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Abstract
It is often desirable, for reasons of clarity, portability,

and efficiency, to write parallel programs in which the
number of processes is independent of the number of
available processors. Several modern operating systems
support more than one process in an address space, but the
overhead of creating and synchronizing kernel processes
can be high. Many runtime environments implement
lightweight processes (threads) in user space, but this
approach usually results in second-class status for threads,
making it difficult or impossible to perform scheduling
operations at appropriate times (e.g. when the current
thread blocks in the kernel). In addition, a lack of com-
mon assumptions may also make it difficult for parallel
programs or library routines that use dissimilar thread
packages to communicate with each other, or to synchron-
ize access to shared data.

We describe a set of kernel mechanisms and conven-
tions designed to accord first-class status to user-level
threads, allowing them to be used in any reasonable way
that traditional kernel-provided processes can be used,
while leaving the details of their implementation to user-
level code. The key features of our approach are (1)
shared memory for asynchronous communication between
the kernel and the user, (2) software interrupts for events
that might require action on the part of a user-level
scheduler, and (3) a scheduler interface convention that
facilitates interactions in user space between dissimilar
kinds of threads. We have incorporated these mechanisms
in the Psyche parallel operating system, and have used
them to implement several different kinds of user-level
threads. We argue for our approach in terms of both flexi-
bility and performance.
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1. Introduction
It is often desirable, for reasons of clarity, portability,

and efficiency, to write parallel programs in which the
number of user processes (threads) is independent of the
number of available processors. Processes provided by
the kernel can be used to represent user-level threads, but
this approach has two important disadvantages:

Semantic inflexibility. Users want, and different run-
time environments define, threads of various kinds, many
of which may be incompatible with the kernel’s notion of
process. Some environments expect one thread to run at a
time, as in the coroutine-like scheduling of Distributed
Processes [7] and Lynx [22]. Some want to build cactus
stacks, with dynamic allocation of activation records, as in
Mesa [12]. Some want to use customized scheduling poli-
cies, such as priority-based scheduling, within an applica-
tion. Some want to have processes interact using com-
munication or synchronization mechanisms that are
difficult to implement with kernel-provided operations.
Some simply want to create a very large number of
threads, more than the kernel can support.

Poor performance. Processes are employed in parallel
programs for the sake of performance, not just conceptual
clarity, so the overhead of kernel process management is
important. Kernel-provided operations will almost always
be slower than user-provided operations, partly because of
the overhead of switching into and out of supervisor
mode, but also because of the overhead of features
required by some, but not all, applications. A thread may
or may not need its own address space, priority, private
file descriptors, or signal interface. It may or may not
need to save floating point registers on context switches.
Features such as these, provided by the kernel but often
unused in user space, can incur unwarranted costs.

To overcome these problems, it has become common-
place to construct lightweight thread packages in user
space [4, 9, 23, 27]. These packages multiplex a poten-
tially large number of user-defined threads on top of a sin-
gle kernel-implemented process. Within limits, they also
allow the user to implement customized processes, com-
munication, and scheduling inside an application.

User-level thread packages avoid kernel overhead on
thread operations and satisfy our need for flexibility, but
they also introduce new problems:



Blocking system calls. User-level thread packages
require that the kernel provide a full set of non-blocking
system calls. Otherwise, a system call performed by a sin-
gle user-level thread will prevent the execution of other
runnable threads. Many kernel interfaces include non-
blocking implementations of some important system calls
(I/O in particular), but most provide a large number of
blocking calls as well.1

Lack of coordination between scheduling and syn-
chronization. Synchronization between threads, either in
the same address space or in overlapping address spaces,
may be adversely affected by kernel scheduling decisions.
A thread that is preempted by the kernel may be perform-
ing operations for which other, running threads must wait.
In the simplest case, a preempted thread may hold a
mutual exclusion lock, forcing other threads to spin (wast-
ing cycles) or block (denying the application its fair share
of available CPU resources). More generally, a preempted
thread may be performing a computation for which other
threads are waiting or will wait in the future, thereby slow-
ing execution.

Lack of conventions for sharing among thread pack-
ages. When using user-level thread packages, a program
may need to synchronize access to data shared among
more than one kind of thread. This claim is one of the
premises behind multi-model parallel programming[21],
the simultaneous use of more than one model of parallel-
ism, both in different applications and in different pieces
of a single application. Spin locks are an easily imple-
mented solution, but are not always appropriate. Blocking
synchronization (e.g. semaphores) requires a mechanism
that allows one kind of thread to invoke the scheduling
operations of a different kind of thread. If true data
abstractions (with code) are to be shared among thread
packages, it must be possible for a single body of code to
invoke appropriate operations for any relevant kind of
thread.

All of these new problems arise because user-level
threads are not recognized or supported by the kernel.
Our goal is to grant first-class status to user-level threads,
allowing them to be used in any reasonable way that tradi-
tional kernel-provided processes can be used, while leav-
ing the details of their implementation to user-level code.
For example, first-class status requires that threads be able
to execute I/O and other blocking operations without
denying service to their peers, and that different kinds of
threads, in separate but overlapping address spaces, be
able to synchronize access to shared data structures. This
definition of first-class status is of necessity informal: we
do not have an exhaustive list of required characteristics
for threads. Rather, we have attempted to provide user-
level code with the same sort of timely information and
scheduling options normally available to the kernel, with
the expectation that most, if not all, of the operations rea-
sonable in the kernel will then become reasonable in user
space.

In the next section we present the rationale for our
approach and a brief overview of the specific mechanisms
we propose. We describe our mechanisms in more detail
in section 3. We discuss how our mechanisms support the
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1 Edler et al. [10] note that blocking system calls in Unix
include not only read, write, open, and close, but also ioctl,
mkdir, rmdir, rename, link, unlink, stat, and others.

construction of first-class user-level threads in section 4.
We discuss related work in section 5. The implementation
of our mechanisms, while not of production quality,
nonetheless supports some useful performance experi-
ments; we report on these in section 6. Our conclusions
are presented in section 7.

