
Streamware: Programming General-Purpose Multicore
Processors Using Streams

Jayanth Gummaraju‡ Joel Coburn‡ Yoshio Turner§ Mendel Rosenblum‡

‡Computer Systems Laboratory, Stanford University, Stanford, CA 94305
§Hewlett-Packard Laboratories, Palo Alto, CA 94304

Abstract
Recently, the number of cores on general-purpose processors has
been increasing rapidly. Using conventional programming models,
it is challenging to effectively exploit these cores for maximal
performance. An interesting alternative candidate for programming
multiple cores is the stream programming model, which provides a
framework for writing programs in a sequential-style while greatly
simplifying the task of automatic parallelization. It has been shown
that not only traditional media/image applications but also more
general-purpose data-intensive applications can be expressed in the
stream programming style.

In this paper, we investigate the potential to use the stream
programming model to efficiently utilize commodity multicore
general-purpose processors (e.g., Intel/AMD). Although several
stream languages and stream compilers have recently been de-
veloped, they typically target special-purpose stream processors.
In contrast, we propose a flexible software system, Streamware,
which automatically maps stream programs onto a wide variety
of general-purpose multicore processor configurations. We lever-
age existing compilation framework for stream processors and de-
sign a runtime environment which takes as input the output of
these stream compilers in the form of machine-independent stream
virtual machine code. The runtime environment assigns work to
processor cores considering processor/cache configurations and
adapts to workload variations. We evaluate this approach for a
few general-purpose scientific applications on real hardware and
a cycle-level simulator set-up to showcase scaling and contention
issues. The results show that the stream programming model is a
good choice for efficiently exploiting modern and future multicore
CPUs for an important class of applications.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming (Parallel Programming); C.4
[Performance of Systems]: Design Studies

General Terms Design, Experimentation, Languages, Perfor-
mance

Keywords Streams, General-Purpose Multicore Processors, Pro-
gramming, Runtime System

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS ’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

1. Introduction
Over the last couple of years the general-purpose processor indus-
try has undergone a fundamental transformation. We have entered
the multicore era where the increasing number of on-chip transis-
tors is used for placing more cores on chip rather than for designing
faster, more complex single-core processors. Quad-core chips are
already in the market and the number of on-chip cores is expected
to reach as many as 16 by the end of the decade.

Developing software to fully exploit the many cores for max-
imal performance, however, has become a big challenge. Using
conventional programming models (e.g., multi-threaded program-
ming), developers spend considerable effort trying to write parallel
programs, yet problems stemming from synchronization, schedul-
ing and communication have limited the success of this approach. It
is widely agreed that parallel programming is hard and the average
programmer is going to need significant help in efficiently mapping
one’s code to modern multicore processors.

This challenge is being exacerbated by the new generations
of multicore processors with varying numbers of cores and cache
memory hierarchies that make writing portable parallel programs
even more difficult. It is not clear how to write a program or library
that can efficiently map onto multiple generations of multicore
processors from different vendors.

In this paper we discuss the potential to use the stream program-
ming model [25, 37] to fully exploit general-purpose multicore pro-
cessors. Stream programs use a different programming style (i.e.,
data-flow) from traditional programming models (i.e., von Neu-
mann). To get performance benefits, stream programming involves
bulk loading of data into a local memory (LM), operating on the
data in parallel, and bulk storing of the data back into memory.

Stream programing has been the programming model of choice
for special-purpose stream processors like Cell, Imagine, and Mer-
rimac [20, 25, 13], which contain several cores. This model follows
a data-flow framework, where the computation and communica-
tion are separated and made explicit by the programmer. This style
of programming has not only been used to write image/video pro-
cessing applications, but has evolved into a more general-purpose
model encompassing a broader set of data-intensive applications
including irregular scientific applications [28].

We argue that coding programs in a stream style allows them to
be written sequentially and can be automatically parallelized and
efficiently mapped onto multiple processor cores. The stream pro-
gramming model frees the programmer from worrying about most
of the hard problems of parallel programming including spawning
and scheduling multiple threads of control, synchronization and
communication issues, and portability across different hardware
configurations.

297

We present Streamware, a software system which enables these
stream programs to be automatically mapped to a wide variety of
general-purpose multicore processor configurations. We leverage
existing compilation frameworks for stream processors that can
compile stream programs down to a common virtual machine code
(i.e., Stream Virtual Machine or SVM) [26]. This compilation pro-
cess is based on well-understood and commonly deployed compiler
techniques [16, 14, 5, 29, 34]. We design and implement a runtime
system which exports an API that is targeted by such higher level
compilers and automatically maps to the underlying processor.

Our Streamware runtime system performs cache hierarchy
aware dynamic scheduling for mapping efficiently to general-
purpose multicore processors. The scheduler ensures that the com-
putation kernels and data are co-located in such a way that the ker-
nel executes on the core closest to the cache that contains the data in
the cache hierarchy. This enables the data to be efficiently fed to the
functional units present in the cores (e.g., short-vector SIMD units
such as the SSE units of x86 processors). The scheduler is also dy-
namic so it can handle large variance in execution times (e.g., due
to heterogeneous cores) as well as react to other processes running
on the machine. Using real machines and simulations we show the
efficiency of the mapping on a range of workloads and evaluate the
scalability up to 16 cores.

The rest of the paper is organized as follows. Section 2 describes
the stream programming model and its essential attributes. Sec-
tion 3 presents the design of our dynamic, cache hierarchy aware
runtime system which automatically maps SVM code to various
hardware configurations. Section 4 presents the experimental per-
formance evaluation on a real multicore hardware and on a cycle-
accurate simulation system. Section 5 discusses related work, and
Section 6 concludes the paper.

2. Stream Programming and Applications
Stream programming was originally developed for media and im-
age processing applications with simple, regular data access pat-
terns and statically predictable control. More recently it has grown
into a more general-purpose programming model successfully ap-
plied to scientific applications and other irregular applications [28].
In this section we try to separate out the essential components of
stream programming and highlight the core attributes useful for
developing a stream software environment for general-purpose pro-
cessors.

2.1 Stream Programming Model
Stream programming advocates a style of programming where data
is encapsulated into contiguous array of records called streams
which get operated on by a series of computation kernels. Figure
1 illustrates how streams and kernels are choreographed to execute
in synch. Essentially, the program is structured in a data-flow style
at the granularity of streams and kernels.

This style of programming makes explicit the parallelism and
locality present in applications – parallelism is encoded within
computation kernels and the locality of data is ensured both spa-
tially (contiguous chunks – streams) and temporally (producer -
consumer locality). If kernels are data-parallel, they can be broken
down into mutually independent chunks which can be executed in
parallel.

Although many applications can potentially be expressed using
the stream programming style, some of the desirable application
characteristics include: large amounts of data to operate on, high
arithmetic intensity, memory accesses that can be determined well
in advance of their use, and producer-consumer locality between
computation kernels.

Initially targeted only for media/regular applications, stream
programming has evolved into a more general programming

for (ns = 0; ns < NUM_STRIPS; ns += 2) {
for (i = 0; i < 2; i++) { //Double buffering

streamLoad (asi, a, start_idx, Ns, sizeof (Type a));

streamLoad (idxsi, idx, start_idx, Ns, sizeof(int));
addDep (Gcsi , Lidxsi);
streamGather (csi, c, idxsi, Ns, sizeof (Type c));

addDep (K1 , Lasi, Lidxsi, Gcsi);
kernelCall (K1, asi, csi, dsi);

streamLoad (xsi, x, start_idx, Ns, sizeof (Type x));

addDep (K2, K1, Lasi, Lxsi); //K2 depends on K1, loads to asi and xsi
kernelCall (K2, dsi, asi, xsi, zsi);

addDep (Szsi, K2);
streamStore (zsi, z, start_idx, Ns, sizeof (Type z));

start_idx += Ns;
}

}

K1= U{KA,KB}

K2

cs as

xs

zs

ds

Figure 1. Example of SVM-C pseudo-code and stream graph.
Kernel K1, which is a fusion of kernels KA and KB of the high
level stream program, takes in as input streams as and cs, and
produces stream ds. K2 takes the output of K1 (ds), as and xs,
and produces zs.

paradigm. Many applications in SpecFP 2006 and Berkeley dwarfs
have been shown to fit in this framework [28, 13, 18] (e.g., fluid
dynamics, molecular dynamics, structural mechanics, sparse linear
algebra, image processing).

