
A Survey of Multiprocessor

Operating System Kernels

(DRAFT)

Bodhisattwa Mukherjee (bodhi@cc.gatech.edu)

Karsten Schwan (schwan@cc.gatech.edu)

Prabha Gopinath (gopinath prabha@ssdc.honeywell.com)

GIT–CC–92/05

5 November 1993

Abstract

Multiprocessors have been accepted as vehicles for improved computing speeds,

cost/performance, and enhanced reliability or availability. However, the added

performance requirements of user programs and functional capabilities of parallel

hardware introduce new challenges to operating system design and implementa-

tion.

This paper reviews research and commercial developments in multiprocessor op-

erating system kernels from the late 1970’s to the early 1990’s. The paper first

discusses some common operating system structuring techniques and examines

the advantages and disadvantages of using each technique. It then identifies some

of the major design goals and key issues in multiprocessor operating systems. Is-

sues and solution approaches are illustrated by review of a variety of research or

commercial multiprocessor operating system kernels.

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332–0280

Contents

1 Introduction 1

2 Structuring an Operating System 4

2.1 Monolithic Systems : 4

2.2 Capability Based Systems : 4

2.3 Message Passing Systems : 6

2.4 Language Based Mechanisms : 7

2.5 Object-Oriented and Object-Supporting Operating Systems : : : : : : : : : : : : : : 8

2.6 Vertical and Horizontal Organizations : 9

2.7 Micro-kernel Based Operating Systems : 10
2.8 Application-specific Operating Systems : 11

3 Design Issues 12

3.1 Processor Management and Scheduling : 12
3.1.1 Heavyweight Processes to Lightweight Threads : : : : : : : : : : : : : : : : : 12
3.1.2 Scheduler Structures : 14
3.1.3 Scheduling Policies : 14

3.2 Memory Management : 19
3.2.1 Shared Virtual Memory : 19
3.2.2 NUMA and NORMA Memory Management : 20

3.3 Synchronization : 23
3.3.1 Locks : 24
3.3.2 Other Synchronization Constructs : 26

3.4 Interprocess Communication : 26
3.4.1 Basic Communication Primitives : 26
3.4.2 Remote Procedure Calls : 27
3.4.3 Object Invocations on Shared and Distributed Memory Machines : : : : : : 28

4 Sample Multiprocessor Operating System Kernels 28

4.1 HYDRA : 28
4.1.1 Execution Environment and Processes : 29
4.1.2 Objects and Protection : 30
4.1.3 HYDRA and Parallel Computing : 30

4.2 StarOS : 30
4.2.1 Task Forces : 32
4.2.2 Synchronization and Communication : 33
4.2.3 Scheduling : 33
4.2.4 Reconfiguration : 34

4.3 Mach : 34
i

4.3.1 Memory Management : 35
4.3.2 Interprocess Communication : 36
4.3.3 Scheduling : 36
4.3.4 The Mach 3.0 Micro-kernel : 37

4.4 Elmwood : 38
4.4.1 Objects and LONS : 38
4.4.2 Processes and Synchronization : 39
4.4.3 Interprocess Communication : 39

4.5 Psyche : 39
4.5.1 Synchronization : 40
4.5.2 Memory Management : 41
4.5.3 Scheduling : 41

4.6 PRESTO : 41
4.6.1 Customization : 42

4.7 KTK : 42
4.8 Choices : 45

4.8.1 Tasks and Threads : 45
4.8.2 Interprocess Communication : 45
4.8.3 Memory Management : 46
4.8.4 Persistent Objects : 46
4.8.5 Exception Handling : 46

4.9 Renaissance : 46
4.9.1 Process Management : 47
4.9.2 Synchronization : 47

4.10DYNIX : 47
4.10.1Process Management and Scheduling : 47
4.10.2Synchronization : 48
4.10.3Memory Management : 48

4.11UMAX : 48
4.11.1Process Management and Scheduling : 48
4.11.2Synchronization : 48
4.11.3Memory Management : 48

4.12Chrysalis : 48
4.12.1Process Management and Scheduling : 49
4.12.2Memory Management : 49
4.12.3Synchronization : 49

4.13RP3 : 49
4.13.1Process Management and Scheduling : 50
4.13.2Memory Management : 50

4.14Operating Systems for Distributed Memory Machines : : : : : : : : : : : : : : : : : 50
ii

5 Conclusions and Future Work 52

iii

1 Introduction

Parallel processing has become the premier approach for increasing the computational power

of modern supercomputers, in part driven by large-scale scientific and engineering appli-

cations like weather prediction, materials and process modeling, and others, all of which

require GigaFlop computing speeds and Terabytes of rapidly accessible primary and sec-

ondary storage. However, perhaps more important than the HPCC applications named above

are commercial motivations for the development of parallel machines, which include improved

machine cost/performance, scalability to different application requirements, and enhanced

reliability or availability.

The purpose of this survey is to review some of the major concepts in operating systems

for parallel machines, roughly reflecting the state of the art in the early 1990’s. More impor-

tantly, we identify the main research issues to be addressed by any operating system for a

multiprocessor machine, and we review the resulting solution approaches taken by a variety

of commercial and research systems constructed during the last decade. Moreover, it should

be apparent to the reader upon finishing this paper that many of these solution approaches

are and have been applied to both parallel and distributed target hardware. This ‘convergence’

of technologies originally developed for parallel vs. distributed systems, by partially divergent

technical communities and sometimes discussed with different terminologies is driven by

recent technological developments: (1) multiprocessor engines, when scaled to hundreds of

processors, can appear much like distributed sets of machines, and (2) distributed machines

linked by high performance networks (especially local area networks or network devices de-

rived from current ATM or even supercomputer routing technologies) are being increasingly

used as parallel computing engines.

One self-imposed limitation of this survey is its focus on performance rather than relia-

bility in parallel systems. Reliable systems are surveyed in several recent articles, including

[237, 28, 149]. A second limitation of this survey is its treatment of operating system kernels

rather than operating systems, thereby neglecting system functionalities like file systems,

database support, network protocols, and others. This focus reflects an unfortunate lack

of attention paid to such issues in many previous operating research projects and even in

some commercial systems. Recent work is rapidly correcting such deficiencies. It includes

industry efforts to offer concurrent I/O or file system support [114, 115] or even concurrent

databases on parallel machines [195], work on communication protocols for high performance

and parallel machines [110, 147], and research efforts addressing efficient file management

on parallel machines [89, 31]. Such work is motivated by the intended use of parallel ma-

chines for commercial, large-scale data processing, by upcoming programs like NASA’s EOS

satellites which will generate Terabytes of data that have to be processed and re-processed

for use in earth science applications [252], and it is motivated by the recent convergence of

high performance computing and networking technologies resulting in large-scale, physically

distributed, and heterogeneous parallel machines.

