Helper Threads via Virtual Multithreading
® 2 Processor-based Platform

On An Experimental Itanium

Perry H. Wang!, Jamison D. Collins!, Hong Wang', Dongkeun Kim'f, Bill Greene?
Kai-Ming Chan?, Aamir B. Yunus?, Terry Sych?, Stephen F. Moore?, and John P. Shen!

Microarchitecture Research Lab, Microprocessor Technology Labs, Intel Corp.*
Enterprise Technology Enabling, Software Solutions Group, Intel Corp.?
PAL Technology, Enterprise Platforms Group, Intel Corp.?

ABSTRACT

Helper threading is a technology to accelerate a program
by exploiting a processor’s multithreading capability to run
“assist” threads. Previous experiments on hyper-threaded
processors have demonstrated significant speedups by using
helper threads to prefetch hard-to-predict delinquent data
accesses. In order to apply this technique to processors
that do not have built-in hardware support for multithread-
ing, we introduce virtual multithreading (VMT), a novel
form of switch-on-event user-level multithreading, capable
of fly-weight multiplexing of event-driven thread executions
on a single processor without additional operating system
support. The compiler plays a key role in minimizing syn-
chronization cost by judiciously partitioning register usage
among the user-level threads. The VMT approach makes
it possible to launch dynamic helper thread instances in re-
sponse to long-latency cache miss events, and to run helper
threads in the shadow of cache misses when the main thread
would be otherwise stalled.

The concept of VMT is prototyped on an Itanium® 2
processor using features provided by the Processor Abstrac-
tion Layer (PAL) firmware mechanism already present in
currently shipping processors. On a 4-way MP physical
system equipped with VMT-enabled Itanium 2 processors,
helper threading via the VMT mechanism can achieve sig-
nificant performance gains for a diverse set of real-world
workloads, ranging from single-threaded workstation bench-
marks to heavily multithreaded large scale decision support
systems (DSS) using the IBM DB2 Universal Database. We
measure a wall-clock speedup of 5.8% to 38.5% for the work-
station benchmarks, and 5.0% to 12.7% on various queries
in the DSS workload.

TDongkeun Kim is currently a Ph.D. candidate in the Depart-
ment of Electrical and Computer Engineering at the University
of Maryland, College Park.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASPLOS’040ctober9-13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/001055.00.

144

Categories and Subject Descriptors

C.1.1 [Processor Architectures]: Single Data Stream Ar-
chitectures— Multiple-instruction-stream, single-data-stream
processors (MISD)

C.4 [Performance of Systems]: Modeling techniques

General Terms

Performance, Design, Experimentation

Keywords

Helper thread, cache miss prefetching, multithreading, switch-
on-event, Itanium processor, PAL, DB2 database

1. INTRODUCTION

Helper threading is a performance optimization technique
that works by launching subordinate threads [7, 36] to hoist
the latency of certain critical computations on behalf of a
main thread. Typically, this optimization has been exploited
either to prefetch future data accesses [9, 10, 19, 20, 22, 23,
34, 41, 42, 43], or to precompute the outcome of future hard-
to-predict branches [1, 8]. The majority of previous work has
assumed a hardware multithreaded processor, and in partic-
ular, a simultaneous multithreaded (SMT) [38, 39] proces-
sor. Because of its ability to share hardware resources such
as fetch bandwidth and execution functional units among
threads, an SMT microarchitecture is well suited for over-
lapping execution of the main thread and its helper threads.
The Intel® Pentium® 4 processor with Hyper-Threading
Technology (HT) [24] is one such design. In an HT ma-
chine, each hardware thread context is exposed to the oper-
ating system (OS) as a distinct logical processor, to which
the OS is responsible for binding an OS-visible thread for
scheduled execution. The only way for a user program to
access multiple hardware contexts in a single HT processor
is to use the OS thread APIs to create threads and manage
inter-thread scheduling affinity and synchronization.

As reported in a recent study [19], helper threading can
achieve significant speedups when applied to physical sys-
tems equipped with HT processors. That study sheds valu-
able insights into several key tradeoffs. First, because some
processor structures are either shared or partitioned be-
tween logical processors in the multithreading mode [24], re-
source contention is increased. Consequently, helper threads

must be invoked judiciously. Second, helper thread invoca-
tion should be adaptable, responding to changing program
phases. For example, a particular delinquent load might ex-
perience a significant number of cache misses over the entire
program execution, but the temporal distribution of those
misses might not be uniform. Hence, some form of dynamic
self-throttling is essential. Such a throttling method en-
sures that the helper threads will run neither behind nor
too far ahead of the main thread. Unfortunately, due to the
unpredictable and long latency associated with OS-based
inter-thread synchronization, it is difficult to achieve the ad-
equately fine-grain control necessary to tackle these issues
effectively.

To address these challenges, we introduce virtual multi-
threading (VMT), which virtualizes the single instruction
pointer (IP) architecture in a single logical processor en-
vironment to support multiple user-level thread contexts.
The VMT mechanism is able to monitor for long-latency mi-
croarchitectural events, such as last-level cache misses, and
respond by performing a fly-weight (< 100 cycles) control
transfer to another code location in the same application
program. Prior research [2, 13, 15, 26] has found benefit
from similar switch-on-event approaches; but being geared
primarily towards improving program throughput, it has
typically required special OS and hardware support. In con-
trast, the VMT technique is focused on reducing the latency
of an individual program thread. As a form of user-level
switch-on-event multithreading, the VMT thread switching
is OS-transparent. Once activated due to a long-latency
cache miss in the main thread, the helper thread can run en-
tirely hidden in the shadow of the main thread’s outstanding
cache miss, imposing no overhead on the main thread.

Leveraging existing firmware support for instruction set
emulation, we prototype the VMT mechanism in a commer-
cially available Itanium® 2 processor. To minimize the over-
head for the VMT thread switch and synchronization, we
also implement compiler optimizations that judiciously par-
tition the large register sets of the Itanium architecture [18]
between the main and helper threads. In this paper, we
demonstrate that significant performance speedups can be
achieved for a set of real-world workloads when they are op-
timized with VMT-based helper threading technology and
run on a 4-way MP system equipped with the VMT proto-
type processors.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the VMT architecture and its usage model
for supporting prefetching helper threads. Section 3 high-
lights our experiences in developing the firmware-based
VMT prototype in the Itanium 2 processor. Section 4
presents workload performance evaluation. Section 5 re-
views the related work, and Section 6 concludes.

2. VIRTUAL MULTITHREADING

In this section, we describe the virtual multithreading ar-
chitecture for low overhead thread switching among event-
driven user-level threads. In addition, we present a helper
threading approach as an example usage model of VMT.

2.1 VMT Architecture

2.1.1 Event-driven User-level Threads

In traditional multithreading application program devel-
opment, standard OS thread APIs, e.g. Windows Thread

145

State Swapped Cycles | Cumulative Cycles
IP (minimum) 21 21
UNAT and GR1 -7 36 57
GR8 — 15 12 69
GR16 — 31 (banked) 66 135
PR and LC 14 149
BRO -7 53 202
RSE 65 267
FR2 - 31 59 326

Table 1: Latency to perform a VMT-based thread
context switch as the amount of swapped state is
increased.

APIs, are used to create OS kernel-managed threads (OS
threads for short). These OS thread APIs are also used
to manage inter-thread synchronization, e.g. SetEvent()
and WaitForSingleObject(), and special thread schedul-
ing requirements such as affinity and priority. It is the re-
sponsibility of the OS to both make thread scheduling de-
cisions (e.g. when to context-switch threads) and perform
the inter-thread synchronization. The latency incurred on
an OS thread context switch or synchronization operation
is usually in the range of microseconds, a glacial time scale
relative to the latency of a typical microarchitectural event
of tens of nanoseconds. To overcome the heavy overhead for
OS thread switching and synchronization, some runtime sys-
tems implement light-weight user-level thread libraries that
allow the user to create OS-transparent user-level threads
and to explicitly manage thread scheduling and synchronous
switching without invoking the OS kernel. However, a con-
ventional user-level thread library, such as the fiber util-
ity [4] in the Windows OS, is unable to perform event-
driven preemptive scheduling. In addition to the ability to
synchronously switch between threads, VMT provides ap-
plications with the new capability to directly observe for
and react to microarchitectural events on a logical proces-
sor without any OS involvement. To the OS, the switching
of user-level threads is completely transparent; that is, the
OS has the illusion of a single OS thread for the application
program running on the processor.

