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Abstract

In this paper we propose the Merge framework, a general pur-
pose programming model for heterogeneous multi-core systems.
The Merge framework replaces current ad hoc approaches to par-
allel programming on heterogeneous platforms with a rigorous,
library-based methodology that can automatically distribute com-
putation across heterogeneous cores to achieve increased energy
and performance efficiency. The Merge framework provides (1) a
predicate dispatch-based library system for managing and invok-
ing function variants for multiple architectures; (2) a high-level,
library-oriented parallel language based on map-reduce; and (3) a
compiler and runtime which implement the map-reduce language
pattern by dynamically selecting the best available function imple-
mentations for a given input and machine configuration. Using a
generic sequencer architecture interface for heterogeneous accel-
erators, the Merge framework can integrate function variants for
specialized accelerators, offering the potential for to-the-metal per-
formance for a wide range of heterogeneous architectures, all trans-
parent to the user. The Merge framework has been prototyped on a
heterogeneous platform consisting of an Intel Core 2 Duo CPU and
an 8-core 32-thread Intel Graphics and Media Accelerator X3000,
and a homogeneous 32-way Unisys SMP system with Intel Xeon
processors. We implemented a set of benchmarks using the Merge
framework and enhanced the library with X3000 specific imple-
mentations, achieving speedups of 3.6x — 8.5x using the X3000
and 5.2x — 22x using the 32-way system relative to the straight C
reference implementation on a single IA32 core.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—~Parallel Programming; D.3.4
[Programming Langauges]: Processors—Compilers

General Terms Performance, Design, Languages

Keywords heterogeneous multi-core, GPGPU, predicate dispatch

1. Introduction

Mainstream processor designs will continue to integrate more cores
on a single die. For such architectures to scale low energy-per-
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instruction (EPI) cores are essential (10; 2). One approach to im-
proving EPI is heterogeneous multi-core design in which cores
vary in functionality, performance, and energy efficiency. These
systems often feature instruction sets and functionality that sig-
nificantly differ from general purpose processor cores like 1A32,
and for which there is often limited or no sophisticated compiler
support. Consequently developing applications for these systems is
challenging and developer productivity is low. At the same time, the
exponential growth in digital information is creating many work-
loads, termed informatics applications, which require computa-
tional performance that cannot be supplied by conventional archi-
tectures (18; 7). There is an urgent need to assist the creators of
these informatics workloads in taking advantage of state-of-the-art
heterogeneous multi-core systems.

Several programming frameworks, termed domain specific vir-
tual machines (DSVM) (e.g., RapidMind (21), PeakStream (25),
Accelerator (29)), have been developed to compile high level data
parallel languages or libraries to specialized accelerators (e.g. SSE
extensions, GPUs, and the CELL processor SPEs (26)). These ap-
proaches provide a data parallel API that can be efficiently mapped
to a set of vector and array arithmetic primitives that abstract away
the differences in the ISAs or APIs of the target platforms. While
the vector and array primitives are appropriate for the SIMD and
SPMD functionality of the above architectures, they will be inade-
quate for representing more complex parallel functionality, e.g. the
MIMD operations supported by various heterogeneous systems.

EXOCHI (31) enables the creation of an API for heteroge-
neous architectures, even those without significant compiler sup-
port, by inlining accelerator-specific assembly or domain specific
language into traditional C/C++ functions. The resulting C/C++
code is largely indistinguishable from existing ISA intrinsics (like
SSE), enabling the programmer to create new intrinsics, termed
function-intrinsics, of any complexity for any architecture that sup-
ports the lightweight EXO interface. The function-intrinsics form
a set of primitives, similar to those in the DSVMs. But, unlike the
DSVMs, the primitives are not restricted to vector or array opera-
tions, and can abstract any ISA or API. EXOCHI is designed to en-
able the creation of accelerator-specific function-intrinsics; it does
not attempt to determine if or when a particular intrinsic should be
invoked.

Accelerators are typically optimized for specific data patterns,
and will either be unusable or perform poorly when computations
that fall outside the optimized regime. GPUs, for example, are par-
ticularly sensitive to the number of threads that are created, and to
the ability to vectorize those threads. One too many threads (e.g., 33
threads for an SMT architecture that supports 32 thread contexts) or
a change in vector length (e.g., 8 to 12) will result in an increase in
execution time that is disproportionate to the increase in workload



size. Generalizing an algorithm can be difficult, with different data
patterns often requiring different implementations, or even favoring
different accelerators. Since the data pattern often cannot be deter-
mined statically, the problem of selecting and scheduling the right
implementation is inherently dynamic. As a result, the DSVMs uti-
lize runtime compilation to produce code for a specific data pattern
for a statically determined accelerator. However, achieving the best
performance or EPI for a heterogeneous system requires more than
selecting or generating the code for a given accelerator; equally as
important is judiciously distributing work among the available het-
€rogeneous cores.

In this paper we present the Merge framework, a high-level par-
allel programming model, compiler and runtime for heterogeneous
multi-core platforms. The Merge framework maps an application to
a user-extensible set of primitives in the form of function-intrinsics
(created with EXOCHI and other tools). Our focus is not to just
support general purpose computation on specialized hardware, but
to truly exploit heterogeneous systems, achieving increased perfor-
mance by dynamically choosing function-intrinsics to utilize all
available processors. This paper makes the following contributions:

e We describe a dynamic framework that automatically dis-
tributes computations among different cores in a heterogeneous
multi-core system, in contrast to static approaches, or dynamic
approaches that only target the accelerator.