Brief survey of multiprocessor hardware. Several current textbooks in parallel computing

provide good overviews of parallel machine architectures [111, 6, 233, 188]. For purposes of

this paper, we briefly review some of the major types of parallel machines, eliding architectures

for SIMD programs, functional programs, and systolic applications.

Depending on the coupling of processors and memory, multiprocessors may be broadly

divided into two major categories:� Shared memory multiprocessors. In a shared memory multiprocessor, all main memory
is accessible to and shared by all processors, as shown in Figure 1. Shared memory

1

Dn

D1

D0

connect
Inter-
I/O

Processor

Disks

Processors

Memory Modules

PnP1P0

M1 MnM0

Interconnect
Processor-Memory

Figure 1: Multiprocessor Architectures

multiprocessors are classified on the basis of the cost of accessing shared memory:

1. Uniform Memory Access (UMA) multiprocessors. In an UMA architecture, the access

time to shared memory is the same for all processors. A sample UMA architecture

is the bus based architecture of the Sequent multiprocessor [224], where a common

bus links several memory modules to computing modules consisting of a cache

shared by two processor elements, and I/O devices are attached directly to the bus.

2. Non-Uniform Memory Access (NUMA) multiprocessors. In a NUMA architecture, all

physical memory in the system is partitioned into modules, each of which is local to

and associated with a specific processor. As a result, access time to local memory is

less than that to nonlocal memory. Sample NUMA machines are the BBN Butterfly

parallel processor [130] and the Kendall Square Research supercomputer [195]. The

BBNmachines use an interconnection network to connect all processors to memory

units, whereas the KSR machines use cache-based algorithms and a hierarchical

set of busses for connecting processors to memory units. In both machines, I/O

devices are attached to individual processor modules.� NO Remote Memory Access (NORMA) multiprocessors. In this class of architectures, each
processor has its own local memory that is not shared by other processors in the system.

Hypercubes like the NCube multiprocessors, past Intel iPSC machines and current Intel

iSCmeshmachines [114, 115], the Thinking Machines CM-5 [246, 140], and workstation

clusters are examples of non-shared memory multiprocessors. Workstation clusters

differ from hypercube or mesh machines in that the latter typically offer specialized

hardware for low-latency inter-machine communication and also for implementation of

selected global operations like global synchronization, addition, or broadcast.

UMA architectures are the most common parallel machines, in part because most such

machines are simply used as high throughput multiprogrammed, multi-user timesharing

machines, rather than as execution vehicles for single, large-scale parallel programs. In-

terestingly, although all memory is accessed via a single shared bus, even UMA machines

2

often have NUMA characteristics because individual processors access shared memory via

local caches. Cache misses and cache flushing can result in effectively non-uniform mem-

ory access times. Furthermore, bus contention may aggravate variability in memory access

times, and scalability is limited in that the shared global bus imposes limits on the maximum

number of processors and memory modules it can accommodate.

A NUMA architecture addresses the scalability problem by attaching local memory to each

processor. Processors directly access local memory and communicate with each other and

with remote memory modules through an interconnection switch. One type of switch is

an interconnection network consisting of multiple levels of internal nodes, where systems are

scaled by addition of internal switch nodes, as in the BBN Butterfly multiprocessors [130, 64].

A second type of switch consists of a hierarchical set of busses [121, 195], where access times

to remote memory depend on either the number of internal switch nodes on the access

path between the processor and the memory or on the number of traversed system busses.

Because a NUMA architecture allows a large number of processors in a single machine, many

experimental, large-scale multiprocessors are NUMA machines, an example being the IBM

RP3 which was designed to contain up to 512 processors [45, 44], and the KSR machine

again offering up to 512 processors.

NORMA multiprocessors are the simplest to design and build, and have become the archi-

tecture of choice for current supercomputers like the Intel Paragon [114, 115], recent Cray

machines, and others. In the simplest case, a collection of workstations on a local area

network constitutes a NORMA multiprocessor. A typical NORMA multiprocessor consists of

a number of processors interconnected on a high speed bus or network; the topology of in-

terconnection varies. One major difference between NUMA and NORMA multiprocessors is

that there is no hardware support for direct access to remote memory modules. As a result,

NORMAs are more loosely coupled than NUMA machines. However, recent advances in su-

percomputer technologies are leading to tradeoffs in remote to local memory access times for

NORMA machines (e.g., roughly 1:500 for local vs. remote memory access times) that can

approximate those achieved for shared memory machines like the KSR (roughly 1:100). This

suggests that future NUMA or NORMA parallel machines will require similar operating system

and programming tool support in order to achieve high performance parallelism.

A main component of a multiprocessor is its interconnection network. It connects the

processors, the memory modules and the other devices in a system. An interconnection

network, which may be static or dynamic, facilitates communication among processors and

memory modules. A few sample interconnection networks are: time shared or common buses,

crossbar switches, hierarchical switches, and multistage networks. The design, structure

and performance of various interconnection networks have been reviewed in other literature

[264, 111, 6, 233, 188] and are beyond the scope of this survey.

The variety of different kinds of multiprocessor architectures coupled with diverse ap-

plication requirements have resulted in many different designs, goals, features, and imple-

mentations of multiprocessor operating systems, in university research projects and in the

commercial domain. This paper examines a few such projects and commercial endeavors.

The remainder of this paper is organized as follows. Section 2 briefly reviews a few common

structuring techniques used to build an operating system. Section 3 discusses some key

design issues. Finally, Section 4 examines a few sample multiprocessor operating system

kernels developed for research and commercial purposes.

3

2 Structuring an Operating System

A multiprocessor operating system is typically large and complex. Its maintainability, ex-

pandability, adaptability, and portability strongly depend on its internal structure. Different

techniques for structuring operating systems [25] are described in this section, along with a

discussion of some of the effects of such structuring on the ease with which an operating sys-

tem can be adapted for use with multiprocessor computing engines. The various structuring

techniques described in this section are not mutually exclusive; several such techniques may

be used in the construction of a single system.

