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Abstract—Traditional studies on disk arrays have focused on parallelism or load

balance of disks. However, this paper reveals that the independency of disks is

more important than parallelism for concurrent reads of large numbers of

processes in striped disk arrays, whereas parallelism is significant only for

concurrent reads of small numbers of processes. We investigate and evaluate

how much aligning sequential prefetch in strip or stripe boundaries affects the I/O

performance by comparing with the proposed two types of sequential prefetching

schemes, both of which are implemented in Linux kernel 2.6.18. In the

experiments in this study, the combination of our schemes outperforms the original

sequential prefetching of Linux by 3.2 times for 128 clients and 2.4 times for a

single sequential read.

Index Terms—Storage management, operating systems.

Ç

1 INTRODUCTION

PREFETCHING is necessary to reduce or hide the latency between a
processor and a main memory, as well as between a main memory
and a storage subsystem that consists of disks. Some prefetching
schemes for processors can be applied to prefetching for disks after
slight modifications, whereas many prefetching techniques that are
dedicated to disks have been studied. Especially, this study focuses
on disk prefetching for striped disk arrays.

The frequently addressed goal of disk prefetching is to make
data available in a cache before the data are consumed; in this way,
the computational operations overlap the transfer of data from the
disk. Another goal is to enhance disk throughput by aggregating
multiple contiguous blocks as a single request. Prefetching schemes
for a single disk may cause some problems in striped disk arrays.
There is a need for a special scheme for multiple disks, in which the
characteristics of striped disk arrays [1] are considered.

The performance disparity between the processor speed and the
disk transfer rate can be compensated for via the disk parallelism
of disk arrays. Chen et al. [1] described six types of disk arrays and
termed them the redundant arrays of independent disks (RAID). In
these arrays, blocks are striped across the disks and the striped
blocks provide the parallelism of multiple disks, thereby improv-
ing the access bandwidth. Many RAID technologies have focused
on the following: the reliability of RAID [2], the write performance
[3], multimedia streaming with a disk array [4], RAID management
[5], and so on.

However, prefetching schemes for disk arrays have seldom been
studied in comparison with prefetching for a single disk. Some
offline prefetching schemes [6], [7] and application-hint-based
prefetching schemes [8], [9] account for parallelism and load

balancing among disks. However, these schemes failed to consider
independency loss of multiple disks.

The striping scheme of RAID improves the parallelism of disks
[1]. The greater number of concurrent I/Os implies more evenly
distributed I/Os across the striped blocks. As a result, researchers
are forced to address new problems that arise in the striped disk
arrays. Accordingly, we reveal that the independency of disks is
more important than parallelism for a larger number of concurrent
accesses in striped disk arrays, whereas parallelism is significant
only for a small number of concurrent accesses. The following
sections describe the independency and parallelism loss in striped
disk arrays in more detail.

1.1 Independency

A strip is defined by the RAID Advisory Board [10], as shown in
Fig. 1, which illustrates an RAID-5 array consisting of five disks.
The stripe is divided by the strips. Each strip is comprised a set of
contiguous blocks.

Traditional prefetching schemes fail to consider the data
placement of the striped disk arrays and therefore suffer indepen-
dency loss for multiple concurrent reads. Fig. 2a shows an example
of independency loss. In traditional prefetching schemes, a prefetch
request consisting of multiple blocks is not aligned in a strip, and
thus, it is split across several disks. In Fig. 2a, three processes
request sequential blocks for their own files in terms of a block. A
preset amount of sequential blocks are aggregated as a single
prefetch request by prefetcher. Each prefetch request is not aligned
in a strip; therefore, each request is split across two disks and each
disk requires two accesses. For example, if a single prefetch request
is for Block 2 to Block 5, the single prefetch request generates two
disk commands that correspond to Blocks 2 and 3 belonging to
Disk 0 and Blocks 4 and 5 belonging to Disk 1. This problem is called
independency loss. In contrast, if each prefetch request is dedicated
to only one disk, as shown in Fig. 2b, independency loss is resolved.