One example microarchitectural event of interest is last-
level cache misses that cause a pipeline stall. In response
to such events, VMT enables a quick thread switch to sus-
pend the main thread, execute a helper thread, and resume
main thread execution completely within the shadow of the
memory stall. Section 2.2 provides further detail into this
usage model. To execute helper threads within the time to
access memory, it is essential to ensure very low overhead
for the VMT thread switching. We use the term fly-weight
to signify that the control transfer is of microarchitectural
time scale and to distinguish it from light-weight OS control
transfers, which can be thousands of cycles or more.

2.1.2 Fly-weight VMT Thread Context Switch

Table 1 shows the cycle cost for VMT-based context
switch overhead as different subsets of register state are
saved and restored for an Itanium 2 processor. A mini-
mal context switch involves swapping thread IPs, ignoring
all other register state. Such a context switch requires about
21 cycles. However, as additional application register state
is saved and restored, the cost of a context switch increases
significantly. For processors with memory latency of 200
to 300 cycles, a context switch time of 300+ cycles would

make it impossible to even complete a context switch in
the shadow of a last-level cache miss. Therefore, to ensure
effectiveness for a usage model like helper threading, it is
essential to keep VMT context switch cost at a minimum.

To this end, a state-of-the-art compiler optimization is
introduced to perform judicious register partitioning among
user-level threads. By taking advantage of the large register
sets of the Itanium architecture, the compiler is able to al-
locate a distinct subset of registers to be used by the helper
threads. Therefore, it suffices to swap only IPs during a
VMT thread switch.

An additional benefit of the register partitioning optimiza-
tion is to reduce the cost of value communication between
user-level threads. In the helper threading usage model,
such synchronization manifests as the communication of
live-in values from the main thread to the helper thread.
Albeit explicitly partitioned, the registers used by the main
thread and the helper thread belong to the same application
register file, and thus are mutually accessible by each thread.
Consequently, value synchronization simply involves copy-
ing register state between the main thread and the helper
thread, instead of going through memory-based shared vari-
ables. For this usage model, both the main and prefetching
helper threads are considered VMT threads, and referred to
as such throughout this paper.

Finally, the compiler-guided encapsulation of VMT thread
contexts as part of the application register state provides a
third essential benefit. Since all application register state
is saved and restored across OS context switches, it is vir-
tualized by the OS. In a multiprocessor environment, such
as a traditional SMP system, the virtualization ensures that
the execution of an OS thread which had been previously
suspended on one processor can be fully resumed on the
same or another processor. Because VMT threads only use
existing architectural register state, the OS simply context-
switches the VMT-enhanced application thread just as if it
were an ordinary thread. This guarantees that VMT user-
level threads can be safely used in a multiprogramming and
multiprocessing environment.

Previous research [19, 20, 22, 30] has demonstrated vari-
ous compiler optimizations capable of automatically analyz-
ing delinquent loads from a program and generating effec-
tive data-prefetching helper threads. The register partition-
ing optimization geared towards achieving minimal VMT
thread switch overhead is yet another enhancement to such
optimizing compiler infrastructure development.

2.2 Helper Threading Usage Model

In previously proposed helper threading schemes which
assume multithreaded processors such as SMT or HT, a
helper thread executes in one of the logical processors along
with the main thread running simultaneously in another log-
ical processor. However, for processors that do not provide
such multithreading hardware features, the main thread and
the helper thread cannot be executed simultaneously. With
VMT, a conventional uniprocessor can be equipped with
a form of fly-weight user-level switch-on-event multithread-
ing, where thread switches are triggered upon occurrence of
a long-latency cache miss. Running a helper thread in the
shadow of a main thread stall due to cache miss improves
main thread performance by utilizing the otherwise idle pro-
cessor resources to perform effective prefetching.

146

. T
Time ‘ ‘ ‘ ‘ >

Thread switchw = 2 P

Helper thread§

Figure 1: Prefetching Helper Thread via VMT

2.2.1 Prefetching under a Long-latency Cache Miss

If a processor executes a consumer instruction of a load
that incurs a long-latency cache miss, the main thread is
stalled waiting for the load data to be retrieved. This stall
time represents an ideal opportunity to switch to a helper
thread and perform data prefetching for anticipated future
main thread cache misses.

Figure 1 depicts a typical scenario to execute a helper
thread in the shadow of a last-level cache miss via the VMT
mechanism. A main thread (solid line) encounters a long-
latency cache miss at Tip. As the main thread is stalled
(dotted line), the processor dynamically detects the cache
miss and triggers a fly-weight thread switch to suspend the
main thread and transfer control to the helper thread. At
T2, the helper thread starts the precomputation work lead-
ing to a prefetch for an address that the main thread will
access and would normally miss at T7. At Ts, the helper
thread issues a prefetching load that will incur a last-level
cache miss, which in turn triggers a second fly-weight thread
switch, causing the helper thread to be suspended and the
main thread to be resumed at T4. The main thread at this
point still waits for the original cache miss to be resolved at
Ts when the data it requested at T; returns from memory.
Afterwards, the main thread proceeds with normal execu-
tion, which is overlapped with the cache miss initiated by
the helper thread. At Tg, the data which had been requested
by the prefetching helper thread at Ts arrives in the cache.
At T7, instead of encountering yet another cache miss, the
main thread observes a cache hit. In summary, this exam-
ple shows that useful and effective helper thread prefetching
can be performed while the main thread is stalled (i.e. time
between T; and Ts).

For modern processors, the latency to access main mem-
ory can exceed 200 cycles. The amount of work that can
be done by the helper thread per activation is given by this
latency minus the overhead of VMT thread switch and syn-
chronization. As described in Section 2.1.2; this overhead
can be, in fact, quite minimal when utilizing the register par-
titioning optimization. As the gap between processor speed
and memory latency continues to widen, the last-level cache
miss time will scale up accordingly, increasing the window of
opportunity for using helper threads. For example, through
compiler optimization, either more helper threads can be
used to target more delinquent loads, or more sophisticated
helper threads can be constructed.

2.2.2 Instructions for VMT Thread Yield

In order for the user program to communicate to the hard-
ware when a thread switch should occur, the VMT archi-
tecture provides two yield instructions: Yield and Yield-

Conditional. While differing in their respective trigger-
ing conditions, the Yield and Yield-Conditional instructions
share the common semantics of performing a minimum con-
text switch (i.e. swap of IPs) followed by control transfer
to a VMT thread. The Yield instruction, when executed,
unconditionally suspends the current thread and causes a
synchronous control transfer to the VMT thread. The con-
trol transfer behaves like a mispredicted branch that would
flush the pipeline.

The Yield-Conditional instruction causes a context switch
only when the pipeline is stalled due to a last-level cache
miss. Unlike the Yield instruction which triggers an im-
mediate control transfer, execution is allowed to proceed
past the Yield-Conditional instruction, permitting further
instructions to retire. A control transfer is later invoked
asynchronously if a pipeline stall due to last-level cache
miss is detected. If such a stall is detected, this context
switch occurs at some instruction following past the Yield-
Conditional. If no stall is detected, the processor does not
interrupt the current execution and the Yield-Conditional
instruction behaves just like a no-op.

