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Abstract

This paper presents new analytical models of the performance be-

nefits of multithreading and prefetching, and experimental nleasure-

ments of parallel applications on the MIT Alewife multiprocessor.

For the first time, both techniques are evaluated on a real machine

asopposedto simulations. Themodels determine theregion in the

parameter space where the techniques are most effective, while the

measwements detemine theregion where the applications lie. We

find that these regions do not always overlap significantly.

The multithreading model shows that only 2A contexts are ne-

cessary to maximize this technique’s potential benefit in current

multiprocessors. Multithreading improves execution time by less

than 10% for most of the applications that we examined. The model

also shows that multithreading can significantly improve the per-

formance of the same applications in multiprocessors with longer

latencies. Reducing context-switch overhead is not crucial,

The software prefetchingmodel shows that allowing 4 outstand-

ing prefetches is sufficient to achieve most of this technique’s poten-

tial benefit on current multiprocessors. Prefetehing improves per-

formance over a wide range of parameters, and improves execution

time by as much as 20-50% even on current multiprocessors. The

two models show that prefetching has a significant advantage over

multithreading for machines with low memory latencies and/or ap-

plications with high cache miss rates because a prefetch instruction

consumes less time than a context-switch.

1 Introduction

The high latency of remote memory accesses is a major impediment

to good application performance on scalable cache-coherent muki-

processors. Several techniques have been proposed for coping with

this problem, including block multithreading and sojbvareprefetch-

ing. These techniques overlap communication with useful compu-

tation to reduce processor stalls. Block multithreading, or multi-

threading for short, switches between processor-resident threads on

cache misses that involve remote communication. Software pre-

fetching, or prefetching for short, requests in advance cache blocks

that would otherwise lead to cache misses.
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The performance benefits of multithreading and prefetching de-

pend on parameters such as the multiprocessor’s cache miss latency,

the application’s cache miss rate, and the amount ofuseful computa-

tion in between consecutive cache misses. We refer to the last para-

meter as the application’s rw.-lerzgdz.

This paper develops simple but usefid analytical models that

predict the maximum performance benefit achievable through mul-

tithreading and prefetching. It introduces the notion ofgain to char-

acterize the benefit, where gain is defined as the ratio of program ex-

ecution times without and with the technique. The multithreading

model extends Agarwal’s processor utilization model [1] to predict

the gain due to multithreading. The prefetching model is new, and

predicts both utilization and gain due to prefetching.

The models are usefhl for investigating the design tradeoffs as-

sociated with multithreading and prefetching, to understand the ef-

fect of technological changes, and to predict the potential bene-

fits of each latency-tolerating technique. They determine the range

of architectural and application parameters, such as run-length, re-

mote cache miss latency and context-switch overhead, where muki-

threading and prefetching are most likely to improve performance.

This paper applies the models towards evaluating mukithread-

ing and prefetching on the MIT Alewife Machine [2], a distributed

shared-memory multiprocessor that implements both techniques.

For the first time, both techniques are evaluated on an actual ma-

chine as opposed to simulations. We measure the run-lengths of a

number of applications and use the models to predict the potential

benefits of multithreading and prefetching for these applications.

To corroborate the models’ predictions, we measure the actual per-

formance of the applications with the latency-tolerating techniques.

The multithreading model shows that 2-4 contexts are suffi-

cient to maximize this technique’s potential benefit in the current

generation of shared-memory multiprocessors. Multithreading im-

proves execution time by less than 10% for most of the applica-

tions in this paper. The model also shows that multithreading can

significantly improve the performance of the same applications in

future multiprocessors with much longer latencies, provided suffi-

cient hardware contexts exist to tolerate the longer Iatencies, Redu-

cing context-switch overhead will not be crucial in these multipro-

cessors.

The prefetching model shows that this technique can improve

performance over a wide range of parameters. On current multi-

processors, aHowing up to 4 outstanding prefetches is sufficient to

achieve most of the potential benefit of this technique. Prefetching

can improve the execution time of several of the applications by as

much as 20-5070, even on current multiprocessors. The rest of the

applications may also benefit in titure multiprocessors.
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A comparison of the two models shows that soflware prefetch-

ing has a significant advantage over multithreading for machines

with low remote access latencies and/or applications with high re-

mote cache miss rates because a prefetch instruction typically con-

sumes less time than a context-switch. However, prefetching does

not always realize its higher potential of improving performance

over mukithreading because it requires prefetch instructions to be

inserted at the right places. Furthermore, long run-lengths and

latencies reduce the negative impact of context-switch overhead in

multithreading.

