Speculative Precomputation on Chip Multiprocessors

Jeffery A. Brown'2, Hong Wang', George Chrysos®, Perry H. Wang', and John P. Shen!

Microprocessor Research! Computer Science? M assachusetts Microprocessor Design®
Intel Labs UC San Diego Intel Corp
Abstract enough in advance of cache accesses by the non-speculative

Previous work on speculative precomputation (SP) on si-
multaneous multithreaded (SMT) architectures has shown
significant benefits. The SP techniques improve single-
threaded program performance by utilizing otherwise idle
thread contexts to run ““helper threads, which prefetch
critical data into shared caches and reduce the time the
“main thread” stalls waiting for long latency outstanding
loads. This technique effectively exploits the parallel thread
contexts and the data cache sharing at all levels of the
memory hierarchy that SMT provides. Chip multiproces-
sor (CMP) architectures also feature parallel thread con-
texts, but do not share caches near execution resources.
In this paper, we first investigate SP on a basic CMP and
show that while the existing SP techniques can provide per-
formance improvements for single-threaded application on
such CMP architectures, they fall short of the benefits pro-
vided on SMT architectures due to the reduced degree of
cache sharing. We then propose and evaluate several sim-
ple enhancements to the basic CMP architecture, which can
increase the speedup from using SP by an additional 10 to
12%.

1. Introduction

Memory latency has become the critical bottleneck in
achieving high performance on modern processors. Many
large applications today are memory intensive, because
their memory access patterns are difficult to predict and
their working sets are becoming quite large. This prob-
lem worsens when executing pointer-intensive applications,
which tend to defy conventional stride-based prefetching
techniques.

Speculative Precomputation (SP) is a thread-based cache
prefetching technique, which has been introduced in vari-
ous forms [33, 22, 8, 7, 18, 19, 31, 32] to speed up mem-
ory intensive single-threaded applications. The key idea be-
hind SP is to utilize otherwise idle hardware thread con-
texts to execute speculative threads, as helper threads, on
behalf of the main (non-speculative) thread. These specula-
tive threads attempt to trigger future cache-miss events far

thread that the memory miss latency can be masked. SP
can be thought of as a special prefetch mechanism that ef-
fectively targets load instructions that exhibit unpredictable
irregular or data-dependent access patterns. Traditionally,
these loads have been difficult to handle via either hardware
prefetchers [5, 14, 13] or software prefetchers [20]. For
most programs, only a small number of poorly behaving
static loads, called delinquent loads, are responsible for the
vast majority of cache misses [1]. To perform effective
prefetch for delinquent loads, SP requires the construction
of the precomputation slices, or p-slices, which consist of
dependent instructions that compute the addresses accessed
by delinquent loads. When an event triggers the invocation
of a p-slice, a speculative thread, spawned to execute the
p-slice, prefetches for the delinquent load that will be exe-
cuted later by the main thread.

SP was initially introduced on simultaneous multi-
threaded (SMT) architectures [30, 9, 11], which allow shar-
ing of both execution and memory resources between mul-
tiple hardware threads within a single cycle. Because of
the communication mechanism on which SP relies, that is,
shared caches in all levels of the memory hierarchy, SMT
is an attractive multithreading model for supporting SP.
Given a sufficient head start, SP helper threads can prefetch
critical-path delinquent data closer to the processor core,
and even make the data available at the first-level data cache
by the time the main thread needs it.

In this research we consider the SP technique on chip
multiprocessor (CMP) architecture models [21, 10, 6, 2,
15]. Similar to SMT, CMP provides multiple hardware con-
texts and the ability to execute instructions from multiple
threads within a single cycle. However, unlike SMT where
both execution resources and entire cache hierarchies are
shared among threads, the CMP processors achieve thread-
level parallelism with independent and replicated collec-
tions of execution core resources. For memory resources,
each core has its own local caches (e.g. L1 and L2) and mul-
tiple cores only share the lower' level of the memory hierar-
chy (e.g. L3). While CMP models offer less contention and

TFor descriptive clarity, we adopt the convention that L1 caches are the
highest-level caches, and others are at successively lower levels.

lower implementation complexity, they do so at the cost of
inter-thread communication latency. Since the data sharing
on CMP is at lower levels of cache hierarchy, the sharing in-
curs much longer latency than that between two threads on
SMT. This is because the farther away from the cores and
closer to memory, the longer the latency. In this paper, the
baseline CMP model, called basic CMP, consists of multi-
ple identical processor cores, each having its private L1 and
L2 caches. All cores together share a common L3 cache. In
contrast, a SMT can accommodate such sharing in the L1
and L2 caches as well.