While the bulk of this paper focusses on operating system kernels, this section must

occasionally comment on the organization of the entire operating system. In this context,

we define an operating system kernel as the basic operating system functionality permitting

use of the processors, the main memory, the interconnection network, and the other devices

of the parallel machine. Higher level operating system functionalities like user interfaces,

file systems, database support, and networking are not unimportant, but their discussion is

outside the scope of this paper, in part because their performance will be strongly affected by

the performance attributes and basic functionality of the underlying system kernel.

2.1 Monolithic Systems

Some operating systems such as Unix [196], OS/360 [166] and VMS [143] have been im-

plemented with large, monolithic kernels insulated from user programs by simple hardware

boundaries. No protection boundaries exist within the operating system kernel, and all com-

munication among processes implementing higher level operating system functionality (e.g.,

file system daemons) happens through system-supplied shared memory or through explicit

message-based communication constructs. It has been shown that the lack of a strong fire-

wall within the large operating system kernel, combined with large kernel sizes and complex-

ities, make such monolithic systems difficult to modify, debug and validate. The shallowness

of the protection hierarchy makes the underlying hardware directly visible to a large amount

of complicated operating system software. Monolithic systems are also extremely difficult to

adapt for use in a distributed environment, and most such systems have no facilities that

allow users to change some specific service provided by the operating system.

Recent experiences with the implementation of monolithic operating system kernels for

parallel machines (e.g., the Sequent’s or SGI’s operating systems) have been confined to UMA

machines. Attempts to build such systems for large-scale parallel machines like the RP3 have

met with mixed success. As a result, more recent work in multiprocessor operating systems

for machines like the RP3, the BBN Butterfly, and the KSR supercomputer have been based on

Mach or on OSF Unix, both of which have smaller kernels and offer some facilities for kernel

and operating system customization for different application domains and target machines

(see Section 4.3 for a discussion of the Mach operating system’s configuration support).

2.2 Capability Based Systems

In a capability-based system [70], each accessible entity exists in its own protection domain,

but all entities reside within a single name space. A capability is both a name and a set of

access rights for an entity, and is managed by an underlying hardware or software kernel.

A process is not allowed to reference an entity for which the process’ current domain does

not have a capability. An entity can be shared by more than one domain, but a process in

one domain can access and manipulate such an entity only by invoking an access method

for which the process has sufficient rights (according to its capability). Invocation across

4

System
Operating

ApplicationsAnA1A0

Figure 2: Monolithic Systems

protection domains happens via a protected procedure call, in which a process in one domain

having an appropriate execute capability, transfers control to a second domain, and executes

entirely within the context of the second domain. Parameter passing is by reference between

the caller and the callee.

D2D1D0

C1

C0

C3

C2

C1

C0

C2

C1

C0

O6

O5O4

O3

O2

O0

O1

Domains

Capabilities

Objects

Figure 3: Capability Systems

The implementation of capability based addressing has been carried out using both soft-

ware and hardware techniques. A few sample software based systems are Hydra [258] and

Cal/Tss [235]. CAP [179] and the Intel/432 [62] are examples of hardware based systems.

Despite early favorable predictions, system builders have been largely unsuccessful in im-

plementing and programming capability based systems which perform as well as machines

based on more traditional memory reference models [132, 59]. This may be due to the fact

that most early research and commercial systems focussed on the use of capabilities for

enforcement of protection boundaries and system security characteristics, typically by en-

forcing the Principle of Least Privilege. This principle states that each program and each

5

user of a system should operate using the least set of privileges necessary to complete a

job [206]. Unfortunately, the principle’s implementations often implied the Principle of Least

Performance, which means that anything that was protected was also expensive to access, so

that users attempted to avoid using a system’s protection mechanisms, and implementors of

commercial operating systems avoided using protection mechanisms to the maximum extent

possible. It appears, however, that the extremely large address spaces offered by modern

64 bit architectures are beginning to reverse this trend, in part because it is evident that

program debugging and maintainability require some fire-walls within the 64 bit addressing

range potentially accessible to a single parallel program.

2.3 Message Passing Systems

In a message passing system, a process always remains within its address space; commu-

nication among processes happens through message transfer via a communication channel.

When a process in one address space requests a service from another address space, it creates

a message describing its requirements, and sends it to the target address space. A process

in the target address space receives the message, interprets it and services the request.

THE [72], Thoth [56], and Demos [16] are a few examples of the earliest message passing

systems. The primary motivation behind the design of these systems was to decentralize

the structure of an operating system running on a single computer. On the other hand, the

motivation behind the latter message passing systems such as RIG [191], V [54], Accent [193],

and various hypercube operating systems [205, 221] was to build an operating system on a

structure of distributed computers.

Address Spaces

message message

A1A0

KERNEL

Figure 4: Message Passing Systems

In contrast to the fine-grained protection of capability systems, network based message

passing systems rely on a coarse-grained protection mechanism. Communication facilities

based on messages transparently permit both local and remote communication. Local com-

munication takes place between two address spaces on the same machine, whereas remote

communication takes place between address spaces on different machines connected via a

communication network.

A message passing system enforces modularity and is suitable for distribution. However,

programs have to be manually structured in a paradigm that is foreign to the control and data

6

structuring mechanism of traditional “Algol-like” languages. Specifically, with message pass-

ing, data transfers have to be explicitly initiated whenever processes require communication.

This gives programmers the opportunity to use application-specific knowledge to avoid un-

necessary data transfers. However, message passing also requires that programmers use two

entirely different mechanisms for access to memory: all local memory may be accessed using

normal operations as done when accessing individual program variables, whereas all ‘remote’

memory must be accessed using message operations. Interestingly, recent research is begin-

ning to address this dichotomy by providing a basic ‘memory’ abstraction for representation of

both local and remote memory, and by addressing the potential performance penalties arising

from providing this abstraction by ‘weakening’ the strong consistency requirements imposed

on main memory [19, 145]. The resulting, weakened shared memory abstraction presented to

programmers may be implemented efficiently because strong consistency and therefore, in-

terprocessor communication is not required for all memory accesses. Other models of shared

memory exploit programmer directives to reduce the cost of coherence maintenance [19], or

they provide explicit primitives with which users can maintain application-specific notions of

coherence of shared state [7] (see Section 3.2.2 for more information on this research).

One interesting lesson learned from current work on weakly consistent memories is that

message passing and sharedmemory need not be different or mutually exclusivemechanisms.