2. Rationale
Our approach was developed as part of the Psyche

parallel operating system [19-21], running on the BBN
Butterfly Plus multiprocessor [3]. The design of our
thread mechanisms was heavily influenced by the need to
support multi-model parallel programming, the primary
goal of Psyche. In particular, we have attempted to ensure
that kernel assumptions about the nature of threads are
minimized. For example, we do not assume that threads
will have contiguous, array-based stacks. Similarly, we do
not assume that every address space will be multi-
threaded; we want to allow an address space to contain a
single kernel-level process, with no thread package above
it, and yet still be able to interact via shared memory and
user-level synchronization mechanisms with other address
spaces.

The design of our mechanisms was also influenced by
the need to provide acceptable performance on a NUMA
(NonUniform Memory Access) multiprocessor such as the
Butterfly. In particular, the high cost of moving thread
state from one NUMA processor to another has motivated
us to avoid migration whenever possible.

We designed the Psyche kernel interface to be used
primarily by user-level thread packages, rather than appli-
cation programmers. We assume a user-level thread pack-
age will create and maintain state for threads, and that the
bulk of short-term scheduling occurs in user space. The
kernel remains in charge of coarse-grain resource alloca-
tion and protection.

By maintaining thread state in user space, we can
satisfy our goals of flexibility and performance. A user-
level thread package can organize thread state any way it
likes. Most thread operations, including creation, destruc-
tion, synchronization, and context switching, can occur in
user space, without entering the kernel.2 Kernel interven-
tion is required only for protected operations (e.g. system
calls) and coarse-grain resource allocation (e.g. preemp-
tive scheduling).

When the kernel does intervene during execution, the
kernel and user-level thread package need to cooperate, so
that each has access to information maintained by the
other. For example, when the kernel performs a blocking
system call, it needs to identify the user thread making the
call, so that a subsequent response can be directed to the
appropriate thread. When a scheduling event is detected
by the kernel (e.g. timer expiration, preemption), it needs
to interrupt execution and notify the thread package of the
scheduling event. When the execution of a thread is inter-
rupted by the kernel, the state of the thread must be saved
���������������������������������������������������������������

2 Some architectural features used to implement context
switching, such as register windows on the SPARC, may require
the use of a privileged instruction. Most architectures can
implement thread operations without a kernel trap however, and
even in the case of the SPARC, the required system call does not
suffer from excessive generality.



in a location accessible to the thread package. When data
abstractions are shared across address spaces, operations
that must synchronize need access to information about
the scheduling of different kinds of threads.

These general observations suggest that the kernel
have access to thread state information maintained by the
thread package, that the thread package accept scheduling
interrupts from the kernel, and that thread package
schedulers provide a standard interface. Specifically, in
our solution:

(1) The kernel and the thread package share important
data structures. Kernel/user shared data makes it easy
to convey information efficiently (in both directions)
when synchronous communication is not required.
Read-only access to kernel-managed data is one obvi-
ous example: no system call is needed to determine
the current processor number or process id. In the
opposite direction, user-writable data can be used to
specify what ought to happen in response to kernel-
detected events, such as timer expiration. This
mechanism allows changes in desired behavior to
occur frequently, for example when switching
between threads in user space. By allowing the kernel
and user to communicate efficiently, we allow them to
communicate more frequently.

(2) The kernel provides the thread package with software
interrupts (signals, upcalls) whenever a scheduling
decision may be required. Examples include timer
expiration, imminent preemption, and the commence-
ment and completion of blocking system calls. Timer
interrupts support the time-slicing of threads. Warn-
ings prior to preemption allow the thread package to
coordinate synchronization with kernel-level schedul-
ing. An interrupt delivered each time a thread blocks
in the kernel makes every system call non-blocking by
default, without modifying or replacing the kernel
interface, and provides a uniform entry mechanism
into the user-level scheduler when a thread has
blocked or unblocked. Single-threaded applications
can disable selected interrupts in order to have block-
ing calls.

(3) The operating system establishes a standard interface
for user-level schedulers, and provides locations in
which to list the functions that implement the inter-
face. Abstractions shared between thread packages
can then invoke appropriate operations to block and
unblock different kinds of threads. Although the ker-
nel never calls these operations itself, it identifies
them in the kernel/user data area so that user-level
code can invoke them without depending on the
referencing environment of any particular program-
ming language or thread package.

We now describe these mechanisms and their use in more
detail.

3. Mechanisms
In Psyche, kernel processes are used to implement the

virtual processors that execute user-level threads. In
many respects our notion of virtual processor resembles
the kernel-implemented threads of multiprocessor operat-
ing systems such as Mach [1] and Topaz (Taos) [24]. Vir-
tual processors are created in response to a system call,
very much like traditional kernel-implemented processes.
To obtain true parallelism within an application, one

creates a virtual processor (often in the same address
space) on each of several different physical processors. It
is possible to create more than one virtual processor in the
same address space on the same processor, though parallel
programs seldom do so. On each node of the physical
machine, the kernel time-slices between virtual processors
residing on that node.

3.1. Shared Kernel/User Data Structures
Figure 1 presents the kernel/user data structures used

for scheduling in Psyche. These structures are rooted in a
set of pseudo-registers on every physical processor,
mapped read-only into every user address space at a static,
fixed address. The pseudo-registers contain the identity of
the physical processor, and pointers to the currently exe-
cuting virtual processor and the currently active address
space. The kernel changes these indicators as appropriate
when context switching between virtual processors.