On a CMP, SP can be applied by using one core to run
the main thread and the other cores for helper threads to do
precomputation and prefetches for the main core, thus turn-
ing these otherwise idle cores into helper cores. In this pa-
per, we first demonstrate that existing SP techniques, even
when applied to the basic CMP directly, can provide non-
trivial performance improvements for the memory-intensive
single-threaded workloads. In light of SP performance on
SMT, we further quantitatively confirm the intuition that the
inter-core resource independence (i.e. lack of sharing of re-
sources closer to the core) in CMP can become a hindrance
to realize the full benefit of the SP techniques. In particular,
since the SP helper threads usually perform simple compu-
tation leading to address resolution followed by a prefetch,
its execution does not demand much execution resources. In
addition, the effectiveness of SP depends heavily on timely
sharing of caches in order to assist the main thread. On a ba-
sic CMP where cores only share L3, the timeliness can be
hindered due to a much higher latency to access prefetched
data at L3. To further improve the performance of SP on
CMP processors, we then propose a set of simple optimiza-
tion techniques to further improve the performance of SP on
CMP processors by approximating the effect of high-level
cache sharing that SMT provides.

It is important to note that this research does not purport
to compare the relative merits of SMT over CMP, or vice-
versa. Such a comparison cannot be made fairly without a
careful examination of how resources should be distributed
in order to declare an SMT processor and a CMP proces-
sor “comparable”. Instead, since the tradeoffs leading to
the performance improvement by SP are well understood,
our interest in SP on SMT is primarily to draw compara-
tive insights to help reason the tradeoffs that can lead to
performance improvement for CMP. In particular, the ques-
tions of interest to our work are: “Given a CMP processor
with a fixed number of cores and a single thread to exe-
cute, how well can SP use otherwise idle cores to improve
performance, relative to single-core execution on this same
processor? How many cores should we utilize?”

The rest of the paper is organized as follows. In Sec-
tion 2, we review other speculative multithreading research
works that have explored CMP resources for prefetches.

In Section 3, we describe details of the CMP machine
model and performance evaluation methodology. Section 4
presents the performance evaluation for SP on the basic
CMP. In Section 5, a few simple optimization techniques
are introduced to enhance SP performance on CMP. Sec-
tion 6 concludes.

2. Related Work

Prior work regarding using CMP to speedup single-
threaded application performance can be categorized into
two main areas, thread level speculation and slipstream
speculation.

First, thread level speculation (TLS) on CMP [24, 26,
16, 28] is an aggressive technique that attempts to take a
single-threaded program and arbitrarily break it into a se-
quenced group of threads that may be run in parallel. To
ensure that the parallelized program executes correctly, ad-
ditional hardware must be used to track all inter-thread data
dependencies. When a younger thread in the sequence
causes a true dependence violation by reading data too
early, the hardware must ensure that the mis-speculated
thread or the subset of instructions depending on the mis-
speculated data are re-executed with the right data. SP dif-
fers from TLS in that the execution of SP helper threads
does not affect the correctness of the main thread and
therefore SP does not require any additional complicated
hardware for inter-thread dependency checking and mis-
speculation recovery.

Second, the slipstream speculation paradigm [27] is pro-
posed to explore the assumption that only a subset of the
original dynamic instruction stream is needed to make full,
correct and forward progress. In slipstreaming, the OS re-
dundantly instantiates two copies of a user program, each
having its own context. The two duplicated programs run
simultaneously on a single CMP. One of the programs (so-
called A-stream) is always running slightly ahead of the
other (so-called R-stream). Special hardware is used to
monitor the trailing R-stream and detects dynamic instruc-
tions that predictably have no observable effects and dy-
namic branches whose outcomes are consistently predica-
ble. Future instances of ineffectual instructions, predictable
branch instructions and dependency chain leading up to
them, are speculatively bypassed in the A-stream, which
is thus sped up. Compared to TLS, slipstream will run R-
stream non-speculatively thus effectively ensuring correct-
ness won’t be affected by the speculation done in the A-
stream. However, to accurately and timely track inter-thread
progress, identify ineffectual instructions, coordinate inter-
esting branches across CMP cores, and synchronize relevant
events in timely manner, the monitor hardware will not only
incur significant design complexity but also become a per-
formance bottleneck affecting the accuracy or timeliness of
the monitored events. In contrast to slipstreaming, SP does