This may result in future operating systems that offer ‘memory’ abstractions or more strongly

typed abstractions like ‘shared queues’ using object-like specification mechanisms. Such

operating systems, therefore, might be structured as collections of cooperating objects, where

object invocations may result in messages, in memory sharing, or in both, and where objects

themselves may internally be structured as collections of cooperating objects or even as

fragmented object [226, 57, 211, 159].

2.4 Language Based Mechanisms

Single language systems. CLU [148], Eden [134], Distributed Smalltalk [18], Emerald [125],

and Linda [49] are a few examples of languages that integrate message based communica-

tion into the programming environment, either by defining all control structures in terms of

messages, or by using messages as the basis for building “Algol-like” or entirely new control

structures.

The advantages of a language based system are transparency and portability. References

to local vs. remote objects are both handled transparently and automatically by the language’s

runtime system. In addition, the type system of the language can encourage optimizations

that coalesce separate modules into one address space, while maintaining their logical sep-

aration. However, while such optimizations can alleviate certain performance problems with

this approach, specific language primitives will inevitably impose performance penalties of

which programmers must be aware in order to write efficient parallel programs. For example,

the Ada rendezvous mechanism leads to well-known performance problems [43], the global

addressing mechanisms and fixed language semantics of Linda can lead to inefficiencies con-

cerning the update and access of remote information [211], and heap maintenance has been

shown difficult for languages like Smalltalk [260, 186].

Another inherent problem with language based systems can be protection, where language-

level typing mechanisms must be mapped to the protection mechanisms available in the

underlying operating system [14, 254], which is not always easily done. In addition, any

language based system will require all cooperating modules to be written in the same lan-

guage, which precludes the use of mixed language environments. Furthermore, in order to

guarantee the integrity of a system based on language-level decomposition, any executable

code must be inspected by a trusted system entity to guarantee type-safety at runtime, es-

7

sentially requiring access to its source code [25]. Finally, all language based systems will still

require the availability of lower-level runtime system support for efficient program execution,

as clearly apparent from current efforts to develop a threads-like common runtime system

layer for both high performance Fortran and concurrent C++. It is precisely the structuring

of such support that is the concern of this paper.

Remote procedure calls. Systems supporting Remote Procedure Calls (RPC) [30] occupy

a middle ground between message based and single language systems. The use of RPC al-

lows isolated components to be transparently integrated into a single logical system. In an

RPC system, a procedure call interface hides the underlying communication mechanism that

passes typed data objects among address spaces. Subsystems present themselves to one

another in terms of interfaces implemented by servers. The absence of a single, uniform ad-

dress space is compensated by automatic stub compilers and sophisticated runtime libraries

[180, 110, 207] that transfer complex arguments in messages. RPC systems require that the

data passed among cooperating modules be strongly typed; within a module, a programmer

is free to mix languages, use weakly typed or untyped languages, violate typing if needed, and

execute code for which source is not available [25].

ServerClient

KERNELKERNEL
Messages

RPC Runtime

Stubs

Application

Figure 5: Remote Procedure Call

RPC is used for both local and remote communication between address space. An RPC

between address spaces on different machines is often referred to as a cross-machine RPC

whereas an RPC between address spaces on the same machine is referred to as a cross-

address space RPC.

The principal components of an RPC system are clients, servers, and messages. A server

is an address space which contains the code and data necessary to implement a set of proce-

dures which are exported to other address space. A client is an address space which requests

a service from a server by sending an appropriate message [180].

2.5 Object-Oriented and Object-Supporting Operating Systems

Several ongoing projects are using or exploring the object-oriented paradigm for building

operating systems. Such systems may be broadly classified as object-oriented or object-

8

supporting operating systems, depending on their internal structures and on the interfaces

they provide to the user level [227, 198, 83].

Object-Oriented Operating Systems (OOOS). In an object-oriented operating system, an

object encapsulates a system entity [156, 48]. An object-oriented language is primarily used

to implement such an operating system [201]; the properties of the language such as data

encapsulation, data abstraction, inheritance, polymorphism etc. are used to structure the

system. An OOOS may or may not support objects at the user level. Examples of OOOSs are

Choices [47] and Renaissance [202, 172].

Object-Supporting Operating Systems (OSOS). An object supporting operating system is

not necessarily structured in an object-oriented fashion. However, it supports objects at the

user level; the objects are typically language independent. Sample OSOSs are SOS [228],

Cool [102], and CHAOS [213, 92, 91] for parallel machines, and Chorus [197] and Clouds [68]

for distributed machines. OSOSs can further be classified into different groups depending on

the kind of objects they support. In the active-server model of computation, objects are active

entities containing threads of execution that service requests to the object [92, 91]. An OSOS

supporting passive objects offers an object-thread model where a single thread of execution

traverses all objects within an invocation chain [68, 128].

One use of object orientation in operating systems is to exploit type hierarchies to achieve

operating system configuration (e.g., as done in Choices [47]) along with stronger notions

of structuring than available in current systems. Another use of this technology is to use

object based encapsulations of operating system services in order to represent operating

system services internally in different ways, invisibly to services users. Examples of such

uses are the internally parallel operating system servers offered in the Eden system [134] or

in CHAOS [213, 92] and Presto [24, 23], the association of protection boundaries with certain

objects as intended in Psyche [80], or the internally fragmented objects offered by Shapiro

[227, 229, 98] for distributed systems, in ‘Topologies’ [211] for hypercube machines, and in

‘Distributed Shared Abstractions’ [57] for multiprocessor engines.

Unresolved issues with object-oriented operating systems include the efficient represen-

tation of object invocations, where it has become clear that ‘not all invocations are equal’,

ranging from rapid unreliable invocations useful in real-time multiprocessor applications

[213, 92] to reliable multicast invocations required for certain distributed programs [103]. In

addition, as with remote procedure calls, it is unclear what levels of machine and language

support are required for efficient implementation of object invocations (e.g., for parameter

marshaling [103] or for crossing protection boundaries [258, 80]). However, object-oriented

operating systems are likely to become increasingly important in part (1) because of the wide

range of parallel architectures (or even sequential machines – ranging from digital pages to

workstations) to be supported by future parallel operating systems and (2) because of the

increasing importance of object-oriented languages like C++. It is likely that object-oriented

operating systems will be constructed using the micro-kernel operating system structuring

technique explained in Section 2.7.