The address space and virtual processor pointers refer
to data structures writable by the user. The address space
data structure lies at the beginning of the data in the
address space, and is created by the kernel along with the
address space. This data structure contains the software
interrupt vectors used by all virtual processors in the
address space, together with additional information not
relevant to scheduling. The kernel defines a default action
for each type of interrupt, which it performs if the
appropriate vector is null.

The virtual processor data structure contains the bulk
of the information required to coordinate kernel- and
user-level process management. It resides in a location
specified by the user when the virtual processor is created.
Among its contents are (1) a pointer to a stack on which to
deliver software interrupts, (2) a collection of flags and
values controlling the behavior of interrupts, and (3) a
pointer to a data structure representing the current thread.
This last data structure identifies scheduler routines
appropriate for the thread, and contains additional thread
state (stack, saved registers, etc.). Software interrupts are
discussed in more detail in section 3.2; scheduler inter-
faces are discussed in section 3.3.

The thread data structure also contains a thread
identifier, which the kernel uses to create a link between a
requested operation and the thread making the request.
When a thread makes a blocking system call, the kernel
records the thread identifier, and notifies the thread pack-
age. The identifier is used in the kernel to distinguish dif-
ferent calls, functionality provided implicitly by the kernel
process in other systems. When the system call com-
pletes, the kernel once again notifies the thread package,
passing the thread identifier as a parameter.

3.2. Software Interrupts
When it wishes to deliver a software interrupt, the

Psyche kernel first checks the virtual processor data struc-
ture to see whether interrupts are currently disabled
(masked). If not, it obtains the address of the appropriate
user-level handler from the address space data structure
and the address of the appropriate interrupt stack from the
virtual processor data structure. It pushes the user’s old
program counter and stack pointer onto the stack (along
with volatile registers), pushes any additional information
needed to describe the interrupt, sets the interrupt masking
flag in the virtual processor data structure, updates the
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Figure 1: Shared Kernel/User Data Structures in Psyche

program counter and stack pointer, and enters user space.
The user-level interrupt handler is then free to do as it
pleases with the information it has been given. There is
no return into the kernel from a software interrupt; the ker-
nel retains no information about the interrupt after enter-
ing user space.

If the kernel wishes to deliver a software interrupt
while interrupts are masked, it queues the interrupt
instead, and sets a flag in the virtual processor data struc-
ture indicating that one or more interrupts are queued.
The kernel sorts the queue based on the relative impor-
tance of interrupts. Program faults, for example, are
queued ahead of timer expirations. We have not found it
necessary to set the interrupt priorities in user space, but
could do so by adding a priority field to the software inter-
rupt vectors stored in the address space data structure.

As with hardware interrupts, the handlers for software
interrupts should be designed to finish quickly. Once it
has done everything necessary with the information on the
interrupt stack (or has switched to a different stack), the
typical handler re-enables interrupts and inspects the flag
that indicates whether interrupts were queued. If it finds
the bit set, it gives the kernel an opportunity to deliver a
queued interrupt by executing a system call that blocks the
virtual processor until the kernel has an interrupt to give it.

Software interrupts are always delivered by the local
instance of the kernel, which runs in mutual exclusion
with user code. If the kernel sees a flag indicating that
interrupts are masked, it can assume that they will remain
so until control re-enters user space. Likewise if user code
sees a flag indicating that interrupts are queued, it can
assume that they will remain so until the virtual processor
executes a ‘‘block until interrupt’’ system call. The kernel
delivers software interrupts only (1) at the moment they
arise, provided they are not masked or queued, or (2) in

response to this system call. These mechanisms suffice to
avoid any race conditions between the kernel and user-
level code. As in conventional device drivers, deadlock is
avoided by masking software interrupts when acquiring a
lock (or other resource) that might be required by an inter-
rupt handler.

The following is a partial list of software interrupts in
Psyche:

virtual processor initialization
thread blocked in the kernel
thread unblocked in the kernel
signal from another virtual processor
timer expiration
imminent preemption
program faults

Every virtual processor begins execution in the handler for
the initialization interrupt. (Interrupt vectors are specified
in the address space data structure, which must already
exist when the virtual processor is created.) It also enters
an interrupt handler in response to timer expiration, sig-
nals from other virtual processors, and various sorts of
faults (divide by zero, protection violation, etc.). Slightly
more complicated rules apply to blocking system calls and
to virtual processor preemption.

When a system call must block for a large amount of
time, the kernel delivers a software interrupt that allows
the user-level thread package to run a different thread.
When the operation completes, the kernel delivers a
second interrupt that allows the thread package to
reschedule the first thread. A single-threaded application
can disable the scheduling hooks (thereby arranging for
traditional blocking calls) by specifying null handlers for
the interrupts associated with system calls.



For the sake of locality on our NUMA machine, vir-
tual processors do not migrate among physical processors.
Notification that a thread has unblocked in the kernel is
delivered to the same virtual processor (running on the
same physical processor) that received the earlier
notification that the thread had blocked in the kernel. A
user-level scheduler is free to move threads among the vir-
tual processors in its address space (and some of our
thread packages do so), but we did not want to build a
migration assumption into the kernel interface. A well-
written user-level scheduler on a NUMA machine will
move threads only when it has to, or when their state is
unusually small.

The principal blocking system call in Psyche is an
RPC-like mechanism called the protected procedure call
(PPC).3 PPC requests are directed at an address space; the
kernel chooses an idle or random virtual processor of the
target address space and delivers an interrupt to it.4 The
kernel may or may not immediately deliver a ‘‘blocked in
the kernel’’ interrupt to the virtual processor that was run-
ning the client thread. An interrupt always gets delivered
when the requested operation is to execute on another pro-
cessor, but it may be delayed when the operation can be
executed locally, thereby allowing the server’s virtual pro-
cessor to execute instead. If the server finishes quickly
(executing a ‘‘reply from PPC’’ system call within a sin-
gle quantum), the kernel simply resumes the client. If the
server does not finish quickly, the kernel delivers a
‘‘blocked in the kernel’’ interrupt to the client at the start
of the following quantum, and an ‘‘unblocked in the ker-
nel’’ interrupt when the server finally replies.