The stream programming model advocates a gather–compute–
scatter style of programming1. Data is gathered in bulk from arbi-
trary memory locations in main memory into a local memory (LM).
This involves an asynchronous copy of data from the main mem-
ory address space to the LM address space. Computation kernels
directly operate on the stream data from LM and the produced re-
sults are stored back into the LM. The consumer kernels use these
results during execution and store their results back to LM, and so
on. Finally, only the live data from the LM is scattered back in bulk
to main memory.

Unlike in the traditional thread-based models, the computation
and memory operations are explicit and decoupled in the stream
model. The memory operations regularize irregular memory ac-
cesses by gathering data from different portions of memory and
copying them into contiguous addresses in local memory. This en-
ables the computation kernels to perform mainly sequential, local
memory accesses and can therefore, run very efficiently (e.g., us-
ing SSE instructions in x86). Furthermore, the emphasis is on data
placement and co-locating work (i.e., computation) with the al-
ready allocated data, unlike traditional thread-based models where
data is brought to the site of work.

Several stream languages have been developed over the past few
years [11, 37, 22]. However, as depicted in Figure 2, all these lan-
guages can be mapped to a common stream virtual machine ab-
straction layer (SVM) similar to the work discussed in [26]. The
SVM code is comprised of DMA operations and computation ker-
nels operating on strips of streams, and the dependencies between
them. Finally, the SVM code is compiled to the underlying stream
processor using a processor specific compiler.

In order to map a stream program onto SVM code several sim-
ple transformations are performed by a stream compiler (Figure 2).
Streams are broken down into strips, each typically several thou-

1 Only the style of programming and execution changes. We can continue
to use existing sequential languages (e.g., C, Fortran) with a few additional
library calls for bulk memory operations.

298

Brook

High-level Stream
Compilation System

StreamIt ArrayC Sequoia

Stream Virtual Machine (SVM) C-Code

Imagine/
Merrimac

GPUs RAWCell

Intermediate IR

Code
Generation

Front End

• Strip-mining
• Dependence

Analysis
• Double-buffering
• LM Scheduling
• Kernel Fusion

Processor-specific
compilers

MM

Figure 2. Stream programming platform

sand bytes long, to insure that the working set of strips fits in the
LM. The strips are double buffered so that when one buffer is being
loaded from memory, the other (already loaded) buffer can be oper-
ated upon in parallel by the computation kernels. The compiler also
inserts synchronization routines between asynchronous bulk mem-
ory operations/kernels (Figure 1). Since stream processors impose
several resource constraints (e.g., fixed LM size, local registers, etc)
the machine model (MM) of the underlying stream processor is in-
put to the stream compiler for maximal performance.

While all stream programming languages must be able to be
mapped to the stream virtual machine abstraction, they may ex-
press differently the basic stream programming semantics dis-
cussed above and may impose different restrictions.

2.2 Generalizations on the Stream Programming Model
In this section we define the essential attributes of a generalized
stream programming model which captures the fundamental prop-
erties of existing stream languages depicted in Figure 2. Because
the term stream programming has been overloaded and used some-
what differently by different researchers, we attempt to develop
a common ground to define its vital attributes, which we assume
throughout the paper. The idea is to decouple the stream program-
ming model from the restrictive constraints imposed by the stream
architectures in order to map a wider variety of stream applications
to general-purpose architectures.

Generalized Computation Kernels: The computation kernels
can contain variable amounts of work per invocation, depending on
the control flow inside the kernel. Kernels can be stateful (i.e., carry
state between different invocations of the same kernel) or state-
less (e.g., data-parallel kernels). Examples of stateful kernels range
from simple reduction variables (e.g., summation over all elements
of the stream) to a more general case where arbitrary amounts of
state are carried across invocations.

Variable input/output rates of streams between kernels: The
number of input/output elements consumed/produced by the kernel
could vary across kernel invocations. For example, the number of
output stream elements produced could be data-dependent, result-
ing in an arbitrary number of elements produced for every kernel
invocation.

Synchronization: Synchronization between kernels/bulk mem-
ory operations/scalar variables can be implicit or explicit in the
stream programming model. However, the stream compiler must
explicitly insert dependencies while generating the SVM code us-
ing dependence analyses. Typical synchronization points include:
boundaries for kernels that perform scalar reductions, before an in-
dexed gather operation for which the index stream is an output of a
previous kernel, and at the end of all kernels before executing the
dependent scalar code (e.g., writing the final output to a file).

Communication: Communication with the memory system and
between memory and kernel operations could be explicit or implicit

in the programming model. For example, Accelerator [36] derives
the stream data flow graph automatically from sequential code.
However, communication is explicit in the SVM layer. Communi-
cation between kernel operations is usually accomplished through a
producer-consumer relationship (one kernel produces a stream that
another kernel consumes). Multiple invocations of the same kernels
also communicate using state variables (e.g., reduction variables).

Weak Memory Consistency model: Accesses to memory can be
in any order and are constrained only by the synchronization points
described above. Bulk memory operations can proceed out-of-order
or even be interspersed. Memory accesses within a bulk memory
operation can execute in any order, unless specified otherwise by
the programmer. Furthermore, the order of execution of the mem-
ory instructions as seen by each core could be different as long as
the dependencies, which are indicated by synchronization points, is
respected.

Exception Handling: Exceptions are simply handled using the
mechanism provided by the language in which the stream program
is written. However, additional error handling support can be added
at the granularity of kernel invocations/bulk memory operations.

Once a stream program is compiled to SVM code, there are
three options to schedule on underlying cores – time-multiplexing
[13, 20], space-multiplexing [37], and a hybrid space-time mul-
tiplexing [16]. In time-multiplexed stream scheduling every ker-
nel is broken down into mutually independent kernel invocations
which execute in parallel on all the underlying cores whereas in
space-multiplexed stream scheduling each computation kernel is
allocated to a particular core and exploits pipeline parallelism be-
tween cores for performance. Hybrid space-time multiplexing com-
bines both space- and time- multiplexing where a kernel is multi-
plexed both spatially (i.e., assigned to particular cores) and tempo-
rally (i.e., execute on multiple cores in parallel).

3. Streamware Software Environment for
General-Purpose Multicore Processors

In this section we present the design of the Streamware soft-
ware environment for stream program execution on general-
purpose multi-core processors. Streamware provides a platform-
independent stream virtual machine abstraction to stream com-
pilers and applications and maps it efficiently to the hardware at
run-time. To achieve high utilization of hardware functional units,
Streamware implements a run-time system which performs cache
hierarchy aware dynamic scheduling of memory operations and
kernel operations. The run-time system has low overhead and is
portable across diverse multi-core processor configurations, deliv-
ering maximal performance limited only by the memory bandwidth
and/or computation resources of the hardware.

Streamware uses a time-multiplexing approach applicable to
stateless kernels and simple reductions. We focus on these scenar-
ios as they provide the greatest opportunity to exploit large-scale
multicore processors. As we describe in Section 3.3, our environ-
ment could be extended to support general stateful kernels that re-
quire space-multiplexing which can be viewed as a special-case
version of time-multiplexed stream scheduling.