This paper makes the following contributions:

c It presents models that determine the usefulness of multi-

threading and prefetching in the hardware design and applic-

ation space. The models expose performance limits by con-

sidering gain as well as processor utilization. As far as we

know, this paper is the first to present a processor utilization

and gain model for soflware prefetching.

● It presents an analytical and experimental comparison of mul-

tithreading and prefetching on a single multiprocessor plat-

form. This allows us to isolate the differences between the

two techniques while keeping other parameters constant.

● It introduces the concept of a “sweet spot,” a criterion for de-

termining if a latency-tolerating technique is useful for a par-

ticular set of hardware parameters and application character-

istics. A comparison of sweet spots against run-lengths of a

representative set of applications on Alewife shows that some

of the applications cannot benefit significantly from either

technique in current multiprocessors.

The remainder of this paper is organized as follows. The next

section presents background on multithreading and prefetching.

Section 3 presents our models of the two techniques. Section 4 de-

scribes Alewife and our application workload, and presents the res-

ults of our analyses and experiments. Section 5 considers the bene-

fits on other architectures. Finally, Section 6 summarizes the con-

clusions drawn tlom this research.

2 Background

Multithreading and prefetching have been the focus of work on tol-

erating communication latency for many years. Multithreaded pro-

cessors have been proposed or used in several machines, such as the

HEP [25], Monsoon [22], the Tera MTA [4], McGill MTA [14], and

MIT Alewife [2]. A description of the history and status of multi-

threaded architectures and research appears in [7] and [1 5].

Early multithreaded architectures take an aggressive fine-grain

approach that switches contexts at each instruction. This requires a
large number of contexts and very low overhead context switches.

The main drawback of this approach is poor single-thread perform-

ance. To address this limitation, Alewife introduced the idea of

block multithreading, where caches reduce the number of remote

cache misses and context-switches occur only on such misses. This

allows a less aggressive implementation of multithreading [3].

Some recent architectures [16, 18] promise both single-cycle

context-switches and high single-thread performance by allowing

instructions from multiple threads to interleave arbitrarily in the

processorpipeline. The Tera MTA [4] takes an extreme approach by

providing 128 contexts on each processor. At each cycle, the pro-

cessor executes an instruction from one of the contexts. Tera does

not have caches, and requires a large number of concurrent threads

and high network bandwidth to achieve high processor utilization.

Previous experimental research on multithreading performance

shows that multithreading is effective at tolerating memory laten-

cies for some applications [13, 26]. Previous analytical research

[1, 23,21, 11] focuses on modeling processor utilization and pre-

dicting the number of contexts needed for good processor utiliza-

tion. In contrast, this paper combines analytical models and exper-

imental measurements in a novel way. It defines a range of run-

lengths where multithreading is profitable, and compares this range

to the run-lengths in real applications.

Prefetching has been considered in many flavors, with hardware

[9, 10], soflware [20, 8], and hybrid [6] approaches. Software pre-

fetching, where a compiler inserts prefetch instructions for blocks

ahead of actual use, is widely accepted as one of the most efi-

cient prefetching techniques. It requires little hardware support and

usually incurs the overhead of a single instruction per cache block

prefetched, Several machines provide software prefetching, includ-

ing Stanford DASH [19], the KSRI [12], and MIT Alewife.

As far as we know, performance studies of software prefetch-

ing have all been experimental [20, 8, 6]. These studies indicate

sizable performance improvements and consistently better perform-

ance than other prefetching strategies. We significantly extend these

contributions by modeling software prefetching both in terms of

processor utilization and gain, defining a range of run-lengths where

prefetching is profitable, and comparing this range to experimenta-

lly observed run-lengths.

Empirical comparisons of multithreading and prefetching are

extremely uncommon. Gupta et al. [13] find that prefetching leads

to better performance when applied either in isolation or in combin-

ation with relaxed consistency. They show that multithreading with

an aggressive 4-cycle context-switch overhead, combined with re-

laxed consistency achieves good performance. Our study uses both

modeling and measurement to provide insight into such previous

results by allowing parameters to be varied easily and their effects

observed.

3 Performance Models of Multithreading and Prefetching

This section develops analytical models of multithreading and pre-

fetching that predict upper bounds on processor utilization and gain,

based on machine and application parameters such as remote cache

miss latencies and application run-lengths. The models make the

following assumptions:

Multithreaded processors switch contexts only on remote

cache misses. Software prefetches are issued only for blocks

that would otherwise cause a remote cache miss.