2.6 Vertical and Horizontal Organizations

Some researchers have identified two broad classes of organization of operating system ker-

nels referred to as horizontal and vertical organization [80]. These alternatives roughly cor-

respond to the message-based and procedure-based organizations respectively [133].

9

OS Servers

Micro-kernel

Applications

.. .
System program interface

Application program interface

App nApp 2App 1

Server nServer 1

Portable Machine Independent

Machine Dependent

...

HARDWARE

Figure 6: Micro-kernel based operating system

Vertical Organizations. In a vertical kernel, there is no fundamental distinction between a

process in the user space and a process in the kernel. A user process enters the kernel via a

trap when required, performs a kernel operation, and returns to user space. A kernel resource

is represented by a data structure shared among processes. The vertical organization presents

a uniform model for the user and the kernel level processes and closely mimics the hardware

organization of a UMA multiprocessor. Most Unix [196] kernels are vertically organized.

Horizontal Organizations. In a horizontal kernel, each major kernel resource is repre-

sented by a separate kernel process (or thread), and a typical kernel operation requires

communication among the set of kernel processes that represent the resources needed by

the operation. The horizontal organization leads to a compartmentalization of the kernel

in which all synchronization is subsumed by message passing. The horizontal organization

closely mimics the hardware organization of a distributed memory multicomputer. Demos

[16] and Minix [239] are examples of horizontal kernels.

2.7 Micro-kernel Based Operating Systems

Micro-kernel based operating systems are structured as a collection of system servers running

on top of a minimal kernel (see Figure 6). The micro-kernel itself only implements the lowest-

level (mostly hardware dependent) functions of an operating system. Such primitive functions

include task and thread management, interprocess communication/synchronization, low-

level memory management, and minimal device management (I/O). All higher level operating

system services are implemented as user-level programs. Therefore, applications must use

cross-address space RPC to interact with most operating system services. This implies that

the performance of inter-process communication (IPC) mechanism plays a critical role in the

performance of such operating systems [20].

The primary characteristic of micro-kernel based operating systems is modularity, thereby

hoping to improve system extensibility, portability, reconfigurability, and improved support

10

for distribution [251, 93, 92]. Improvements in distribution, extensibility, and reconfigura-

bility [175] result from the separation of system components from each other, and from the

use of message passing as the communication mechanism among them [251]. As a result,

new services can be added (as new servers) or an existing server can be replaced by another

without altering the existing components or the micro-kernel itself. Unlike large monolithic

systems, such architectures also localize the hardware-dependent portions of the operating

system inside the kernel, thereby potentially improving operating system portability. Fur-

thermore, the use of common underlying services provides support for the coexistence and

interoperability of multiple operating system environments on a single host as user-level pro-

grams [32]. Mach [32], Chorus [197], KeyKOS [42], QNX [106], and BirLiX [208] are a few

examples of micro-kernel based operating systems.

2.8 Application-specific Operating Systems

Many application domains impose specific requirements on operating system functionality,

performance, and structure. One blatant example of such requirements comes from the real-

time domain, where application software and operating system support can be so intertwined

that many systems may be better described as consisting of operating software – combined

application software and operating system support functions – rather than as application

software and an underlying operating system. This is because in contrast to other parallel or

distributed application software, the control software of real-time systems cannot be termed

reliable unless it exhibits two key attributes [209]: (1) computations must complete within

well-defined timing constraints, and (2) programs must exhibit predictable behavior in the

presence of uncertain operating environments [210, 27]. Operating software, then, must have

direct access to the underlying resources typically controlled by the operating system, and

for complex applications, it must deal with uncertainty in operating environments by even

permitting programs or operating system components to adapt [215, 129] (i.e., change at

runtime) in performance [209] and functionality during system execution [210, 213, 26, 96].

While many embedded real-time operating systems are offering functionality akin to multi-

user systems, they do not impose any restrictions on resource use and reservation by applica-

tion programs. For instance, in the CHAOS and CHAOSarc operating systems [96, 213, 92],

operating software implementing either application or operating system functionality consists

of a number of autonomous objects, each providing a number of operations (entry points) that

can be invoked by other objects. Such functionality appears no different from what is offered

by other object-oriented operating systems. However, addressing the requirements of real-

time programs, CHAOSarc object invocations range from reliable invocations that maintain

parameters and return information (or even communication ‘streams’ [213]) to invocations

that implement unreliable ‘control signals’ or ‘pulses’ [213, 253]. Furthermore, invocation

semantics can be varied by attachment of real-time attributes like delays and deadlines,

where deadline semantics may vary from guaranteed deadlines, which are hard deadlines

that must not be missed to weak deadlines [154], which specify that partial or incomplete

results are acceptable when the deadline is missed. The resulting direct access to resources

is a characteristic such real-time operating systems share only with certain single-user oper-

ating systems for parallel machines. On the other hand, system configurability is a property

CHAOSarc shares with many current high-performance operating systems, including the

Synthesis kernel [163, 162], the Psyche system and its related research [219, 168], Presto

[24, 23], and others [24, 23, 52].

Other examples of application-dependent operating system structures occur for database

systems, where an operating system’s I/O facilities and networking facilities may be deter-

mined or at least strongly affected by the primary application running on this system: a

large-scale database performing transaction processing [231].

11

3 Design Issues

The basic functionality of a multiprocessor operating system must include most what is

present in uniprocessor systems. However, complexities arise due to the additional functional

capabilities in multiprocessor hardware and more importantly, due to the extreme require-

ments of performance imposed on the operating system. Namely, since one main reason for

using parallel hardware is to improve the performance of large-scale application programs, an

operating system or system constructs that perform poorly are simply not acceptable [11, 89].

Specific problems to be addressed concerning performance include protection in very large

address spaces, deadlock prevention, exception handling for large-scale parallel programs,

the efficient representation of asynchronous active entities like processes or threads, the pro-

vision of alternative communication schemes and synchronization mechanisms, and resource

scheduling like process assignment to different processors and data placement in physically

distributed memory [214], and finally, the parallelization of the operating system itself, again

in order to provide scalable performance for varying application requirements [89, 109, 270].

A second major reason for using a multiprocessor system is to provide high reliability, and

graceful degradation in the event of failure. Hence, several multiprocessor systems have been

constructed and designed for improved fault tolerance. Such systems will not be discussed

in this survey (see [28] for a survey of fault tolerant operating systems).

