reasons taatteem.

TLB mappings (see above) and with CPS set to 0x140 lished from higher levels of the MMU. However, if no map-
= ST|SIZ if we “warm” the TLB first. A good way to ping for the data in question is available in any level of the
warm the TLB is to perform a “dummy” compare-and- MMU, the transaction will fail repeatedly unless software
swap (CAS) to a memory locations on each page that can successfully warm the TLB, as described above.
may be accessed by the transaction: we attempt to change Thus, the best strategy for a transaction that fails with
the location from zero to zero using CAS. This has the CPS value ST is to retry a small number of times, and then
effect of establishing a TLB mapping and making the retry again after performing TLB warmup if feasible in the
page writable, but without modifying the data. current context, and to give up otherwise. The optimal value
of the “small number” depends on the feasibility and cost of
e Performing TLB warmup in the given context.
One interesting bit in the CPS register is the UCTI bit,

coherenceThis test is similar to the overflow test above, ex-
cept that we perform only 16 stores, not 33, and therefor

the transactions do not fail due to overflowing the store ) )
queue, which comprises two banks of 16 entries in the which was added as a result of our evaluation of R1. We

test configuration. All threads store to the same set of lo- found that in some cases we were seeing values in the CPS

cations. Single threaded, almost all transactions succeed register that indicated failure reasons we thought coutd no

with the usual smattering of EXOG failures. As we in- 0ccur in the transactions in question. We eventually redliz

crease the number of threads, of course all transactionsthat it was possible for a transaction to misspeculate by exe

conflict with each other. and because we make no atternptcuting a branch that has been mispredicted before the load on
to back off before retrying in this test, the success rate is which the branch depends is resolved. As a result, software

very low by the time we have 16 threads. Almost all CPS would react to a failure reason that was in some sense in-
values are 0x2 = COH. The point of this test was to un- valid. For example, it might conclude that it must give up due

derstand the behavior, not to make it better, so we did not to executing an unsupported instruction when in fact it oul

experiment with backoff or other mechanisms to improve Iikely_ succeed if retried because the load on which the mis-
the success rate; we left this for the more realistic work- Predicted branch depended would be resolved by then, so the

code with the unsupported instruction would not be executed
next time. Therefore, the UCTI bit was added to indicate
3.1 Discussion that a branch was executed when the load on which it de-

. . . .pends was not resolved. Software can then retry when it sees
Even after R2 changes to disambiguate some failure cases, i . . . .
CTI set, hoping that either the transaction will succeed, o

can be c.hallqulng IN Some cases to determine the reason fo‘[ﬂ least that feedback about subsequent failures wouldenot b
transaction failure, and to decide how to react. For example

if the ST bit (alone) is set, this may be because the addressrr]'SIe""(:il.ng due to misspeculation. .
. e . . We discuss these and other challenges that have arisen
for a store instruction is unavailable due to an outstanding : : :
. : . from certain causes of transaction failure and/or feedback
load miss, or because of a micro-TLB miss (see (3) for more ; .
software receives about them throughout the paper. Design-

details of Fhe Rock's MM.U)' ers of future HTM features should bear in mind not only the
In the first case, retrying may succeed because the cache’ ™ . .
miss will be resolved. In the latter case, an MMU request is quality of feedback about reasons for transaction failute b

. . : also how software can react to such failures and feedback.
generated by the failing transaction, so the transaction ma

succeed if retried because a micro-TLB mapping is estab-

loads discussed in the remainder of the paper.



4. Simple, static transactions short and simple, we should be able to get them to succeed
h as hardware transactions. Both HyTM and PhTM allow an
operation to be executed using a hardware transaction, but
can also use STM to complete an operation if it cannot suc-
ceed in a hardware transaction. All decisions about whether

In this section, we briefly summarize our experience wit
simple, static transactions; more details appear in (6). Fo
such transactions, the code and memory locations to be ac
cessed are known in advance, and we can exploit this infor- X i
mation to make transactions highly likely to succeed. Fer ex tp retry, back off, or switch to using STM are made by the
ample, we can align transaction code to avoid ITLB misses !IPrary and are transparent to the programmer, who only

during the transaction. Similarly, we can warm the DTLB Writes simple C++ code for the hash table operations.
outside the transaction as described in Section 3. Figure 1 shows our results from experiments with 50% in-