® We describe an extensible framework that enables new archi-
tectures to be readily integrated into and exploited by existing
programs.

e We present an implementation of the Merge framework com-
piler and runtime, and report significant performance gains for
heterogeneous (Intel Core 2 Duo processor and an 8-core 32-
thread Intel Graphics Media Accelerator X3000) and homoge-
neous (Unisys 32-way SMP with Intel Xeon processors) plat-
forms.

The rest of the paper is organized as follows; Sections 2 and 3
present the Merge framework. Section 4 details a performance eval-
uation. Section 5 reviews related work and Section 6 concludes.

2. Library-Based Programming Model

The Merge framework uses EXOCHI (31) to create and implement
APIs across a wide range of heterogeneous architectures. A sketch
of the operation of EXOCHI is shown in Fig. 1. EXO supports a
shared virtual memory multi-threaded programming model for het-
erogeneous systems. The heterogeneous cores are exposed to the
programmer as sequencers (12), on which user-level threads, en-
coded in the accelerator-specific ISA, execute. Using C for Hetero-
geneous Integration (CHI), the programmer implements function-
intrinsics for these sequencers by inlining accelerator-specific as-
sembly and domain-specific languages into traditional C/C++ code.
The Merge framework uses the C/C++ function intrinsics, execut-
ing on the abstract sequencers, as its primitives. The C/C++ inter-
mediate language and uniform shared virtual memory abstraction
enabled by EXOCHI provide a powerful foundation on which to
build a expressive and extensible programming model that facili-
tates cooperative execution among multiple, different processors.
Merge applications are expressed as a hierarchical set of func-
tions that break the computation into successively smaller opera-
tions to expose parallelism and describe data decomposition. An
example is shown in Fig. 2 for a part of the k-means clustering al-
gorithm. K-means iteratively determines the set of k£ clusters that
minimize the distance between each observation and its assigned
cluster. In this portion of k-means, the clusters for the next iter-
ation are computed by averaging all of the observations assigned
to a given cluster. Numerous decompositions are possible, shown
as granularity variants in the figure, the choice of which affects
the amount and granularity of the parallelism. At any granularity
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Figure 1. Sketch of EXOCHI framework.

and at any step in the hierarchy, the application can target exist-
ing library APIs, which might already have multiple implementa-
tions for heterogeneous accelerators, shown as rarget variants in
the figure, or define new APIs that later might be extended with
accelerator-specific function-intrinsics. Each function call is thus
potentially a choice between continuing the decomposition, or in-
voking a function-intrinsic that maps the parallelism in the algo-
rithm to a specific accelerator architecture.

The combination of different decompositions, and multiple tar-
get variants provides a rich set of potential implementations from
which the Merge compiler and runtime can choose to optimize ap-
plication performance and efficiency. Choosing the best function
variant has three components: narrowing variants to those for the
cores that are available in a given platform; choosing a variant so
that the work is distributed among the available processors; and
choosing the best parameterization for a given function and archi-
tecture.

In existing library-based approaches the first choice is primar-
ily static, and is typically tackled via selective compilation (i.e.,
#1ifdef). The second choice is primarily dynamic, and is typically
tackled with an ad hoc work queue, specific to the given proces-
sors and functions. The third choice is a combination of static and
dynamic (depending on whether data patterns are known a priori)
and is typically tackled through a combination of selective compila-
tion and manual dispatch using i f-else statements. When there
were only a few target architectures available, the above approaches
were less problematic, but as the diversity of heterogeneous sys-
tems grows, and systems with multiple accelerators become com-
monplace, the combinatorics will make the above techniques for
selecting the best function variant untenable. Even with current li-
brary management tools (reviewed in Section 5), users often need
to keep track of all of the function variants available, create man-
ual dispatch code, and maintain multiple platform-specific versions
of each program, all of which make applications non-portable and
difficult to maintain.

The Merge framework replaces the current ad hoc mix of static
and dynamic variant selection with a unified dynamic approach us-
ing predicate dispatch (8) and an architecture-agnostic work queue.
Programmers annotate function variants with predicates specifying
the target architecture, and any invariants required for correct ex-
ecution. The predicates are automatically translated into dispatch
conditionals that eliminate the need for the selective compilation or
manual dispatch code described above, which facilitates reuse and
makes applications easier to maintain. At runtime, the dispatch con-
ditionals can be used in conjunction with the task queue to dispatch
work to specific processors as they become idle in order to dis-
tribute computation across heterogeneous cores. New target vari-
ants can be added simply by creating new implementations that
share the common interface.
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Figure 2. Hierarchical decomposition of k-means algorithm using
functions with different granularities and target architectures.

The familiar shared memory abstraction provided by EXOCHI
facilitates the adaption of existing scheduling techniques and im-
plementations for use with heterogeneous systems. Since all of the
processors, general-purpose CPUs and specialized accelerators, ex-
ecute in the same virtual address space, each can potentially play
a role in the computation. The uniform abstraction minimizes the
amount the architecture-specific infrastructure required within the
Merge compiler/runtime to enable that cooperation. As a result the
Merge framework can exploit many different heterogeneous sys-
tems using a single, architecture-agnostic scheduler. The architec-
ture-agnosticism simplifies the integration of new processor types
into Merge-targeted systems. All that is required is a lightweight
EXOCHI interface for the accelerator, an architectural identifier
for use with the predicate dispatch, and a single function variant
for that accelerator. The new variant will automatically be incor-
porated into the dispatch system (as described above) and invoked
when appropriate by Merge applications.