Remote cache miss latencies are constant within the section

of an application that we wish to model.

Mukithreading and prefetching result in longer remote cache

miss latencies and shorter run-lengths due to increased

memo~ traffic and cache pollution.

The models ignore the impact of multithreading andprefetch-

ing on program synchronization performance and scheduling.
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Number of contexts on a processor

: Context-switch overhead

(time to switch between processor-resident threads)

T(p) Remote cache miss latency

(time to service a cache miss involving remote nodes)

t(p) Average run-length (time between remote cache misses)

U(p) Processor utilization

(percentage of time doing usefid computation)

G(p) Gain due to multithreading (U(p) /U(l))

Table 1: Definitions of the parameters in the multithreading model.

3.1 A Performance Model for Multithreading

Previous research has presented sophisticated models of multi-

threading performance that focus on predicting processor utilization

as accurately as possible. These models attempt to account for the

effect of multithreading on other system parameters such as cache

and network behavior.

In contrast, we use a simple model of processor utilization and

extend it to predict the limits on the gain due to multithreading. This

allows us to characterize precisely the regime where multithreading

may significantly benefit an application. While more sophisticated

utilization models may yield tighter upper bounds on the benefit of

multitbreading, the added accuracy is not worth the additional com-

plexi~ for our purposes.

The main parameters that affect the performance of multith-

readed processors are the number of contexts p, the context-switch

overhead C, the latency of remote cache misses T(p), and the av-

erage run-length t(p). Our model uses these parameters to pre-

dict processor utilization, U(p), and the gain due to multithreading,

G(p). Table 1 summarizes these parameters.

Figure 1 illustrates two cases to consider when modeling the

utilization of a mukithreaded processor. In the first case, enough

contexts exist to overlap remote cache miss latency completely.

This occurs when Z’(p) < (p– l)t(p) +PC. In the second case, not

enough contexts exist so that the processor suffers some idle time.

Thus, the utilization of a multithreaded processor is

{

& if T(p) < (p – l)t(p) + pC

u(p) = (1)

&
otherwise

This is the same model for processorutilization presented in [1].

We carry the analysis a step further and derive an upper bound on

the gain achievable through multithreading, G(p).

The processor utilization for a non-multithreaded processor is

t(1)

‘(1)=t(1)+T(l)

As observed in [1 ], multithreading may shorten run-lengths and

increase remote memory latencies. That is, t(p)< t(1)due to

cache interference and finer computation grain sizes, and T(p) 2

T’(l) due to higher network and memory contention. With these

inequalities, the maximum performance gain from using a multith-

readed processor with p contexts, G(p) = U(p)/U( 1), is

{

.*- if T’(p) < (P - l)t(p) +PC

G(p) < (2)

P otherwise

Equations 1 and 2 provide a useful tool for evaluating the po-

tential benefits of multithreading for a given machine architecture.

The machine’s hardware determines the values of T(p) and C and

allows us to determine the range of run-lengths, t(p),such that mul-

tithreading results in both a significant gain and a reasonable level

of processor utilization in order to justifi hardware support for mul-

tithreading, We define that range of run-lengths to be the sweet spot

of multithreading for that architecture.

Sections 4 and 5 use the model to evaluate mukithreading in

Alewife and other architectures. We now develop a corresponding

model for processor utilization and gain due to prefetching.

3.2 A Performance Model for Prefetching

Unlike multitbreading, software prefetching relies on a user or com-

piler to insert explicit prefetchinstructions for data cache blocks that

would miss otherwise. Often, such a task is program-dependent.

Thus, we need to identify the type of programs we are interested

in modeling.

In the following analysis, we focus on regular loops as a nat-

ural candidate for prefetching. We find that a number of the applic-

ations we consider in this paper contain loops that can be optimized

through prefetching. Furthermore, such loops comprise a signific-

ant fraction of the total execution time of those applications.