To date, we have experimented with a simple counter and S€Tt/50% deletes, for key ranges of (&) 256 and (b) 128,000.

with a DCAS (double compare-and-swap) operation, which In each case, we prepopulate the hash table to contain about

generalizes the well known CAS operation to two locations, Nalf of the keys, and then measure the time taken for the
For the counter, we compared CAS-based and HTM- threads to complete 1,000,000 operations each, chosen at

based implementations, each with and without backoff random according to the specified operation distributions

(backing off in reaction to CAS failure in the former case, &"d key ranges. An “unsuccessful” operation (insert of a
and to the COH bit being set in the latter). value already in the hash table, or delete of one not there)

As expected for a highly contended, centralized data df?es not mpdify memory; thus appr'oximately 5,0% of oper-
structure, all methods showed some degradation in through-2tions modify memory in this experiment. In this and other
put with increasing number of threads. All performed com- Similar graphshytm and phtn refer to HyTM and PhTM
parably, except the HTM version with no backoff, for which USing our SkySTM algorithm (11) for the STM component,
degradation was so severe as to suggest livelock. This is@ndstm is SkySTM with no hardware support. We present
not surprising given Rock’s simple “requester wins” con- results as throughputm total operatl'ons per mlcrosecond.'
flict resolution policy: requests for transactionally medk For both scenarios, we observe high hardware transaction
cache lines are honored immediately, failing the transac- SUCCESS rates for both HyTM and for PhTM (regardless of

tion. We have found simple software backoff mechanisms Which STMis used); in fact, almost all operations evenguall
to be effective to avoid this problem. Nonetheless we think succeed as hardware transactions, and do not need to revert

designers of future HTM features should consider whether [0 USing the STM. Figure 1 shows that these methods clearly
simple conflict resoluton policies that avoid failing trans outperform all software-only methods. Forscenarlt_) (ad6at

tions as soon as a conflict arises might result in better andthréads, the two PhTM variants outperform the single lock
more stable performance under contention. implementation by a factor of about 54 and the state-of-the-

We also used HTM-based DCAS operations to reimple- art TL2 STM by a factor of about 4.6. HyTM also does well
ment two concurrent set implementations from the in this scenario, although it trails the PhTM variants bywho

java.util.concurrent library. Our results were fairly a factor of'two. ) . .
similar to those achieved on the ATMTP simulator (5).  >cenario (b) yields qualitatively similar results to sce-
Briefly, the new algorithms match the performance of the Nario (&), with HyTM and PhTM successfully outperforming
state-of-the-art, carefully hand-crafted implementagion all software-only methods (except single threaded, as dis-
java.util.concurrent; see (6) for details. We believe cussed below). In this case, the quantitative beneflt ower th
that this approach has strong potential to simplify and im- softV\./are“-onIy"methods IS less—the two PhTM variants per-
prove Java libraries and other libraries. forming on_ly about 20 times better than a smgle_lock and
about 2.4 times better than TL2 at 16 threads, with HyTM
5 Hash table fcrailing the PhTM variants py only a factor of 1.2 or so._This
is because the key range is large enough that the active part
The simple hashtable experiment discussed in this sectionof the hash table does not fit in the L1 cache, so all methods
was designed to allow us to evaluate various TM systems syffer the cost of the resulting cache misses, which seoves t
under low and high contention. The hash table consists of jevel the playing field to some extent. We also observed that,
a large number'") of buckets and our experimental test with 100% lookup operations with a key range of 256, PhTM
harness allows us to restrict the range of keys inserted intogutperforms the lock at 16 threads by a factor of about 85 and
the table. With such a large table, we rarely encounter buck- T2 by a factor of about 3.4, with HyTM trailing PhTM by
ets with multiple keys in them, so we can concentrate on the g factor of about 1.2 (data not shown).
common simple case. This test has been useful in evaluat-  Examining some of the statistics collected by the PhTM
ing the scalability of various STMs, and also supports some |ibrary yielded some interesting observations that giveeo
interesting observations using Rock's HTM. insight into the reasons for transactions failing on Roak. F
The hashtable is implemented in C++, using a compiler example, with the 128,000 key range experiment (scenario

and library that can support HyTM (4) and PhTM (13), as (b)), more than half of the hardware transactions are ggtrie
well as several STMs. Because the hashtable operations are