2.2.3 Example

Figure 2 illustrates how the yield instructions can be used
in the actual VMT thread code. In the main thread on the
left, the first load is a delinquent load with destination reg-
ister r3. Note that a Yield-Conditional is placed between
the load and its use, namely the add instruction that con-
sumes r3. The Yield-Conditional instruction is responsible
to check for a pipeline stall due to a last-level cache miss. If
the delinquent load incurs such a long-latency cache miss,
the processor will quickly stall upon the use of r3, that is, at
the add instruction, while the load request is being serviced
from memory. Upon detecting the triggering condition, the
processor causes a VMT thread switch, followed by a control
transfer to the helper thread.

As shown in Figure 2, when the helper thread is invoked
for the first time, the VMT thread switch mechanism (tran-
sition 1) will transfer control to the beginning of the helper
thread (transition 2a). Assuming r6 is the live-in, the helper
thread then starts to chase pointers and perform prefetch-
ing for future accesses. A helper thread can use the Yield-
Conditional instructions like the main thread to trigger an
event-driven VMT thread switch back to the main thread
in response to a long-latency cache miss. In other words,
if the prefetching load misses in the last-level cache, the
helper thread will stall at its use instruction, cause a VMT
thread switch (transition 3), and then transfer control back
to the main thread (transition 4). If no miss is detected, the
helper thread continues executing and the Yield-Conditional
instruction has no side effect. Alternatively, a helper thread
can use the Yield instructions to unconditionally return con-
trol to the main thread.

2.3 Key Helper Threading Characteristics

In general, a judiciously constructed helper thread uses
a combination of Yield and Yield-Conditional instructions
to implement a form of self-throttling to ensure the helper
thread runs neither behind nor too far ahead of the main
thread. To do so, both main and helper threads maintain
progress counters to explicitly track their progress in the
targeted program region. For example, in a loop, the cor-
responding counter tracks the loop iteration number being

147

Main thread Helper thread

mov r7=r6
R O T N e
Thread switch
Yield-Conditional Id 8 =[r7]
add rd4=r1,r3 @ Thread switch Yield-Conditional
mov 5=r4 @ add 17 =56,18

br .loop

Figure 2: VMT Helper Thread Code Example

executed in either the main or helper thread. When the
helper thread falls behind, that is, the progress counter of
the helper thread is smaller than that of the main thread,
the most recent copy of all helper thread live-in values is
copied from the main thread, and its progress counter syn-
chronized with the main thread counter value. When the
helper thread runs too far ahead, the helper explicitly re-
linquishes control back to the main thread to allow it to
catch up. In addition, a different form of self-throttling helps
prevent a particular instance of a prefetching helper thread
from running too long and delaying the resumption of the
main thread until after its outstanding cache miss has been
resolved. For instance, before the unconditional backward
branch (i.e. br .loop) at the end of the helper thread in
Figure 2, the compiler can insert self-throttling code to test
if the helper thread has executed more than some maximum
number of loop iterations, and to return to the main thread
via a Yield if it has.

After the helper thread yields, the main thread resumes
its execution as if no helper thread invocation had occurred.
That is, it restarts fetch at the instruction that had triggered
the helper, retaining all of its live register state as it had
been prior to the thread invocation. Similarly, the VMT
mechanism preserves the thread continuation for the helper
threads; thus subsequent invocations of the helper resume
execution at the location where the helper thread previously
left from (indicated by transition 2b) instead of jumping to
the beginning of the helper thread again. With continuation
preserved, the main thread and the helper thread would run
independently and concurrently as two co-routines, albeit
not simultaneously. This would allow the helper thread,
equipped with proper self-throttling, to maintain adequate
distance ahead of the main thread.

In order to support the co-routine execution mode, for
each targeted region (i.e. loop or function body), it is nec-
essary to maintain both the initial instruction address of the
beginning of the helper thread as well as the continuation
instruction address which will be executed when the main
thread next yields control. Thus the compiler reserves two
pre-determined registers to hold those two addresses before
the region is entered. During a control transfer, the thread
switch mechanism reads these registers and jumps to the
appropriate instruction address. By reprogramming the ini-
tial and continuation addresses when entering each different
region, multiple helper threads can be supported in a single
binary, albeit targeting each program region with only one
helper thread. More advanced implementations are also pos-
sible that target each region with multiple helper threads,
but such implementations are beyond the scope of this pa-

per.

3. VMT PROTOTYPE ON ITANIUM 2
PROCESSOR

As a form of a user-level fly-weight switch-on-event mul-
tithreading mechanism, VMT entails basic processor sup-
port for monitoring certain microarchitectural events of in-
terest, and responding to a detected event occurrence with
a fast control transfer after a minimal context switch. In
this section, we describe a novel emulation-based approach
to provide such processor support for VMT on the existing
Itanium 2 processor [28], which does not have any dedicated
hardware support for multithreading. This approach exten-
sively leverages the firmware mechanism [17] and the per-
formance monitoring infrastructure [18] as building blocks.

As depicted in Figure 3, Processor Abstraction Layer
(PAL) [18, 35] is a layer of firmware infrastructure. Along
with System Abstraction Layer (SAL) and Extensible Firm-
ware Interface (EFI), PAL in its traditional role maintains
a consistent processor interface to the OS across multiple
implementations of the Itanium Processor Family.

Executing at the kernel privilege level (also called Ring-0),
the PAL firmware essentially consists of two components: a
set of service procedures which provide status and control
of processor capabilities and are exposed to the OS, and an
ensemble of OS-transparent hardware event handlers, which
are tailored to processor hardware events. It is the latter
that is of particular interest in this work.

In the Itanium 2 processor, there is programmable de-
bugging hardware support for the PAL firmware to observe
and react to a wide variety of hardware events. Historically,
the debugging hardware is introduced to enable comprehen-
sive silicon debugging and validation. For instance, the PAL
firmware can program the debugging hardware logic to mon-
itor hardware breakpoint events triggered from instructions
in-flight by matching the data address, instruction address,
or opcode of interest. In addition, the Itanium architecture
defines a set of performance monitoring unit (PMU) inter-
faces to track the occurrences of numerous microarchitec-
tural events. The PAL firmware can program the PMU to
count certain microarchitectural events and associate the re-
spective counter overflow condition with a hardware break-
point event. In turn, the debugging hardware can trigger
execution of a PAL handler when the monitored PMU event
occurs. Through PAL, the handling of breakpoint events is
performed entirely transparently to the OS.

In the prototype system, we take full advantage of the
PMU mechanism and the PAL firmware infrastructure, in-
cluding the programmable debugging hardware logic, to em-
ulate the VMT mechanism. The capability of opcode mon-
itoring is used to emulate the two VMT yield instructions
as special opcodes of interest. To monitor events that can
trigger a VMT thread switch, the PAL firmware programs
the PMU to track the last-level cache miss event and uses
the debugging hardware logic to detect pipeline stall condi-
tions as well as in-flight instructions with special opcodes.
Upon detecting a thread yield event, the debugging hard-
ware directly invokes a custom PAL handler, which is re-
sponsible for performing a minimal VMT thread switch as
described in Section 2.1.2. The latency between detection of
an event occurrence to the start of the custom PAL handler
is equal to the cost of a pipeline flush, as in the case of a
branch mispredict, plus additional overhead associated with
the manipulation of certain internal processor registers.

148

Operating System SoftwargOS)

f l

Extensible Firmware
Interface (EFI)

|

System Abstraction Layer(SAL)

T I

Processor Abstraction Layer(PAL)

Processor(hardware)

Platform (hardware)

Figure 3: Itanium Processor Firmware Model

The custom PAL handler is responsible for suspending the
execution of the current VMT thread, saving its continua-
tion (at minimum, the IP), restoring the minimal context for
another VMT thread, and then transferring program control
to its continuation. From there on, the execution of the re-
stored VMT thread is resumed.