Pi peline Structure

12 stage pipeline, 2 cycle msfetch penalty, 10 cycle m spredict penalty

Fetch 2 bundl es per cycle

Branch Predictor 2K entry GSHARE

256 entry 4-way associ ative BTB

Expansi on Queue

Private, per-thread, in-order 8 bundle queue

Regi ster Files

Private, per-thread register files.
Regi sters, 64 Predicate Registers, 128 Control Registers

128 Integer Registers, 128 FP

Execut e Bandwi dt h

Up to 6 instructions fromone thread

Cache Structure L1 (separate | and D):
L2 (unified):

L3 (unified):

wite-allocate.

16K 4-way, 8 way banked, 1 cycle |atency
256K 4-way, 8 way banked, 14 cycle |atency
3072K 12-way, 1 way banked, 30 cycle |atency

Al'l caches have 64 byte lines.

Data caches are write-back and

Menory Lat ency

230 cycle latency, TLB Mss Penalty 30 cycles

Table 1. Details of a research in-order Itanium processor core in the CMP model

not require any additional hardware support beyond what
has been implemented in the stock CMP designs [6, 2, 15].

To our knowledge, prior to this paper, there has been no
known published work that applies SP to CMP and sheds
light through quantitative analysis on the key tradeoffs, es-
pecially those that are unique to CMP.

3. Experimental Methodology
3.1. CMP Core Processor Microarchitecture

This paper studies the effects of Speculative Precompu-
tation on a research CMP processor implementing the Ita-
nium Processor Family (IPF) [12] instruction set architec-
ture. In the processor core, instructions are issued in-order,
from an eight-bundle expansion queue [23], which oper-
ates like an in-order instruction queue. The maximum exe-
cution bandwidth is six instructions per cycle, which can be
fetched from up to two bundles. Sufficient functional units
exist to guarantee that any two issued bundles are executed
in parallel without functional unit contention and up to four
loads or stores can be performed per cycle.

Each processor core’s local memory hierarchy consists
of separate 16 KB 4-way set associative L1 instruction and
data caches, and a 256 KB 4-way set associative L2 uni-
fied cache. We also assume a 3072 KB 12-way associative
unified L3. Data caches are multi-way banked, and the in-
struction cache is single ported. Caches are non-blocking
with up to 16 misses in flight at once. A miss upon reach-
ing this limit stalls the execute stage. Speculative threads
are permitted to issue loads that will stall the execute stage.
A pipelined hardware TLB miss handler [23] is modeled.
It resolves TLB misses by fetching the TLB entry from an
on-chip buffer that is separated from data and instruction
caches. In the default configuration, TLB misses are han-
dled in 30 clock cycles, and we allow memory accesses
from speculative helper threads to affect TLB update. In
addition, throughout the rest of this paper, we will focus
our discussion only on in-order CMP processor models. Al-

beit beyond the scope of this paper, CMP designs with out-
of-order cores can benefit from most, if not all, of the in-
sights of this study. Full details of the modeled processor
are shown in Table 1.

3.2. SMT and CMP System Configuration

All simulations in this work assume a single non-
speculative thread persistently occupies one CMP core
throughout its execution while the remaining CMP cores are
either idle or occupied by speculative helper threads. Unless
explicit distinction is made, the term non-speculative thread
is used interchangeably with the main thread throughout
this paper.

For reference, a SMT processor model is depicted in Fig-
ure 1(a). It is the baseline processor with the addition of
four-way SMT capability. The first thread context is used
exclusively to run the main thread; the remaining contexts
are used opportunistically for helper thread execution.

Our CMP processor model is shown in Figure 1(b). It
consists of eight processor cores, each a replica of the base-
line processor except for the L3 cache. While each core
in this CMP has the identical pipeline, identical first- and
second-level caches to those of the baseline processor, all
cores share a single L3 cache with the same size as that of
the baseline through a bus-based interconnect. The first core
is used to execute the main thread, and one or more addi-
tional cores are made available for helper thread execution.
The inter-core interconnect is assumed to be a bus with uni-
form memory access (UMA) time for each core; since L3
is single-ported, only one core may communicate with the
L3 cache at a time, thus bus bandwidth constraints can be
accurately modeled simply via contention of the single port
on the L3 cache.