The prototypical loop that we target for prefetching looks like:

for (i = O; i < N; i++) compute(i);

A prefetching compiler would transform such a loop to a piece

of code similar to:

prefetch(O, p); /* prefetch p blocks for iter O */

for (i = O; i < N–step; i += step){

/* prefetch p blocks for iter i+step to i+2*step– 1 */

prefetch(i+step, p);

/* compute iters i to i+step– 1 */

for (j = O; j < step; j++) compute(i*step + j);

}
/* compute last ‘step’ iterations */

for (j = O; j < step; j ++) compute(i*step + j);

The parameters involved in modeling the behavior of the above

prefetching loop are the number of cache blocks prefetched at a

time, p, the overhead of each prefetch instruction, c, the latency of

remote cache misses, T(p), and the average amount of computation

per prefetched block, t.This last parameter is equivalent to the run-

length t(p)in the multithreading model. Table 2 summarizes these

parameters.

Prefetching allows greater flexibility when trying to overlap

communication and computation, since the compiler or user can

schedule the prefetches according to the remote access latency of

the machine and the amount of work per iteration of each loop in
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Figure 1: Time lines illustrating the overlap of communication latency T(p), with computation, t(p), when multithreading

contexts. In the second case, T(p) is too long to be completely bidden and results in some idle processor cycles.
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Figure2: Timelines iJlustiting tieoverlap ofcommication latency, T(p), with computation, pt, whenprefetchingp blocks atatime. pc,

prefetches cache blocks forcomputation blockpt,. Inthesecond case, T(p) istoolong to becompletely hidden andresults insome idIe

processor cycles in eveq other computation block.

P Number of cache blocks prefetched at a time

c Prefetch overhead (time taken by a prefetch instruction)

T(p) Remote cache miss latency

(time to service a cache miss involving remote nodes)

t Average computation per prefetched cache block

U(P) processor utilization withpprefetches atatime

G(p) Gaindue toprefetching (U(p) /U(0))

Table2: Definitions of theparameters intheprefetching model.

the program. This intelligent scheduling of prefetches adjustsp and

the iteration step size appropriately (see code segments above).

The optimal number of blocks to prefetch also depends on the

available cache space; blocks prefetched into the cache may be

replaced before being used. Another limitation isthe number of

prefetched blocks that can fit in a prefetchhransaction buffer. Under

these constraints, the amount of usefi.d work that can be overlapped

with communication may be insufficient to hide memory latency

completely.

Figure 2 illustrates the behavior of the prefetching loop. The ex-

ecution alternates between prefetch and computation intervals, with

each prefetch accessing cache blocks to be used one computation

block ahead.’ Again, there are two cases to consider. In the first

case, enough blocks are prefetched to provide enough computation

to overlap remote memory access latency completely, In the second

case, the computation block is too short to avoid processor idle time.

The resulting processor utilization is given by

‘While it is possible to have loops that prefetch more than one computation block

ahead, we can always transform such loops into an equivalent loop that prefetches a

single computation block ahead.

(* if T(p) < pt + 2pc

u(p) = 1P (3)

pt; Tt(p) otherwise

To derive an upper bound on the gain due to prefetching, we

compute the ratio U(p) /U(0). The processor utilization without

prefetching is

t

‘(0)= t+ T(0)

Again, we assume T(p) ~ T(0), so that the maximum perform-

ance gain from prefetching, G(p) = U(p) /U(0), is

{

~ if T(p) < pt + 2pc

G(p) < (4)
2&&ll ofierwise

In a similar way to the multithreading model, Equations 3 and

4 provide a useful tool for evaluating the potential benefits of pre-

fetching. For a given machine architecture, we can determine the

range oft such that prefetching results in both a significant gain and

a reasonable level of processor utilization in order to justifi hard-

ware support for prefetching.

4 Evaluating Multithreading and Prefetching on Alewife

This section applies our models towards an evaluation of multi-

threading and prefetching in the MIT Alewife Machine [2], Ale-

wife provides support for both multithreading and prefetching, and

presents an ideal platform for evaluating both techniques, Atler

describing the Alewife architecture, we use Alewife’s latency,

context-switch, and prefetch overhead parameters to determine the

40



<....swee. Spot, . ..>

3

‘“%. ,.p.: 4 :
T =53 cycles

64 KB Cache/Node

2 MB Shared-Mamory/Node
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c ❑ 18 cycles

Figure 3: Architecture of the MIT Alewife Machine,

sweet spots for each of the techniques. Next, we measure the rtm-

lengths of a number of applications on Alewife to find out if they

lie within the sweet spots. Last, to corroborate the models, we run

a subset of the applications with mukithreading and prefetching en-

abled, and measure the resulting gains.