The following sections focus on design issues that concern operating system kernels or

micro-kernels and therefore, the basic functionality that must be offered by multiprocessor

operating systems, including processor management and scheduling, main memory manage-

ment, and interprocess communication and synchronization.

3.1 Processor Management and Scheduling

The classic functions of an operating system include creation and management of active en-

tities like processes. The effectiveness of parallel computing depends on the performance of

the primitives offered by the system to express parallelism. If the cost of creating and man-

aging parallelism is high, even a coarse-grained parallel program exhibits poor performance.

Similarly, if the cost of creating and managing parallelism is low, even a fine-grained program

can achieve excellent performance.

3.1.1 Heavyweight Processes to Lightweight Threads

One way to express parallelism is by using “Unix-like” processes sharing parts of their address

spaces. Such a process consists of a single address space and a single thread of control.

Kernels supporting such processes do not distinguish between a thread and its address

space; they are sometimes referred to as heavyweight threads. The parallelism expressed

using heavyweight threads is coarse-grained and is too inefficient for general purpose parallel

programming for the following reasons:� Since the kernel treats a thread and its address space as a single entity, threads and
address space are created, scheduled, and destroyed together. As a result, the creation

and deletion of heavyweight threads are expensive.� Reallocating a processor to a different address space (context switch) is expensive. There
is an initial scheduling cost to decide the address space to which the processor should

be reallocated. Next, there is a cost for updating the virtual memory mapping registers

and transferring the processor between address spaces. Finally, there is a long term

cost associated with cache and TLB performance due to the address space change [169].

12

Hence, in many contemporary operating system kernels, address spaces and threads are

decoupled, so that a single address space can have more than one execution threads. Such

threads are referred to asmiddleweight threads or kernel-level threads when they are managed

by the operating system kernel (POSIX Pthreads [185]). The advantages of middleweight

threads are:� The kernel can directly schedule an application’s thread on the available physical pro-
cessors.� Kernel-level threads offer a general programming interface to the application.

Kernel-level threads also exhibit some problems that can make them impractical for use in

fine-grained parallel programs [25]:� The cost of generality of kernel-level threads is not acceptable to fine grained parallel
applications. For example, saving and restoring floating point context in a context switch

are expensive and may be unnecessary for a specific application program.� A relatively costly protected kernel call is required to invoke any thread management
operation, including thread synchronization. For example, many programs would rather

have direct access to the hardware’s synchronization operations.� A single model represented by one style of kernel-level thread is unlikely to have an
implementation that is efficient for all parallel programs.

To address the above problems with kernel-level threads, system researchers have turned

to user-level threads, also known as lightweight threads. User-level threads are managed by

runtime library routines linked into each application. A thread management operation does

not require an expensive kernel call. Furthermore, lightweight threads enable an application

program to use a thread management system, most appropriate to the problem domain.

Mach Cthreads [60, 173, 212], the University of Washington threads [165, 9], SunOS LWP

and threads [113, 127, 189], are a few popular lightweight thread implementations.

A lightweight thread generally executes in the context of a middleweight or a heavyweight

thread. Specifically, the threads library schedules lightweight threads on top of middleweight

or heavyweight threads, which in turn are scheduled by the kernel on the available physical

processors. Such a two-level scheduling policy has some inherent problems:� User level threads, typically, do not have any knowledge of kernel events (e.g., processor
preemption, I/O blocking and resuming, etc.). As a result, the application library cannot

schedule a thread on a “just idle” processor.� When the number of runnable kernel-level threads in a single address space is greater
than the number of available processors, kernel-level threads must be multiplexed on

the available processors. This implies that user-level threads built on top of kernel-level

threads are actually scheduled by the kernel’s thread scheduler, which has little or no

knowledge of the application’s scheduling requirements or current state [9].

Problems with multi-level scheduling arise from the lack of information flow between differ-

ent scheduling levels. Anderson et al. in [9] attempt to solve these problems for two-level

scheduling by:

1. Explicit vectoring of kernel events to the user level thread scheduler, using upcalls called

scheduler activations1, and by

1Scheduler activations are defined to be entities similar to kernel-level threads. One crucial distinction between

scheduler activations and kernel level threads is that scheduler activations are not scheduled by the kernel. The kernel
maintains the invariant that there are always exactly as many runnable scheduler activations as there are processors
assigned to each address space.

13

2. notifying the kernel of user-level events affecting processor allocation.

Tucker and Gupta [249] propose a similar solution which dyanamically controls the num-

ber of processes used by applications. This scheme is discussed in details in Section 3.1.3.

Similarly, Marsh et al. in [161] propose a set of kernel mechanisms (incorporated in the

Psyche operating system) required to implement “first-class user-level” threads addressing

the above problem. These mechanisms include shared kernel/user data structures (for asyn-

chronous communication between the kernel and the user), software interrupts (for events

that might require action on the part of a user-level scheduler), and a scheduler interface

convention that facilitates interactions in user space between dissimilar kinds of threads (see

section 4.5 for more on Psyche user-level threads).

A recent paper by Anderson et al. [10] also explores data structure alternatives when

implementing user-level thread packages. Alternate implementations are evaluated in per-

formance for thread run queues, idle processor queues, and for spinlock management. We

are not aware of general solutions to the multi-level scheduling problem, other than the ac-

tual exchange or configuration of the operating system’s threads scheduler by application

programs, as often done in real-time systems [216].

3.1.2 Scheduler Structures

As with other operating system services for parallel machines, schedulers themselves must

be structured to be scalable to different size target machines and to different application re-

quirements. Mohan in his PhD thesis [170, 89] addresses this problem by designing a flexible

run-queue structure, where scheduler run-queues can be configured such that any number

of queues may be used by any number of processors. A similar approach to run-queue or-

ganization is taken in the Intel 432’s iMAX operating system [63]. Recent work on real-time

schedulers for parallel systems is also considering the effects of sharing alternative policy-

level scheduling information on parallel scheduler performance [270]. Beyond this work,

scheduler structuring remains largely unexplored, but should receive increased attention in

operating systems for large-scale parallel machines like the Intel Paragon multiprocessor.

3.1.3 Scheduling Policies

A scheduling policy allocates available time and processors to a job or a process statically

or dynamically [153]. Processor load balancing2 is considered to be a part of a scheduling

policy [232]. Basic theoretical results on static process scheduling on parallel machines show

that the scheduling problem is NP-hard; static algorithms minimizing average response time

include those described in [164] and [39]. Other scheduling algorithms appear in [267] and

[141]. In this section, we focus on dynamic scheduling [164], and on scheduling for shared

memory machines, where variations in distances between different processors on the parallel

machine [39, 214] are not considered.