3.3. Simulation Environment and Workloads

We model processor performance using SMT-
SIM/IPFSim, a version of the SMTSIM simulator
[29] that has been enhanced to work with Itanium binaries.

Helper Cores

Main Core (running SP)
e W oo S
e | [HTRH)« « o 0B Eo)
|
\
L3
Off-chip Memory Off-chip Memory
@ sMT (b) CMP
Figure 1. SMT vs CMP
Suite Benchmark Input Fast-forward Benchmark | Number of | Average | Average
Distance Slices Length | Livelns
SPECFP equake Training input 1 billion equake 8 125 45
SPECINT gzip Training input 1 billion gzip 9 9.5 6.0
SPECINT mcf Training input 1 billion mcf 6 5.8 25
SPECINT vpr Training input 1 billion health 8 9.1 5.3
Olden health Max level 5 100 million pp-health 2 9.0 35
500 iter pp-treeadd.df 3 11.3 3.0
Olden mst 1031 graph size 230 million pp-treeadd. bf 2 125 45
Olden treeadd Breadth-fi rst 100 million pp-mcf 5 14.0 4.4
depth-fi rst pp-vpr 6 135 4.0

Table 2. Workload Setup

SMTSIM/IPFSim is a cycle-accurate, execution-driven
simulator of SMT and CMP processors and capable of
accurate detailed simulation of resource contention in the
cache subsystem, functional units, bus interconnects and
branch predictors, just to name a few.

Benchmarks for this study include both integer and float-
ing point benchmarks selected from the CPU2000 suite
[25] and pointer-intensive benchmarks from the Olden suite
[4]. These benchmarks are selected because either their
performance is limited by poor cache performance or they
experience high data cache miss rates. The benchmarks
and simulation setup are summarized in Table 2. All
benchmarks are simulated for 10 million retired instruc-
tions after fast-forwarding past initialization code (with
cache warmup). In our initial simulation experiments, much
longer runs of the benchmarks were performed, however
it was observed that the longer-running simulation results
yielded only negligible performance differences. In similar
treatment as in [8], gzip as a compute intensive benchmark
is selected as a counter-example.

All binaries used in this work are compiled with the Intel
Electron compiler [3, 17] for the IPF architecture. This ad-
vanced compiler incorporates the state-of-the-art optimiza-

Table 3. Slice Characteristics

tion techniques well known in the compiler community as
well as novel techniques specifically designed for the fea-
tures of the IPF architecture. All benchmarks are compiled
with maximum compiler optimizations enabled, including
those based on profile-driven feedback, such as aggressive
software prefetching, software pipelining, control specula-
tion and data speculation.

For SP helper threads, we employ a mixture of both
hand-generated slices as used in [8, 32] and slices automat-
ically generated by an Intel Electron-based post-pass com-
piler [18] (those with the “pp-" prefix). Table 3 shows some
key characteristics of the SP slices used. For each bench-
mark, there are only a few slices. And on average, these
slices are very short (thus creating little contention for ex-
ecution resources) and have very small numbers of live-ins
(implying very small overheads for live-in copies). To help
gain insights on potential difference in tradeoffs between
SP on SMT and SP on CMP, the same benchmark executa-
bles and SP slices previously used in SMT based studies
[8, 18, 32] are deployed across all experimental configura-
tions for CMP.

Throughoutall of our experiments, the performance met-
ric of interest is the IPC of the main thread. Since the very

‘EI SMT m CMP2 @ CMP4 O CMP8

equake
health
m
sw-health
sw-mcf-nr
Ssw-vpr
MEAI

i
= N
[
sw-treeadd-bf é

sw-treeadd-df ﬂ

gzip
(excluded)

Benchmark

Figure 2. Speedup by SP on Basic CMP

existence of the helper threads is an artifact of our efforts to
speed up the main thread, we ignore the IPC of the helper
threads. To quantify the relative performance impact of a
given experiment, we calculate the speedup for the given ex-
periment as the ratio of the IPC of the experiment to the IPC
of the same benchmark running on the single-thread base-
line machine, with otherwise identical hardware parameters
as described in Section 3.1 and Section 3.2.