4.1 The MIT Alewife Machine

Figure 3 presents an overview of the architecture and organization

of Alewife. Each node consists of a Sparcle processor [3] and an

associated floating point unit with up to 4 processor contexts, 64K

bytes of direct-mapped cache, 8M bytes of DRAM, an Elko-seties

mesh routing chip (EMRC) from Caltech, and a custom-designed

Communication and Memory Management Unit (CMMTJ). The

EMRC routers use wormhole routing and are connected in a 2-D

mesh. The CMMLJ implements Alewife’s scalable cache-coherent

shared-memory.

Alewife supports multithreading via Sparcle’s register windows

and fast trap handling. A cache miss involving remote communica-

tion generates a trap that performs an 18-cycle context-switch to an-

other register window.z Alewife supports both read and wtite pre-

fetching by using special Sparcle memory loads and stores, and a

transaction buffer in the CMMU to store prefetch data [17],

Alewife’s parameters for our models are its 18-cycle context-

switch overhead, 2-cycle prefetch instruction overhead, and aver-

age remote cache miss latency of 53 cycles, (A two-party cache

miss takes 42 cycles and a three-party cache miss takes 63 cycles.)

Thus, we assume that C = 18, c = 2, and T(p) = 53.

4.2 Model Predictions for Alewife

Figures 4 and 5 present the results of the multithreading and pre-

fetching models with Alewife’s parameters. Each graph plots both

processor utilization and gain as a finction of run-length. These

graphs show that for both techniques, gains are significant for short

2Spsrcle actually supportsa 14-cyclecontext-switch,butaminorbug in the carrent

version of the CMMU requires a 4-cycle work-around.

~1
3
c“
.g

~ 0.5
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Run Length, t(p), (cycles)

Figure 4: Modeling the petiormance of mtdtithreading on Alewife.
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Figure 5: Modeling the performance ofprefetching on Alewife.

run-lengths. However, processor utilization is extremely low for

these same run-lengths. As expected, long run-lengths lead to high

levels of processor utilization. However, gains due to the latency-

tolerating techniques are very limited. These observations highlight

the fact that the sweet spot for both techniques lies somewhere in

between the extremes of run-lengths.

In our evaluation, we define the sweet spot to be between the

shortestrtm-length that yields at least so~o processor utilization (left

bound) and the longest run-length that yields at least 20% potential

gain (right bound). Although we chose this range of values based

on our own criteria of acceptable values for utilization and gain,

others are free to decide on different criteria. The essential point

here is that there is a bounded range of run-lengths where a latency-

tolerating technique is profitable.

In contras< previous research has focused on whether multi-

threading or prefetching can increase processor utilization without

considering whether they are operating in a regime where the gain

ffom latency tolerance is significant enough to care about.
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Program Input Size

Barnes-Hut 16K bodies, 4 iterations

Cholesky 3,948 x 3,948 floats, 56,934 non-zeros (TK15)

LocusRoute 3,817 wires, 20 routing channels (Primary2)

MP3D 1SK particles, 6 iterations

Water 125 molecules, 10 iterations

Appbt 20 x 20 x 20 floats

Mukigrid 56 x 56 x 56 floats

CG 1,400 x 1,400 doubles, 78,148 non-zeros

EM3D 20,000 nodes, 20% remote neighbors

FFT 80,000 floats

Gauss 512 x 512 floats

SOR 512 x 512 floats, 50 iterations

SOR-Dyn 512 x 512 floats, 50 iterations

BLU 512 x 512 floats, 16 x 16 blocks

Mer~eSort I 64.000 integers

Table 3: Main application input parameters.

Figure 4 shows that Alewife has a very narrow multithreading

sweet spot of between about 18 and 105 cycles. This narrow range

can be attributed to Alewife’s short remote cache miss latencies,

Another interesting observation is that within the sweet spot, two

contexts are sufficient to attain all of the potential gains of multi-

threading. In a sense, the Alewife hardware designershave aggress-

ively minimized memory latencies to a point where multithreading

has rather limited benefits.

Figure 5 shows that Alewife’s prefetching sweet spot ranges

from 4 to 250 cycles. It also shows that the number of cache blocks

that can be prefetched at a time, p, affects the performance of pre-

fetching significantly. The reason for this is that the amount of com-

putation that can be used to hide communication latency is expec-

ted to grow linearly with p. Within the sweet spot, allowing up to 4

outstanding prefetches is sufficient to achieve most of the potential

performance gain of prefetching.