HashTable Test: keyrange=256, 0% lookups HashTable Test: keyrange=128000, 0% lookups
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Figure 1. HashTable with 50% inserts, 50% deletes: (a) key range 286¢brange 128,000.

even for the single thread case (these retries explain whyand have more data dependencies. Second, when a red-black
the single lock outperforms HyTM and PhTM somewhat tree becomes unbalanced, new insertion operations perform
in the single threaded case). In contrast, with the 256 key “rotations” to rebalance it, and such rotations can oceasio
range experiment (scenario (a)), only 0.02% of hardware ally propagate all the way to the root, resulting in longer
transactions are retries in the single thread case, and evertransactions that perform more stores. Third, mispredicte
at 16 threads only 16% are retries. branches are much more likely when traversing a tree.
Furthermore, the distribution of CPS values from failed We used an iterative version of the red-black tree (5), so
transactions in the 16 thread, 256 key range case is dom-as to avoid recursive function calls, which are likely tosau
inated by COH while in the 128,000 key range case it is transactions to fail in Rock. We experimented with various
dominated by ST and CTI. This makes sense because therdey ranges, and various mixes of operations. In each experi-
is more contention in the smaller key range case (resulting ment, we prepopulate the tree to contain about half the keys
in the CPS register being set to COH), and worse locality in in the specified key range, and then measure the time re-
the larger one. Poor locality can cause transactions téofail  quired for all threads to perform 1,000,000 operations each
a variety of reasons, including micro-DTLB mappings that on the tree, according to the specified operation distaipti
need to be reestablished (resulting in ST), and mispreatlicte we report results as throughput in total operations per mi-
branches (resulting in CTI). crosecond. Figure 2(a) shows results for the “easy” case of
Finally, this experiment and the Red-Black Tree experi- a small tree (128 keys) and 100% lookup operations. Fig-
ment (see Section 6) highlighted the possibility of the code ure 2(b) shows a more challenging case with a larger tree
in the fail-retry path interfering with subsequent retry at (2048 keys), with 96% lookups, 2% inserts and 2% deletes.
tempts. Issues with cache displacement, TLB displacement The 100% lookup experiment on the small tree yields
and even modifications to branch-predictor state can arise,excellent results, similar to those shown in the previous
wherein code in the fail-retry path interferes with subsequ  section. For example, at 16 threads, PhTM outperforms the
retries, sometimes repeatedly. Transaction failuresachiog single lock by a factor of more than 50. However, as we
these issues can be very difficult to diagnose, especially be go to larger trees and/or introduce even a small fraction of
cause adding code to record and analyze failure reasons caoperations that modify the tree, our results are signifigant
change the behavior of the subsequent retries, resulting in less encouraging, as exemplified by the experiment shown in
severe probe effect. As discussed further in (6), the lagicf  Figure 2(b). While PhTM continues to outperform the single
deciding whether to retry in hardware or fail to software was lock in almost every case, in many cases it performs worse
heavily influenced by these issues, and we hope to improvethan the TL2 STM system (7). A key design principle for
it further after understanding some remaining issues we hav PhTM was to be able to compete with the best STM systems
not had time to resolve yet. in cases in which we are not able to effectively exploit HTM
transactions. Although we have not yet done it, it is trivaal
make PhTM stop attempting to use hardware transactions,
6. Red-Black Tree so in principle we should be able to get the benefit of the
Next, we report on experiments similar to those in the pre- hardware transactions when there is a benefit, suffering onl
vious seciton, but using a red-black tree, which is consider a negligible overhead when there is not. The challenge is in
ably more challenging than a simple hash table for several
reasons. First, transactions are longer and access mare dat