To minimize undesirable interactions between kernel-
level scheduling and user-level synchronization, the kernel
provides each virtual processor with a two-minute warning
prior to preemption. User-level thread packages can set
the actual duration of the warning (subject to a kernel-
enforced maximum) by writing a value in the virtual pro-
cessor data structure. They can also indicate whether it
suffices for the kernel to set a warning flag, or whether an
interrupt is required.

One use of the two-minute flag is to avoid acquiring a
spin lock near the end of the virtual processor quantum. If
the warning period exceeds the maximum length of a criti-
cal section, then a virtual processor will usually avoid
preemption while holding a spin lock if it yields the pro-
cessor voluntarily rather than acquire a lock after the
warning bit is set. Software interrupts might consume a
part of the ‘‘two-minute’’ period; a virtual processor can
reduce the probability of inopportune preemption even
further by masking software interrupts while holding any
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3 Protected procedure calls subsume I/O in Psyche.
Requests for I/O are cast as PPCs to I/O server programs. The
servers themselves use memory-mapped device registers and
low-level (non-blocking) system calls to access physical devices.

4 Since PPC requests are directed at an address space, we
decided to associate all software interrupt vectors (containing the
address of the interrupt handlers) with an address space, rather
than with a virtual processor. In retrospect, this decision was a
mistake, since in our implementation on a NUMA multiprocessor
each interrupt vector must be translated into an address in local
memory. In addition, if several different kinds of threads share
an address space, interrupts must be redirected to a handler in the
appropriate thread package.

lock (not just those that might be required by a software
interrupt handler).5

The two-minute warning flag provides an inexpensive
way for user-level code to poll the kernel to determine if
preemption is imminent. The two-minute warning inter-
rupt, by contrast, allows a virtual processor to perform
necessary clean-up actions when it is about to lose the pro-
cessor. Such actions are likely to vary from one applica-
tion and thread package to another. In an application per-
forming loosely-synchronized heuristic search, the two-
minute warning handler might flush the knowledge of the
current thread to a globally-visible blackboard. A pro-
gram that uses a central run queue for threads can use the
two-minute warning to save the current thread in the
queue. A program that uses separate run queues for each
processor (the more likely alternative on a NUMA
machine) can save the current thread in a global data
structure that other virtual processors will examine if they
run out of local work. If an about-to-be-preempted thread
is working on an important computation that needs to be
continued on another physical processor, the two-minute
warning handler can save the state of the thread and then
send an explicit interrupt to another virtual processor in
the same address space, prompting it to migrate and run
the preempted thread. The two-minute warning handler
could even modify the state of any locks held by the
current thread in such a way that other threads desiring to
acquire the lock will block instead of spinning.

There is no guarantee that a fixed two-minute warning
interval will always be sufficient to implement these
actions. As a result, inopportune preemption is still possi-
ble, even with the two-minute warning. However, the
goal of the two-minute warning is to minimize the likeli-
hood of inopportune preemption, not to prevent it entirely.
As long as the two-minute interval suffices most of the
time, a periodic failure to deal with preemption adequately
is unlikely to significantly affect performance.

3.3. Scheduler Interfaces
The thread data structure shared between the kernel

and user identifies scheduler routines that can be used to
block and unblock the current thread. (Additional fields
can specify operations to create and destroy threads as
well, but we do not require them.) The purpose of the
scheduler interface is to facilitate the construction of data
abstractions shared between dissimilar thread packages.
The code and data of an atomic queue, for example, could
be shared between thread packages A and B. If a thread in
package A attempts to remove an item from the queue
when it is empty, the dequeue operation can trace pointers
from the pseudo-registers to find the scheduler routines of
the currently-executing thread. It can place a pointer to
the current thread, and to the unblock routine, in the data
of the queue, and then call the block routine. When a
thread in package B enqueues an item later, it will find the
saved routine and call it, unblocking the thread from A. If
the thread packages lie in a single address space, then all
���������������������������������������������������������������

5 An application might be reluctant to yield the processor
following a two-minute warning interrupt, preferring instead to
make use of the rest of its quantum. If this concern proved to be
a serious disincentive, or if fairness were of paramount
importance, the kernel could add the unused portion of the
current quantum to the beginning of the next.



of the scheduler operations will be invoked with ordinary
procedure calls. If the thread packages lie in distinct but
overlapping address spaces, then the unblock routine will
be invoked via PPC. Further details can be found in [21].

3.4. Putting it All Together
By mirroring the behavior of a physical machine, with

memory and interrupts, our approach provides the writers
of thread packages with a familiar model of concurrent
programming. System implementors are accustomed to
using this model in operating systems, and in signal-based
programs in Unix. Day-to-day programmers need never
see the kernel interface; we assume that system calls will
almost always be filtered through a thread-package library
or language run-time system.