3.1 Streamware API
Streamware exposes an application programming interface which
provides a platform-independent stream virtual machine abstrac-
tion to applications and stream compilers. Loosely inspired by the
SVM definition of Labonte et al. [26], the Streamware API (Ta-
ble 1) is distinguished by its support for features useful for mapping
onto diverse multi-core hardware. In particular, the virtual machine
model presents a set of Local Memories (LMs) for storing stream
data, and a set of Kernel Processors for executing kernels. The Ker-

299

Table 1. Streamware API (Key Features)
Function Description

Scheduling

svmInit() Initialize the Streamware virtual machine (bring LM to
cache, initialize queues)

svmExit() Exit the Streamware virtual machine
addDep(int op id, op t optyp, unsigned long long
kern dep vec, unsigned long long mem dep vec, ndma)

Add kernel and/or memory dependencies for
the kernel or memory operation (optyp ==
KNLOP or MEMOP) with identifier op id for
LM ndma

executeWork() Execute enqueued kernels and memory operations until
all operations for some LM complete (return value is
list of completed LMs)

Barrier() Wait for all pending operations for all LMs to complete
Kernel and
Memory
Operations

kernelCall(funcPtr kerName, kernel start offet,
num elmts, ndma, streamPtrs str[])

Enqueue a kernel invocation

streamLoad(void *str, void *arr, int num dims,
int start offset[DIMS], int num elmts[DIMS], int
stride[DIMS], int arr elmt size, int ndma)

Enqueue strided memory copy (e.g., str[i] =
arr[start offset + stride ∗ i]) from uni/multi-
dimensional array of records to stream

streamStore(void *str, void *arr, int num dims,
int start offset[DIMS], int num elmts[DIMS], int
stride[DIMS], int arr elmt size, int ndma)

Enqueue strided memory copy (e.g.,
arr[start offset + stride ∗ i] = str[i]) from
stream to uni/multi-dimensional array of records

streamGather(void *str, void *arr, int
*index stream, int num dims, int start offset[DIMS],
int num elmts[DIMS], int arr elmt size, int ndma)

Enqueue memory gather (e.g., str[i] =
arr[index stream[start offset + i]] from
uni/multi-dimensional array of records to stream

streamScatter(void *str, void *arr, int
*index stream, int num dims, int start offset[DIMS],
int num elmts[DIMS], int arr elmt size, int ndma)

Enqueue memory scatter (e.g.,
arr[index stream[start offset + i]] = str[i]
from stream to uni/multi-dimensional array of records

streamScatterOP(void *str, void *arr, int
*index stream, int num dims, int start offset[DIMS],
int num elmts[DIMS], int arr elmt size, int ndma)

Enqueue memory scatter-op (e.g., if OP is Add,
arr[index stream[start offset + i]] + = str[i])
from stream to uni/multi-dimensional array of records

nel Processors are partitioned into groups that share the same LM.
For maximal performance, each Kernel Processor only executes
kernels that access stream data in its associated LM.

In contrast to previous SVM APIs which tightly couple the
SVM model with the physical machine attributes, Streamware de-
couples these across the stream compiler and run-time to provide
portability to a wide variety of general-purpose processors taking
advantage of their more relaxed resource constraints compared to
stream processors. This is accomplished by making the physical
machine model (MM in Figure 2) an input to the run-time layer
instead of the compiler, and by exporting a parameterized stream
virtual machine model to the compiler. The compiler takes stream
programs written in a high-level language and generates low-level
Streamware API code (similar to Figure 2) comprising of bulk
memory operators, kernels, and dependencies between them. The
compiler performs widely used transformations including strip-
mining, double-buffering, kernel fusion, etc and represents strip-
sizes, etc as functions of run-time parameters. The run-time envi-
ronment implements the low-level API and assigns values to these
parameters based on the architecture on which the program exe-
cutes.

Applications using the Streamware run-time are structured as a
single control thread consistent with the stream programming style.
The control thread calls the Streamware API to submit memory and
kernel operations to the run-time environment to be scheduled for
execution. After submitting operations, the control thread calls the
executeWork routine to invoke the run-time to initiate actual
processing of submitted operations.

The control thread declares stream objects, which reside in a
separate namespace from non-stream scalar data. The API provides
functions (streamLoad, streamStore, etc.) used to submit
memory operations that copy data in bulk between the two names-
paces. When submitting a stream memory operation, the control
thread passes in the ID (ndma) of the particular LM that should
be the source or destination of the stream data. In addition, the
stream memory operations are passed the start address of the stream

in LM (str), start address of the data array (arr), start offset to
the array, element size, and number of elements. For scatter/gather
operations the location in LM of the index stream is also pro-
vided. When submitting a kernel operation, the control thread in-
dicates the group of Kernel Processors that can execute the kernel
by passing in the ID (ndma) of their shared LM. In addition, the
kernelCall routine is passed the kernel function pointer, start
addresses in LM of input and output streams (str), start offsets
into the streams (kernel start offset), and number of elements
to process (num elmts). Additionally, the control thread uses the
addDep call in the API to specify scheduling dependencies be-
tween operations, where dependencies are encoded as bitmaps.

It is desirable for the run-time environment to enable applica-
tions to run efficiently on diverse multi-core processor implemen-
tations without requiring the application to be modified for each tar-
get platform. The run-time environment takes into account the spe-
cific target processor configuration: the number and types of cores
(e.g., single- or multi-threaded cores, homogeneous or heteroge-
neous cores), and the cache hierarchy (e.g., levels, capacities, and
core sharing). The run-time environment abstracts this information
and presents it to applications by exporting the following stream
virtual machine parameters which get bound to values at run-time:
NUM DMAS (the number of LMs), NPROC [ndma] (the num-
ber of Kernel Processors sharing the LM that has ID ndma),
and LM SIZE [ndma] (capacity in bytes of the LM that has ID
ndma), used by the stream compiler to determine strip sizes). The
control thread uses these parameters to calculate loop iteration lim-
its and the values of derived parameters, such as the number of el-
ements to retrieve in each bulk memory operation (i.e., actual strip
sizes). Additionally, the control thread uses the parameters to as-
sign work to each LM, ensuring that kernels execute efficiently by
accessing stream data from the local LM.

3.2 Mapping to the Hardware
The run-time system maps the Kernel Processor and Local Memory
components of the stream virtual machine abstraction to the phys-

300

GPP GPPGPP

Coherent Bus

GPP

GPP GPPGPP

LM LM LM

LM LM

LM

...

Cache(s)

Control
Logic

SSE/FPUs

GPP GPP GPP

Figure 3. Example multicore configurations

ical multi-core hardware. For each Kernel Processor, the run-time
environment spawns a software thread and pins it to a unique phys-
ical hardware context (i.e., a processor core or a hardware thread).
Each of these software threads is associated with a stream LM and
can execute any of the kernels submitted by the control thread for
that LM.

Stream data used by the computation kernels are staged in the
cache hierarchy by mapping each stream LM to a memory region
that is loaded and effectively locked in cache memory throughout
program execution [18, 21]. With this approach, most of the asso-
ciative ways in the n-way cache hosting the LM are used for stream
data, and the remaining ways are used for kernel instructions and
OS data. Previous research efforts have demonstrated that this can
be accomplished by using non-temporal loads and stores to access
non-stream data, or by manipulating cache line control bits [18, 17].