Independency loss frequently arises if the number of concurrent
accesses is greater than roughly the number of disks in a striped
disk array. For a larger number of concurrent accesses, the disk
parallelism is less important than independency because paralle-
lism is achieved by the striping scheme of RAID.

Traditional sequential prefetching schemes exhibit severe
independency loss. In the worst case in our evaluations,
sequential prefetching was 3.2 times poorer than the proposed
scheme that excludes independency loss. If the prefetch size of
the sequential prefetching is larger than the strip size, indepen-
dency loss is inevitable. In addition, sequential prefetching is
based on files rather than blocks, but the files can be fragmented
at the block level and stored unaligned in strips.

Sequential prefetching has been widely deployed without
cognition of independency loss in real operating systems. Hence,
we propose a strip-aligned sequential prefetching (SASEQP),
which inspects the physical data placement of files for every
prefetch request to stop prefetching at the boundaries of strips.

However, the prefetch size of SASEQP is much less than the
stripe size; as a result, it suffers parallelism loss for concurrent
reads of small numbers of processes, which are roughly less than
the number of member disks. These two problems, independency
loss and parallelism loss, conflict with one other: if one problem is
resolved, the other arises. Thus, we propose a massive stripe
prefetching (MSP) to eliminate parallelism loss. Combining
SASEQP with MSP resolves the conflicting problems of indepen-
dency and parallelism without relying on the number of
concurrent reads.

1.2 Parallelism

If the prefetch size is much less than the stripe size and the number
of concurrent accesses is much less than the number of member
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disks that compose a striped disk array, some disks become idle,
thereby losing parallelism. This case exemplifies what is termed
parallelism loss in this paper.

A single stream suffers parallelism loss if the prefetch size is
smaller than the stripe size. However, a large prefetch size that is
laid across multiple disks can prevent parallelism loss. For a single
stream, the prefetch size must be equal to or larger than the stripe
size. However, this method may result in thrashing and prefetch-
ing wastage [11] for multiple concurrent reads. Furthermore, this
method for preventing parallelism loss causes independency loss
for multiple concurrent reads.

Parallelism is more important in a single or small number of
processes than a large number of processes due to the striping
scheme. The proposed MSP maximizes the parallelism of striped
disk arrays only for a single or small number of sequential reads,
and is deactivated in other types of workloads. Consequently,
combining MSP with SASEQP achieves a solution that resolves
both independency loss and parallelism loss.

Our major contribution is the unveiling of independency loss
and the performance evaluation, which, by comparing with the
two resolved variants of sequential prefetching, demonstrates that
the yet unveiled but very important problem on independency
significantly affects the performance of striped disk arrays. In our
experiments, the default sequential prefetching function of Linux
was evaluated and also modified as SASEQP; IOzone and
FileBench benchmarks were exploited to investigate how much
independency loss and parallelism loss affect the storage
performance of a streaming server and a file download server.

2 PRIOR WORK

2.1 History-Based Prefetching

History-based prefetching, which predicts future accesses by
learning the stationary past accesses, has been proposed in various
forms [12], [13], [14]. Recording and analyzing past accesses
require a significant amount of memory; hence, data compression
techniques have also been used to predict future access patterns
[15], [16]. History-based prefetching, which records, mines, and
maintains an extensive history of past accesses, is cumbersome and
expensive to maintain in practical systems. Furthermore, it is
ineffective for nonstationary reads.

2.2 Application-Hint-Based Prefetching

When a small number of processes or a single process generate a
nonsequential access, a small number of concurrent I/Os may not
fully exploit disk parallelism in the disk array. In order to solve
this problem, Patterson and Gibson suggested a disclosure hint
interface [8]. This interface must be exploited by an application
programmer so that information about future accesses can be
given through an I/O-control (ioctl) system call. The disclosure
hint forces programmers to modify applications so that the
applications issue hints. Some applications involve significant

code restructuring to include a disclosure hint. A speculative
execution provides application hints without modifying the
code [9]. A copy of the original thread is speculatively executed
without affecting the original execution in order to predict future
accesses. However, this type of prefetching regards parallelism as
the only important factor and ignores independency.