A typical thread package employs one virtual proces-
sor on each of several physical processors (see Figure 2).
The virtual processors share a collection of scheduling
routines and data, including the state of user-level threads.
The pseudo-registers on each processor point to data struc-
tures describing the currently executing virtual processor
and its address space. The thread field in the virtual pro-
cessor data structure points into the data of the thread
package. The software interrupt vectors in the address
space data structure, and the scheduler operation list in the
thread data structure, point into the scheduling routines of
the thread package. Each virtual processor will execute
scheduler routines at startup and in response to program
faults, timers, and PPC requests. It will also execute
scheduler routines when a system call blocks in the kernel,
and when that call completes. By polling the two-minute
warning flag or asking for two-minute interrupts, each vir-
tual processor can arrange to execute scheduler code
immediately prior to preemption and, by yielding expli-
citly, immediately after resumption. In an application
whose level of available parallelism fluctuates

thread

thread
thread

thread

thread

scheduling code

kernel

regs
pseudo pseudo

regs regs
pseudo

thread package

virtual
processor processor

virtual

address
space

virtual
processor

Figure 2: Typical Psyche Thread Package

dynamically, virtual processors can yield when they run
out of work. Running virtual processors can re-awaken
their peers with explicit signals when new work is created
or arrives via PPC.

We have not found the implementation of thread pack-
ages on top of Psyche to be especially difficult. Three of
the five packages available at present were ported from
other systems. The first port took over a month, mainly
because it uncovered kernel bugs, while the other two
ports took less than a month each. All of the packages
were integrated into a general system for cross-model syn-
chronization and communication over the course of a
two-month period [16].

4. Discussion
Returning to the issues enumerated in section 1, we

now consider the degree to which our mechanisms support
the construction of first-class user-level threads.

Semantic flexibility. In order to provide the implemen-
tors of user-level thread packages with as much flexibility
as possible, we have attempted to minimize the assump-
tions embodied in the kernel. In particular, the kernel
leaves space management (including the allocation of
interrupt stacks) to user-level code, and most thread opera-
tions can be implemented entirely in user space. To
ensure the integrity of scheduling within the thread pack-
age, the kernel provides software interrupts at every point
where a scheduler action might be required. In our experi-
ments with Psyche, we have successfully ported or imple-
mented Multilisp futures [11], Uniform System tasks [25],
Lynx threads [22], heavyweight single-threaded programs,
and two different thread libraries.

Performance. As in all user-level thread packages, the
ability to create, destroy, schedule, and synchronize
threads without the assistance of the kernel keeps the cost
of these operations low. Shared data structures allow the



kernel and user to provide each other with information
efficiently and asynchronously. A virtual processor can
change its interrupt stack, for example, simply by chang-
ing a pointer. In Psyche this facility allows a thread pack-
age to minimize the amount of parameter copying during a
protected procedure call. Parameters arrive on the inter-
rupt stack of a virtual processor; the interrupt handler re-
assigns the stack to the thread that is to perform the
requested operation, and allocates a new stack for future
interrupts.

Nonblocking System Calls. A general-purpose
‘‘blocked in the kernel’’ interrupt has the attractive pro-
perty of providing hooks for user-level scheduling without
requiring two different classes of system calls (blocking
and non-blocking). Scheduler code, when needed, is trig-
gered automatically via interrupts. Code that invokes sys-
tem calls that usually return right away, but that may on
occasion block, need not check for blocking. Library rou-
tines that may be invoked by both single- and multi-
threaded applications need not worry about whether to use
blocking or non-blocking calls: they can use any call they
like, knowing that multi-threaded applications will handle
scheduler interrupts when needed, and that single-threaded
applications will disable them. The existence of ‘‘blocked
in the kernel’’ interrupts also means that it is acceptable
for user-level code to trigger kernel operations implicitly,
via mechanisms other than system calls. In Psyche, for
example, a bus error resulting from an attempt to call a
subroutine at an invalid address can, under certain cir-
cumstances, be interpreted as a request for a PPC.

Coordination of scheduling and synchronization. The
two-minute warning mechanism can be used to avoid
undesirable interactions between user-level synchroniza-
tion and kernel-level scheduling. It provides a virtual pro-
cessor with time to pursue one of several courses of action
just prior to preemption. It is useful even in a single-
threaded address space, in order to synchronize access to
data structures shared with other address spaces. The
length of the two-minute warning, and even the decision
as to whether or not to provide a two-minute warning, can
be established dynamically.

Conventions for sharing among thread packages. By
standardizing the interfaces to user-level schedulers, and
by listing the entry points of the current scheduler in a
well-known location, we allow user-level thread packages
to synchronize access to shared data, and even to share
synchronizing code. Threads in the same address space
can invoke each other’s scheduler operations with ordi-
nary procedure calls. Threads in different address spaces
can invoke them via PPC. Because they are listed in the
standard kernel/user data structures, scheduler routines
can be found by tracing pointers from a well-known, static
address; no help is required from compilers, linkers, or
run-time support routines.

There is nothing sacred about the layout or contents of
kernel/user data structures in Psyche, or about the set of
software interrupts (assuming it covers all interesting
events). Additional data or interrupts might be required in
a production-quality system. The key point is that
software interrupts allow a user-level thread package to
establish its own scheduling policies, and that kernel/user
shared data not only permits fast asynchronous communi-
cation across the kernel interface, but also allows the
user-level thread package to control the behavior of the
software interrupt system.

5. Related Work
Several of the mechanisms we use to support first-

class user-level threads have been used for other purposes
in earlier systems. For example, our use of shared data
between the kernel and user is not new; the user structure
(u-dot) of Unix 4.3BSD, which is readable in user space,
contains information about the current process, and is also
used to implement machine-dependent mechanisms such
as the ‘‘signal trampoline’’ [13]. None of the Unix user
structure is shared between processes however, and none
of it is writable in user mode, so it cannot be used to con-
vey information from a thread package to the kernel.

As part of the Symunix project at New York Univer-
sity, Edler et al. [10] have proposed a set of parallel pro-
gramming extensions to the Unix kernel interface, includ-
ing support for user-level scheduling. In particular, they
describe a new ‘‘meta-system-call’’ that provides an asyn-
chronous wrapper for existing blocking calls, and a
quantum-extending mechanism designed to avoid preemp-
tion during critical sections. The meta-system-call
specifies which Unix system call to perform, and provides
additional return arguments indicating whether the call
completed immediately or will be announced by a later
signal. The goal of the mechanism is to admit asynchro-
nous system calls, while introducing as small a change to
the kernel interface as possible, and maintaining compati-
bility with existing Unix programs.