The memory region dedicated to the LM can be allocated ad-
dress space arbitrarily larger than the cache capacity. In most cases
the application uses the strip sizes determined at run-time (Sec-
tion 3.1) to limit its LM address space usage to the portion that
fits in cache. However, if an application has kernels that can pro-
duce or consume data at unpredictable rates, LM addresses outside
the range that fits in the cache may be accessed. This is handled
transparently by the cache memory system of the general-purpose
processor, resulting in cache misses but without compromising ap-
plication correctness. This constitutes a significant advantage over
typical stream processors which have LMs with fixed capacity and
would require the addition of special-case LM overflow detection
and recovery mechanisms (e.g., kernel suspend/resume) to guaran-
tee correct execution.

Figure 3 shows examples of mapping the LM to multi-core pro-
cessors with various cache organizations. The cache memories to
use as LMs are chosen based on the requirements of relatively large
size, high associativity, and a high bandwidth path between the
cache and the processor cores. Typically these requirements lead
us to choose the last-level on-chip cache. For example, in the con-
figuration on the left in Figure 3 we map the LM to the L2 cache. In
this case, the L1 cache serves largely as an extended register file for
storing intermediate results during kernel execution 2. An L3 cache,
if present, acts as a bandwidth multiplier by serving as a cache for
the LM mapped to L2. Multiple LMs may be mapped to a single
cache, potentially improving performance by reducing scheduling
contention among cores (we evaluate scaling and contention issues
in Section 4.3).

2 Kernels usually comprise several hundred instructions generating many
intermediate results. General-purpose processors typically have few regis-
ters to hold these results.

The run-time system implements direct memory access (DMA)
engines to perform the asynchronous bulk memory operations sub-
mitted by the control thread for each LM. These memory transfers
copy data between main memory and LMs at full memory band-
width. How the run-time environment accomplishes this in general
depends on the capabilities of a particular hardware platform. For
example, it may create additional software threads (and perhaps
bind them to dedicated hardware threads (SMT)) for performing
all the bulk memory operations [18]. Alternatively, the Kernel Pro-
cessor threads could be charged with performing both kernel oper-
ations and memory operations. If available, physical DMA engines
could be used instead, avoiding software overheads and potentially
realizing full overlap of memory and kernel operations [17].

The DMA engines implemented by the runtime are tailored to
exploit performance-enhancing features specific to a target pro-
cessor like software prefetching, quad-word memory copies using
short-vector SIMD units (e.g., Intel SSE), hardware performance
counters, etc. The implementation also factors in memory system
characteristics (e.g., the processor load/store queue size) and data-
paths to functional units (e.g., if memory accesses can bypass first-
level caches). When performing stream memory operations, the
runtime can pack and align stream data in preparation for efficient
kernel processing using short vector SIMD units. With the knowl-
edge that all stream data is automatically in packed format, an ad-
ditional stream compiler pass inserts SSE intrinsic calls in kernels
to produce vectorized code.

3.3 Cache Hierarchy Aware Dynamic Scheduling
The runtime environment and the application control thread work in
concert to schedule kernel and memory operations. The scheduling
policy is cache hierarchy aware, coordinating the scheduling of
kernel operations and memory operation to ensure that the stream
data accessed by kernels is available in the closest LM in the cache
hierarchy. The scheduling policy is also dynamic, assigning work
to cores in a flexible manner that adapts to variations in execution
times due to workload variation, heterogeneous processor cores, or
interference from competing jobs.

The runtime system allocates two work queues per LM – one
work queue for memory/DMA operations and one work queue for
computation kernels. The work queues are filled by the application
control thread calling the kernel and memory operations provided
by the Streamware API (Table 1). Each call enqueues a descriptor
of a kernel or memory operation to the appropriate work queue.
Operations in the kernel work queue for an LM are dequeued
and executed by the software threads that implement the Kernel
Processors that share the LM. Similarly, the DMA engine for the
LM dequeues entries from the memory work queue and executes
the specified bulk memory operations.

The control thread makes API calls (addDep) to specify the
dependencies between operations. Dependencies are recorded in
the work queues using two bit vectors per entry, one to indicate
dependencies on other memory operations, and one to indicate de-
pendencies on other kernel operations. The Kernel Processors and
DMA engines respect the dependencies and update the completion
bit vectors after performing each operation.

Using the LM SIZE [ndma] runtime parameters, the stream
compiler computes the strip sizes that will accommodate the work-
ing set of streams and generates parameterized code that indicates
how streams are divided up into strips. For example, a stream is
loaded into a LM one strip at a time by making multiple calls
to streamLoad. Similarly, multiple kernel invocations process
stream data in strip-wise chunks. The application control thread
further subdivides each strip into NPROC [ndma] sub-strips and
splits each kernel invocation into NPROC [ndma] kernel calls that
operate on different sub-strips. The NPROC [ndma] Kernel Pro-

301

Dependencies

Li0 Gc0 Lx0 Sz0 La1 Li1 Lxn-1 Szn-1

Memory Queue

Kernel Queue

K1 K2

as

cs

xs

ds
zs

K10,0 K10,1 K20,0 K2n-1,1K2n-1,0

Strip
Number

Sub-strip
Number

NPROC/LM = 2

La0

Figure 4. Work Queues for LM. L=Load, G=Gather, S=Store.
Elements in the memory and compute work-queues and the depen-
dencies between them for the example stream program presented
in Figure 1.

cessors sharing the LM with ID ndma achieve parallel execution
by dynamically dequeuing and executing the NPROC [ndma] ker-
nel operations from the kernel work queue. We chose to have ker-
nels operate on sub-strips to allow the DMA operations to use large
strip sizes (and hence, perform large bulk transfers) regardless of
the number of processors sharing an LM.

To overlap memory operations and kernel executions, the con-
trol thread achieves double- or multi-buffering by allocating LM
space for multiple strips of each stream and enqueuing operations
that access the buffers in round-robin order. The control thread ex-
ecutes a loop which enqueues the operations for the multiple strips
in each iteration (an example with double buffering is shown in
Figure 1). In this example the kernels exhibit producer-consumer
locality producing intermediate streams. As shown in Figure 1, all
operations on the intermediate streams are contained within each it-
eration of the control thread loop. Hence, iterations are independent
and could be scheduled on different LMs.

Figure 4 illustrates how the stream program of Figure 1 is
decomposed at runtime into work queue entries and dependencies.
In this example two Kernel Processors share an LM. The control
thread has split stream data into n strips and enqueued tasks and
dependencies on the memory and compute work queues. Each
kernel invocation operates on one half of a strip (e.g., sub-strips
K10,0, K10,1) to spread work across the two Kernel Processors.
Each work queue entry contains the arguments to the matching
calls in Table 1 along with dependency bitmaps. For example,
dependency information for kernel K10,0 indicates that it cannot
execute until loads/gathers to its input strips (La0, Li0 (index
strip), Gc0) are completed.

There are several options for spreading work across the LMs.
For example, consecutive control loop iterations could be inter-
leaved across the set of LMs or randomly distributed across the
LMs. These approaches have the disadvantage that when kernels
need to access data from adjacent strips (e.g., for stencils or con-
volution operations), the data are located in a different LM result-
ing in LM cache misses. An alternative approach is to divide the
control thread loop iterations into groups of consecutive iterations,
where the groups are mapped one-to-one to the set of LMs. This
approach minimizes LM cache misses due to kernels accessing ad-
jacent strips. However, it has the limitation that work is statically
assigned to each LM, leading to poor performance for variable rate
kernels and other workload variations.