3. Merge Framework Design

The Merge framework consists of three components: (1) a high-
level parallel programming language based on the map-reduce pat-
tern; (2) a predicate-based library system for managing and invok-
ing function variants for multiple architectures; and (3) a compiler
and runtime which implement the map-reduce pattern by dynam-
ically selecting the best available function variant. Fig. 3 shows a
sketch of the operation of the Merge framework.

Although the Merge framework predicate dispatch system and
runtime can stand alone, we believe they are more effective when
used with a high-productivity, high-level parallel programming lan-
guage similar to those provided by the DSVMs. The Merge high-
level language uses the map-reduce pattern, which underlies Goo-
gle’s MapReduce (6) and is present in LISP and many other func-
tional languages. The Merge compiler directly translates the ex-
plicit parallelism of the map-reduce pattern to independent work
units, represented by the small boxes in the figure, that can be
mapped to available function variants and dispatched to the proces-
sors cores. Similar to the Sequoia programming language (9), each
work unit, the principal parallel construct in the Merge framework,
is a task, a side-effect free function. The task construct specifies the
invariants that must be maintained by a function variant in order
to support a correct and efficient mapping between the front-end
language and the function library.

Program
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I:IEI][ HiE .
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Figure 3. Sketch of Merge framework. The program, written using
the map-reduce pattern, is transformed into work units which are
pushed onto the task queue. Work units are dynamically dispatched
from the queue, distributing the work among the processors that
have applicable function variants.

All function variants in the library are considered tasks, and are
restricted to the environment defined by their arguments (i.e., do not
interact with any global variable). Tasks can directly communicate
with other tasks only through creating subtasks or returning to
the parent task. Library functions are required to satisfy the task
semantics to ensure that each invocation of given variant (with
disjoint arguments), such as might occur in a map operation, is
independent and can be executed concurrently. Unlike Sequoia,
however, sibling tasks may communicate indirectly though their
arguments and a task can have dependent tasks other than its direct
parent. In this way dataflow dependencies between tasks can be
enforced without spawning.

3.1 Map/Reduce Parallel Pattern

Informatics application, which often feature the integration or re-
duction of large datasets, are well described by the map-reduce
pattern. In k-means for example, the algorithm reduces the large
number of data observations belonging to one or more discrete
classes to a small set of clusters that summarize those classes. All
computations are decomposed into a set of map operations and a
reduce operation, with all map operations independent and poten-
tially concurrent. The decomposition can be applied hierarchically
across granularities, from single operations such as the multiplies
in an inner product, to complex algorithms. An example implemen-
tation for a portion of k-means using the map-reduce pattern in is
shown in lines 1-11 of Fig. 4.

Each mapreduce call has three parts: (1) the generator(s) to
drive the map operation by creating a task tuple space, (2) the
map function and (3) the optional reduce function(s). The map-
reduce primitives are shown in Table 1. The generators work in
concert with collections which provide data decomposition and
task mapping. The collection provides the mapping between a
task’s tuple space and its data. A collection type does not actually
contain any data, just the necessary information to provide the tuple
mapping. In lines 9-11 of Fig. 4 the function dp is mapped over
the rows of dp and elements of assgn (indicated by the array
subscript), reducing the arrays ccnew and hist produced by each
map invocation. The tuple space is the row indices of dp and is
created by the generator in line 9. Array2D, one of the basic
collections supplied in the Merge framework, wraps a 2D matrix
and is iterable by rows (similarly, Array1D wraps a vector and is
iterable by elements).
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bundle kmO {
void kmdp (Array2D<float> dp,
Array2D<float> cc,
ArraylD<int> assgn,
Array2D<float> ccnew,
ArraylD<int> hist) {
// Assign observations and compute new cluster
// centers for next iteration in parallel
mapreduce (int i=0; 1 < dp.rows; i++)
kmdp (dp[i],cc,assgn[i],
red<sum> (ccnew) , red<sum> (hist));
FYi

bundle kml public Seqg {
void kmdp (Array2D<float> dp,
Array2D<float> cc,
ArraylD<int> assgn,
Array2D<float> ccnew,
ArraylD<int> hist) {
// Dispatch control predicate
predicate (dp.rows < 5000);

// ... Sequential implementation
for (int i=0; i < dp.rows; i++) {
float dist, min = FLT_MAX; int idx;
for (int k=0; k < cc.rows; k++) {
dist = euclidean_distance::call(dp[i],cc(k]);
if (dist < min) { min = dist; idx = k; }
}
sum: :call (ccnew([k],dp[i]);
Prii

sum::call (hist[k],1);

bundle km2 public X3000 {
void kmdp (Array2D<float> dp,
Array2D<float> cc,
ArraylD<int> assgn,
Array2D<float> ccnew,
ArraylD<int> hist) {
// Dispatch control predicate
predicate (dp.rows < 5000);

predicate(dp.cols == 8 && cc.rows == 4);
predicate (arch == X3000_arch);
// ... X3000 Implementation using EXOCHI ...