2.3 Offline Optimal Prefetching

Traditional buffer management algorithms that minimize cache
misses are substantially suboptimal in parallel I/O systems where
multiple I/Os can proceed simultaneously [6]. Analytically,
optimal prefetching and caching schemes have been studied with
respect to situations in which future accesses are given [6], [7].
These schemes are optimal in terms of cache hit rates and disk
parallelism. As a metric value, however, the cache hit rate may not
accurately reflect the real performance because a sequential read
for tens of blocks can achieve a much higher disk throughput than
random reads for two blocks [17]. Furthermore, off-line prefetch-
ing does not resolve the two conflicting problems of parallelism
loss and independency loss.

2.4 Sequential Prefetching

The above prefetching schemes are not widely used in practical
systems due to their complexity and expense. The most common
form of prefetching is sequential prefetching (SEQP), which is
widely used in a variety of operating systems because sequential
accesses are common in practical systems. The simplest form of
sequential prefetching is the one block lookahead (OBL) method,
which initiates a prefetch for block bþ 1 when block b is requested
[18]. There are many variations of OBL [11]. P-block lookahead is a
variation that involves the prefetching of p blocks instead of one
block; various other schemes dynamically adjust the degree of
prefetching p [19], [20].

The most popular SEQP schemes are synchronous SEQP [20]
and asynchronous SEQP [18]. If a sequential miss occurs in
block b, synchronous SEQP reads blocks b to bþ p in advance. The
degree of sequential read-ahead, p, starts from 1 and exponen-
tially or linearly increases up to a predetermined maximum value
when block (bþ pþ 1) is requested. Asynchronous SEQP syn-
chronously conducts a read-ahead of the first prefetch group; after
that when a preset fraction g of the prefetched group is requested,
it asynchronously conducts a read-ahead of the next group, and
so on [21].

The primary concept of SEQP has been extended and varied in
many studies. Dynamics aware prefetching [22] adaptively adjusts
the maximum prefetch size p in the dynamic changes of the
bandwidth and latency of TCP connections. For multiple streams,
Gill and Bathen provided an extension of the asynchronous SEQP:
their method adaptively changes the values p and g in order
to maximize the throughput and minimize cache wastage and
cache pollution [11].
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Fig. 1. The data organization and terminologies of an RAID-5 array. Fig. 2. (a) Independency loss: prefetch requests are split across multiple disks, so
each disk requires two accesses. (b) No independency loss: each prefetch request
is dedicated to one disk.



Table-based prefetching (TaP) [23] detects these sequential
patterns in a storage cache without any help of file systems, and
dynamically adjusts the cache size for sequentially prefetched data,
namely prefetch cache size, which is adjusted to an efficient size
that obtains no more prefetch hit rate above the preset level even if
the prefetch cache size is increased.

Although sequential prefetching is the most popular prefetch-
ing scheme in practical systems, sequential prefetching and its
variations have not yet considered striped disk arrays. Sequential
prefetching and conventional prefetching schemes suffer from
parallelism loss, independency loss, or both.

3 INDEPENDENCY: STRIP-ALIGNED SEQUENTIAL

PREFETCHING

The conventional sequential prefetching (SEQP) scheme, which is
based on sequential block accesses at the file level, fails to consider
the fragmentation and strip-unaligned deployment of files. Hence,
a disk request resulting from its prefetching is laid across multiple
disks, thereby causing independency loss for concurrent reads
produced by multiple processes.

Although a file is aligned in strips and not fragmented, SEQP
suffers independency loss. In Fig. 3, the file is not fragmented,
consists of 20 blocks, and is perfectly aligned in five strips; the file
is sequentially stored in the physical blocks [B16, B35]; and the disk
array exemplified in Fig. 3 is the same as the disk array shown in
Fig. 1. Fig. 3 exemplifies an SEQP operation that sequentially reads
the first block of the file B16 to the last block of the file B35, where
its prefetch size increases exponentially from one block to the
maximum four blocks. At first, B16 is read, and then B17 and B18
are requested by the second prefetch. The third prefetch includes
the four blocks [B19, B22]. However, the third prefetch is laid
across two strips (Strip 4 and Strip 5) and split into two disk
requests for Disk 1 and Disk 2, thereby causing independency loss.
The subsequent prefetch requests after the third prefetch are also
unaligned in strips.