For Streamware, the approach we take is to use piecewise split-
ting in which limited size groups of consecutive control thread

loop iterations are assigned dynamically to LMs. The consecu-
tive iterations in each group place operations together for the same
LM filling its work queues until it cannot accommodate the next
iteration. After the control thread fills the work queues, it calls
executeWork. Kernel and memory operations execute until the
work enqueued for any LM is completed, causing executeWork
in the control thread to return the ID of the completed LMs. The
control thread then refills the completed LM work queues with op-
erations in the next group of consecutive control thread loop itera-
tions. This approach provides dynamic scheduling which adapts to
different rates of execution by processor cores and DMA engines
(e.g., because of variable rate kernels and other workload varia-
tions). Maximally filling the work queues each time they empty
minimizes contention for service by the control thread. Assigning
groups of consecutive iterations enables kernels to access adjacent
strip data from the local LM without incurring cache misses except
at the boundary between groups, and provides efficient support for
associative reductions.

The runtime system design can be extended to support both
stateful kernels and stateless kernels. In general, a stateful kernel
can be handled by using space multiplexing in which threads are
dedicated to the producer and consumer kernels which process en-
tire streams before relinquishing the threads (Section 2). Equiva-
lent behavior can also be accommodated in a time-multiplexing
approach like ours by scheduling the stateful producer-consumer
kernels to run in repeated invocations that operate on strips. State is
carried across invocations using persistent static variables. Whereas
different control thread loop iterations are independent for stateless
producers-consumers and can therefore be scheduled using differ-
ent LMs, stateful producers-consumers have dependencies. As a re-
sult, the runtime must be extended either to restrict the stateful ker-
nels to execute using the same LM, or extended to support commu-
nication between LMs (which translates to cache-to-cache commu-
nication in our runtime mapping). A special case of stateful kernels
is reduction operations. We implement reduction in two phases. In
the first phase each core performs reduction of all the kernel invo-
cations it executes. The reduction data is collected in the second
phase using simple associative combination or using tree combin-
ing (also associative).

4. Evaluation
In this section we present a performance evaluation of the
Streamware runtime system on multicore general-purpose proces-
sors. Overall, the results show that for most cache configurations,
the runtime system provides good application scalability with in-
creasing numbers of cores for compute-intensive applications, with
less improvement for memory-intensive workloads. The runtime
scheduler efficiently distributes work across cores, and the com-
pute resources within each core are used effectively by exploiting
short-vector SIMD units. We also evaluate the performance over-
heads due to the runtime system, consider the effects of scaling
stream local memories within caches, and explore dynamic work-
load balancing among cores with a competing workload.

4.1 Experimental Setup
We evaluate Streamware running on real multicore processor hard-
ware. In addition, we evaluate Streamware using a processor sim-
ulator in order to experiment with various configurations of cores
and caches.

For experiments on the real system, we use a machine with two
processor sockets connected by Intel’s 6.4GB/s Front Side Bus,
8GB DDR2 RAM, and running RedHat FC6 (2.6 SMP kernel).
Each socket has a dual-core Intel Xeon 5140 (Woodcrest) processor
(64-bit, 4MB L2 cache shared by the two cores, SSE3-compatible
SIMD units per core). Despite having two dual-core processors,

302

Table 2. Simulator baseline machine parameters
Parameter Value Parameter Value
Num cores (C) 1,2,4,8,16 Num DMAs 1,2
Core freq. 2GHz DRAM arch. DDR2
Pipeline OOO DRAM bandwidth 6.4GB/s
L2 size C*1MB DRAM burst 32/64 bytes
L2 assoc. 8 DMA AG band-

width
2addr/cycle

L2 line size 64 bytes DMA ABs 8 (512 bytes)
FSB band-
width

6.4GB/s DMA MSHRs 256

we can emulate a quad-core machine effectively because there is
very little cache data sharing in the runtime system and in our test
applications.

We spawn one software thread (using Linux pthreads) for each
processor core and pin them to separate cores using OS scheduling
affinity system calls (thus avoiding high context switching over-
heads). All threads execute kernels, but some threads are assigned
to also execute stream memory operations. SSE packing and align-
ment is performed as part of stream memory operations. Each strip
is automatically quad-word aligned and has length that is a multiple
of a quad-word.

One thread is designated the control thread which performs en-
queueing operation in addition to executing kernels and memory
operations. For efficient thread coordination one spin-lock per LM
is used to protect access to the LM kernel work queue, and atomic
instructions provided by the x86 ISA are used to update bits in de-
pendency vectors. No other locking is needed in the implementa-
tion, and in fact an alternative wait-free implementation of the work
queues could be implemented. The dependency vector is 64 bits
limiting each work queue to 64 entries.

For simulation experiments, we enhanced the M5 simulator [8]
to support various architectural configurations (scalable number
of cores and caches) and to include a special Stream Load-Store
(SLS) hardware unit for stream memory operations. M5 is a
cycle-accurate system-emulation/full-system simulator of multi-
core general-purpose processors and was configured to execute the
Alpha instruction set in system-emulation mode. We augmented
M5 by integrating the DRAMsim DRAM simulator [39] to ac-
curately simulate DRAM throughput since memory bandwidth is
a critical metric when evaluating stream programs. The baseline
machine parameters used for our simulations, including number of
processor cores and number of DMAs, are detailed in Table 2. In
addition, the simulation may be a closer match for future hardware
including SLS units and hardware multithreading (SMT) which are
attractive because they can provide ideal overlap of memory and
kernel operations.

We evaluate four scientific applications that feature regular and
irregular mesh constructs and linear algebra operations. The appli-
cations were originally written by programmers in the areas of fluid
dynamics and solid mechanics. The four applications and charac-
teristics of the datasets are summarized in Table 3, and further de-
tails are available in [18]. These applications are significantly chal-
lenging because they contain non-affine and data-dependent array
references, along with a wide range of compute to memory ratios.
FEM and NEO are relatively compute-intensive applications and
CDP and SPAS are more memory-intensive applications.

The overall evaluation methodology is as follows. The
C/Fortran conventional implementations are first re-written in a
stream-programming style [11]. We transform the stream program
using standard stream compiler transformations as shown in Fig-
ure 2 into stream virtual machine code similar to Figure 1. Both
the conventional and stream codes are compiled using the Intel C
Compiler for Linux (icc) with -O3 level optimizations to generate

Table 3. Application and dataset description
FEM [6]: 2D Discontinuous Galerkin finite element method code for fluid
dynamics. It includes both a 4 816 and 80 001 element unstructured mesh,
and solves for either the Euler or magnetohydrodynamics (MHD) equations.
The code is parametrized for linear (lin), quadratic (qd), or cubic (cub)
interpolation. FEM performs mostly gather and scatter memory operations
of records spanning 5− 80 words and has three compute-intensive kernels.
CDP [23]: 3D large eddy fluid dynamic finite volume method simulation
on an irregular mesh. The finer nb and pw 6000 nb datasets have a mix of
tetrahedrons, prisms, pyramids, and cubic elements with 3 800, 29 095, and
1 278 373 total control volumes. CDP performs gather, scatter, and scatter-
add memory operations to records of 1 − 8 words and has four kernels.
SPAS [38]: Part of a sparse algebra suite; computes a compressed sparse
row matrix vector multiplication on a 9 978, 19 094, 37 918, or 73 053,
435 382 row matrix. SPAS uses unit-stride stream loads and stores and has
one main kernel.
NEO [7]: A neo-hookean solid mechanics code that models a finite elas-
ticity compressible material. The application uses a structured grid with
30 000, 50 000, 100 000, or 200 000 elements. NEO uses unit-stride
stream loads and stores and has five kernels.

�
�
�
�
�
�
�
�
�

	
� �

 �� � �
	
� �

 ��
�

	
� �

 ��

�

��
� �� � �

��
� ��
�

��
� ��

�

� � ��

���
�

� �
����
��
�

���
 !