Figure 4. Example implementation for portion of k-means algo-
rithm; kmO: : kmdp assigns observations to a cluster and com-
putes new cluster centers for an array of observations in parallel.
kml: : kmdp and km2 : : kmdp are variants of kmdp targeting tra-
ditional CPUs and the X3000 GPU.

3.2 Function Library Manager

The function library in a Merge framework program is treated as
a pool of target variants that can be bundled into generic func-
tions — the collection of functions of the same name, number of
arguments and result types (22). The generic functions are used in
place of a particular variant to provide a choice of implementations
to the runtime. Annotations are supplied with each function, and
automatically processed at compile time by the library manager,
called the bundler, to produce a set of meta-wrappers. The syn-
tax for a function variant and the predicate annotations is shown
in Table 1. The meta-wrappers implement the generic function and
invoke the most-specific applicable function (defined in more de-
tail below) belonging to that generic function. Automatically gen-
erating the meta-wrappers enables new implementations to be in-
tegrated into a given generic function without manually modifying
pre-existing wrappers, or creating new ones (similar to multiple dis-
patch in object-oriented languages).

Table 1. Merge syntax for function bundling, dispatch control
predicates and map-reduce. The literal non-terminals in the pred-
icate syntax are constants of the specified type, while Identifier is
any variable or field in scope (syntax adapted from (22)).

Bundling
bundle dp0 public sse {
predicate(...); void dp(..); };
Define a new variant for dp with fully qualified name dpO: :dp
belonging to the group sse with a dispatch control predicate.

Predicates

pred = arch|lit|tgt | uop pred | pred bop pred
lit == integerLiteral | boolLiteral | floatingpointLiteral
tgt == this | Ideniifier | tgt.Identifier

uop = o~ |-

bop u= ssl|||==]l=|<|>[>=]<=] -]+«

Map/Reduce

seqgreduce (int 1i=0; i < n; i++) { ... }

Execute a function over elements of a collection sequentially, poten-
tially performing a reduction one or more arguments. Reduction argu-
ments are described with reduce<reducefn> (argument), indi-
cating the function to be used in the combining. Multiple segreduce
statements can be nested, with the inner statement body only containing
a function call.
mapreduce (int 1=0; i < n; i++) { .

Execute a function over elements of a collection in parallel, potentially
performing a reduction one or more arguments. Reduction can imple-
mented with a parallel tree.

The annotations, which are inspired by Roles (17), the annota-
tion language described in (11) and Fortress (1), are of two types,
predicates and groups. Predicates take the form of logical axioms,
and typically include constraints on the structure or size of inputs.
For example, additional variants for dp are shown Fig. 4 lines 14-
45, including an X3000-specific GPU implementation. The X3000
supports 8-wide SIMD execution, so this particular variant is lim-
ited to observation vectors of length 8, and as a result of loop un-
rolling, four cluster centers (predicates on line 41). Groups enable
hierarchical collections of variants, similar to classes with single
inheritance, and are typically used to express the accelerator hierar-
chy. For example a system may have groups for generic, sequential,
SSE, and X3000 (shown on lines 14 and 33).

Similar to the implementation in (22), predicates in the Merge
framework must resolve to a Boolean and may include literals, enu-
merations, access to arguments and fields in scope, and a set of ba-
sic arithmetic and relational operators on integers and floating point
values (all arithmetic expressions must be linear). A function vari-
ant is applicable if its predicates evaluate to true for the actual
arguments at runtime. All the variants belonging to a given generic
function must be exhaustive, in that there is an applicable variant
for the entire parameter space (evaluated at compile time). Exhaus-
tiveness checking is performed in the context of groups. All of the
variants in a group, as well as all variants in its parent, grandparent,
etc., are considered when checking for exhaustiveness.

A variant is the most specific if overrides all other applicable
variants. Variant mi overrides mg if my is in a subgroup of ma
and the predicates of m; logically imply the predicates of mao.
Unlike more object oriented predicated dispatch systems, variants
do not need to be unambiguous. As described earlier, it is assumed
that many variants will be applicable, although not uniquely more
specific, over a subset of the parameter space, and a secondary
ordering mechanism, such as compile time order or profiling will
be used to determine dispatch order. Similar to exhaustiveness
checking, ordering analysis is performed in the context of groups.
Variants are ordered within their group, such that any applicable
variant in a group would be invoked before any variants in its parent



group. In this way, high performance GPU variants on the X3000
would be invoked before defaulting to a more generic CPU-based
implementation.

The product of the bundler is a set of three meta-wrappers (call,
lookup, and speculative lookup) for each function. The call wrapper
simply calls the selected variant directly, while the lookup wrapper
returns a function pointer to the variant. Both the call and lookup
wrappers require that suitable variants exist and are exhaustive;
speculative lookup does not have such a requirement and will sup-
port the lookup of variants that do not exist, simply returning null
if no suitable variant is available. The speculative functionality en-
ables the runtime to lookup potentially higher performing variants
which may not exist, before defaulting to more general implemen-
tations.

3.3 Compiler and Runtime

The Merge framework compiler converts the map-reduce state-
ments to standard C++ code which interfaces with the runtime sys-
tem. Conversion consists of three steps: (1) translating the possibly
nested generator statements into a multi-dimensional blocked range
which will then drive execution; (2) inserting speculative function
lookups to retrieve the variants for the map and reduce operations;
and (3) inserting runtime calls to invoke the retrieved variants as
appropriate.