RedBlackTree: 100% reads, keyrange=[0,128) RedBlackTree: 96% reads, keyrange=[0,2048)
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Figure 2. Red-Black Tree. (a) 128 keys, 100% reads (b) 2048 keys, 96#sr2% inserts, 2% deletes.

deciding when to stop attempting hardware transactiorts, bu ~ We profiled single threaded PhTM runs with various tree

in extreme cases this is easy. sizes and operation distributions. Furthermore, becéese t
Before giving up on getting any benefit from HTM in  sequence of operations is deterministic (we fixed the seed

such cases, however, we want to understand the behaviofor the pseudo random number generator used to choose op-

better, and explore whether better retry heuristics cap.hel  erations), we could also profil#l operations using an STM-
As discussed earlier, understanding the reasons for trans-only run, and use the results of the PhTM runs to eliminate

action failure can be somewhat challenging. Although the the ones that failed in hardware. This way, we can compare

mentioned CPS improvements have alleviated this problemcharacteristics of transactions that succeed in hardveare t

to some extent, it is still possible for different failureasmns those that don't, and look for interesting differences thay

to set the same CPS values. Therefore, we are motivated tayive clues about reasons for transaction failures.

think about different ways of analyzing and inferring rea-

sons for failures. Below we discuss an initial approach we Results of Analysis In addition to the experiments de-

have taken to understanding our red-black tree data. scribed above, we also tried experiments with larger trees
) . ) (by increasing the key range), and found that many opera-

6.1 Analyzing Transacation Failures tions fail to complete using hardware transactions, even fo

Significant insight into the reason for a transacationrgili ~ single threaded runs with 100% lookup operations. This does

can be gained if we know what addresses are read and writ-not seem too surprising: the transactions read more latstio
ten by it. We added a mechanism to the PhTM library that walking down a deeper tree, and thus have a higher chance
allows the user to register a call-back function to be called of failing to fit in the L1 cache.
at the point that a software transaction attempts to commit; We used the above-described tools to explore in more
furthermore, we configured the library to switch to a soft- depth, and we were surprised to find out that the problem
ware phase in which only the switching thread attempts a was not overflowing of L1 cache sets, nor exceeding the
software transaction. This gives us the ability to examiee t ~ store queue limitation. Even for2, 000 element tree, none
software transaction executed by a thread that has justifail of the failed operations had a read-set that overflowed any
to execute the same operation as a hardware transaction. of the L1 cache sets (in fact, it was rare to see more than
We used this mechanism to collect the following infor- loads hit the samd-way cache set). Furthermoneone of
mation about operations that failed to complete using hard- the transactions exceeded the store queue limitatiorinButt
ware transactions: Operation name (Get, Insert or Delete);this information together with the CPS values of the failed
read set size (number of cache liesnaximum number  transactions, we concluded that most failures were because
of cache lines mapping to a single L1 cache set; write settoo many instructions were deferred due to the high num-
size (number of cache lines and number of words); number ber of cache misses. Indeed, when we then increased the
of words in the write set that map to each bank of the store number of times we attempt a hardware transaction before
gueue; number of write upgrades (cache lines that were readswitching to software, we found that we could significantly
and then written); and number of stack writes. decrease the number of such failing transactions, bechese t
Lin practice, we collected the number of ownership-recordeiing the additional rem-es served to bring ne-eded d{-ﬂa Into theazach
read-set. Siﬁce each cache-line maps to exactly one owpeestord, and thereby reducing the need to defer instructions.
since the size of our ownership-table is very large, we beltaat the two Even though we were able to get the hardware transac-
are essentially the same. tions to commit by retrying more times, the additional re-




tries prevented us from achieving better performance thandeciding when to take the lock: it tries a transaction a fixed
using a software transaction. This suggests we are unlikelynumber of times before acquiring the lock, and does not use
to achieve significantly better performance using PhTM for the CPS register to try to make better decisions.

such large red-black trees. Future enhanced HTM imple- To make a slightly more aggressive experiment, we
mentations may be more successful. It is also interesting changed the increment:decrement:read ratio to be 20:20:60
to ponder whether different data structures might be more raher than the 10:10:80 used in (5). We also increased from

amenable to acceleration with hardware transactions. 4 to 20 the number of retries before acquiring the lock be-
Next we explored experiments with larger fractions of cause with higher numbers of threads the transactions would