�"
#"�
�

�$%
�! %�

&
#�
&

"�
� & ��

&

')(+* ,.-0/ 12/4351 60()7

8 ���
�

�

�)/ 9 �:- � / 9 �:- � / 9 � - �2/ 9 � - �;/ 9 �2-

Figure 5. Streamware performance on the Xeon processor

optimized x86 binaries. For the simulator, we run alpha-gcc 2.95.3
with -O3 level optimizations to generate optimized alpha binaries.
These binaries are then run to collect execution statistics.

4.2 Evaluating Streamware on Xeon
In this section we demonstrate the portability and performance
gains of Streamware on the 2-socket Xeon system. We separate the
benefits obtained by auto-parallelization and dynamic scheduling
across cores from the additional benefits obtained by efficiently
exploiting the SSE units of the individual cores.

4.2.1 Stream Execution
Streamware should give good performance while providing porta-
bility across underlying hardware architectures. To evaluate these
benefits we run the same applications for several processor-DMA
configurations with various data sets on our two-socket Xeon ma-
chine. Figure 5 presents the speedups of the stream version of each
application over the conventional single-threaded C version for 1P-
1D (one processor, one DMA), 2P-1D, 2P-2D, 4P-2D, and 4P-4D
configurations. These configurations do not necessarily correspond
to physical analogs on our machine, but they map to the under-
lying hardware to provide different levels of core and bandwidth
utilization. For example, 4P-4D represents four logical processors
and four logical DMA units where each DMA unit feeds a local
memory emulated by a portion of L2 cache, effectively using two
DMAs per L2 cache. Configurations with two DMAs (2P-2D and

303

<
=
>
?
@
A
B
C
D

E FG H
I JG K L
E FG H
I JM
N

E FG H
I JO F
P

QR
S JG K L

QR
S JM
N

QR
S JO F
P

T K LH
IVUL
P

W X
YZZ
Z UL
P

Q[[
\]

Q^
_^[
Z

Q`a
Y]
\

aZ
b

_Z
b

^Z
Z
b

\ZZ
b

c)d)e fhg0i j;i+k0j lmd)n

o WH
H
N F
W

=�i+pq=rg > i2p =rg > i2p > g @si2p > g @Vi2p @Vg

Figure 6. Streamware performance with SSE on the Xeon proces-
sor

4P-2D) allocate one DMA per socket by pinning the corresponding
logical processors to the physical processors in that socket.

Across applications, speedups are highest for the large data
sets since they typically do not fit in the L2 caches and therefore
show the benefits of staging data in local memories. Small data
sets which do fit in the cache do not perform as well because
conventional codes perform well in these cases.

Our two compute-intensive applications, FEM and NEO,
achieve roughly linear speedup (4.3x and 3.5x, respectively) for the
4P-4D configuration. The performance of FEM and NEO is limited
by the compute bandwidth (FP throughput) of the processor cores.
An interesting point is that we see greater than linear speedup (i.e.
1P-1D runs 1.1x to 1.4x faster) for the computationally demanding
FEM data sets because the stream programming model more effi-
ciently supports producer-consumer locality in these applications
compared to the conventional code.

CDP and SPAS, both memory-intensive applications, achieve
only 1.9x and 1.55x speedup for the 4P-4D configuration as they
are limited by the memory system bandwidth. For 1P-1D, the per-
formance of CDP and SPAS is actually worse (speedup < 1) than
that of the conventional codes. Performance is limited in this single-
processor configuration by the inability to overlap the execution of
compute and memory bulk operations, and these applications have
little producer-consumer locality to exploit. CDP and SPAS also
have worse performance than the conventional code in the 2P-1D
configuration, but speedups are present when there are more DMA
threads.

For all the applications, performance increases with larger num-
bers of DMA threads until the memory bandwidth is saturated. Al-
though we had expected that configurations with a single DMA
thread per L2 cache would be able to saturate the memory band-
width, we found that often multiple DMA threads per cache were
needed (configurations 2P-2D and 4P-4D use two DMA threads per
cache). The performance improvement of 2P-2D over 2P-1D is due
not only to the presence of an additional DMA thread, but also to
our implementation of 2P-2D which mapped each processor/DMA
to a separate socket, increasing LM size and memory bandwidth. In
Section 4.3.1, we run our experiments with a hardware DMA unit
in the M5 simulator to saturate the memory bandwidth and avoid
this effect.

4.2.2 Exploiting Short-Vector SIMD Units
In addition to enabling efficient execution across processor cores,
the stream programming model coupled with Streamware enables
better utilization of each core by exploiting the short-vector SIMD
units (e.g., SSE units in the x86 processors). Using the stream pro-

gramming model greatly simplifies automatic compiler generation
of SSE instructions by removing non-affine accesses within ker-
nels. Streamware further facilitates automatic SIMDization by per-
forming data packing and re-alignment on bulk memory operations
to match the SIMD boundaries (Sec 3.2). We evaluate these effects
by manually emulating a compiler pass with simple transforma-
tions that convert instructions inside kernels to SSE intrinsics and
show the potential performance benefits.

Figure 6 shows the performance gain for stream programs with
SSE intrinsics inside kernels over the conventional codes. As ex-
pected, compute-intensive workloads benefit greatly from SSE in-
structions while memory-intensive workloads show much less im-
provement. For the 4P-4D configuration, FEM and NEO achieve
speedups of 7.8x and 7.3x respectively for their most challenging
data sets. Euler and MHD linear data sets for FEM show speedup
around 5x due to less computational intensity. CDP and SPAS ex-
hibit almost no additional speedup for using SSE intrinsics because
they contain data-dependent computations (i.e. an unknown num-
ber of non-zero elements per row of the input matrix in SPAS and
a variable number of neighbors per element in CDP) which make
poor use of the SIMD units.

The results in Figure 6 do not achieve the theoretical maxi-
mum of 4x speedup over non-SSE code. Obviously the memory-
intensive applications cannot achieve 4x speedup. However,
compute-intensive applications have sub-optimal speedup because
using SSE increases the computational bandwidth of the cores,
putting more pressure on the memory bandwidth. This is made
evident by the practically non-existent performance gains of NEO
when going from 2P-2D to 4P-2D. FEM does not suffer in the same
way because it is computationally more intense. Overall, effective
memory bandwidth is reduced when we use SSE because packing
is performed as data is brought into the local memories. Since data
is not accessed sequentially during packing, we cannot take advan-
tage of bulk memcpy operations and the hardware prefetcher. This
effect is significant when we do not have enough DMA threads to
saturate the memory bandwidth.

4.3 Analysis of Key Design Issues
In this section we stress-test our Streamware system to analyze the
major design issues. We evaluate how Streamware performs as the
number of processor cores/caches increases, the main sources of
overheads, and how Streamware adapts to the presence of compet-
ing workloads.

4.3.1 Scaling with Processor Cores
A key figure of merit for our runtime system is how well it scales
with multicore processor configurations. As the number of cores
and caches varies, different aspects of the application become the
performance bottleneck. Figure 7 shows speedup with a varying
number of processor cores (P) and DMAs (D) for the FEM and
SPAS applications. We chose these two applications to illustrate
the effect of both compute-intensive and memory-intensive work-
loads. Using the M5 simulator, we scaled the number of cores from
one to 16 because we believe this range represents multicore archi-
tectures that will be available in the immediate to near future. Each
DMA corresponds to a local memory serving a set of processor
cores. While a single hardware DMA unit can saturate the memory
bandwidth, we simulated up to two DMAs to reduce contention for
the lock when many processors operate from a single work queue.
We also scaled the LM size linearly with the number of cores.