The blocked range concept is drawn from the Intel Threading
Building Blocks (14) and describes a one or more dimensional iter-
ation space that can be recursively split into progressively smaller
regions. The depth of the recursion determines the extent of the par-
allelism, with each split creating two potentially concurrent com-
putational tasks. The generator statements are directly mapped to a
blocked range (as a result generator statements are limited to those
which can be directly mapped to a contiguous range at compile
time), with the blocked range serving as the index for task identifi-
cation, and iteration through input and output collections.

The dataflow of a map-reduce pair forms an implicit tree with
the map operations at the leaves and the reduce operation at the
joins. Each leaf represents a potentially independent task that can
be mapped to any of the applicable function variants. A unit-node
function, comprising a single leaf or join, can represent too fine a
granularity, however, so for multi-core architectures there is par-
ticular interest in multi-node functions, which encompass multi-
ple leaves or joins (alternately described as encompassing a non-
unit size blocked range). Invoking a multi-node variant effectively
short-circuits the map-reduce structure, deferring instead to the
function. Thus with a multi-node function the author can explicitly
transform the generic map-reduce parallelism, which might other-
wise be implemented as a set of unit-node tasks, to custom paral-
lelism for a specific architecture.

Multi-node functions are preferentially selected over unit-node
functions, as they potentially offer a custom parallel implementa-
tion for a specific architecture. Most of the X3000 function vari-
ants used in this paper are implemented as multi-node variants.
The computation in a unit-node is often insufficient to create the
necessary threads for efficient execution, while the complete func-
tion (because of reductions or other constructs) is not easily imple-
mented completely on the GPU (i.e., as a unit-node variant for the
parent). In these cases the variant is cast as a multi-node function
(with the unit-nodes as threads), that will be invoked for a portion
of the map-reduce nodes.

The ordering of function lookups and resulting actions at run-
time is shown in the flowchart in Fig. 5. Based on the results of the
speculative lookup for multi-node variants spanning all the map
and reduce operations one of three execution scenarios is possi-
ble: all functions have multi-node variants; at least one, but not
all, functions have multi-node variants; or no functions have multi-
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Figure 5. Runtime variant selection and invocation flowchart

node variants. In the first two cases the multi-node intermediate col-
lection is allocated, providing space for the results of the the map
operations (or alternatively the input to the reduction operation).
In the third only the unit-node intermediate collection is required.
When available the multi-node variants are invoked directly. Oth-
erwise the blocked range is recursively split to drive parallel execu-
tion. After recursive splitting, the tuple space is divided into a set
of non-overlapping blocks, each representing a subset of the prob-
lem. These blocks form the work units that are pushed onto the task
queue for distribution to the different cores.

The lookup procedures are repeated when a task is issued at
runtime from the queue, as shown in the flowchart. The per-task
lookup enables dynamic workload balancing; as each processor be-
comes available, tasks, executing variants specific to that architec-
ture, can be dispatched. The additional multi-node lookup (before
defaulting to the unit-node variant) allows multi-node variants that
encompass the entire block of nodes assigned to that task to be se-
lected. Returning to kmdp in lines 1-12 of Fig. 4 to summarize the
lookup procedures, the map statement indicates that this function is
implemented by invoking a variant of kmdp, which takes a obser-
vation vector, over all observations in parallel. The Merge runtime
will consider three different variants implementing kmdp from that
representation: a multi-node variant spanning all of the observa-
tions, a multi-node variant spanning a subset of the observations,
and unit-node variant spanning one observation.

3.4 Compiler Optimizations

The map-reduce semantics are granularity agnostic, and can be ex-
tended all the way to single arithmetic operations. The overhead of
the predicate dispatch mechanism and Merge runtime can be over-
whelming, however, at finer granularities. Although of limited ben-
efit in absolute performance terms, maintaining the full map-reduce
decomposition provides a generic, platform independent descrip-



tion of the algorithm that can target very fine-grain architectures, be
translated to other programming models, or be used to drive plat-
form specific optimizing compilers.

For those platforms that would be sensitive to dispatch over-
head, the decomposition needs to be cut off earlier, at a coarser
granularity. When custom implementations for a specific architec-
ture are available, this cutoff will happen automatically. While it
would be possible to create a custom implementation for each ker-
nel on each platform, the combinatorics makes such an undertaking
infeasible. When there is sufficient compiler support, automatic li-
brary synthesis, based on the source to source translation of the
restricted semantics of the map-reduce constructs, can be used to
provide kernels at a coarser granularity. Synthesis is performed at
the level of single functions, wrapping unit-node variants in loops
to create coarse grain function variants, and across functions. For
multi-function synthesis, the compiler traces down the hierarchy of
map-reduce calls, producing a well structured loop nest suitable for
optimizing compilers.

Library synthesis would reduce the number of functions that
must be implemented to ensure a sufficiently rich function library.
If each kernel in the library, like k-means, includes a full map-
reduce version as the default implementation, sequential implemen-
tations of varying granularities can be synthesized from the master
representation as needed, leaving the developer to focus on more
difficult, but higher performing variants using IA32 SSE exten-
sions, the GMA X3000, and other available accelerators.