On the prototyped Itanium 2 processor running at 1.5GHz,
with the minimum VMT thread switch, namely, swapping
only IPs between the VMT threads, the total latency be-
tween the time when a triggering event is detected and the
time when control is transferred to the next VMT thread
is about 70 cycles. That is, in Figure 1, both (T2 — T1)
and (T4 — T3) would have a duration of about 70 cycles.
For a memory latency of 200 cycles, which corresponds to
the duration of (Ts — T1), the window of opportunity to
run a helper thread, namely, the duration of (Ts — T3), is
about 60 cycles. Obviously, with additional hardware sup-
port, the thread switch overhead can be further reduced. For
example, if the overhead associated with internal processor
register manipulation can be eliminated through hardware
optimization, the cost of thread switch can be cut by half to
as little as 35 cycles (i.e. pipeline flush plus the minimum
context switch cost in Table 1). Doing so significantly ex-
pands the window of opportunity (T3 — T2) to 130 cycles.
It is important to note that for a given processor microar-
chitecture, the cost of a thread switch (T2 — T1) is fixed,
but the window of opportunity scales proportionally with
the memory latency.

In the rest of this section, we share some highlights of
our experience in emulating the VMT mechanism on the
Itanium 2 processor.

3.1 Encoding and Trapping Yield Instructions

For the two yield instructions introduced in Section 2.2.2,
the prototype system must uniquely decode both instruc-
tions and execute them in conformance to their respective
architected yield semantics. It is in general impossible to
introduce new opcodes on existing processor silicon with-
out making special hardware changes. However, the PMU
mechanism in the Itanium architecture provides a utility
called opcode match registers, which allows the PAL to pro-

gram the debug hardware to recognize and trap any special
opcode encoding amid the in-flight instructions. When an
in-flight instruction is found to match the opcode value spec-
ified in the opcode match registers, it is tagged. As it moves
downstream in the pipeline, the tagged instruction is fur-
ther examined on whether it matches any back-end events.
At the exception detection stage, immediately preceding re-
tirement, the tagged instruction would trigger a hardware
breakpoint event and transfer control directly to a corre-
sponding PAL event handler, which in turn can emulate the
instruction semantics. All such control transfers occur at
the boundary of an instruction, rather than that of a bun-
dle [18]. That is, equivalent to a user-level interrupt, a yield
instruction can trigger a control transfer from or to any in-
struction, and is not limited according to traditional branch
semantics.

Without loss of general applicability, we choose two no-
op instruction encodings to uniquely represent the Yield and
Yield-Conditional instructions in our prototype system. In
the Itanium architecture, the no-op instruction is defined
with a 21-bit immediate field, which can be potentially used
by application software as an annotation marker. By de-
fault, most production compilers including those from Mi-
crosoft, Hewlett-Packard, GNU, and Intel only generate no-
op instructions with a literal value of 0. We reserve two sepa-
rate no-op literal values for the Yield and Yield-Conditional
instructions, and modify our compiler to generate these spe-
cial no-ops. The PMU opcode matching registers are also
programmed to trap on these two special no-op instructions
accordingly.

Using no-ops to encode the yield instructions provides an
additional advantage with regard to backward compatibil-
ity; for those processors that do not support the VMT pro-
totype mechanism, the special no-ops are simply handled
as ordinary no-ops. In other words, when a binary runs on
processors without the VMT prototype firmware, the yield
instructions will be correctly decoded and executed as in-
structions with no side effect on the architectural state, and
no helper threads will be invoked at runtime.

3.2 Emulating VMT Thread Yields

While the triggering condition for the Yield instruction is
the detection of its corresponding no-op, the semantics of
the Yield-Conditional instruction entails detection of a con-
junction of multiple hardware events: namely, the presence
of in-flight Yield-Conditional no-op, processor pipeline stall
due to dependency upon a cache-missing load, and an oc-
currence of outstanding last-level cache miss. It is relatively
easy to observe these individual events in isolation. How-
ever, in order to recognize a logical combination of these
events, more sophisticated features of the PAL debugging
hardware and the PMU need to be employed.

To observe and react to hardware events, the PAL de-
bugging hardware provides a set of flexible event monitors,
each of which can be programmed to detect individual mi-
croarchitectural events. The activation of one monitoring
unit can be further configured to enable or disable another
monitoring unit. This programmable cascading mechanism
makes it feasible to use an ensemble of individual hardware
events to synthesize a sophisticated composite event, such
as the conjunction of triggering conditions for the Yield-
Conditional. The complex composite event monitoring is
entirely undertaken within PAL debugging hardware and

149

off the critical path of the execution core pipeline. Upon de-
tecting any such event occurrence, the debugging hardware
will raise a debug breakpoint event. This in turn activates a
corresponding PAL event handler that implements the min-
imum VMT thread context switch.

4. PERFORMANCE EVALUATION

To gauge the performance impacts of the VMT helper
threads and evaluate the relevant tradeoffs, we have ap-
plied VMT-based helper threading optimization to a num-
ber of real workloads for which long-latency cache misses
are known to play a significant role in their performance.
Even on the emulation-based VMT prototype system, sig-
nificant performance boosts can be achieved from the VMT
helper threads for these workloads. In the rest of this sec-
tion, we further describe the configuration of the prototype
system, the characteristics of the workloads, and an in-depth
analysis of the performance improvements. All performance
measurements and comparisons are based on the absolute
wall-clock time of program execution on the physical sys-
tem.

4.1 Experimental Machine Configuration

The prototype system is a 4-way 1.5 GHz Itanium 2
processor-based MP system with 16GB of RAM. The VMT
feature prototyped in the Itanium 2 processor silicon can
be enabled or disabled through a special internal toggle reg-
ister. Each processor’s on-chip cache hierarchy consists of
separate 16KB 4-way set-associative L1 instruction and data
caches, a shared 256KB 8-way set-associative L2 cache, and
a shared 6MB 24-way set-associative L3 cache. Through a
silicon debugging mechanism, the L3 cache can be reconfig-
ured to operate as a 1MB 4-way set-associative cache. Fur-
ther details about the processor organization and platform
configuration can be found in [28].

4.2 Workloads

In this research, a total of nine workloads are studied. All
of them are known to suffer significantly from a large num-
ber of last-level cache misses. For workstation workloads,
we choose three benchmarks: (1) MCF with reference in-
put, (2) VPR with reference input for routing, both from
the SPEC CINT2000 suite [37], and (3) DOT, a graph lay-
out optimization tool from AT&T’s Graphviz productivity
suite [14]. They are all single-threaded applications.

For server workloads, we select a decision support sys-
tem (DSS) running on a large IBM DB2 database [16, 31].
The DSS models a business environment that is divided into
business operation support area and business decision sup-
port area. The business manages, sells, or distributes prod-
ucts worldwide. We choose six representative DSS queries
that have long run times and span large portions of the
database. These DSS queries are executed on a 100GB IBM
DB2 database. This database configuration represents a siz-
able business environment consisting of up to 1M suppliers,
20M parts, 15M customers, 600M orders, and 25 nations. A
summary of these queries is given in Table 2.

Note that these queries by themselves are not Itanium
processor binaries; instead, they are written in SQL and
processed by the same DB2 program running on the Ita-
nium processors. Because these queries differ significantly
in functionality and stress different aspects of the database,
we distinguish each query as a separate benchmark.

Query | Description

QA Retrieve 10 unshipped orders with the highest value

QB List the revenue volume done through local suppliers

QC Determine the value of goods shipped between
certain nations to help re-negotiation of shipping
contracts

QD Determine impacts of less expensive modes of
shipping on critical-priority orders

QE Rank the top 100 customers based on their having
placed a large quantity of orders

QF Identify certain suppliers who were not able to ship
required parts in a timely manner

Table 2: Description of DSS Queries

The DB2 database used in our experiment has been highly
tuned to sustain greater than 95% CPU utilization for all six
queries executed on the prototype system. It is important to
note that the IBM DB2 program has been highly optimized
for task-level parallelism. In particular, OS-visible threads
are extensively used to overlap long-latency disk 1/O opera-
tions with a myriad of CPU-intensive data crunching tasks.
For example, during a typical DSS query processing on the
4-way MP prototype system, each physical processor has
over 40 OS-threads running concurrently. Thus the wall-
clock time performance measured for the DSS queries repre-
sents the overall throughput of DB2’s threads. In compari-
son, the wall-clock time performance for the three worksta-
tion benchmarks represent the latency of a single OS-visible
thread.