Insert and Delete operations. We profiled a run wift¥ fail several times, and would therefore prematurely detmde

Insert15% Removel0% Get operations on a,024 ele- take the lock. We have not yet conducted a detailed analysis

ment tree. Most Insert and Remove operations eventually of the reasons for requiring more retries, but we expect to

succeeded in a hardware transaction, and none of those thafind similar reasons as discussed in Section 5: cache misses

failed to software did so due to exceeding the store buffer lead to transaction failures for various reasons on Rocdk, bu

size. Indeed, when checking the failure ratio as a functfon o not on ATMTP; because the failed transaction issues a re-

the write-set size, we saw no strong correlation between thequest for the missing cache line, it is likely to be in cache

size of the operation’s write-set and the failure ratio. on a subsequent retry. Even using the simplistic policy de-
Putting this together with the CPS data, the most likely scribed above, our results (Figure 3(a)) show excellerit sca

explanations for these failures are stores that encounterability using TLE, in contrast to negative scalability wotlt.

micro-DTLB misses or a store address that is dependent

on an outstanding load miss. Both of these reasons result7 > TLEin Java

in a CPS value of ST, which is what we observed in most " °

cases. In ongoing work, we plan to add more features to ourA particularly interesting opportunity is to use TLE to im-

profiling tools to help distinguish these cases. prove the scalability of existing code, for example by elid-
ing locks introduced by theynchronized keyword in the
7 TLE Java programming language. This use of the TLE idea dif-

_ _ . _ fers from the one described above in several ways.
In this section we report on our experience so far using TLE  First, we can be more ambitious in this context because

to improve the performance and scalability of lock-based the JIT compiler can use run-time information to heuristi-
code. The idea behind TLE is to use a hardware transactioncally choose to elide locks for critical sections that seem

to execute a lock’s critical section, but without acquirthg  Jikely to benefit from doing so, and in cases in which lock
lock, so that critical sections can execute in parallel éth  elision turns out to be ineffective, we can dynamically re-
do not have any data conflicts. vert to the original locking code. Furthermore, a TLE-aware

Rajwar and Goodman (19; 20) proposed an idea that is 3T compiler could take into account knowledge of the HTM
closely related to TLE, which they called Speculative Lock feature when deciding what code to emit, what optimizations
Elision (SLE) SLE has the advantage of being entirely trans to app|y’ and what code to inline. However, our prototype
parent to software, and thus has the potential to improve theTE-enabled JVM attempts TLE favery contended criti-
performance and scalability of unmodified legacy code. The ca| section, and the JIT compiler does not yet use knowledge
downside is that the hardware must decide when to use thegf the HTM feature to guide its decisions.
technique, introducing the risk that it will actually hup In contrast to the earlier prototype described in (5), our
formance in some cases. Performing lock elision explicitly T E-aware JVM does make use of the CPS register to guide
in software is more flexible: we can use the technique selec-decisions about whether to retry, or backoff and then retry,
tively, and we can use different policies and heuristics for or give up and acquire the original lock.
backoff and retry in different situations. For our initial experiments with our modified JVM,

Although TLE does not share SLE’s advantage of being we chose two simple collection classé&shtable and
transparent at the binary level, TLE can still be almost or HashMap, from the java.util library. Both support key-
completely transparent to the programmer. Below we discussyg|ye mappingsHashtable is synchronizedHashMap is
two ways in which we have tested TLE, one in which the ynsynchronized but can be made thread-safe by a wrapper
programmer replaces lock acquire and release calls withthat performs appropriate locking.
macros, and one in which TLE is made entirely transparent  Asin our previous work (5), we experimented with a sim-
to Java programmers by implementing it in the JVM. ple read-only benchmark usingashtable (slightly modi-

) fied to factor out a divide instruction that caused transac-
7.1 TLE with C++ STL vector tions to fail) andHashMap. After initialization, all worker
We repeated the experiment described in (5), which usesthreads repeatedly look up objects that are known to be in
simple macro wrappers to apply TLE to an unmodified STL the mapping. We have also conducted more ambitious tests
vector. This experiment uses a very simplistic policy for that include operations that modify the collection. Result