Static and Dynamic Scheduling: A static scheduler makes a one time decision per job

regarding the number of processors to be allocated. Once decided, the job is guaranteed to

have exactly that number of processors whenever it is active. A static scheduler offers low

runtime scheduling overhead [78], but it also assumes a stable parallel application. This is

a reasonable assumption for many large-scale scientific applications in which parallelism is

derived by decomposition of regular data domains [204]. Recent work, however, is focussing

more on dynamic scheduling for two reasons: (1) because most complex large-scale parallel

applications exhibit irregular data domains or changes in domain decompositions over time,

2Processor load balancing concerns the dynamic distribution of processing loads among the processors of the parallel
machine.

14

so that a static processor allocation rapidly becomes inefficient and (2) large-scale parallel

machines are often used in multi-user mode, so that scheduling must take into account the

requirements of multiple parallel applications sharing a single machine [158, 157, 225, 65].

J. Zahorjan and C. McCann compare the performance of static and dynamic schedulers

for multi-user workloads. Their results include [267]:� Independent of workload and overall system load, dynamic scheduling performs best
when context switch overheads are small.� The advantage of dynamic scheduling at low context switch costs increases with larger
and more rapid changes in the parallelism exhibited by a workload.� Dynamic scheduling performs increasingly well relative to the static counterpart as
system load increases.� In terms of average response time, dynamic scheduling dominates static scheduling for
almost all overhead (context switch) values.

The dynamic policy occasionally exhibits a performance penalty when overhead values are

very large. One reason for such performance degradation is a possible high rate of processor

reallocation. Hence, some researchers have suggested to dampen the rate of processor alloca-

tion and release, thereby reducing the rate of “useless processors exchange” [267]. However,

such a modification to the dynamic policy was found to be detrimental to performance [267].

As for uniprocessors, multiprocessor schedulers can be classified as preemptive or nonpre-

emptive schedulers. A scheduler can also be classified according to its scheduling granularity,

which is determined by the executable unit being scheduled (For example, schedulers differ in

that they may schedule individual or groups of processes). A few well acceptedmultiprocessor

scheduling policies are reviewed next [141].

Single Shared Ready Queue: Research addressing UMA multiprocessors has typically as-

sumed the use of a single ready queue shared by all processors. With this queue, policies

like First Come First Served (FCFS) or Shortest Job First (SJF) are easily implemented, and

have been evaluated in the literature. More interesting to us are schedulers and scheduling

policies directly addressing the primary requirement of a parallel program: if performance

improvements are to be attained by use of parallelism, then the program’s processes must be

scheduled to execute in parallel.

Coscheduling: The goal of coscheduling (or gang scheduling) is to achieve a high degree of

simultaneous execution of processes belonging to a single job. This is particularly useful for a

parallel application with cooperating processes that communicate frequently. A coscheduling

policy schedules the runnable processes of a job to run simultaneously on different proces-

sors. Job preemption implies the simultaneous preemption of all of its processes. Effectively,

the system context switches between jobs.

Ousterhout proposed and evaluated three different coscheduling algorithms in his PhD

thesis [183]: matrix, continuous and undivided. In the matrix algorithm, processes of arriving

jobs are arranged in amatrix with p columns and a certain number of rows, where p is the total
number of processors in the system. The arrangement of jobs is such that all the processes

in a job reside in a same row. The scheduling algorithm uses a round-robin mechanism to

multiplex the system between different rows of the matrix, so that all the processes in a row

are coscheduled.

15

A problem with the matrix algorithm is that a hole in the matrix may result in a processor

being idle even though there are runnable processes. The continuous algorithm addresses

this problem by arranging all processes in a linear sequence of activity slots3. The algorithm

considers a window of p consecutive positions in the sequence at a particular moment. When
a new job arrives, the window is checked to see if there are enough empty slots to satisfy

its requirements. If not, the window is moved one or more positions to the right, until the

leftmost activity slot in the window is empty but the slot just outside the window to the left is

full. This process is repeated until a suitable window position is found to contain the entire

job or the end of the linear sequence is reached. Scheduling consists of moving the window

to the right at the beginning of each time slice until the leftmost process in the window is the

leftmost process of a job that was not coscheduled in the previous time slice.

The most serious problem with the continuous algorithm is analogous to external fragmen-

tation in a segmentation system. A new job may be split into fragments, which can result in

unfair scheduling for a large, split jobs vs. small contiguous jobs. Ousterhout addresses this

issue by designing an undivided algorithm, which is identical to the continuous algorithm

except that all of the processes of each new job are required to be contiguous in the linear

activity sequence. Leutenegger & Vernon [141] slightly modify the undivided algorithm to

eliminate some of its performance problems: when a job arrives, its processes are appended

to the end of a linked list of processes. Scheduling is done by moving a window of length

equal to the number of processors over the linked list. Each process in the window receives

one quantum of service on a processor. At the end of the quantum, the window is moved

down the linked list until the first slot of the window is over the first process of a job that was

not completely coscheduled in the previous quantum. When a process within the window

is not runnable, the window is extended by one process and the non-runnable process is

not scheduled. All processors that switch processes at the end of a quantum do so at the

same time. A second algorithm modification improves expected performance for correlated

workloads. This modification is in the movement of the window. At the end of each quanta,

the window is only moved to the first process of the next job, even if the job was coscheduled

in the previous time slice.

Round Robin (RR) Scheduling: Two versions of RR scheduling exist for multiprocessors.

The first version is a straightforward extension of the uniprocessor round robin scheduling

policy. On arrival of a job, its processes are appended to the end of the shared process queue.

A round robin scheduling policy is then invoked on the process queue. The second version

uses jobs rather than processes as the scheduling unit. The shared process queue is replaced

by a shared job queue. Each entry of the job queue contains a queue holding its processes.

Scheduling is done round robin on the jobs. The job in the front of the queue receives p
quanta of size q, where p is the number of processors in the system and q is the quantum size.
If a job has fewer processes than p, then the total quanta size, which is equal to pq, is divided
equally among the processes. If the number of processes in a job exceeds p, then there are
two choices. The first choice is same as the previous case, i.e., divide the total quanta sizepq equally among all processes. The other choice is to choose p processes from the job in a
round robin fashion, each process executing for one quanta. The first alternative has more

scheduling overhead than the second one.