4. Performance on Basic CMP

Figure 2 shows the main-thread speedup achieved by SP
on the basic CMP over the baseline uniprocessor for the
benchmarks under study. For each benchmark, speedups
are shown for SP execution on the four-way SMT model,
as well as on the n-way CMP model with n-1 cores serv-
ing as helper cores running SP helper threads, where n =
2, 4, and 8. The far right group shows the arithmetic mean
of the speedups for each configuration, over all benchmarks
except gzip. As shown in Figure 2, gzip simply does not
benefit from SP on CMP. This is because gzip, as a compute
intensive benchmark, rarely misses beyond L2 as shown in
[8, 32]. SP cannot help such benchmarks whether they are
on SMT or CMP. Since SP is detrimental to their perfor-
mance, one would simply elect not to use SP. Therefore,
we’ve excluded gzip from the mean, and from other varia-
tions to be considered in the rest of this paper. All reported
mean speedups are arithmetic means for all benchmarks ex-
cept gzip.

Figure 2 indicates that across the board, SMT consis-
tently provides the greatest speedup of the four configura-
tions shown, even though it has the fewest overall execution
resources and the least amount of aggregate cache capacity.
On SMT, the helper threads assist the main thread through
prefetching data to caches shared with the main thread at
all levels of the cache hierarchy, while doing so at the cost
of contending execution resources and memory bandwidth
with the main thread. However, the precomputation slices

used by helper threads only consume very little execution
resources, as indicated in Table 3. The multifold increase
of core execution resources in the basic CMP does not nec-
essarily result in helper performance improvement, while
the concomitant reduction in cache sharing significantly im-
pacts the effectiveness of the helper prefetches. Due to data
sharing at L3 in the basic CMP, even when the main thread
hits a prefetch line in the L3, the core still has to endure
a relatively long load-to-use latency. By design, the delin-
quent loads prefetched by the helper threads are likely to be
on the critical path of the main thread. Even with high ac-
curacy, the prefetches may not be timely, since those time-
critical requests satisfied at L3 are still roughly 30 times
slower than those satisfied at L1. As demonstrated in [8],
if the top 10 delinquent loads are assumed to always hit at
L1, speedups of several factors higher than the uniproces-
sor performance can be obtained. That limit study indeed
quantifies the criticality of the delinquent loads, for which
the helper threads are constructed.

Another observation from Figure 2 is that as CMP re-
sources scale up from 2 cores to 8 cores, the performance
improvement does indeed scale accordingly. This is due
to the high quality of helper thread’s slices, which pri-
marily employ chaining triggers [8]. Using chaining trig-
gers allows the helper threads to spawn additional helper
threads relatively independently from the progress of the
main thread. The cost associated with using chaining trig-
gers to spawn helper threads is not taxed on the main thread.
Chaining triggering is thus essential for ensuring SP perfor-
mance scalability on CMP.

5. Improvementsto Basic CMP

As shown in Section 4, while the move to CMP doesn’t
significantly affect the cost of performing SP, the reduced
cache sharing is a detriment and serves as a root cause for
the performance gap between SP on CMP and SP on SMT.
In order to improve the situation, in this section, we pro-
pose and evaluate two schemes to improve the performance
of SP on the basic CMP processors. These techniques are
geared toward decreasing the latency for the main thread to
access data blocks prefetched by the helper cores. Obvi-
ously the upper bound of this latency is that incurred by the
main thread upon accessing L3 in the basic CMP configu-
ration.

5.1. Improvement 1: Cache Return Broadcast

The first scheme to improve SP performance is called
cache return broadcasting, or simply broadcast. It is de-
picted in Figure 3(a).

When the shared L3 cache services one core’s L2 load
misses, the resulting fill is broadcast to all active cores.
Given the bus-based UMA interconnect, the physical broad-

] Dt 1 [Dp] oo I \,Dt
iz Il L2 L2
1 \\ | T
e\

L3

(a) Cache Return Broadcast

(b) Peer-core L2 Cross-feeding

Figure 3. Two Improvement to Basic CMP for SP

cast already occurs. The proposed hardware change is for
the non-requesting cores to accept and process the unso-
licited fill, injecting it into their L2 and then L1 data caches.
This artificially imposes sharing between the private caches
on each core, in an attempt to roughly approximate the
sharing that is provided in the SMT model. If successful,
this broadcast scheme can effectively reduce the miss rates
of the private caches, thereby improving the timeliness of
prefetches.