Since the VMT mechanism is agnostic to the OS, the
workloads can run on either Microsoft Windows or Linux.
We demonstrate this by running DOT on RedHat Linux Ad-
vanced Server 3.0, and MCF, VPR, and DSS on Windows
Server 2003. For all four programs, the baseline binaries
are built using the Intel Electron compiler [5, 21] with the
best applicable optimizations. For instance, in addition to
the standard —O3 optimization, both MCF and VPR are
further optimized using multi-file inter-procedural optimiza-
tion, profile-guided optimization, and optimizations specific
to Itanium 2 processor. We next briefly highlight the base-
line binary characteristics and three helper thread optimiza-
tions that have been applied in combination to the programs
studied in our experiment.

4.2.1 Baseline Binary Characteristics

To build the VMT-optimized binary for a program, we use
a research VMT optimizing compiler, which is based on the
Intel Electron compiler, to recompile a subset of the program
files that contain the delinquent loads and automatically
generate the VMT helper threads as part of the object file.
The resulting object files are then linked with other origi-
nal object files to produce the new VMT-optimized binary.
Besides the generic helper thread optimizations [19], the
compiler implements several VMT-specific optimizations,
including register partitioning to minimize both the VMT
thread synchronization overhead and the VMT thread con-
text switch overhead, as described in Section 2.1.2. A more
comprehensive account of the enhancements to the Electron
compiler is beyond the scope of this paper.

In addition, the compiler incorporates aggressive software
prefetching [27] based on profile-guided feedback. Where ap-
plied, this software prefetching is highly effective. However,
there remains a significant number of delinquent loads that

150

are difficult to target with traditional software prefetching
techniques for two primary reasons.

First, several targeted loads involve pointer-chasing with
dependent memory operations. Such memory accesses are
difficult to prefetch using software-based techniques because
there is a significant risk of inducing stalls into the program.
When prefetching a dependent sequence of memory opera-
tions, a cache miss for an intermediate load will cause a stall
when the software prefetching code attempts to use this re-
sult. Because our helper threads utilize a Yield-Conditional
instruction between each pair of dependent loads, they do
not impose a risk of stalling the processor, but instead im-
mediately yield control back to the main thread in the event
of an off-chip memory access.

Second, some delinquent loads involve computationally
expensive address computations. Targeting such loads im-
poses execution overhead when these costly instruction se-
quences cannot be hidden by aggressive instruction schedul-
ing. Our VMT-based approach, however, only invokes
helper threads when the main thread would be otherwise
stalled, effectively hiding these expensive address compu-
tations without risk of slowing down normal main thread
progress.

4.2.2 Co-routine Execution Mode

As discussed in the example given by Figure 2, the reg-
ister state of suspended VMT threads is maintained in the
register file across VMT thread invocations. Thus, when
the main thread next incurs a long-latency cache miss, the
helper thread can resume execution at its last saved thread
continuation point, rather than always restarting execu-
tion from the beginning of the thread. Helper threads uti-
lizing this co-routine execution mode can execute aggres-
sively ahead of the main thread. For example, consider a
loop in which instructions necessary to compute the loop-
control [42] incur a limited number of cache misses, whereas
the load instructions in the loop-body incur a significant
number of cache misses. In this case, the VMT optimiz-
ing compiler constructs a helper thread that captures the
loop-control computation and issues a software prefetch (i.e.
1fetch) to target the delinquent loads in the loop-body. For
the main thread, the compiler places an Yield-Conditional
next to the loop-body delinquent load such that a miss on
the delinquent load will be turned into a trigger that ac-
tivates the helper thread. As the helper thread progress
is only limited by the load in the loop-control, it can po-
tentially execute multiple loop iterations ahead of the main
thread. In this co-routine execution mode, when the main
thread again incurs a cache miss, the helper thread may re-
sume execution still several loop iterations ahead of the main
thread’s position in the loop, enabling continued prefetching
of future loads far ahead of the main program.

4.2.3 Adaptive Wavefront Prefetching

VMT enables long-range prefetching of delinquent loads
that can run far ahead of the main thread. For code where
the result of a delinquent load is consumed immediately by a
branch, it may be impossible to accurately predict or com-
pute control flow within the helper thread without caus-
ing a stall. In such cases, we found it highly profitable to
combine and overlap the simultaneous execution of multi-
ple control-flow paths. For example, when prefetching a
binary tree, the choice of which node to visit next may be

while (node !=root) {
while(node) {
if(node->orientation == UP)

(t13) = node->basic_arc->cost
(t14) = node->pred->potential
yield_conditional();
node->potential = (t13) + (t14);

}
else /* == DOWN */

(t18) = node->pred->potential
(t19) = node->basic_arc->co
yield_conditional();
node->potential = (t18) — (t19);

VMT_CODE:

mov
mov
mov

r39=r27 //live-in passing

r40=r31

r38=r26 ;;

add r37=40,r38

1d8.s r38=[r37] //node->child
cmp.ne.unc p15,p0=r38,r0 //while(node)

Er'np.neAunc p9,p0=r38,r39 //while(node!=root)

(p9) br.(':'énd.dpnt.many .b5_89;;

mov r42=b5

or r41=8,r42

mov b5=r41

YIELD /lloop-exit
br.cond.sptk.many .VMT_CODE ;;

VMT_THROTTLE:

add r29=1,r29
mov r40=r29 ;;
cmp4.ge.unc pl4,p0=MAX_ITER,r40

(p14) br.cond.dpnt.many .b5_93;;
YIELD

checksum++;
b br.cond.sptk.many .VMT_CODE ;;
tmp = node; b5_93: .
_ ~ehild- 1d8.s r36=[r43] //node->basic_arc
node = node->child; 1d8.s r40=[r41] //node->pred
} YIELD-CONDITIONAL
add r36=32,r36

Ifetch [r36],0
Ifetch [r40],0

mov r37=r30
mov r41=r31;;
sub r41=r41,r37 ;;
cmp4.le.unc

/Inode->basic_arc->cost
/Inode->pred->potential

p12,p0=r41,r0

(p12) br.cond.dpnt.many .b5_81

br.cond.sptk.many .VMT_CODE ;;

Figure 4: MCF code example - refresh potential ()

dictated by the result of a delinquent load. We address
this problem by simultaneously visiting both the left and
right children, an approach with some similarity to wave-
front prefetching [33]. However, the self-throttling logic in
the helper thread frequently checks the true control path
taken in the main thread, and judiciously prunes the por-
tion of the wavefront that runs astray from the main thread.
This adaptation of the prefetching wavefront further ensures
the efficiency of VMT helper threads.

4.2.4 Aggressive Use of Itanium ISA Features

Since a helper thread, by design, does not contribute
to program semantics [10, 22, 41, 43], it is much more
amenable to aggressive speculation than the main thread.
We found a number of features in the Itanium 2 proces-
sor, which permit the control of speculative execution, to
be highly useful in constructing aggressive helper threads.
For instance, predication removes control-flow dependences
among instructions, reducing the number of branch predic-
tions, and hence, branch mispredictions, which can impact
a helper thread that encapsulates complex data-dependent
control flow. Use of branch hints allows us to further reduce
the number of incurred branch mispredictions. Finally, the
use of speculative and non-faulting load instructions (1d.s)
enables the construction of aggressive helper threads that
can tolerate dereferencing possibly invalid pointers.