The prefetching sweet spot is wider than the multithreading

sweet spot mainly because of the lower overhead of prefetching:

2 versus 18 cycles. For run-lengths of less than 100 cycles, pre-

fetching gains are significantly better than multithreading gains. For

longer run-lengths however, the overhead of a context-switch be-

comes less significant and both techniques perform comparably.

The analysis thus far poses an unanswered question: where do

typical applications lie along the spectrum of run-lengths? The next

section presents measurements of application run-lengths on the

Alewife machine to determine if they fall within the sweet spot.

4.3 Application Performance on Alewife

In order to determine the range of run-lengths found in real applic-

ations on a real machine, we use a 32-processor Alewife multipro-

cessorto study a large number of parallel applications, including the

SPLASH [24] and NAS [5] parallel benchmarks and a number of

engineering kernels.

Table 3 lists the applications and their input parameters, Please

refer to the SPLASH and NAS documents for descriptions of those

benchmarks. Among the engineering kernels, EM3D simulates

electromagnetic wave propagation through 3-D objects, FFT per-
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Figure 7: Potential gain based on prefetching run-lengths.

forms a Fast Fourier Transform, Gauss performs Gaussian elimin-

ation, BLU performs blocked LU decomposition, MergeSort sorts

a list of integers, and SOR performs red-black Jacobi relaxation.

SOR-Dyn is a dynamically scheduled version of SOR.

To measure mukithreading run-lengths, t(p), we use Alewife’s

built-in statistics hardware, which includes event and cycle coun-

ters, to count the number of remote cache misses and the execution

time of each application. Assuming an average remote cache miss

time of 53 cycles, we derive an average value for run-length.

To measure prefetching run-lengths, t, we hand-instrument each

loop that has been optimized with prefetching. The instrumented

loops measure the actual execution time for each prefetched cache

block. Subtracting two cycles for each prefetch instruction from the

execution time yields the value oft.

Figures 6 and 7 present the average mukithreading and prefetch-

ing run-lengths in the applications on 32 Alewife processors,3 and

the corresponding potential gains. The applications are listed in or-

‘Results on 16-processors do not differ significantly from 32 processors
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Figure 8: Measured gain on Alewife due to multithreading. Figure 9: Measured gain on Alewife due to prefetching.

der of increasing rtm-lengths. We should note that using the average

run-length in our models yields a correct upper bound on the over-

all performance of an application even if the application consists of

phases with different run lengths. However, we do not provide a

proof of this here due to space limitations.

The prefetching run-lengths are generally shorter than the mul-

tithreading run-lengths, although they are comparable parameters

in the models. One reason for this difference is that mukithreading

switches contexts only on remote cache misses while prefetches oc-

cur for every remote memory access that is expected to miss. This

causes mukithreading run-lengths to tend to be longer than prefetch-

ing run-lengths.

Another reason for this difference is that multithreading rtm-

lengths are measured over the entire application, while prefetching

run-lengths are measured only at loops optimized with prefetching.

This strategy reflects the common practical use of these techniques:

multithreading is implemented in hardware and is active through-

out execution, while prefetching is implemented by the compiler

or programmer to optimize loops. We measured multithreading

run-lengths within the loops optimized with prefetching and found

that both measurement strategies lead to minor differences in run-

Iengths, except for MP3D, BLU, and Gauss. In these applications,

multithreading run-lengths within the loops are actually longer than

the global mukithreading run-lengths because cache miss rates out-

side the loops are higher.

Recall that run-lengths measure the time in between remote

cache misses and prefetches. Thus, a high local cache miss rate can

inflate the run-lengths since the local miss latency in included in the

time. Our measurements find that the majority of the applications

have local miss rates of well below 5’%0and that only EM3 D has a

significant local cache miss rate of 230/0 on 32 processors.

Most of the applications have long mukithreading run-lengths

of 200-2000 cycles that lie outside of the sweet spot. This dimin-

ishes the prospect of speeding up these applications with multi-

threading. Only MP3D, CG, and Cholesky lie within the sweet spot

and may benefit from multithreading. The prefetching run-lengths

are shorter, and range ilom 5&500 cycles, with MP3D, CG, EM3D,

Gauss, SOR-Dyn and MergeSort all falling within the sweet spot.

The most important observation here is that for Alewife’s para-

meters, most of the applications operate on a suboptimal part of the

parameter space for multithreading. This implies that mukithread-

ing is not likely to yield much benefit for the applications we con-

sidered. The main reason for this is Alewife’s short remote cache

miss latencies relative to the application run-lengths. The prospect

is better for prefetching, but only for applications where we can

identifi loops for optimization.