The performance of FEM scales fairly well with an increasing
number of cores and DMAs (greater than 12x speedup for 16 cores
with two DMAs) because the application is compute-intensive.
SPAS, on the other hand, is memory-intensive and therefore shows
much lower performance gains, achieving only 4x speedup for 16

304

t
u
v
w
x
y t
y u
yzv

{4|2} ~;� � } � ��{�|2} ~2� � �+�����5�;� } � � ���)�r�)� ���2�+�2�����.�;�.�+�
�z{z� �.�:�h�

� �
��
� ��

�2)¡ �+¢ £�)¡ �2¢ ¤5 :¡ �2¢ ¥;)¡ �+¢ �.¦;)¡ �2¢
£�)¡ £�¢ ¤5 :¡ £�¢ ¥;)¡ £;¢ �.¦;)¡ £�¢

Figure 7. Scaling of Streamware with processor cores/DMAs

cores with two DMAs. Overall, performance with two DMAs is
better than that with a single DMA for large number of cores (>=
8). This is because the cores connected to the same DMA share a
common kernel work queue and contend with each other for work.
When the ratio of cores to DMAs is large, most cores spend time
blocked until they can execute. This is evident in the performance
of all three FEM data sets for the 8P and 16P configurations. Due
to the memory-intensive nature of SPAS, performance does not
increase as much with the increase in number of DMAs.

4.3.2 Overhead of Streamware Runtime System
In Figure 8, we evaluate the overhead of the Streamware runtime
scheduler. For this experiment, we created a synthetic benchmark
which simulates the concurrent execution of kernels on multiple
cores. A kernel cannot execute until it obtains the lock for the queue
and checks a bit vector to verify that its dependencies have been
satisfied. When the kernel is finished, it clears its dependencies in
the bit vectors. The results presented in Figure 8 reflect the total
overhead of the runtime system (overhead due to locks, handling
dependencies, etc). We found that contention for the queue lock is
the dominant source of the overhead.

Lock overhead is relative to the amount of work per kernel oper-
ation, which we represented as 16, 128, 256, and 512 elements/strip
with 400 cycles of kernel computation per element. The number of
elements per strip is divided evenly between the processors in each
run of the experiment. Figure 8 shows the speedup of kernel exe-
cution on multiple cores. With 16 cores, contention for the lock is
highest and we see sub-optimal speedup for low amounts of work.
The pathological case is 16 elements/strip and 16 cores, where we
operate on only a single element per core and see 2x speedup. A
scenario more representative of our workloads is 512 elements/strip
which shows a speedup of 14x. Compared to the theoretical maxi-
mum speedup of 16x, this overhead seems acceptable. Since locks
do not scale well for more than a few cores, we can ameliorate lock
contention by increasing the number of local memories (one lock
per local memory) while keeping the total local memory size con-
stant, as shown in the previous section. However, this comes at the
cost of decreasing the number of elements/strip which could neg-
atively impact performance due to short stream effects (e.g., more
kernel invocations).

4.3.3 Dynamic Workload Balancing
Up to this point, all of our experiments have been performed with
only a single workload on the system, but a workload executing
in the presence of competing jobs is a more realistic scenario that
shows the benefits of our dynamic scheduling approach. So, we
run a synthetic stream benchmark concurrently with an additional
process on a 4P-4D configuration on Xeon. This ensures that part of
the stream benchmark execution is preempted by the OS because

§
¨
©
ª
«
¬ §
¬ ¨
¬z©
¬ ª

¬ ª ¬ ¨.« ¨.­2ª ­ ¬ ¨

® ¯
°°
± ²¯

³+´ µV¶·µV¸2¹qºq»)¼)¹z½ ¾ ¿

À2Á Â�Á ÃrÁ Ä�Á À.Å;Á

Figure 8. Overhead of Streamware runtime

Æ
Æ;Ç È
Æ;Ç É
Æ;Ç Ê
Æ;Ç Ë
Ì
Ì Ç È

Í ÎVÍ Í ÎsÍ Í ÎsÍ Í ÎVÍ

Í+ÏÑÐ Ð�Ò4Ð Í+ÏÑÐ ÐÓÒ:Ð

Ô:Í2ÏÕÐ Ô.ÐÓÒ:Ð

Ö× Ø
ÙÚ Ø
ÙÛ

Figure 9. Dynamic workload effects on Streamware

the stream benchmark uses all 4 cores of Xeon. This experiment
is, in some sense, a generalization of having heterogeneous cores
where specific cores are consistently slower/faster.

For both the stream benchmark and the competing process, we
vary the compute to memory ratio to illustrate the effects of shared
hardware resources. We also run the experiment for two placements
of the competing process: (i) on the same processor as the control
thread (C), and (ii) on a processor not containing the control thread
(NC).

Figure 9 shows the performance slow down for a compute-
intensive stream program (SCOM) and a memory-intensive stream
program (SMEM) in the presence of a competing process that is
either compute (COM) or memory (MEM) intensive. As one would
expect, performance is worst (0.4 − 0.5x) when the competing
process runs on the same processor core as the control thread of
the stream benchmark. This blocks other processors from doing
work beyond what is currently scheduled in the queue. Conversely,
the best performance (0.9 − 1.0x) is seen when the two processes
are complementary, namely one is COM and the other is SMEM,
and vice versa (i.e. one is MEM and the other is SCOM). When the
stream benchmark is memory-intensive, a competing process that is
also memory-intensive halts one processor from doing useful work
and pollutes the local memory (L2 cache) to degrade performance
to 0.8x. There is less cache pollution when the SCOM benchmark
is run with the COM process. An option to mitigate the effects of a
concurrent process on stream application performance is to elevate
the scheduling priority of the control thread in the OS.

5. Discussion and Related Work
Much earlier work in scheduling stream programs has been con-
fined to the context of stream processors [20, 13, 27, 3, 36], where
stream compilers [16, 14, 37, 26, 29, 32] make scheduling deci-

305

sions and specialized hardware (e.g., MFCs in Cell, Scoreboards in
Imagine/Merrimac) handles the dispatch of bulk compute/memory
operations. In contrast, Streamware is a software run-time target-
ing general-purpose processors. Stream scheduling is mostly per-
formed at run-time and is informed by the specific properties of
the platform hardware (e.g., number of processors per LM, sizes
of LMs). This approach enables Streamware to adapt to dynam-
ically changing workloads and also makes it portable to diverse
multicore processor configurations. Some recent research efforts
have proposed methods to run stream programs on general-purpose
uniprocessors with SMT-capable hardware or specialized hardware
extensions (e.g., SLS units) [18, 17]. Our work builds on these ef-
forts to extend to multicore processor platforms that can differ in
processor/cache memory configurations.

With the increase in the on-chip parallel substrates, using run-
time systems to automatically map to different multicore configu-
rations is becoming increasingly popular [10, 35, 12]. These ap-
proaches mainly focus on providing support for multi-threading
programming models. For example, McRT [10] provides a run-
time system based on user-level thread libraries and task queues
to schedule work on multicore processors. Thread clustering [35]
focuses on using software/hardware performance counters to co-
locate threads sharing the same cache. Phoenix [12] exclusively
focuses on a runtime for Google MapReduce using mutually in-
dependent threads. The very recently and independently proposed
MSL framework in [40] uses several techniques that are similar to
Streamware, but currently targets Cell processor and presents pre-
liminary performance results. Cilk [15] provides extensions to C for
programmers to express parallelism, which is then automatically
parallelized by the scheduling runtime. Although we share a sim-
ilar high-level vision as these approaches, Streamware exclusively
focuses on the stream programming model for general-purpose pro-
cessors and effectively uses the exposed parallelism and locality in-
herent to the model to distribute work into memory/compute work
queues and execute tasks in parallel.