To resolve the independency loss of SEQP, we propose
SASEQP, which provides an additional feature to SEQP to align
the prefetch requests in strips. Fig. 4 exemplifies an operation of
SASEQP, which resizes the ahead window [24] (which is termed a
read-ahead group in [25]) determined by SEQP to assign it to only
one strip. In Fig. 4, each prefetch request is dedicated to only one
strip. The original prefetch size of the third prefetch generated by
SEQP was four blocks, but was shrunk to one block for all blocks of
the ahead window to be assigned to the strip to which the first
block of the current request belongs. As shown in Fig. 3, SEQP
generates 11 disk requests to sequentially read the file, while
SASEQP requires seven disk requests, as shown in Fig. 4, thereby
outperforming SEQP.

Fig. 5 shows the pseudocode of SASEQP in a style of
C language. After an ahead window is created by SEQP (Line 6),
SASEQP modifies the size of the ahead window to resolve the

independency loss (7�12) before performing the actual read-
ahead (Line 13). All blocks in the ahead window must be assigned
to only one strip. Hence, SASEQP traverses from the second block
(startþ 1) to the last block (end) of the ahead window to search for
the first block that physically splits the ahead window into two
disk requests (Lines 9 and 10). GetPhysicalPosition() returns the
physical block number for the specified block offset in File.
STRIPWIDTH is the number of blocks per strip. For easy
comprehension, a linear search (Line 8) is shown in Fig. 5, but a
binary search can replace it to reduce the overhead.

4 PARALLELISM: MASSIVE STRIPE PREFETCHING

SASEQP suffers parallelism loss for concurrent reads of a small
number of processes, usually when there are fewer processes than
the number of disks in the disk array. In other words, because
blocks of each prefetch request of SASEQP are dedicated to only
one disk, the disks are serialized for a single stream. To resolve
parallelism loss in SASEQP, we propose MSP as a new type of
sequential prefetching. SASEQP and MSP can be used separately,
but they can also be combined. MSP resolves the parallelism loss of
SASEQP without losing the advantages of SASEQP.

Because parallelism loss occurs in a single read or concurrent
reads of a small number of processes, MSP is designed to resolve
this situation only. If a process or a small number of processes
access long sequential blocks, MSP aligns the prefetch requests in
stripes and sets the prefetch size to a multiple of the stripe size. As
a result, MSP maximizes the read performance by performing a
perfect parallelism of the disks. MSP is automatically deactivated
for concurrent reads generated by a large number of processes that
is roughly greater than the number of member disks, thus SASEQP
dominates the prefetching performance without independency
loss for this workload.
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Fig. 3. SEQP: a sequential prefetching is performed for a file consisting of 20
blocks that correspond to the physical blocks [B16, B35]. Several prefetch
requests are laid across two strips at the disk level. Consequently, seven prefetch
requests generate 11 disk requests. Fig. 4. SASEQP: to align the prefetch requests in strips, SASEQP dynamically

shrinks the prefetch size from the original prefetch size that is determined by

SEQP. Each prefetch request generates only one disk request. Consequently,

seven prefetch requests generate seven disk requests.

Fig. 5. SASEQP: algorithm.



Although MSP can be activated for concurrent sequential block

reads of a small number of processes, the basic concept of MSP is

designed for a single sequential read at the file level, which forms a

semisequential read at the block level, because it requires both

metadata access and data access.
Fig. 6 shows a simplified example of a semisequential read for a

file of 12 data blocks. Composing a file requires metadata blocks in

addition to data blocks. At first, the semisequential read accesses

metadata block B0 to find the physical location of the first block of

the file, and then reads the first block of the file B16 and the

subsequent blocks (B17 and B18). To locate the subsequent blocks

followed by B18, another metadata (B1) of the file must be read. The

sequence of the accessed block numbers to read 12 blocks of the file

is h0; 16; 17; 18; 1; 19; 20; 21; 2; 22; 23; 24; 3; 25; 26; 27i, which resem-

bles a sequential read but is not perfectly sequential at the block

level. Hence, this access pattern is termed a semisequential read.
Fig. 7 shows the proposed MSP algorithm. Lines 15-28 are