It is important to note that the benefit of broadcast is
mutual to both main thread and the helper threads. In par-
ticular, the helper cores benefit from this artificial sharing
as follows: during periods when the helper threads are not
running, the broadcast effectively serves to keep their pri-
vate caches warm with data used by the main thread. This
is important since the helpers often perform loads as part
of the slice computation leading to prefetch addresses (e.g.
pointer chasing). Without this warmup, the helper threads,
after activation, would likely incur cold misses upon using
shared variables that have been recently referenced by the
main threads. This delay can potentially limit the timeli-
ness of prefetch from the helper threads.

However, it is crucial to note that cache return broad-
casting may not be applicable to general workloads; the
artificial sharing across cores effectively reduces the ag-
gregate L1 and L2 cache capacity to that of a single core.
This effective size reduction can increase both capacity and
conflict misses for workloads that don’t exhibit a high de-
gree of constructive interference. In SP, helper threads are
custom-made to enhance the constructive interference with
the main thread’s memory references, thus benefiting from
this broadcast scheme.

5.2. Improvement 2: Peer-core L2 Cross-feeding

Figure 3 (b) illustrates the second improvement scheme,
peer-core L2 cache cross-feeding: when one core encoun-
ters an L2 miss for load data and submits the request on the
bus, like the shared L3 cache, the other active peer cores can
snoop on this request and probe their individual private L2

caches to check if they have that data ready to share. If so,
the peer core replies to the request and sends the data block
to the original requester core. When a transaction occurs,
only the lookup time to locate the desired data is affected,
presumably resulting in faster service since the L2 lookup
time may be shorter than that for L3 lookup; it still takes
just as long to transfer the data across the bus and perform
the fill in the destination core’s private cache hierarchy.

In essence, unlike cache return broadcasting, which
loosely simulates a single shared L1 and L2 caches through
forced mirroring among disparate cores so as to reduce the
effective miss rates of the private caches (applicable to both
L1 and L2), the peer-core L2 cross-feeding scheme in ef-
fect pools the neighbors’ L2 caches into a non-inclusive
cache, which is looked up in parallel with L3, but returns
hits more quickly. This allows a core to utilize some capac-
ity from the neighboring cores, thus reducing the effective
L2 miss penalty for the shared or prefetched data. In other
words, helper cores effectively hoard the prefetched data on
their own private caches and deliver them to the main core
only when it is needed. While there is potential lack of
timeliness as compared to broadcasting scheme, the cross-
feeding scheme is unlikely to hurt performance regardless
of whether the workloads are latency-bound single-threaded
code or throughput-oriented multiprogramming or multi-
tasking code. In practical terms, the cross-feeding mode
can be safely left on without the consideration of the actual
workload.

Even though the building blocks for realizing such L2
cross-feeding scheme are already present in a typical bus-
snooping cache coherence protocol, given a bus intercon-
nect and a snooping-based coherence protocol, the total ac-
cess time for critical data prefetched by a helper still in-
cludes the time for L1 and L2 misses; while service isn’t as
slow as from L3, it’s still far slower than what the L1 cache
provides. As with return broadcasting, the scheme is mu-
tually beneficial to both helper and the main threads. The
helpers can benefit from this scheme, because it gives them
a faster path for performing loads to shared data which is

needed to compute prefetches.
5.3. Hybrid of Broadcasting and Cross-feeding

In this research, we also evaluate the effects of using both
improvement techniques together. It may seem counter-
intuitive at first to combine return broadcasting and cross-
feeding: while the latter conceptually pools off-core L2
caches to hoard prefetched data and makes them available
to service L2 misses on demand, the former conceptually
forces the L1 and L2 caches to be mirrored, which would
then make cross-feeding useless. However, the respective
appearance of conceptual mirroring and pooling only repre-
sents rough approximations, and there is no guarantee that
broadcasting will always render the cross-feeding useless if
used together.

To the contrary, it’s plausible that between broadcasts,
one core (say P1) would evict an L2 block holding data (say
A) that it later would need while a neighboring core (say
P5) would not and instead retain the private L2 block for its
copy of A. In this case, upon P;’s L2 miss due to access to
data A, the cross-feeding can supply its copy of A. Since
the L2 miss is serviced by P, instead of a broadcast data
return from L3, each successful cross-feeding transaction
represents better utilization of the bandwidth.