The temporary non-preemption mechanism employs a
counter in user space at a location known to the kernel.
When entering a critical section, user-level code can incre-
ment the counter. Within reason, the kernel will refrain
from preempting a process when the counter is non-zero.
It subtracts any time spent beyond the normal end of quan-
tum from the beginning of the process’s next quantum.
This mechanism suffices to avoid performance problems
due to preemption during fine-grain critical sections. It
may be cheaper than the two-minute warning, since it
incurs the overhead of an extra clock interrupt only when
the process is actually in a critical section at the normal
end of the quantum. An ability to request temporary non-
preemption at the end of the quantum does not suffice,
however, for a program that requires asynchronous
notification to trigger an explicit action.

At the University of Washington, Anderson et al. [2]
have explored user-level scheduling in the context of the
Topaz operating system on the DEC SRC Firefly multipro-
cessor workstation, an UMA machine. They rely on
software interrupts from the kernel to provide user-level
thread packages with appropriate scheduling hooks, but
their mechanisms differ from ours in several respects, and
they have used their mechanisms to address problems we
have not considered, including page faults and upward-
compatible simulation of traditional kernel threads.

For each address space, Anderson et al. maintain a
pool of virtual processors (called ‘‘scheduler activations’’)
in the kernel. When a scheduler activation is preempted
or blocks in the kernel, the kernel freezes its state and
sends a new activation from the pool up into user space.
The new activation (and any other running activations in
the same address space) can examine the state of the old
activation. The kernel reclaims old activations (returning
them to the pool) only when explicitly notified by the
user-level scheduler that their state is no longer required.



Because they are running on an UMA machine,
Anderson et al. can reasonably recover from preemption
in critical sections, rather than avoid it. When an activa-
tion is preempted on one physical processor they immedi-
ately preempt an activation on a second processor, and
send a new activation into user space on the second pro-
cessor, passing it both of the old activations as arguments.
This mechanism obviates the need to worry about how
much work can be accomplished during our two-minute
interval. It requires, however, that an address space be
multi-threaded (and running on more than one processor at
a time) if it wants to handle preemption interrupts. It also
requires that an application move threads between proces-
sors if it wants to clean up the state of a preempted thread
(e.g. by completing a critical section). Neither of these
requirements is restrictive in the environment for which
scheduler activations were designed, but both would be
problematical for Psyche. In order to write multi-model
parallel programs, we want to allow a single-threaded
application component to receive preemption interrupts so
that it can synchronize and share data with other applica-
tion components. Since we are using a NUMA machine,
we also want to be able to reach a clean point at preemp-
tion time without requiring thread migration.

All of the mechanisms discussed above allow user pro-
grams to control their scheduling behavior. Black [6] has
proposed instead that programs provide the operating sys-
tem with scheduler hints. He describes a set of system
calls in Mach that allow a virtual processor (a Mach
thread) to suggest to the kernel that it be de-scheduled, or
that possession of the processor be handed off to some
specified virtual processor. These calls can be used, for
example, to yield control when spinning for a lock (in the
hope that the holder of the lock will run instead) or to pass
control to the holder by name, if known. As with
scheduler activations, the issue of preemption in critical
sections is handled through detection and recovery; the
difference lies in delaying recovery until some other
thread waits for the lock, and in letting that thread take
responsibility for solving the problem. Once again,
efficient recovery depends on cheap migration.

The various approaches to dealing with preemption are
principally motivated by the unpredictable nature of kernel
scheduling. There is less of a need for special mechan-
isms that deal with preemption however, if the machine is
shared using physical partitions instead of time-slicing.
Under processor partitioning [8, 18, 26] each application
receives a set of dedicated processors for a relatively long
period of time; preemption is only used to reallocate pro-
cessors for medium-term scheduling. Processor partition-
ing may be the preferred scheduling policy for self-
contained, compute-intensive parallel programs, particu-
larly on machines with large numbers of processors.
Effective processor partitioning may be difficult to imple-
ment however, if the boundaries between programs are
poorly defined — as in large multi-model applications —
or if there are only a small number of processors to allo-
cate. Processor partitioning may also waste cycles if
applications fail to balance their computation or I/O
evenly among processes. In these cases, a mechanism that
can be used to avoid inopportune preemption, such as the
two-minute warning, is an attractive alternative.

User-level scheduling (and cooperation with the kernel
scheduler) is only one aspect of multi-model parallel pro-
gramming. The more general problem has been addressed

in part by the Presto [4] and Agora [5] programming
environments, at Washington and at CMU, respectively.
Presto is an unusually flexible user-level thread package.
It is constructed in an object-oriented style, with an inter-
nal structure into which users can plug a wide variety of
process and communication abstractions. It suffers, how-
ever, from the standard problems of user-level thread
packages on a traditional operating system: multi-model
programs cannot span languages and address spaces, and
performance can suffer from blocking in the kernel and
preemption. Agora is a collection of libraries and inter-
face compilers that allow users to connect distributed pro-
grams with stylized shared memory abstractions, much as
an RPC stub generator allows users to connect those pro-
grams with a message-passing abstraction. Agora is built
on top of Mach [1], and uses Mach’s kernel-implemented
threads.

6. Performance Implications
The two goals of our work are flexibility and perform-

ance for user-level threads. To achieve acceptable per-
formance, features provided by a thread package must be
cheap enough to use frequently. In this section we argue
that a system providing kernel support for first-class user-
level threads can perform better than either a system based
on kernel-implemented processes or a system employing
conventional user-level thread packages.