4.2.5 Example: MCF

Figure 4 demonstrates a code example for the targeted
loop in refresh potential() of MCF where the main
thread source code is shown on the left and the helper
thread assembly code is on the right. In the main thread,
Yield-Conditional instructions, labeled 1, have been added
right before the use of the targeted delinquent loads in the
loop-body. In the helper thread, a Yield-Conditional has
been added after the first-level pointer dereference, labeled
2, which is a blocking load that serializes the execution of

151

the delinquent loads. However, since the targeted delinquent
loads themselves are in the loop-body and their loaded val-
ues are not used to compute either the loop-control or effec-
tive load addresses, they can be safely converted to 1fetch,
labeled 3, which is a non-blocking prefetch instruction sup-
ported in the Itanium architecture. Label 4 is an example
of the self-throttling code in MCF.

4.3 Speedups and Analysis

For each workload, when the VMT feature is disabled in
the prototype system, the baseline binary and the VMT-
optimized binary have the same performance. This is be-
cause yield instructions behave like true no-ops when VMT
is disabled, and no helper threads will be invoked. Addi-
tionally, when compiled without VMT support, the stud-
ied benchmarks achieved identical performance whether the
VMT feature was enabled on the processor or not. This
is also expected since the VMT firmware feature is imple-
mented in dedicated PAL and PMU hardware and off the
critical path in the processor core. For the rest of this sec-
tion, by performance comparison between a baseline binary
and its VMT-optimized counterpart, we always mean that
the comparison is carried out on the prototype system with
the VMT firmware feature enabled.

Figure 5 shows that significant performance speedups can
be achieved from applying VMT prefetching helper threads
for these memory-intensive workloads, ranging from 5.0% in
DSS query QD to 38.5% in MCF.

To further shed insights into the effectiveness of the VMT
helper threads, Table 3 provides details on the static and dy-
namic characteristics of the VMT helper threads and their
targeted delinquent loads. For each benchmark, the table
reports the number of delinquent loads targeted (Targeted
loads), the number of helper threads constructed (Helper
threads), the size of the helper threads in terms of instruc-
tions (Helper instrs), the number of stop-bits per helper
thread (Helper stop-bits), the percentage of total execution

Benchmarks | Targeted | Helper | Helper Helper Mem stall Miss Miss reduced
loads threads instrs | stop-bits time reduction per switch

DOT 4 1 32 9 26.7% 21.7% 0.3

MCF 5 1 50 25 44.2% 83.7% 5.1

VPR 4 1 35 26 27.3% 47.9% 2.7

QA 29.9% 53.2% 1.1

QB 20.3% 51.2% 1.3

DSS QC 4 2 90 / 28 61 /19 25.7% 52.8% 1.1

QD 10.7% 52.1% 1.1

QE 38.9% 19.6% 0.2

QF 24.5% 57.4% 1.3

Arithmetic mean: 27.6% 48.8% 1.6

Table 3: Vital Characteristics of VMT Helper Threads
16 385 operations like sorting and hash-join, which span the entire
= 14 database, and by design, exhibit neither locality nor regular
S — __ patterns of consecutive memory accesses. Therefore, it is not
GC’ 12 B surprising that traditional pattern-based hardware prefetch-
T 10 —] - ers or stride-based software prefetching schemes are often of
@ 8 | limited effectiveness for such pointer-intensive workloads.
o Third, as a unique user-level thread decoupled from the
EJ 6 - main thread, a helper thread can encapsulate complex
o 4. . || control-flow dependencies in addition to data-flow slices ex-
g— 5 tracted from the main thread. As explained in Section 4.2,
3 very aggressive helper threads can be constructed by the
8 0 w w w w w w w VMT optimizing compiler. In fact, since helper threads
wn DOT MCF VPR QA QB QC Qb QE QF are speculative, they can incorporate highly aggressive op-
timizations, such as described in Section 4.2.3, that could
Benchmarks

Figure 5: Speedups of VMT Helper Threads

time due to memory stalls by the targeted delinquent loads
(Mem stall time), the fraction of the baseline’s L3 cache
misses that are eliminated after running helper threads
(Miss reduction), and the average number of L3 misses re-
duced each time the a helper thread is switched (Miss re-
duced per switch). Because the Itanium Processor Family
requires that data dependences be explicitly delimited using
stop bits, the number of stop bits in a helper thread indicate
the helper thread critical path length. From this data we
can draw several important observations.

First, even for such a large scale workload as DSS, simply
by using one or two VMT helper threads to target a handful
of delinquent loads, we can achieve significant speedups for
a variety of complex queries. Such efficacy is indicative of
both the criticality of the targeted delinquent loads, and
the quality of the helper threads. As Miss reduction data in
Table 3 shows, a significant fraction of the L3 cache misses,
48.8% on average for the nine benchmarks, are offloaded
from the main thread’s critical path onto the helper thread.

Second, the size of each helper thread in terms of the
number of instructions and stop-bits clearly reflects the non-
trivial amount of computations that are entailed to accu-
rately prefetch for targeted delinquent loads in a timely
manner. Further analysis of these delinquent loads reveals
that these loads tend to be performing sophisticated pointer-
chasing traversals of complex dynamic data structures, such
as BTrees or hash tables, and incurring significant amount
of capacity misses at the last-level cache, despite its capacity
of 6MB. The excessive number of capacity misses can be at-
tributed to the inherent nature of the foundational database

152

not have been safely applied by the compiler to the main
thread. Consequently, helper threads, in many cases, elim-
inate multiple L3 cache misses for each invocation. For ex-
ample, MCF eliminates 5.1 L3 cache misses per invocation,
and VPR eliminates 2.7 as shown in Table 3. As the window
of opportunity for VMT thread widens along the increasing
gap between processor speed and memory latency, the ag-
gressiveness and sophistication of the helper thread can scale
up accordingly.

Finally, as exhibited in the performance gains for DSS
workloads, even though helper threading was originally mo-
tivated as a technique to improve single thread latency [41],
the throughput performance of highly threaded workloads
can also be improved by reducing the latency of individual
constituent threads. As demonstrated through the achieved
performance gains, the functional correctness of the highly
threaded VMT-enhanced DB2 binary is a powerful testi-
mony that our VMT prototype system and compiler technol-
ogy succeed in achieving the virtualization of VMT thread
states in the multiprogramming and multiprocessing envi-
ronment.

4.4 Scalability Study

VMT helper threads have a unique characteristic in that
they are only activated upon hardware detection of long-
latency last-level cache miss events, and once activated, they
typically execute entirely within the shadow of the outstand-
ing cache miss. This invocation strategy naturally throt-
tles helper thread execution according to the number of
cache misses the program experiences in the current pro-
gram phase. Over the lifetime of program execution, the
helper thread activities will automatically ramp up as the
main thread encounters more long-latency cache misses, and
automatically ramp down as effective prefetching reduces
the number of experienced cache misses. As the gap of pro-

@ Normalized L3 miss count @ Memory stall time 0O Speedup

100

80 1
g
o 60
[=)]
8
o
g 40
[
o

1 Ji:li

o H ﬁ_.:l_',
6M ref 6M train 1M train 6M ref 6M train 1M train
MCF VPR

Figure 6: VMT Helper Thread Results for Various
Processor Configurations

cessor speed and memory latency grows, the inherent dy-
namic adaptability in VMT helper threads should translate
directly to performance scalability.

To quantify this hypothesis, we demonstrate VMT helper
threads’ dynamic adaptability to the program behavior
across different machine configurations. To this end, we fur-
ther investigate two SPEC benchmarks, MCF and VPR. In
this experiment, we change each program’s cache behavior
by using different input sets between the reference input and
the train input. In addition, we also vary the cache config-
uration between 6MB 24-way L3 cache and 1MB 4-way L3
cache. The helper threads we utilize are the same as ex-
plored in Section 4.3.