5.4. Quantitative Evaluation of CMP Optimizations

To quantify the benefits of these schemes, Figure 4
shows the performance gains from cache return broadcast-
ing and L2 cross-feeding in terms of the mean speedup on
our CMP processor, independently and in concert, with two,
four, and eight cores active. Note that each of the optimiza-
tions achieves additional speedup beyond that of the basic
CMP (the leftmost bar in each CMP group). More interest-
ingly, the benefit increases as more cores are activated. In
each case, adding cross-feeding to broadcasting increases
performance, albeit only by a marginal amount. Broad-
casting itself indeed seems to subsume cross-feeding, yet
the seemingly less useful cross-feeding doesn’t degrade per-
formance. While the eight-core CMP with these improve-
ments achieves a marginally higher speedup than the one-
core SMT, it’s important to recall that this ensemble has
eight times the execution resources and aggregate L1 and
L2 cache capacity, so the two configurations aren’t directly
comparable once the amount of resources is taken into ac-
count. With these simple enhancements to the basic CMP
architecture, the average speedup from using SP can be im-
proved by an additional 10 to 12%.

One rather unexpected result is that cross-feeding alone
provides the most speedup with eight cores active, even ex-
ceeding that achieved by the broadcasting scheme. Intu-
itively, this would seem to be the result of the interconnect
being unable to accommodate broadcast traffic with eight

@ Basic @ CF 0 BC O BC+CF

Mean Speedup

sMT cmpP2 cMPa cmPg

Configuration

Figure 4. Effects of CMP Optimizations

cores active, while point-to-point cross-feeds utilize it more
efficiently. However, this is not an issue. Since the intercon-
nect is a single-channel bus, the broadcasting itself does not
cause any additional traffic. In addition, the helper threads
are short and not data-memory intensive compared to reg-
ular workloads. Cross-feeding outperforms broadcasting
with eight cores active because the forced mirroring effect
of broadcasting effectively hampers helpers. With some
helper threads running far ahead of the remaining threads,
data return from trailing threads contend for cache resources
at all levels, even on cores running the leading threads with
fills for data that are no longer relevant to their execution.
For cores running these leading threads, the logically obso-
lete data are either contained in local cache already, or will
evict current useful data that are needed for these threads
to make further progress. In short, the indiscriminate UMA
broadcasting can effectively let the laggards slow down the
pioneers. Furthermore, for the cross-feeding scheme, any
additional core that is activated adds to the effective capac-
ity of virtual cache aggregate, which on average has faster
service time for L2 misses than that from L3.

6. Conclusion

In this paper, we demonstrate that existing SP techniques
provide performance improvements even on basic CMP ar-
chitectures, but they fall short of their full potential due to
the lack of sharing at the levels of cache closer to the exe-
cution resources, especially in comparison to performance
of SP on SMT. While individual threads on CMP cores in-
cur less resource contention, our evaluation shows that the
cost of inter-core communication far outweighs the benefit
of decreased execution resource contention. This motivates
novel techniques to mitigate this communication bottleneck
to further improve SP performance.

We also demonstrate two simple techniques, L3 cache
return broadcasting and L2 cache cross-feeding, which can
indeed hide some inter-core communication latency and

achieve improvement in SP performance. In particular, we
find the benefits from SP scale up as more cores are devoted
to the SP threads. This not only shows the importance of im-
proving inter-thread communication but also the innate ad-
vantage of chaining triggering, which allows helper threads
to tolerate inter-thread communication latency, thus funda-
mentally ensuring scalability of the SP paradigm.

References

(1]

(2]

(3]

(4]

(9]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

S. G. Abraham and B. R. Rau. Predicting Load Latencies
using Cache Profi ling. Technical Report HPL-94-110, HP
Labs, Dec 1994.

L. A. Baroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,

and B. Verghese. Piranha: A Scalable Architecture Based
on Single-chip Multiprocessing. In 27th International

Symposium on Computer Architecture, 2000.

J. Bharadwaj and et al. The Intel |A-64 Compiler Code Gen-

erator. |[EEE Micro, Sept-Oct 2000.

M. C. Carlide. Olden: Parallelizing Programswith Dynamic
Data Structures on Distributed-Memory Machines. Techni-

cal Report PhD Thesis, Princeton University Department of

Computer Science, June 1996.

T. Chen. An Effective Programmable Prefetch Engine for
On-chip Caches. In 28th International Symposium on Mi-

croarchitecture, Dec 1995.