The idea of using runtime systems to map to a variety of multi-
processors/clusters has been extensively studied. OpenMP [4]- and
MPI [2]- based runtime systems have traditionally been used in
HPC for large systems. More recently, several languages and run-
time systems (e.g., Berkeley Titanium [24], Microsoft Dryad [31],
IBM X10 [33], Sequoia [30], Sun Fortress, Cray Cascade) are be-
ing developed to provide portability and programmability. These
efforts are mainly focused on multi-node configurations where each
node could be a multi-core processor. While Streamware uses some
similar techniques (e.g., for load balancing) it is distinguished by
focusing on optimizing single node performance by effectively uti-
lizing the on-chip caches and SIMD execution units of the multi-
core processors using the stream programming model.

Traditionally multithreading (e.g., using pthreads) has been
used to partition a program into multiple units of work. However, as
the number of threads increases it becomes increasingly difficult to
handle synchronization and communication between threads, es-
pecially using fine grained locks. Recently, multi-threading pro-
gramming models such as Transactional Memory [9, 19] and In-
tel Thread Building Blocks [1] have been proposed to ease con-
current programming challenges. Streamware also sidesteps most
complexity associated with locks because they are needed only at
the coarse granularity of large computation (kernels) blocks or large
memory blocks (DMAs); moreover, these low-level locks are in the
runtime system and not exposed to the programmer. Finally, since
stream programming explicitly exposes the computation and mem-
ory accesses, Streamware effectively overlaps computation with
memory accesses.

6. Conclusions
With the onset of the multicore era, as the number of on-chip re-
sources increases, it becomes increasingly important to provide a
way to efficiently utilize them. With hardware vendors introduc-
ing diverse architectures for next generation processors, it is also
important that applications are portable across different hardwares.

In this paper, we presented Streamware, a software system uti-
lizing the stream programming model to efficiently execute appli-
cations on multi-core architectures. We defined a low-level stream
virtual machine API which can either be targeted by a high-level
stream compiler or can be directly used to write applications in the
stream style. We use cache hierarchy aware, dynamic scheduling
to automatically parallelize and efficiently map applications to the
hardware based on its configuration and the current workload.

Using both real hardware and a cycle-accurate simulation sys-
tem, we demonstrated that Streamware enables compute-limited
applications to achieve nearly linear speedup with an increasing
number of cores, and also improves the performance of memory-
intensive applications limited only by the memory bandwidths of-
fered by these processors. Our work demonstrates that the stream
programming model, coupled with an efficient runtime system,
is an excellent alternative to conventional models for current and
emerging multicore processors.

7. Acknowledgements
We would like to thank Timothy Barth of NASA Ames and Eric
Darve of the Mechanical Engineering Department at Stanford Uni-
versity for their valuable help in providing applications and work-
ing with us for their stream implementations. Many thanks to our
colleagues in Stanford’s Merrimac project for their useful feedback
throughout this work. Thanks also goes to the reviewers for their
insightful comments which significantly helped in improving the
quality of the presentation. This work was supported, in part, by
the US Department of Energy ASC Alliances Program, contract
LLNL B523583, with Stanford University.

References
[1] Intel Thread Building Blocks. osstbb.intel.com.

[2] MPI. www.open-mpi.org.

[3] NVidia G80. www.nvidia.com.

[4] OpenMP. www.openmp.org.

[5] RStream Compiler. www.reservoir.com.

[6] T. Barth. Simplified discontinuous Galerkin methods for systems of
conservation laws with convex extension. In Discontinuous Galerkin
Methods, volume 11 of Lecture Notes in Computational Science and
Engineering. Springer-Verlag, Heidelberg, 1999.

[7] Y. Basar and M. Itskov. Constitutive model and finite element
formulation for large strain elasto-plastic analysis of shells. In Journal
of Computational Mechanics, Jun 1999.

[8] N. Binkert, E. Hallnor, and S. Reinhardt. Network-oriented full
system simulation using M5. In CAECW, 2003.

[9] Bratin Saha et al. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In PPoPP,
2006.

[10] Bratin Saha et al. Enabling scalability and performance in a large
scale CMP environment. In Eurosys, 2007.

[11] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs: Stream computing on graphics
hardware. In SIGGRAPH, 2004.

[12] C. Ranger et al. Evaluating MapReduce for Multicore and
Multiprocessor Systems. In HPCA, 2007.

306

[13] W. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J.-H. Ahn,
N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck.
Merrimac: Supercomputing with streams. In SC, Nov 2003.

[14] A. Das, W. Dally, and P. Mattson. Compiling for Stream Processing.
In PACT, 2006.

[15] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI, 1998.

[16] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In ASPLOS,
2006.

[17] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. Dally.
Architectural Support for the Stream Execution Model on General-
Purpose Processors. In PACT, 2007.

[18] J. Gummaraju and M. Rosenblum. Stream Programming on
General-Purpose Processors. In International Symposium on
Microarchitecture, 2005.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, 1993.

[20] H. P. Hofstee. Power efficient processor architecture and the Cell
processor. In HPCA, Feb 2005.

[21] J. Leverich et al. Comparing Memory Systems for Chip Multiproces-
sors. In ISCA, 2007.

[22] K. Fatahalian et al. Sequoia: Programming the Memory Hierarchy.
In SC, Nov 2006.

[23] K. Mahesh et al. Large eddy simulation of reacting turbulent flows in
complex geometries. ASME J. of Applied Mechanics, May 2006.

[24] K. Yelick et al. Titanium: A high-performance Java dialect. In ACM
Workshop on Java for High-Performance Network Computing, Feb
1998.

[25] U. Kapasi, W. Dally, S. Rixner, J. Owens, and B. Khailany. The
Imagine stream processor. In ICCD, Sep 2002.

[26] F. Labonte, P. Mattson, I. Buck, C. Kozyrakis, and M. Horowitz. The
Stream Virtual Machine. In PACT, 2004.

[27] M. B. Taylor et al. The Raw microprocessor: a computational fabric

for software circuits and general-purpose programs. IEEE Micro,
22:25–35, March 2002.

[28] M. Erez and J. Ahn and J. Gummaraju and M. Rosenblum and
W. Dally. Executing Irregular Scientific Applications on Stream
Architectures. In ICS, 2007.

[29] M. Gordon et al. A Stream Compiler for Communication-Exposed
Architectures. In ASPLOS, 2002.

[30] M. Houston et al. A Portable Run-time Interface for Multi-level
Memory Hierarchies. In PPoPP, 2008.

[31] M. Isard et al. Dryad: Distributed Data Parallel Programs from
Sequential Building Blocks. In Eurosys, 2007.

[32] M. D. McCool. Data-parallel programming on Cell BE and the
GPU using the Rapidmind development platform. In GSPx Multicore
Applications Conference, 2006.

[33] P. Charles et al. X10: An object-oriented approach to non-uniform
cluster computing. In OOPSLA, 2005.

[34] T. Knight et al. Sequoia: Programming the Memory Hierarchy. In
PPoPP, 2007.

[35] D. Tam, R. Azimi, and M. Stumm. Thread Clustering: A Share-aware
Scheduling on SMP-CMP-SMT Multiprocessors. In EuroSys, 2007.

[36] D. Tarditi, S. Puri, and J. Oglesby. ACCELERATOR: Using data-
parallelism to program GPUs for general-purpose uses. In ASPLOS,
2006.

[37] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In ICCC, 2002.

[38] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and
B. Lee. Performance optimizations and bounds for sparse matrix-
vector multiply. SC, 2002.

[39] D. Wang, B. Ganesh, N. T. K. B. A. Jaleel, and B. Jacob. DRAMsim:
A memory system simulator. In SIGARCH Computer Architecture
News, September 2005.

[40] D. Zhang, Q. Li, R. Rabbah, and S. Amarasinghe. A Lightweight
Streaming Layer for Multicore Execution. In Workshop on Design,
Architecture, and Simulation of Chip Multiprocessors, Dec 2007.

307