Function variants are ordered by group and specificity, with am-
biguities resolved by a secondary mechanism. As the number of ar-
chitectures and variants grow, and systems begin to include multi-
ple specialized accelerators, judicious user-driven variant selection
will become more difficult. Function variant selection is readily
augmented with profiling information, similar to that suggested as
an extension in (11). The Merge runtime can maintain relative per-
formance statistics for each applicable variant, generated through a
sampling procedure, and biases the variant selection order based on
those statistics. Profile guided variant ordering will be particularly
important when library synthesis is used, which will create many
new variants and has the potential to cutoff selection and invocation
before it reached a high-performance implementation buried sev-
eral layers down. With performance-based ordering, the buried im-
plementation would be selected preferentially despite being more
generic than the synthesized counterpart.

4. Evaluation

A prototype of the Merge framework compiler and runtime has
been implemented, targeting both heterogeneous and homogeneous
multi-core platforms. The key characteristics of the prototype and
the results achieved are summarized in the following subsections.

4.1 Prototype Implementation

The Merge source-to-source compiler is implemented as two inde-
pendent phases: bundling and pattern conversion. Both phases are
implemented using OpenC++ (5) and translate C++ with Merge
keywords to standard C++ with calls into the Merge runtime. The
resulting source is compiled into a single binary by an enhanced
version of the Intel C++ Compiler (13) that supports EXOCHI (31).
The flow of the Merge framework is shown in Fig. 6.

Function bundling is a global operation performed on classes
identified with a bundle keyword. Function variants are bundled
based on the method name, with the wrapping class serving as a
unique namespace. Each variant can thus be invoked specifically
through its fully qualified name (and be generally backward com-
patible) or through the meta-wrapper. The class wrappers also pro-
vide a connection to the existing class hierarchy for group assign-
ment. If not inherited from any class, a particular variant is assumed
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Figure 6. Merge compilation flow.

to belong to the generic group. If the wrapper inherits from a class,
the particular variant belongs to the group named by the parent
class. At compile time the predicates are converted to logical ax-
ioms that can be used with an automated theorem prover CVC3 (3)
to determine specificity and exhaustiveness (similar to the method-
ology and implementation in JPred (22)). In the prototype, dispatch
order for ambiguous variants is determined by compile time order,
relying on the programmer to order the variants as appropriate.

Pattern conversion is performed on map-reduce statements, re-
placing the mapreduce statement with code implementing the
variant selection and invocation described previously. Tasks are
created and inserted into the task queue with calls into the Merge
runtime. The Merge runtime is built on an enhanced version of
the Intel Threading Building Blocks (TBB) (14). TBB provides a
generic task driven, fork-join parallel execution runtime for shared
memory platforms that has been extended to support additional de-
pendent tasks beyond the spawning parent. A subset of the com-
piler optimizations described in Section 3.4 are implemented in the
Merge framework prototype; both single function library synthesis
and limited function variant profiling are currently supported.

4.2 Evaluation Platforms

Heterogeneous: The heterogeneous system is a 2.4 GHz Intel Core
2 Duo processor and an Intel 965G Express Chipset, which con-
tains the integrated Intel Graphics Media Accelerator X3000. The
X3000 contains eight programmable, general purpose graphics me-
dia accelerator cores, called Execution Units (EU), each of which
supports four hardware thread contexts. The details of the EXO im-
plementation for the X3000 is described in (31).

The X3000 ISA is optimized for data- and thread-level par-
allelism and each EU supports wide operations on up to 16 ele-
ments in parallel. The X3000 ISA also features both specialized
instructions for media processing and a full complement of control
flow mechanisms. The EUs share access to specialized, fixed func-
tion hardware. The four thread contexts physically implemented
in each EU alternate fetching through fly-weight switch-on-stall
multi-threading.

Homogeneous: The homogeneous platform is a Unisys 32-way
SMP system using 3.0 GHz Intel Xeon MP processors.

4.3 Performance Analysis

A set of informatics benchmarks has been implemented with map-
reduce calls. Table 2 summarizes the benchmarks and inputs. All
benchmarks use single precision floating point. For each bench-
mark, single-threaded straight C reference and Merge implementa-
tions were created. When beneficial, component kernels are imple-
mented on the GMA X3000 using hand coded assembly. The port-
ing time represents the entire time needed to create the Merge im-



Table 2. Benchmark Summary

Kernel Data Size Description Porting Time
KMEANS k=8; 1000000x8 k-means clustering on uniformly distributed data 3 days
k=8; 10000000x8
BLKSCHL 10000000 options Compute option price using BlackScholes algorithm 4 days
100000000 options
LINEAR 640x768 image Linear image filter — compute output pixel as average 2.25 days
2000x2000 image of 9 pixel square
SVM 480x704 image Kernel from SVM-based face classifier 2 days
720x1008 image
RTSS 64x3600000 samples  Euclidean distance based classification component of real-time 1.5 days
spike sorting algorithm used in neural prosthetics (32)
BINOMIAL 10000 options Compute options price using binomial algorithm 5 days
for 500 time steps
SEPIA 640x768 image Modify RGB values to artificially age image 1.75 days
2000x2000 image
SMITHWAT 800 base pairs Compute scoring matrix for pair of DNA sequences .5 days
1000 base pairs using SmithWaterman algorithm
10 — CPU  GPU CPU  GPU CPU  GPU
Core 0 Core 1 Core0 Core 1 Core 0
m 1P
CE . ol (e
8 7| O X3000 _ — —
. o A
°
: ol (e
& 4
1P+X3000 1P+X3000/1A32
) %3000 No Split Split
Figure 9. Sketch of thread execution under different cooperative
0 multi-threading approaches

linear IF_‘

kmeans
blkschl
svm

rtss
binomial
sepia
smithwat

Figure 7. Speedup for kernels using Merge framework on 1 or 2
IA32 cores and 2 IA32 cores plus the Intel GMA X3000 vs. straight
C reference implementation on a single IA32 core