L. Codrescu and D. S. Wills. Architecture of the Atlas Chip-

Multiprocessor. In International Conference on Computer

Design, 1999.

J. Callins, D. Tullsen, H. Wang, and J. Shen. Dynamic Spec-

ulative Precomputation. In 34th International Symposium on
Microarchitecture, December 2001.

J. Collins, H. Wang, D. Tullsen, H. C, Y.-F. Lee, D. Lav-

ery, and J. Shen. Speculative Precomputation: Long-range
Prefetching of Delinquent Loads. In 28th International Sym-

posium on Computer Architecture, July 2001.

J. Emer. Simultaneous Multithreading: Multiplying Alpha's
Performance. In Microprocessor Forum, Oct 1999.

L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP. |EEE Micro, Mar-

Apr 2000.

G. Hinton and J. Shen. Intel’s Multi-Threading Technol ogy.

In Microprocessor Forum, Oct 2001.

J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Za

hir. Introducing the IA-64 Architecture. |IEEE Micro, Sept-

Oct 2000.

D. Joseph and D. Grunwald. Prefetching using Markov Pre-

dictors. In 24th International Symposium on Computer Ar-

chitecture, June 1997.

N. Jouppi. Improving Direct-mapped Cache Performance by
the Addition of aSmall Fully associative Cache and Prefetch
Buffers. In 17th International Symposium on Computer Ar-

chitecture, May 1990.

J. Kahle. The IBM Power4 Processor. In Microrpocessor

Report, Oct 1999.

S. Keckler and et a. Exploiting Fine-Grain Thread Level

Parallelism on the MIT Multi-ALU Processor. In 25th Inter-

national Symposium on Computer Architecture, 1998.

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

R. Krishnaiyer and et al. An Advanced Optimizer for the
|A-64 Architecture. |EEE Micro, Nov-Dec 2000.

S. Liao, P Wang, H. Wang, G. Hofehner, D. Lavery,
and J. Shen. Post-Pass Binary Adaptation for Software-
Based Speculative Precomputation. In ACM Conference on
Programming Language Design and Implementation, June
2002.

C. K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In 28th International Symposium on Computer
Architecture, June 2001.

T. Mowry and A. Gupta. Tolerating Latency through
Software-controlled Prefetching in Shared-memory Multi-
processors. Journal of Parallel and Distributed Computing,
June 1991.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessor. In
7th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct 1996.
A. Roth and G. Sohi. Speculative Data-Driven Multithread-
ing. In 7th IEEE International Symposium on High Perfor-
mance Computer Architecture, Jan 2001.

H. Sharangpani and K. Aurora. Itanium Processor Microar-
chitecture. |EEE Micro, Sept-Oct 2000.

G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Proces-
sors. In 22nd International Symposium on Computer Archi-
tecture, 1995.

SPEC CPU2000
http://www.spec.org/osg/cpu2000/docy.
J. G. Steffan and T. Mowry. The Potential for Using Thread-
level Data Speculation to Facilitate Automatic Paralleliza-
tion. In 4th |[EEE International Symposium on High Perfor-
mance Computer Architecture, 1998.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
Processors: Improving both Performance and Fault Toler-
ance. In 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Nov 2000.

M. Tremblay. MAJC: An Architecture for the New Millen-
nium. In Hot Chips 11, 1999.

D. M. Tullsen. Simulation and Modeling of a simultaneous
multithreaded processor. In 22nd Annual Computer Mea-
surement Group Conference, Dec 1996.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultane-
ous Multithreading: Maximizing On-Chip Parallelism. In
22nd International Symposium on Computer Architecture,
June 1995.

H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito,
M. Girkar, S. Liao, and J. Shen. Speculative precompu-
tation: exploring use of multithreading technology for la
tency. In Intel Technology Journal, Volume 6, Issue on
Hyper-threading, February 2002.

P. Wang, H. Wang, J. Callins, E. Grochowski, R. Kling, and
J. Shen. Memory latency-tolerance approaches for Itanium
processors. out-of-order execution vs. speculative precom-
putation. In 8th International Symposium on High Perfor-
mance Computer Architecture, Feb 2002.

C. Zilles and G. Sohi. Execution-based prediction using
speculative dices. In 28th International Symposium on
Computer Architecture, July 2001.

Documentation.