To validate our models’ predictions of the upper bound of ap-

plication gains, we execute a subset of the applications on Alewife

with the latency-tolerating techniques and measure the resulting ex-

ecution times. For multithreading, we statically schedule a thread

on each hardware context, with two contexts on each processor.4

This prevents scheduling overhead tlom diminishing any poten-

tial gain. We produced multithreading versions of only a subset of

our applications, due to minor incompatibilities between Alewife’s

thread-based model and the benchmarks’ process-basedmodel. For

prefetching, we identifi loops in a subset of the applications that are

amenable to optimization with prefetch instructions, and modified

them in accordance with the description in Section 3.

Figures 8 and 9 present the results. We see that the applica-

tions respect the models’ upper bounds on the achievable gain for

each technique. Some applications come close to achieving op-

timal performance, but many others do not as a result of factors

such as cache interference and/or contention. We also find that the

latency-tolerating techniques sometimes affect the synchronization

and scheduling behavior of the application adversely. Characteriz-

ing or avoiding performance degradation from such factors is bey-

ond the scope of this paper.

The models and experimental resuks for Alewife show that

multithreading and prefetching yield rather limited benefits for the

current generation of shared-memory machine architectures like

Alewife and Stanford DASH, where remote cache miss latencies

are relatively short. The models can be easily applied to other

machine architectures, and the next section investigates the effect

of different architectural parameters such as latency and context-

switch/prefetch overhead on the performance of each technique.

4Experimerrtswith threecontextsshowonly minor performancedifferences,
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5 Potential Benefits on Other Architectures

The latency of remote cache misses, ‘T(p), the overhead of con-

text switching, C, and the overhead of prefetching, c, are signific-

ant factors on the performance of multithreading and prefetching.

In order to investigate the potential of these techniques for current

and fiture architectures, this section models the sensitivity of util-

ization and gain on each of these parameters.

5.1 Effect of Remote Cache Miss Latency

The latency of remote cache misses determines the amount of com-

munication that must be tolerated. Longer latencies require a larger

number of contexts or prefetch buffers to tolerate them. The models

show that longer latencies also increase the potential for improving

performance via latency-tolerating techniques.

Figures 10 and 11 model the effect of varying remote cache miss

Iatencies, assuming enough contexts or prefetch buffers to tolerate

the latencies. The vertical lines in each graph delimit the sweet spot

and the range of application run-lengths. We see that longer laten-

cies tend to widen the sweet spot and increase the overlap with the

application run-lengths.

Figure 10 shows the effect of varying remote cache miss laten-

cies on multithreading, with p = 10 and C = 15. It shows

that latency has a significant impact on the performance of mul-

tithreading: even though the processor utilization is virtually the

same for all the latencies we considered, the potential gain due to

multithreading is much greater with longer latencies, and the sweet

spot extends to longer run-lengths.

Figure 11 shows the effect of varying remote cache miss laten-

cies on prefetching, with p = 10 and c = 2. It shows that increasing

latency has the effect of shitting the entire sweet spot towards longer

run-lengths. For the run-lengths in the applications in this study, the

effect of latency on utilization is negligible, while the effect on gain

is much more pronounced.

These results imply that most of the SPLASH and NAS bench-
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Figure 11: Effect of remote cache miss latency on prefetching. Ver-

tical lines delimit the sweet spot and the range of application run-

lengths.

marks would benefit from mukithreading or prefetching on ma-

chines with remote latencies longer than 200 cycles. Recall that

only three of the applications have run-lengths longer than 1000

cycles. The rest of the applications fall within the sweet spots.

5.2 Effect of Multithreading and Prefetching Overhead

Another parameter that affects performance is the overhead asso-

ciated with each technique: the context-switch overhead for mul-

tithreading and the prefetch instruction overhead for prefetching.

Assuming enough contexts or prefetch buffers to cover the latency,

lower overheads tend to extend the sweet spot towards shorter run-

Iengths. However, there is little or no impact on the sweet spot at

longer run-lengths. Figures 12 and 13 illustrate this effect.

Figure 12 shows the effect of varying context-switch overhead

on multithreading, with p = 10 and T = 50. The graph shows

that context-switch overhead significantly impacts performance for

short run-lengths. A lower overhead tends to extend the sweet spot

towards shorter run-lengths, However, context-switch overhead

does not have a significant impact within the range of application

run-lengths we found.