10
B X3000
— @ 1P+X3000 No Split
8 1 O 1P+X3000/IA32 Split
g 6
he]
(0]
[0}
joN
%) 4
2 —
0 - | |

kmeans
blkschl
linear
svm

rtss
binomial
sepia
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erogeneous system using different cooperative multi-threading ap-
proaches between the Intel GMA X3000 and IA32 CPU

plementation, including the creation of variants for the X3000. De-
veloping the X3000 variants is responsible for most of the porting
time, best exemplified by RTSS which was relatively quick to port
because it reused some X3000 variants developed for KMEANS.

All benchmarks are compiled with an enhanced version of the
Intel C++ Compiler using processor specific optimization settings
(/fast). These compiler optimizations include auto-vectorization
and tuning specifically for the Intel Core 2 Duo and Intel Xeon
processors in the test platforms. Performance is measured using
wall clock time with the timing facilities provided by the TBB
runtime.

Fig. 7 shows the speedup achieved, relative to the straight C ref-
erence implementation, for the benchmarks using the Merge frame-
work for one and two IA32 processor cores and the Intel GMA
X3000. The Merge framework implementation shows performance
comparable to straight C reference implementation on one proces-
sor core (.9x or better) and achieves meaningful speedup (1.45x-
2.5x) executing on two processor cores. When X3000 variants are
available, additional speedup (3.7x-8.5x relative to reference im-
plementation) is obtained, exceeding what was achieved on the dual
core processor alone. The parallelization for multiple cores and uti-
lization of the X3000 are automatic and do not require any changes
to the source. SMITHWAT utilizes a dynamic programming algo-
rithm and is not well suited to X3000 so no variants were developed
for that architecture; it is included as an example of the indirect
communication capabilities of the Merge framework parallel exe-
cution model and will be discussed in more detail below.

The GMA X3000 is highly optimized for image and video pro-
cessing applications, and as expected shows the best performance
on the purely image processing benchmarks, particularly LINEAR
and SEPIA. The other benchmarks are much less image oriented,
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on a single core

with lower computation/bandwidth ratios, and thus do not achieve
the same level of speedup on the X3000. Benchmarks with similar
CPU and X3000 performance can often benefit from cooperative
multi-threading, in which the X3000 and IA32 CPU concurrently
process disjoint subsets of the map operations. In these cases the
X3000 functions less as a distinct accelerator and more as an addi-
tional processor core, tightly coupled to the traditional CPU(s).

Fig. 8 shows the speedup achieved using different cooperative
multi-threading strategies. The activity of the processors under the
different strategies is sketched in Fig. 9. When the accelerator code
is invoked using EXOCHI, the CPU thread manages the acceler-
ator, waiting until all of the accelerator threads have completed
before proceeding. Thus if only one CPU core is used (X3000),
the CPU and X3000 do not execute concurrently, and any and all
speedup results entirely from using the X3000. This is the level of
performance that might be expected on system that focuses only on
compiling general purpose code to specialized accelerators.

When multiple CPU cores are used (1P+X3000/1P No Split),
the Merge framework automatically distributes work between the
accelerator and the second CPU core. In this regime, the runtime
first attempts to invoke the X3000 variant, if the X3000 is busy, the
runtime defaults to the next best variant, which in this case tar-
gets the CPU. For the less image oriented benchmarks, such as
KMEANS and BLKSCHLS, where the CPU performs well rel-
ative to the X3000, the automatic cooperative multi-threading can
significantly improve performance. A 28% and 54% performance
increase over X3000 was obtained for KMEANS and BLKSCHLS
respectively.

In the first two regimes, the CPU thread which serves as the
manager for the accelerator threads idles until the accelerator com-
pletes. EXOCHI supports limited nowait fork-join, in which the
CPU master thread can continue to perform useful work before
blocking at the join point. Using the nowait fork-join, the work-
ing set for the variant can be partitioned between the CPU and
GPU (1P+X3000/IA32 Split), in effect creating joint CPU-GPU
variant. The work distribution is static, and is selected so the CPU
and X3000 finish as close to the same time as possible. In this
regime, which makes use of all the CPU and accelerator cores,
additional improvements of 45% and 34% were obtained over the
1P+X3000/1P No Split regime for KMEANS and BLKSCHLS.
Extending the EXOCHI and Merge prototypes to support full dy-
namic scheduling of the manger CPU thread is an area of ongoing
work. Note that this static partitioning does not affect the dynamic
scheduling of the other cores or accelerators.

Fig. 10 shows the speedup relative to the straight C reference
implementation achieved on the homogeneous test platform for
the same benchmarks (with the larger input datasets). As with the

heterogeneous platform, using the 32-way SMP system did not
require any changes to the source.

The CPU-only benchmark SMITHWAT takes advantage of the
indirect communication provided by the Merge framework paral-
lel execution model. The benchmark produces the scoring matrix
used for biological sequence alignment with a dynamic program-
ming (DP) algorithm. The DP algorithm creates dataflow depen-
dencies between the otherwise independent entries in the score ma-
trix, which in a parallel model that only supports direct communi-
cation through task call and return is cumbersome to express. Us-
ing indirect communication via the collection arguments, the task
for a matrix entry can register its dependencies and switch-out un-
til the required entries have been computed, allowing the Smith-
Waterman algorithm to be effectively parallelized without resort-
ing to highly specialized implementations or DP-specific parallel
patterns.