STLVector Test: initsiz=100, ctr-range=40 TLE with Hashtable in Java
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Figure 3. (a) TLE in C++ with STLvector (b) TLE in Java withHashtable.

for Hashtable are shown in Figure 3; a curve labeled with of TLE, it could avoid making such decisions that are detri-
2-6-2 indicates 20%uts, 60%gets, and 20%removes. mental to transaction success.
With 100% get operations, TLE is highly successful, We also teste@treeMap from java.util.concurrent,
and the throughput achieved scales well with the number another red-black tree implementation. Again, we achieved
of threads. As we increase the proportion of operations thatgood results with small trees and read-only operations, but
modify the Hashtable, more transactions fail, the lock is performance degraded with larger trees and/or more muta-
acquired more often, contention increases, and perforenanc tion. We have not investigated in detail.
diminishes. Nonetheless, even when only 20% of the opera- We are of course also interested in exploiting Rock’s
tions aregets, TLE outperforms the lock everywhere except HTM in more realistic applications than the microbench-
the single threaded case. We hope to improve performancemarks discussed so far. As a first step, we have experimented
under contention, for example by adaptively throttling-con with the VolanoMarkM benchmark (18). With the code for
currency when contention arises. TLE emitted, but with the feature disabled, we observed
We also conducted similar experiments fashMap. As a 3% slowdown, presumably due to increased register and
before (5), we found thatashMap performed similarly to cache pressure because of the code bloat introduced. When
Hashtable in the read-only test. When we introduced op- we enabled TLE, it did not slow down the benchmark fur-
erations that modify the collection, however, while welstil ther, as we had expected, and in fact it regained most of the
achieve some performance improvement over the lock, so farlost ground, suggesting that it was successful in at leaseso
our results are not as good as farshtable. We have made  cases. However, a similar test with an internal benchmark
some interesting observations in this regard. yielded a 20% slowdown, more in line with our expectation
We observed good performance withshMap compara- that blindly attempting TLE for every contended criticatse
ble toHashtable, but noticed that later in the same experi- tion would severely impact performance in many cases.
ment, performance degraded and became comparable to the This experience reinforces our belief that TLE must be
original lock. After some investigation, we determinedttha appliedselectively to be useful in general. We are working
the difference was caused by the JIT compiler changing its towards being able to do so. As part of this work we have
decision about how to inline code. At first, it would inlinesth  built a JVM variant that includes additional synchronigati
synchronized collection wrapper together with each of the observability and diagnostic infrastructure, with thepgnsge
HashMap's put, get andremove methods. Thus, when the  of exploring an application and characterizing its potnti
JVM converted the synchronized methods to transactions,to profit from TLE and understanding which critical sections
the code to be executed was all in the same method. are amenable to TLE, and the predominant reasons in cases
Later, however, the JIT compiler revisited this decision, that are not. We hope to report in more detail on our experi-
and in the case gfut, instead inlined the synchronized col- ence with the tool soon.
lection wrapper into the worker loop body and then emit-
ted a call to a method that implemeritsshMap . put (). . . .
As a result, when the TLE-enal?Ied JVM com?er?s the syn- 8. Minimum Spanning Forest algorithm
chronized method to a transaction, the transaction casitain Kang and Bader (10) present an algorithm that uses trans-
a function call, which—as discussed in Section 3—can of- actions to build a Minimum Spanning Forest (MSF) in par-
ten abort transactions in Rock. If the compiler were aware allel given an input graph. Their results using an STM for
the transactions showed good scalability, but the overhead



of the STM was too much for the parallelization to be prof-
itable. They concluded that HTM support would be needed

MSF -- Eastern USA Roadmap
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. . .. f-orig-sky —+— f-orig-I
to achieve any benefit. We report below on our preliminary st-opt-sky —s— Msoptle —o—
msf-orig-lock —*— msf-seq

work using Rock’s HTM to accelerate their code.