Figure 6 presents data as cache size and input size are
varied. Results are shown for each program as three groups
of three bars, with MCF’s bars on the left, and VPR’s on
the right. For each benchmark, the three groups of bars
are, from left to right, a 6MB L3 cache executing reference
input, a 6MB L3 cache executing train input, and a 1MB
L3 cache executing train input. Within each group of bars,
we show, from left to right, the normalized L3 miss count
relative to the 6MB 24-way reference input configuration,
the fraction of execution time occupied by memory stalls
from the targeted delinquent loads, and the speedup over
a processor which does not employ VMT. All results are
shown as percentages.

From 6M-ref to 6M-train, the number of L3 cache misses
is significantly reduced, almost to zero compared to the 6M-
ref result. This is because the data working set of the train
input fits within the 6MB cache. As the L3 cache misses
disappear, the portion of execution time spent on memory
stalls for the targeted loads becomes smaller as well. This
reduces the speedup provided by VMT helper threads ac-
cordingly.

However, these results actually indicate a strength of the
VMT-based helper threading technique. Because there are
insufficient cache misses for helper threads to target, by
virtue of the thread spawning mechanism, helper threads
are rarely spawned. Such helper threads would have per-
formed useless work anyway, as the targeted data is already
present in the L3 cache. Had these threads been executed in-
discriminately, they would have caused execution overhead
and slowed main thread execution [20, 43].

When the L3 cache size is reduced to 1MB, which results
in even the train input incurring cache misses, performance

153

gains from the helper threads are increased accordingly. As
more cache misses occur, helper threads are spawned more
frequently, and have more opportunity to provide perfor-
mance gains.

These results demonstrate a key strength of this tech-
nique: the VMT helper threads are easily adapted to chang-
ing execution domains, both in terms of varying hardware
platforms and changing program input sizes. Binaries com-
piled for one configuration could be run on multiple differ-
ent configurations without concern for negative performance
impacts on the program thanks to the natural throttling in-
herent in the technique itself.

5. RELATED WORK

The topic of helper threading has received intense research
attention. Most previous work [9, 10, 23, 34, 43] has studied
helper threading on top of a processor equipped with Simul-
taneous Multithreading, though some approaches assume a
separate helper pipeline [3, 25]. Nearly all such studies have
been simulation-based, with some exploring the impact of
applying helper threading to a physical system [19, 41].

Several processors have implemented special hardware
support for switch-on-event multithreading [6, 12] as a way
to multiplex multiple OS level threads on a single processor
core. VMT implements a user-level switch-on-event mul-
tithreading for helper threads without requiring hardware
support for maintaining multiple thread contexts, and is ca-
pable of multiplexing user-level threads within the same OS
thread.

Proposals have been made for run-ahead prefetching tech-
niques [11, 29]. Under these optimizations, rather than
stalling due to a long-latency cache miss, the processor con-
tinues to speculatively fetch and execute instructions for the
sake of prefetching. Unlike helper threading, the run-ahead
technique is fundamentally limited to speculatively execut-
ing a single stream of instructions. The effectiveness of run-
ahead is highly sensitive to the predictability of the control
flow and the number of data cache accesses that are inde-
pendent from the cache-missing loads. In contrast, VMT-
based helper threading is equipped with multiple concurrent
logical sequencers, each having different control flow and to-
gether running as co-routines. For workloads like DB2, due
to the nature of BTree and hash table manipulation algo-
rithms, the control flows are usually unbiased and highly
data-dependent upon the cache-missing loads. It is challeng-
ing to make run-ahead effective for such data access behav-
iors. However, more sophisticated helper threads, such as in
adaptive wavefront prefetching as described in Section 4.2.3,
can be constructed to remove control flow uncertainty and
to aggressively prefetch multi-pronged data structures.

Prior to VMT, there have been various other techniques
exploiting the idea of thread switching upon detecting a
cache miss. However, those techniques are primarily used
to increase throughput with multiple threads running. In
contrast, the VMT-based helper threading technique is de-
signed to reduce latency of a single program thread. Block
multithreading [13] and differential multithreading [15] im-
prove throughput by assuming multiple instruction streams
share a single pipeline, and interleaving instructions by is-
suing from another thread when one thread is blocked.
April [2] switches threads via the OS when one thread is-
sues a network request to fetch from remote memory. In
contrast, VMT requires no hardware support for multiple

thread contexts, and introduces a significantly faster and
OS-transparent context switch technique.

The register partitioning compiler optimization for VMT
also has some similarities to other previous research. Regis-
ter relocation [40] is a hardware mechanism for dynamically
partitioning the register usage of multiple threads. Mini-
threads [32] statically partitions the registers equally among
the threads. Even though our technique is also entirely com-
piler driven, it does not evenly partition the register sets
amongst all VMT threads. Instead, the compiler honors the
asymmetry in the size of register working sets used respec-
tively by the main thread and the helper threads, and only
dedicates very few registers to the helper threads.

In contrast to all previous research in the related areas,
our VMT technique is the first work of its kind to explore
the impact of a helper threading implementation on a phys-
ical machine supporting the Itanium architecture. Through
VMT, we demonstrate the capability to multiplex the ex-
ecution of multiple user-level threads on a microarchitec-
ture without any explicit multithreading support, and with-
out any additional OS support. The fly-weight event-driven
user-level VMT thread switching mechanism prototyped in
our experiment has a significantly lower thread switching
overhead than previous techniques employed for user-level
threads.

6. CONCLUSION

This paper makes three significant contributions. First,
we introduce the concept of virtual multithreading, or VMT,
which can virtualize a uniprocessor architecture to support
multiple concurrent user-level thread contexts. VMT is OS-
transparent and requires no explicit multithreading hard-
ware support. The VMT mechanism is capable of monitor-
ing pipeline stall conditions due to last-level cache misses,
and respond to them by performing a fly-weight switch to
another thread. Through compiler-guided register partition-
ing, synchronization overhead between the main thread and
helper threads is kept to a minimum. For the helper thread-
ing usage model, helper threads can be activated to execute
entirely within the shadow of long-latency cache misses in-
curred by the main thread.

Second, we demonstrate a highly productive empirical ap-
proach to VMT research. Through innovative exploitation
of the silicon debugging mechanism already existing in the
Itanium 2 processor, we successfully build an emulation-
based VMT prototype processor without any extra special
hardware. In addition, we develop a set of powerful VMT-
specific compiler optimizations on top of a state-of-the-art
production compiler for the Itanium architecture. With
both prototype hardware and compiler support, we are able
to apply VMT-based helper threading optimizations to a
diverse set of real-world workloads and run the resulting bi-
naries with functional correctness. Most significantly, even
on such emulation-based prototype physical system, VMT-
based helper threading can achieve significant performance
improvement for these workloads. On a 4-way MP system
equipped with the VMT prototype Itanium 2 processors, we
measured wall-clock speedups of 5.8% to 38.5% for the work-
station benchmarks, and 5.0% to 12.7% on various queries
in a large scale DSS workload on the IBM DB2 Universal
Database.

Third, our extensive performance evaluation of VMT-
enabled workloads sheds key insights into the architectural

154

tradeoffs unique to the VMT mechanism and the essential
characteristics innate to the VMT helper threads. Being
highly adaptive to the program’s dynamic behavior, VMT
helper threads can achieve impressive performance scalabil-
ity for a variety of processor configurations. As the gap
between the processor speed and memory latency continues
to widen, VMT helper threads can become even more im-
portant, improving not only latency performance, but also
throughput performance. Our future work will further fine-
tune the compiler optimizations, investigate more efficient
hardware mechanisms to enable VMT, and explore more
usage models that can benefit from the VMT architecture.

7. ACKNOWLEDGEMENTS

We appreciate the useful comments on the early draft from
the many referees. We would also like to thank Hank Levy
for his valuable suggestions for improving the quality of this
paper; and Ryan Rakvic, Natalie Enright, and Jeff Brown
for further editing comments.

We thank Xinmin Tian, Kaylan Muthukumar, Gerolf
Hoflehner, Dan Lavery, and Shih-wei Liao for their contri-
bution to the compiler work described in this paper. We
also thank Ashok Seshadri, Anthony Mah, and Piyush De-
sai who assisted us in the emulation-based prototyping work.
Finally, we thank Richard Wirt, Steve Pawlowski, Bryant
Bigbee, Kumar Balasubramanian, Wei Li, and Milind Girkar
for their sustained support of our VMT research work.