designed to detect a semisequential access at the block level. As the

semisequential read progresses, the sequential counter SC in-

creases up to a predetermined value SCmax (Lines 19 and 22). If

SC is equal to or larger than the predetermined threshold value

SCthresh, the prefetch size becomes a multiple of the stripe size and

the prefetch requests are aligned in the stripe; thus, MSP performs

the perfect parallelism of disks.
MSP inspects the sequence of the accessed strip numbers

instead of the block numbers. If the sequence of the accessed block

numbers h0; 16; 17; 18; 1; 19; 20; 21; 2; 22; 23; 24; 3; 25; 26; 27i shown

in Fig. 6 is assigned to the algorithm shown in Fig. 7, the sequence

of the accessed strip number SNc becomes h0; 4; 0; 4; 5; 0; 5; 6; 0; 6i.
Two strip numbers before and after the strip number zeros

(metadata access) are the same. For example, the third strip

number 0 of this sequence is between two accesses to Strip 4. To

detect this type of semisequential read, MSP increases the

sequential counter SC (Line 19) when the current strip number

SNc is equal to SNpp, which is the value prior to the previous

value of SNc (Line 21), as well as when SNc is sequentially

increased (Line 18).
Therefore, the transitional sequence of SC becomes h1; 0; 1;

2; 3; 2; 3; 4; 3; 4i, which tends to increase. Thus, as the semisequen-

tial read progresses, the sequential counter SC increases. If SC is

greater than the threshold value, MSP infers that a long sequential

access is detected.
Several mechanisms that detect semisequentiality at the block

level have been proposed [11], [23], [26]. Although prior works

may be more robust than the detection method of MSP, MSP is

more lightweight and can mitigate the disadvantage of SASEQP.
Parallelism loss occurs not only in a single stream, but also in a

small number of streams. Although the semisequentiality detection

algorithm is originally designed for a single stream, a small

number of streams can be detected as a semisequentiality by

adjusting the threshold value SCthresh and the maximum value

SCmax. Section 5.2 shows experimental results with various values

of SCthresh. These values that were chosen in the evaluation of this
paper are shown in Fig. 7.

Just tuning SCthresh may not be an optimal approach. In some
cases, if the cache is large enough, prefetching multiple stripes
may be beneficial even for multiple processes whose number is
much greater than the number of member disks. A sophisticated
algorithm replacing MSP may optimize the performance except
for either a single or very many numbers of streams. However,
MSP can mitigate the important disadvantage of SASEQP with
the lightweight manner.

The prefetch size of MSP is large enough for parallelism, but
may cause prefetching wastage. Hence, prefetch initiation must
require a very long sequential access, which is determined by
SCthresh and the stripe size. MSP is suspended for much longer
sequential accesses than either SASEQP or SEQP. Hence, MSP
must be used as a combination with other prefetching schemes.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We implemented the function of SASEQP in Linux kernel 2.6.18 �
86_64 by modifying the original read-ahead feature of Linux. The
function of MSP is implemented in the RAID driver that was
introduced in our previous works [3], [27], which shows that our
RAID driver outperforms the software-based RAID of Linux
(MultiDevice) and a hardware-based RAID. We disabled all the
features of our previous works in all experiments. The Linux
kernel and the RAID driver have their own cache memory.
SASEQP stores data into the page cache of the Linux kernel at the
file level, while MSP stores data at the block level in the RAID
cache managed in the RAID driver.

The system in the experiments uses dual 3.0-Hz 64-bits Xeon
processors, two Adaptec Ultra320 SCSI host bus adapters, and five
ST373454LC disks, each of which has a speed of 15,000 revolutions
per minute (rpm) and a 75-GB capacity. The five disks comprise
an RAID-0 array with a strip size of 128 KB. A Linux kernel
(version 2.6.18) for the �86 64 architecture runs on this machine;
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Fig. 6. Semisequentiality: a sequential read at the file level forms a semisequential
read, which includes both metadata access and data access. The metadata
blocks of the file are in [B0,B3]. The data blocks of the file are located in blocks
[B16, B27].