We begin with a brief high-level description of the as-
pects of the MSF benchmark most relevant to our work; a
more precise and complete description appears in (10). Each
thread picks a starting vertex, and grows a minimum span-
ning tree (MST) from it using Prim’s algorithm, maintain-
ing a heap of all edges that connect nodes of its MST with
other nodes. When the MSTs of two threads meet on a ver-
tex, the MSTs and the associated heaps are merged; one of
the threads continues with the merged MST, and the other
starts again from a new vertex.

Kang and Bader made judicious choices regarding the

use of transactions, using them where necessary to keep the _
algorithm simple, but avoiding gratuitous use of transati ~ accessed. Fortunately, Case 1is by far the most common sce-

where convenient. For example, transactions are usedeor th nNario when executing on sparse graphs, as conflicts are rare.
addition of new nodes to the MST, and for conflict resolution ~ We therefore created a variant in which we oekam-

on such nodes. But new edges are added to the threads’ heag§€ the minimum edge in the heap inside the transaction,

non_transactiona"y, and when two MSTs are merged, the and then deC|de, based on the result of the conflict resolu-

msf-opt-lock

=
o
o

Running time (s)
=

1t

3 4
# Threads

Figure 4. MSF

associated heaps are merged non-transactionally.

Our work focuses on the main transaction in the algo-
rithm, which is the largest one, and accounts for about half
of the user-level transactions executed. It takes theiatig
steps when executed by thread T.

¢ Extract the minimum weighted edge from T's heap, and
examine the new vertexconnected by this edge.

¢ (Case 1) Ifv does not belong to any MST, add itto T's
MST, and remove T's heap from the public space for the
purpose of edge addition.

e (Case 2) Ifv already belongs to T's MST, do nothing.
¢ If v belongs to the MST of another thread T2:

= (Case 3) If T2's heap is available in the public space,
steal it by removing both T and T2's heaps from the
public space for the purpose of merging.

= (Case 4) Otherwise, move T's heap to the public
queue of T2, so that T2 will later merge it once it
is done with the local updates for its own heap.

After a short investigation using our SkySTM library, we
noticed that the main transaction was unlikely to succeed
using Rock’s HTM, for two main reasons: first, the transac-

tion becomes too big, mostly because of the heap extract-

min operation. Second, the extract-min operation is simila
to RBTree, traversing dynamic data that confounds branch
prediction. However, we note that in two of the four cases
mentioned above (Cases 1 and 3) the transaction ends u
removing the heap from the public space, making it unavail-
able for any other threads. In these cases, it is trivial tocav
extracting the minimum inside the transaction, insteadgloi

it right after the transaction commits and the heap is pelyat

tion, whether to extract it transactionally (in Cases 2 and
4) or non-transactionally (in Cases 1 and 3). This demon-
strates one of the most valuable advantages of transaktiona
programming. Extracting the minimum non-transactionally
in all cases would significantly complicate the code. Using
transactions for synchronization allows us to get the bene-
fits of fine grained synchronization in the easy and common
cases where transactions are likely to succeed, withoadtnee
ing to modify the complex and less frequent cases.

8.1 Evaluation results

So far, we have only experimented with protecting all trans-
actions with a single lock, and then using Rock’s HTM fea-
ture to elide this lock, as described previously. To this,end
we evaluated 7 versions of the MSF benchmarks on Rock:

msf-seqa sequential version of the original variant, run sin-
gle threaded, with the atomic blocks executed with no
protection.

msf-{orig,opt}-sky : the original and new variants of the
benchmark, respectively, with the atomic blocks executed
as software transactions, using our SkySTM library.

msf-{orig,opt}-le the original and new variants of the bench-
mark with the atomic blocks executed using TLE. We
try using a hardware transaction until we get 8 failures,
where a transaction that fails with the UCTI bit set in the
CPS register is only counted as half a failure; then fail to
use a single lock.

msf-{orig,opt}-lock : the original and new variants of the

P benchmark, respectively, with the atomic blocks executed

using a single lock.