With higher latencies, the models predict that context-switch

overhead has even less impact on performance. This implies that

Alewife’s context-switch overhead is small enough for the applic-

ations we considered. A more aggressive implementation is neces-

sary only for applications with run-lengths shorter than 100 cycles.

Figure 13 shows the effect of varying prefetch instruction over-

head on prefetching, with p = 10 and T = 50. The graph shows

that prefetch overhead significantly impacts performance for short

run-lengths. We also see that prefetch overhead has very little effect

for run-lengths that are longer than 50 cycles. As with multithread-

ing, prefetch overhead is not a significant factor for the applications

we considered.

The figure also shows the interesting result that even a 2-cycle

run-length is within the prefetching sweet spot for this set of para-

meters. This result means that even an application with no locality
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whatsoever can achieve reasonable performance with prefetching,5

provided that enough prefetch buffers and network bandwidth exist.

To summarize, lower overheads extend the sweet spot towards

shorter run-lengths, in contrast with longer latencies that extend the

sweet spot towards longer run-lengths. Since the application run-

lengths in our experiments either lie outside the sweet spots or only

overlap with their rightmost region, overhead makes little differ-

ence on performance for the applications in our suite.

5.3 Implications for Other Architectures

We conclude this section by speculating on the implications of our

analysis on the architecture of other computing platforms.

A recently promoted alternative to custom-designed multipro-

cessors for parallel computing is to use commodity workstations

connected via high-speed networks. Multithreading and prefetch-

ing may have a larger impact here. Such a platform is likely to have

remote memory latencies in the order of 10 ,US. Assuming a 5 ns

cycle time, this results in a latency of about 2000 cycles, At such

latencies, our models predict that multithreading and prefetching

are likely to improve performance significantly. Since latencies are

so high, these techniques could even be implemented in soflware,

handling memo~ pages as opposed to cache blocks. The hardware

would only need to support non-blocking memory loads and stores.

Multiprocessor latency-hiding techniques have also been sug-

gested to improve performance in uniprocessor systems. As ad-

vances in processor speeds outstrip advances in memory speeds,

local memory latencies become more significant. It is conceivable

that cache misses will take upwards of 50 cycles in the next genera-

tion of high-speed processors, close to today’s multiprocessors’ re-

mote memory latencies. Uniprocessor local cache misses me likely

to be much more frequent than multiprocessor remote cache misses.

On such a platform, context-switch and prefetch overheads will be

significant and will need to be reduced as much as possible.

5A similar effectcanbeobservedin Figure 12but hsrdwaresupportfor a 1-cycle
context-switchis moreexpensivethanfor a 1-cycleprefetchinstructionoverhead.
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Figure 13: Effect ofprefetch instruction overhead on prefetching.
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6 Summary and Conclusions

This paper introduces analytical models of processor utilization

and performance gain for two latency-tolerating techniques: muki-

threading and prefetching. The models, based on hardware and ap-

plication characteristics such as memory latencies and application

run-lengths, show the limits as well as the benefits of these tech-

niques. The models define sweet spots: conditions under which the

techniques may improve performance significantly. They provide

a method for architects and programmers to evaluate if a particular

latency-tolerating technique will be effective for a particular set of

architectuml parameters and applications.

A comparison of the sweet spots with run-lengths ilom a rep-

resentative set of applications running on the MIT Alewife Machine

shows that for current multiprocessors, very few of the applications

can benefit significantly from multithreading, while some but not all

of the applications can benefit from prefetching. The main reason

behind this is the relatively short remote cache miss latencies (<

150 cycles) in these machines, With short latencies, prefetching has

an advantage over multithreading because a context-switch usually

consumes more processor cycles than a prefetch instruction.

An evaluation of the effect of technological changes shows that

remote cache miss latencies have a greater impact on the perform-

ance benefits ofmultithreading and prefetching than their associated

overheads. A remote cache miss latency of greater than 200 cycles

will allow multithreading and prefetching to improve application

performance significantly. With longer latencies, the higher over-

head of context-switching becomes less of a factor.

A comparison of the two models shows that prefetching is

preferable over multithreading for machines with low remote access

latencies and/or applications with poor locality and consequently

short run-lengths. The performance of both techniques is compar-

able for applications with high remote access latencies and/or good

locality. For the applications in our suite, prefetching is the tech-

nique of choice for current multiprocessors, while both multithread-

ing and prefetching can be successful for fiture multiprocessors.
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