8. REFERENCES

[1] T. Aamodt, P. Marcuello, P. Chow, P. Hammarlund,
H. Wang, and J. Shen. Hardware Support for Prescient
Instruction Prefetch. In 10th International Symposium on
High Performance Computer Architecture, February 2004.
A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. April:
A Processor Architecture for Multiprocessing. In 17th Inter-
national Symposium on Computer Architecture, June 1990.
M. Annavaram, J. M. Patel, and E. S. Davidson. Data
Prefetching by Dependence Graph Precomputation. In 28th
International Symposium on Computer Architecture, pages
52-61, Goteborg, Sweden, June 2001. ACM.

D. Berg and B. Lewis. Threads Primer: A Guide to Multi-
threaded Programming. SunSoft Press, 1996.

J. Bharadwaj, W. Chen, W. Chuang, G. Hoflehner,
K. Menezes, K. Muthukumar, and J. Pierce. The Intel TA-64
Compiler Code Generator. IEEE Micro, Sept-Oct 2000.

J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and
S. Kunkel. A Multithreaded PowerPC Processor for Com-
mercial Servers. IBM Journal of Research and Development,
44(6):885-898, 2000.

R. S. Chappell, S. P. Kim, S. K. Reinhardt, and Y. N. Patt.
Simultaneous Subordinate Microthreading (SSMT). In 26th
International Symposium on Computer Architecture, pages
186-195, Atlanta, GA, May 1999. ACM.

R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt. Difficult-
path Branch Prediction Using Subordinate Microthreads. In
29th International Symposium on Computer Architecture,
Anchorage, AK, May 2002.

J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Spec-
ulative Precomputation. In Proceedings of the 34th Annual
ACM/IEEEFE International Symposium on Microarchitecture,
pages 306-317, Austin, TX, December 2001. ACM.

J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. Shen. Speculative Precomputation: Long-
range Prefetching of Delinquent Loads. In 28th International
Symposium on Computer Architecture, July 2001.

2]

[5]

[6]

[7]

(8]

(10]

11]

(12]

13]

(14]

(15]

[16]

(17)

(18]

(19]

20]

21]

(22]

23]

[24]

[25]

[26]

J. Dundas and T. Mudge. Improving Data Cache Perfor-
mance by Pre-Executing Instructions Under a Cache Miss.
In 11th Supercomputing Conference, July 1997.

R. Eickemeyer, R. Johnson, S. Kunkel, B.-H. Lim, M. Squil-
lante, and C. Wu. Evaluation of Multithreaded Processors
and Thread Switch Policies. In International Symposium
on High Performance Computing, pages 75-90, Fukuoka,
Japan, November 1997.

M. K. Farrens and A. R. Pleszkun. Strategies for Achiev-
ing Improved Processor Throughput. In 18th International
Symposium on Computer Architecture, May 1991.
Graphviz — open source graph drawing
http://www.research.att.com/sw/tools/graphviz/.
J. W. Haskins Jr., K. R. Hirst, and K. Skadron. Inexpensive
Throughput Enhancement in Small-Scale Embedded Micro-
processors with Block Multithreading: Extensions, Char-
acterization, and Tradeoffs. In 20th International Perfor-
mance, Computing, and Communications Conference, April
2001.

IBM DB2 Product
http://www.ibm.com/software/data/db2/.
Intel Itanium 2 Processor Reference Manual for Software
Development and Optimization. Intel Corporation, June
2002.

Intel Itanium Architecture Software Developer’s Manual. In-
tel Corporation, October 2002.

D. Kim, S. Liao, P. Wang, J. del Cuvillo, X. Tian, X. Zou,
H. Wang, D. Yeung, M. Girkar, and J. Shen. Physical Ex-
perimentation with Prefetching Helper Threads on Intel’s
Hyper-Threaded Processors. In International Symposium on
Code Generation and Optimization, March 2004.

D. Kim and D. Yeung. Design and Evaluation of Compiler
Algorithms for Pre-Execution. In 10th Architectural Support
for Programming Languages and Operating Systems, pages
159-170, October 2002.

R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C. C. Lim,
J. Ng, and D. Sehr. An Advanced Optimizer for the IA-64
Architecture. IEEE Micro, Nov-Dec 2000.

S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and
J. Shen. Post-Pass Binary Adaptation for Software-Based
Speculative Precomputation. In ACM Conference on Pro-
gramming Language Design and Implementation, June 2002.
C. K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In 28th International Symposium on Computer
Architecture, June 2001.

D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-Threading Technology Architecture
and Microarchitecture. Intel Technology Journal, February
2002.

A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. Slice
Procesors: an Implementation of Operation-based Predic-
tion. In International Conference on Supercomputing, June
2001.

T. C. Mowry, C. Q. Chan, and A. K. Lo. Comparative Eval-
uation of Latency Tolerance Techniques for Software Dis-
tributed Shared Memory. In 4th International Symposium on
High Performance Computer Architecture, February 1998.

software.

Family.

155

27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37)

(38]

(39]

[40]

[41]

42]

[43]

T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evalua-
tion of a Compiler Algorithm for Prefetching. In 5th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, October 1992.

H. Muljono, S. Rusu, B. Cherkauer, and J. Stinson. New
130nm Itanium 2 Processors for 2003. In Hot Chips, 2003.
O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead
Execution: An Alternative to Very Large Instruction Win-
dows for Out-of-order Processors. In 9th International Sym-
posium on High Performance Computer Architecture, Jan-
uary 2003.

V. Panait, A. Sasturkar, and W.-F. Wong. Static Identifi-
cation of Delinquent Loads. In International Symposium on
Code Generation and Optimization, March 2004.

M. Poess and C. Floyd. New TPC Benchmarks for Decision
Support and Web Commerce. http://www.tpc.org.

J. Redstone, S. Eggers, and H. Levy. Mini-threads: Increas-
ing TLP on Small-Scale SMT Processors. In 9th Interna-
tional Symposium on High Performance Computer Archi-
tecture, February 2003.

A. Roth, A. Moshovos, and G. Sohi. Dependence based
prefetching for linked data structures. In 8th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Oct 1998.

A. Roth and G. Sohi. Speculative Data-Driven Multithread-
ing. In 7th IEEE International Symposium on High Perfor-
mance Computer Architecture, Jan 2001.

R. Sites. Alpha Architecture Reference Manual. Digital
Press, Newton, MA, 1992.

Y. Song and M. Dubois. Assisted Execution. Technical Re-
port CENG 98-25, Department of EE-Systems, University of
Southern California, Oct 1998.

SPEC CPU2000
http://www.spec.org/osg/cpu2000/docs/.
D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In 22nd
International Symposium on Computer Architecture, June
1995.

D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy.
Supporting Fine-Grained Synchronization on a Simultane-
ous Multithreading Processor. In 5th International Sympo-
sium on High Performance Computer Architecture, January
1999.

C. A. Waldspurger and W. E. Weihl. Register Relocation:
Flexible Contexts for Multithreading. In 20th International
Symposium on Computer Architecture, May 1993.

H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito,
M. Girkar, S. Liao, and J. Shen. Speculative Precomputa-
tion: Exploring Use of Multithreading Technology for La-
tency. Intel Technology Journal, February 2002.

P. Wang, H. Wang, J. Collins, E. Grochowski, R. Kling, and
J. Shen. Memory latency-tolerance approaches for Itanium
processors: Out-of-order Execution vs. Speculative Precom-
putation. In 8th International Symposium on High Perfor-
mance Computer Architecture, Feb 2002.

C. Zilles and G. Sohi. Execution-based Prediction Using
Speculative Slices. In 28th International Symposium on
Computer Architecture, July 2001.

Documentation.