Fig. 7. MSP algorithm.



the kernel also hosts the ext3 file system and the anticipatory disk

scheduler. The block size is set to 4 KB. 1 GB and 512 MB were

allotted to the system memory of Linux and the RAID cache,

respectively.
In these experiments, we compare four combinations: MSP+

SASEQP, SASEQP, MSP+SEQP, and SEQP. In all figures in this

paper, SASEQPX denotes a SASEQP with a maximum prefetch size

of X KB. For example, SASEQP128 indicates that the maximum

prefetch size is 128 KB.

5.2 IOZone: A Microbenchmark

In Fig. 8, we used the benchmark IOzone (version 3.283) [28] for

concurrent sequential reads by varying the number of processes

from 1 to 64 with a fixed aggregate file size of 8 GB. All experiments

were repeated 10 times in cold cache. Each standard deviation was

below 2 percent of the average value.
Evidence of parallelism loss and independence loss appears

in Figs. 8a, 8b, 8d, and 8e, which show the average aggregate

bandwidth of the concurrent sequential reads in relation to

various numbers of streams. In these figures, SASEQP and SEQP

are significantly inferior to the combinations with MSP for a

single stream due to parallelism loss. MSP+SASEQP128 outper-

forms SASEQP128 by 2.4 times for a single stream in Fig. 8a.
For eight or more streams, SEQP is notably inferior to SASEQP

due to independency loss. With 64 streams, SASEQP outperforms

SEQP by 12 percent in Fig. 8a, 69 percent in Fig. 8b, 108 percent in

Fig. 8d, and 82 percent in Fig. 8e. When the maximum prefetch size

is equal to the strip size, the performance gap between SASEQP

and SEQP is minimized because SEQP has the best performance in

this matching condition, as shown in Fig. 8c, which shows the

bandwidth of SEQP in relation to various prefetch sizes. As shown

in Fig. 8c, generally, the greater the maximum prefetch size, the

higher the bandwidth except for this matching condition.
The greater the prefetch size, the higher the parallelism for a

small number of streams. By comparing Fig. 8a with Fig. 8b,

SEQP512 outperforms SEQP128 by 56 percent for a single stream

but it is still inferior to any combination with MSP and suffers

much independency loss for a large number of streams; SEQP512

is inferior to SEQP128 by 43 percent.

Because the prefetch size of SASEQP is limited to the strip size
of 128 KB, SASEQP512 and SASEQP128 show the very similar
throughput, but are strictly different. The greater the maximum
prefetch size, the faster the incremental speed of the prefetch size:
In Linux, when the first block of a file is accessed at first, the initial
prefetch size is determined by a function of the maximum prefetch
size (max) and the request size (see function get_init_ra_size() of
mm/readahead.c); the greater the max, the greater the initial
prefetch size. In addition, the incremental speed of the prefetch
size depends on the max. If the prefetch size is less than max/16,
the prefetch size is increased by four times. Otherwise, the prefetch
size doubles up to the maximum value.

Fig. 8f shows the effect of the threshold value of the sequential
counter SCthresh. The basic concept of MSP is based on a single
sequential read, but parallelism loss arises in a small number of
streams as well as a single stream. Lowering SCthresh forces MSP to
be activated for a small number streams. As shown in Fig. 8f, the
bandwidth for four streams improves by lowering the SCthresh.
However, if the SCthresh is too low, it may cause prefetching
wastage in other types of workloads.

5.3 Aligning in Multiple Strips with Concurrent Accesses

Prefetching two or more strips has no disadvantage in terms of
request split if the cache is large enough and prefetches are aligned
in strip boundaries. Fig. 9 compares single-strip alignment and
multiple-strip alignment. In this experiment, each of 256 threads
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Fig. 8. IOZone: bandwidth of concurrent sequential reads in relation with various numbers of streams. (a) maximum prefetch size ¼ 128 KB, and strip size ¼ 128 KB.
(b) maximum prefetch size ¼ 512 KB, and strip size ¼ 128 KB. (c) The bandwidth of SEQP by varying the maximum prefetch size. (d) maximum prefetch size ¼ 128 KB,
and strip size ¼ 256 KB. (e) maximum prefetch size ¼ 512 KB, and strip size ¼ 256 KB. (f) The bandwidth of MSP+SEQP128 for various values of SCthresh.