Our performance figures were derived from our imple-
mentation of Psyche on the BBN Butterfly Plus multipro-
cessor [3], which contains MC68020 processors clocked at
16 MHz. Our experiments quantify the performance
advantages of first-class user-level threads over both ker-
nel processes and conventional user-level threads.

6.1. Comparison to Kernel-Implemented
Processes

It is widely recognized that kernel-implemented
processes are inherently more expensive than user-
implemented threads. The difference can be attributed not
only to trap overhead, but also to the degree of functional-
ity that must be designed into a process abstraction meant
to meet the needs of disparate applications. The resulting
difference in context switch time is often substantial.
Weiser, Demers, and Hauser [27] report a context switch
time of 77 µs for user-level threads in the Portable Com-
mon Runtime on a SPARC-based workstation. The con-
text switch time for the thread package used in the Psyche
experiments is 51 µs. Anderson [2] reports a time of 37
µs in his FastThreads package on the CVAX processor.
Comparable times for kernel-implemented processes are at
least an order of magnitude slower in each case: 550 µs in
Psyche on the Butterfly, 441 µs in Topaz on the CVAX.
Depending on the frequency of synchronization among
threads, the impact of this disparity on application per-
formance can be very large.

To assess the impact of context switch time on per-
formance, we measured the running time of two applica-
tions, using two different implementations for each: one
based on user-level threads and a user-level context switch
mechanism, the other based on kernel processes and ker-
nel scheduling. The first application performs Gaussian
elimination on a 512 × 512 element matrix. The second
sorts an array of 4608 elements. Each application was run
using 16 physical processors and 128 threads of control.



In the first implementation, 128 kernel processes (virtual
processors) were created and distributed evenly among the
16 physical processors. In the second implementation,
128 user-level threads were created and distributed evenly
among 16 virtual processors, which were mapped one-to-
one with physical processors. The results appear in the
following table.

kernel-level user-level
application virtual processors threads

Gaussian elimination 33.8 sec 22.0 sec
parallel sort 44.3 sec 27.1 sec

As can been seen from the table, performance improves by
35% when using user-level context switching in the Gaus-
sian elimination program, and by 39% in the parallel sort.
The improvement is large in both cases because of the fre-
quency of context switching in these applications. The
sort program has 4608 centralized barriers, each of which
requires context switching among the 8 threads (or
processes) on a physical processor. Since a context switch
between kernel processes takes 550 µs, we can expect the
sort program to spend almost 18 seconds during execution
just to context switch between kernel processes. The
Gaussian elimination program has only 512 barriers, but
each is a tree barrier, which can introduce context
switches for each level in the tree [15].

The performance advantage of user-level threads is
substantial in these cases, and we would expect many
parallel applications to produce comparable results on
other systems. To show that these are not pathological
examples, particularly with respect to the number of
threads in use, we measured the speedup of the Gaussian
elimination program on 16 processors as we varied the
number of threads per processor from 1 to 8, thereby vary-
ing the amount of work performed by each thread. The
results appear in Figure 3.6 Threads in excess of the phy-
sical level of parallelism induce additional overhead no
matter how they are implemented. With user-level
threads, speedup on 16 processors degrades from 14.2
with one thread per processor to 11.1 with 8 threads per
processor. The impact on application speedup is much
more pronounced in the case of kernel threads, however:
they degrade from a speedup of nearly 14.0 with one ker-
nel process per processor to 7.3 with 8 kernel processes
per processor.

6.2. Comparison to Conventional Thread
Packages

Even on a uniprocessor the completion time of an
application will suffer if user-level threads block in the
kernel and thus deny service to their peers. Good thread
packages therefore utilize non-blocking portions of the
kernel interface whenever possible. Ignoring the possibil-
ity that threads on different processors might be waiting
for one another, simply blocking the threads on one pro-
cessor can have a serious impact on performance. A
thread package that makes a blocking system call every 20
ms, with an expected service time of 5 ms, will be able to
use no more than three quarters of the available CPU
���������������������������������������������������������������

6 We believe the anomaly at 2 processors to be an artifact
of the tree barrier implementation.
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Figure 3: Speedup on 16 physical processors as a func-
tion of the number of kernel processes (dotted) or user
threads (solid) per processor.

cycles, even if it always has runnable threads. Without
requiring an explicitly non-blocking interface, our
approach allows a thread package to regain control of the
processor whenever any system call blocks.

If kernel-level scheduling is not coordinated with
user-level synchronization, threads may also block for
locks that are held by threads on preempted virtual proces-
sors, or for conditions that can be made true only by
threads on preempted virtual processors. Zahorjan et al.
[28] report performance degradations in the neighborhood
of 25% when processes may be preempted at arbitrary
times, while sharing a lock that is in use 75% of the time.
Leutenneger [14] describes the variation in performance
degradation as a function of lock utilization. For a lock
that is in use 50% of the time, he reports that round-robin
scheduling performs 10% worse than a processor alloca-
tion scheme in which the processes of a given application
always run concurrently. For a lock that is in use 80% of
the time, performance degradation increases to 57%.

Similar effects can occur in programs with condition
synchronization. One of the most common models of
parallel programming employs a collection of worker
processes, one per processor, which repeatedly dequeue
and execute tasks from a central work queue [11, 25, 26].
One of the things that a task may do is generate more
tasks. It will often do so only if it is the last task of a cer-
tain kind to finish. Central work queue programs can thus
be considered a generalization of barriers; parallel execu-
tion continues as long as the queue remains non-empty,
and stops when no more tasks can be generated until some
preempted task has completed.