To date we have only experimented with the “Eastern
Roadmap” data set from the 9th DIMACS Implementation



Challenge (http://www.dis.uniromal.it/"challenge9hioh we have shown that we can exploit Rock’s HTM to enhance
has 3,598,623 nodes and 8,778,114 edges. Figure 4 showperformance of software transactional memory.
the results. Note that both axes are log scale, and that the HTM-aware compilers may be able to make code more
msf-seq runtime is shown across the whole graph for com- amenable to succeeding in hardware transactions. However,
parison, although it was only run single threaded. Each datait is unlikely that there will be widespread support in com-
point in the graph is the average result of 6 runs, with a stan- monly used compilers in the near future. Therefore, it is im-
dard deviation of less than 3% for all data points. portant that HTM is able to execute ordinary code, generated
The single-thread runs with msf-orig-sky and msf-opt- by any compiler. Rock’s HTM interface was designed with
sky pay a 31x and a 6.5x slowdown, respectively, comparing this requirement in mind.
to the sequential version, while the single-thread slowdow The difficulty of diagnosing reasons for transaction fail-
with the msf-opt-le version is only 1.37x. We also found that ures in some cases clearly points to the importance of richer
the fraction of user-level transactions that ended up acqui feedback in future HTM features. Apart from further dis-
ing the lock in single-threaded runs was over 33% with msf- ambiguating different failure reasons, additional infarm
orig-le, and only 0.04% with msf-opt-le. These observation tion such as program counter of failing instructions, ad-
demonstrate the value of our modifications to extract the dresses for data conflicts and TLB misses, time spent in
minimum edge from the heap non-transactionally in some failed transaction, etc. would be very useful. Furthermore
cases, as well as the significant performance improvementeliminating certain restrictions on hardware transactioil

gained by executing transactions in hardware. make the feature much easier to use in more contexts. The
Both STM versions and msf-opt-le scale linearly up to 16 save-restore limitation in Rock is a key example.
threads. With 16 threads, the msf-opt-le version outperor We often hear claims that people claim that TM is going

the sequential version by a factor of more than 11, while to solve all the world’s problems. We even occasionally hear

msf-opt-sky only outperforms it by a factor of 1.95 and msf- people make such claims. It's not going to, certainly not in

orig-sky is unable to improve on the performance of msf-seq. the near future. We hope our paper helps set expectations
Finally, note that even though the optimized variant sig- appropriately about what Rock’s HTM feature can and can-

nificantly reduces the average size of the main transaction,not achieve. We also emphasize that this is the first step, and

the transaction is still not small enough to scale well with a that software that uses this feature will automaticallyedin

single-lock solution: even though msf-opt-lock scalegfer from improvements in future HTM features.

than msf-orig-lock, they both stop scaling beyond 4 threads  There is plenty more work to do, both to maximize the

Thus, even though the software-only version that achievesbenefit we can extract from Rock’s new feature, and to guide

the lowest running time is the msf-opt-lock with 4 threads, the development of future HTM features.

this running time is still almost 5 times longer than the best

time achieved by the msf-opt-le version. 10. Concluding remarks

_ Finally, we also ran the experiments on Rock configured e have described our experience evaluating the hardware
in SE mode. As we expected, in SE mode, the smaller storey.,nsactional memory feature of Sun’s forthcoming Rock
buffer caused many transactions to fail (CPS values fadail 1 icore processor. This feature has withstood rigorous
transactions were dominated by [SIZ), even in the opti-  tegting, which has revealed no correctness bugs. Further-
mized variant. Therefore, in the single thread execution of 46 "\ve have demonstrated successful use of this feature in
msf-opt-le in SE mode, the fraction of user-level transac- 5 hmper of contexts. We conclude that Sun’s architects have
tions that resorted to acquiring the lock is more than 300 546 4 groundbreaking step towards sophisticated hardware
times higher than that of the same run in SST mode. As a g 5hort for scalable synchronization in multicore systems

result, in SE mode msf-opt-le provides “only” a 9x speedup e have discussed techniques we used, challenges we
with 16 threads, and stops scaling at all after this poirilt, St faced, and some ways in which Rock could be improved
even in SE mode, the optimized variant scales better than the,y e even better. We hope our paper will be useful both

original one, and with 16 threads is almost 3x faster than any programmers who use Rock’s HTM, and to architects
of the software methods at any number of threads. designing related features in the future. ’
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