Fig. 9. Aligning reads in multiple strip boundaries with multiple concurrent

accesses or a single access.



performs a sequential read at the block level with direct I/O

(which disables the readahead feature of Linux), the strip size is

128 KB, read offsets are aligned in strips, and each read is perfectly

fit to one or more strips. The bars in this figure are distinguished

by the request sizes. The last bar indicates that the strip size is

twice of the other bars (256 KB).
As shown in the right group of Fig. 9, as more strips are

prefetched with only one thread that performs a sequential read,

the disk parallelism and performance increases. However, when

multiple concurrent reads contend for disks of a disk array as

shown in the left and center groups of Fig. 9, the two software

RAID drivers exhibit the common characteristic that the perfor-

mance of prefetching two or more strips is nearly same as that of

prefetching one strip; all of these prefetching types spend the same

access time and transfer time. However, prefetching two or more

strips may evict more cached data by consuming cache memory

for prefetched data. In addition, prefetching only one strip with the

twice strip size (the sixth bar) outperforms the others. Therefore, if

the cache is large enough to serve required clients, we had better

increase both the strip size and the prefetch size and just stop

prefetching at the single strip boundaries.

5.4 FileBench: A Macrobenchmark

For more realistic workloads, we chose the “Web server” workload

personality of FileBench version 1.1.0. Fig. 10 shows the results of

FileBench with the Web server profile that creates multiple

processes, each of which reads whole data of an arbitrary file.
In Fig. 10, the average size of files is set to 4 MB to imitate a

Web server that serves music files. Figs. 10a, 10b, 10c show the

relationship between the strip size and the maximum prefetch

size with 32 threads and a workspace of 8 GB. All results were

obtained from the average values of 10 performance snapshots.

The standard deviation of each result is illustrated in the figures.
In Fig. 10a for a strip size of 128 KB, SASEQP outperforms SEQP

by 3.1 times, 1.3 times, 2.6 times, and 1.9 times for a maximum

prefetch size of 64, 128, 256, and 512 KB, respectively. In Fig. 10b

for a strip size of 64 KB, SASEQP outperforms SEQP by 3.2 times,

1.3 times, 2.6 times, 1.8 times, and 1.2 times for a maximum

prefetch size of 32, 64, 128, 256, and 512 KB, respectively.

When the strip size is equal to the prefetch size, as shown in

Figs. 10a, 10b, 10c, the performance of SEQP is maximized. This is

the same conclusion discussed in Fig. 8c. As shown in Fig. 10b,

when the prefetch size covers multiple stripes (1,024 KB of prefetch

size) sacrificing a large amount of prefetch memory, SEQP reaches

up to the performance of SASEQP.
Figs. 10d, 10e, 10f illustrate the relationship with the file sizes.

Both SASEQP and SEQP perform at the file level, thereby

depending on the average size of files. For example, if a file

shown in Fig. 3 consists of seven blocks instead of 20 blocks, there

is no difference between SASEQP and SEQP. From Figs. 10d, 10e,

10f, we can conclude that: 1) the file size have to be four times

larger than the strip size for SASEQP to provide a noticeable gain

and 2) SASEQP outperforms SEQP in terms of throughput and

latency as well as bandwidth.

6 CONCLUSION

Traditional SEQP schemes have ignored the fact that indepen-

dency of disks significantly affects the throughput of servers that

exhibit multiple concurrent I/Os. Our experiments have shown

that SEQP suffers independency loss that has been resolved by the

proposed SASEQP. In addition, to take parallelism as well as

independency into account, we evaluated the combination of

SASEQP and MSP, which outperforms the SEQP of Linux by

3.2 times for 32 threads and 2.4 times for a single sequential read in

our experiments. Our proposal resolves both independency loss

and parallelism loss regardless of the amount of concurrency.
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