Barrier programs can be expected to suffer from inop-
portune preemption more than do programs based on spin
locks, because the probability is high that a process will be
working on something critical (i.e. progress towards the
barrier) at any given time. Tucker and Gupta [26] observe
that the impact of preemption on work-queue based pro-
grams can be reduced by introducing a mechanism to
preempt worker processes only after they finish a task and
before another task is removed from the work queue. We
have experimented with this technique in Psyche using a
Uniform System program with the iterative structure
characteristic of Gaussian elimination, the grassfire



algorithm, and the dynamic programming algorithm for
transitive closure and all-pairs shortest path.

Our Uniform System program runs with one virtual
processor worker on each of 16 physical processors. It
proceeds through a series of 200 phases. At the beginning
of each phase it generates 210 tasks and places them in the
work queue. It does not generate more tasks until the
existing ones have completed, thereby achieving an impli-
cit barrier between phases. Virtual processors spin when
they discover that all tasks have been removed from the
queue, but not all have completed. Each task requires
approximately 2.5 ms to complete. The quantum size is
100 ms, implying that 16 processors should be able to
finish about 3 barriers (phases) per quantum.

We measured the completion time of our program
under various levels of multiprogramming, with and
without avoidance based on the two-minute warning flag.
We varied the level of multiprogramming by placing unre-
lated virtual processors (executing in an infinite loop) on
each of the physical processors. The two minute warning,
when used, is set to 3 ms; workers check the flag prior to
dequeuing a new task, and yield if it is set. Average com-
pletion times appear in the following table; individual runs
varied by ± 0.2 seconds.

multiprogramming two-minute warning
level disabled enabled

(no competitors) 1 8.50 8.58
(1 competitor) 2 40.1 16.0

3 61.6 23.8

As can be seen in the table, the slowdown in execution
matches the multiprogramming level closely when the
two-minute warning is used. (We believe the slightly
better than linear slowdown to be due to reduced conten-
tion.) Without the two-minute warning, preemption of a
worker in the middle of a task causes all other workers to
spin between the time that the work queue is exhausted
and the next time the preempted worker gets to run,
significantly increasing the execution time. By using the
two-minute warning to avoid untimely preemption, we
improve performance by a factor of two or more in the
presence of multiprogramming. In the absence of mul-
tiprogramming, the two-minute warning imposed a per-
formance penalty of less than one percent. This penalty
stems from checking the flag prior to executing every task,
and from yielding the processor explicitly, instead of
being preempted.

In an earlier version of this same experiment, we
observed little benefit from using the two-minute warning
because we used an implementation of the Uniform Sys-
tem in which all tasks were created by a single task-
generator process. Although the two-minute warning
could still be used by worker processes to avoid taking a
task off the work queue just prior to preemption, it could
not be used to avoid preemption of the critical task genera-
tor. Even if the task generator is able to execute just prior
to preemption, we would expect the work queue to be
exhausted long before the task generator is again ready for
execution, causing every worker process to spin.

One possible solution to this problem is to use the
two-minute warning interrupt as a signal to save the state
of the task-generator process and migrate it to another pro-
cessor. Depending on the amount of state to be migrated,

and the cost of migration on a given architecture, this
option may or may not be viable every quantum. In our
case, migration every quantum was not cost effective, and
therefore the two-minute warning mechanism was not
sufficient to solve the problem. We first had to decentral-
ize task generation, allowing any process to generate tasks
at the appropriate time. We then used the two-minute
warning to ensure that a process did not begin task genera-
tion unless it could complete it.

7. Conclusions
In our attempts to provide support for multi-model

parallel programming, we have encountered flexibility and
performance problems with both conventional kernel-
implemented processes and user-level thread packages.
Kernel-implemented processes do not provide the variety
of semantics required by parallel programs, and are too
expensive to use for fine-grain operations. User-level
thread packages suffer performance losses when threads
block in the kernel or are preempted in critical sections.
They also lack a mechanism for blocking and unblocking
each other’s threads, preventing the construction of multi-
model programs.

To address these problems we employed three
mechanisms which together accord first-class status to
user-level threads:

� The kernel and the thread package communicate using
shared memory whenever possible to avoid the need
for synchronous interaction. Shared memory provides
qualitative as well as quantitative benefits, because it
makes it feasible to change the parameters of the
kernel/user interface as often as every thread context
switch. This capability is especially important when
scheduling threads of more than one kind on a single
virtual processor.

� The kernel provides the thread package with software
interrupts whenever a scheduling decision may be
required. In conjunction with shared flags, a full set
of software interrupts allows a thread package to reac-
quire the processor when one of its threads blocks in
the kernel, and to coordinate synchronization with
kernel-level scheduling.

� The operating system establishes a standard interface
to the scheduler routines (i.e. block and unblock) of
user-level threads. Interface conventions allow data
abstractions incorporating blocking synchronization to
be shared by dissimilar thread packages, with
scheduler operations invoked by shared code.

Support for first-class threads in Psyche has allowed us
to construct a wide variety of user-level thread packages,
and to employ them in the construction of multi-model
programs. Our largest demonstration, now running in our
robot lab, employs four different user-level process
models in an integrated checkers-playing program [17]. A
vision module, using a central queue of Uniform System
tasks, analyzes video camera input to determine the most
recent move of a human opponent on a conventional
checkers set. A strategy module, using message passing
between multi-threaded Lynx processes, performs parallel
alpha-beta search to chose an appropriate counter-move.
A motion-planning module, written in Multilisp, develops
a plan to effect the move with a PUMA robot arm. The
arm controller itself is a single-threaded C program. All
four modules share an abstract representation of the state



of the board, and block and unblock each other as neces-
sary to coordinate their work. Our experiences with this
application and others suggest that first-class user-level
threads provide both flexibility and performance, and offer
advantages over both kernel-implemented processes and
conventional user-level threads.
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