When highly optimized parallel implementations are available
for an algorithm, such as for IA32 SSE, or using existing low-
level thread constructs, they can be incorporated into the library
and invoked directly. Thus in general, the performance of the Merge
framework’s library-based approach will track that of the best avail-
able implementations, ensuring that even in the worst case the
Merge framework implementation will perform comparably to ex-
isting implementations.

Note that the X3000 used in the heterogeneous test platform
is a chipset integrated GPU and does not have the computational
resources or memory bandwidth of a discrete GPU, which limits
performance. However as the real speedups shown here indicate,
the X3000 can provide useful acceleration, especially when used
with the CPU as part of a whole system approach. Further, many
users will already have an X3000 or similar GPU available in their
systems, offering additional speedup relative to the CPU alone for
no additional hardware cost. And as described earlier, the Merge
framework can be used with any accelerator that can support the
EXO interface, including discrete GPUs.

5. Related Work

Programming models for heterogeneous systems can be broadly
categorized into direct and library-based approaches. Direct ap-
proaches, such as the DSVMs cited previously or streaming lan-
guages (4; 30; 15; 20; 24), map the application directly to the ac-
celerator ISA or API, while library-based approaches, such as the
Merge framework, Sequoia, and MATCH (23), map the application
to a library of function-intrinsics that encapsulate the accelerator-
specific code. The key difference between the two models lies in
their ability to abstract and exploit features of the underlying ac-
celerator; direct approaches are limited to the features that can
be abstracted by their language primitives, while library-based ap-



proaches can abstract any feature. The tradeoff is that the library-
based compiler will have only minimal information about any given
function-intrinsic, and thus will miss some of the optimizations ex-
ploited by the more restrictive direct approach compilers.

Although the direct approaches treat the accelerator as a co-
processor for the general purpose CPU, these programming mod-
els primarily focus on supporting general purpose computation on
specialized hardware. The accelerator focus is only magnified for
device-specific languages, such as GPU shader languages: Cg (19),
OpenGL Shader Language and HLSL. Device specific languages
or APIs, such as the shader languages, ATI’s Close-to-Metal (28),
OpenGL and DirectX, could be building blocks, however, for GPU-
specific function implementations that are then integrated with
the Merge framework for use alongside implementations targeting
other accelerator architectures.

The library-based compilation of the Merge framework is in-
spired by: the static MATCH library-based compiler for Matlab;
library meta-programming approaches, specifically the annotation
and selection mechanisms (11; 16); the traits-based multiple dis-
patch in the Fortress language (1); and the static task-based function
variant selection in Sequoia. The Merge framework similarly at-
tempts to improve performance by optimizing across function calls
using programmer-supplied annotations. However, the above ap-
proaches choose implementations at compile time, either requiring
all selection parameters (e.g. array sizes) to be static, or forcing
runtime specialization, created with i f—e1se statements, into the
function implementations, making applications non-portable and
difficult to maintain. The additional overhead of runtime special-
ization in the Merge framework is mitigated by assembling, ei-
ther manually or through library synthesis, sufficiently coarse-grain
functions.

The Intel C++ Compiler (13) automatically generates and trans-
parently selects among multiple variants of compiled code, specific
to certain architectural features like SSE. The Merge framework
incorporates the machine architecture as a parameter in the func-
tion selection system, providing similar, automatic, architecture-
specific dispatch, but for the broader set of accelerators that can
support an EXOCHI interface (including those without significant
compiler support). Since selection among target variants is auto-
matic, the user does not need to manually specify the variants,
which requires an intimate knowledge of the available processors
and the function library.

The Merge framework’s task-driven execution model and par-
allel programming language is based on the map-reduce pattern
that is present in many functional languages and underlies Google’s
MapReduce programming model; Phoenix (27) (a shared memory
implementation of MapReduce); the similar constructs in Sequoia,
and generator-reducer driven parallelism in Fortress. The Merge
framework is not just an implementation of Google’s MapReduce
library, however. As in Sequoia, the map and reduce constructs in
the Merge framework are used as an efficient set of semantics for
describing the potential concurrency in an algorithm.

6. Conclusion

The Merge framework has the potential to replace current ad hoc
approaches to parallel programming on heterogeneous systems
with a rigorous, library-based methodology. Rather than writing
or compiling the application to specific accelerator targets, the pro-
grammer expresses computations using architecture-independent,
high-level language extensions based on the map-reduce pattern.
Merge automatically and dynamically parallelizes, maps and load-
balances the computation over the heterogeneous cores available in
the computer system. Computation is mapped to a set of function-
intrinsics, which encapsulate the accelerator-specific code. The
Merge framework is applicable to many heterogeneous systems,

as the function-intrinsics can abstract computations of any com-
plexity, and for any architecture that supports a lightweight se-
quencer interface. Merge-based applications are easily extensible,
and can readily target new accelerator architectures, or different
system configurations. Using the Merge programming interface,
we demonstrate significant speedup for several applications using
the same source code on both a heterogeneous system consisting
of a dual core CPU and an integrated 8-core, 32-thread GPU and
homogeneous 32-way SMP system.
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