In [249], the authors observe that the performance of an application worsens considerably

when the number of processes in the system exceeds the total number of processors. They

attribute this decreased performance to several problems:� A process may be preempted while inside a spinlock-controlled critical section, while the
other processes of the same application “busy wait” to enter the critical section. This

3In [183], Ousterhout defines an activity slot as a slot to which an activity (or a process) may be assigned. Scheduling
consists of selecting one activity slot in each processor; the assigned activity is executed by the processor. The collection
of activity slots is referred to as the activity space. The three algorithms, described here, assume that no job contains

more than p (number of processors) processes. 16

problem is particularly acute for fine-grain parallel programs. Identical problems arise

when programs’ processes are engaged in producer/consumer relationships.� Frequent context switches occur when the number of processes greatly exceeds the
number of processors.� When a processor is interleaved between multiple address space, cache misses can be a
major source of performance degradation [245].

Careful application design and coscheduling may handle the problems associated with

spinlock-controlled critical sections and those with producer-consumer processes, but they

do not address performance degradation due to cache corruption or frequent context switches.

A more direct solution is proposed by Zahorjan et al. [265], who describe a thread sched-

uler that avoids preempting processes inside critical sections. In contrast, Edler et al. [79]

propose an approach combining coscheduling and preemption avoidance for critical sections.

Multiple processes are combined to form a group. The scheduling policy of a group can be

set so that either all processes in the group are scheduled and preempted simultaneously, or

individual processes are scheduled and preempted normally, or processes in the group are

never preempted. An individual process may choose to override its group scheduling policy.

This policy is flexible, but it leave specific solutions to the critical section problem to user

code.

The problems of cache corruption and context switch frequency are addressed by Lazowska

and Squillante [135], who evaluate the performance of several multiprocessor scheduling

policies based on the notion of processor affinity. A process’s processor affinity is based on

the contents of the processor’s cache. The basic policy schedules a process on a processor

on which it last executed hoping that a large percentage of its working set is still present in

the processor’s cache. Since the policy inherently discourages process migration, it may lead

to severe load imbalance. The authors of [135] address this issue by proposing a variation on

the basic policy which successfully reduces the cache corruption problem.

Similarly, affinity (for local memory) also plays a vital role in scheduling processes in a

NUMA machine; the context of a process resides mostly near the processor on which the

process executed last.

Vaswani and Zahorjan [250] also study the effect of cache affinity on kernel processor

scheduling discipline for multiprogrammed, shared memory multiprocessors and conclude

that the cache effects due to processor reallocation can be significant. However, their exper-

iments demonstrate that affinity scheduling has negligible effect on performance for current

multiprocessors. Finally, they conclude that even on future, faster machines, a scheduling

policy based on dynamic reallocation of processors among jobs outperforms a more static,

equipartition policy.

Tucker and Gupta [249] propose a different solution for reducing the frequency of context

switches and for reducing cache corruption, which is explained next.

Dynamic Partitioning: The dynamic partitioning [187, 73] (also known as Process control

with processor partitioning) policy proposed by Tucker and Gupta [249] has the goal of min-

imizing context switches, so that less time is spent rebuilding a processor’s cache. Their

approach is based on the hypothesis that an application performs best when the number

of runnable processes is the same as the number of processors. As a result, each job is

dynamically allocated an equal fraction of the total number of processors, but no job is allo-

catedmore processors than it has runnable processes. Each application program periodically

polls a scheduling server to determine the number of processes it should ideally run. If the

ideal number is less than the actual number, the process suspends some of its processes,

17

if possible. If the ideal number is greater than the actual number, a process wakes up a

previously suspended process. This policy has limited generality since it requires interac-

tions between user processes and the operating system scheduler, and since it requires that

user programs are written such that their processes can be suspended and woken up during

program execution.

Hand-off Scheduling: A kernel level scheduler that accepts user hints is described in [36].

Two kinds of hints exist:� Discouragement hints: A discouragement hint is used to discourage the scheduler to
run the current thread. A discouragement hint may be either mild, strong, or weak.

David Black in [36] discusses a scheduler that accepts discouragement hints.� Hand-off hints: A hand-off hint is used to suggest the scheduler to run a specific thread.
Using a hand-off hint, the current thread hands off the processor to another thread

without intermediate scheduler interference. Such schedulers are better known as hand-

off schedulers.

two experiments with scheduling hints are described in [36], and it is shown that schedul-

ing hints can be used to improve program performance. Hand-off scheduling has been shown

to perform better when program synchronization is exploited (e.g., the requester thread hands

off the processor to the holder of the lock) and when interprocess communication takes place

(e.g., the sender hands the processor off to the receiver).

In [101], Gupta et al. use a detailed simulation study to evaluate the performance of sev-

eral scheduling strategies. These include regular priority scheduling, coscheduling or gang

scheduling, process control with processor partitioning, hand-off scheduling, and affinity

based scheduling [248]. In addition, tradeoffs between the use of busy waiting and blocking

synchronization primitives are explored, in conjunction with their interactions with different

scheduling strategies. A key focus of the study is the impact of different scheduling strategies

on the caching behavior of an application. Results demonstrate that in situations where the

number of processes exceeds the number of processors, regular priority-based scheduling in

conjunction with busy-waiting synchronization primitives results in extremely poor processor

utilization. In such cases, the use of blocking synchronization primitives improves perfor-

mance significantly. Process control and gang scheduling strategies are shown to offer the

highest performance, and their performance is relatively independent of the synchronization

methods used. However, for applications that have sizable working sets that fit into the cache,

process control performs better than gang scheduling. For the applications considered4, the

performance gains due to hand-off scheduling and processor affinity are shown to be small.

In [266] the authors study the effects of two environmental factors, multiprogramming and

data-dependent execution times, on spinning overhead of parallel applications, and how the

choice of scheduling discipline can be used to reduce the amount of spinning in each case.

Specifically, they conclude that decisions about how to allocate processors to jobs and how to

schedule the threads of a job on its processors must be made cooperatively. Furthermore, for

the range of workloads and systems considered, the difference in mean performance between

synchronization via spinning vs. blocking is found to be very little. They also compare the

static scheduling policy to both fixed and variable self-scheduling policies when the number of

independent tasks exceeds the number of processors available and conclude that the variable

self-scheduling policy provides good overall performance and is the most robust with respect

to overhead costs.

Ongoing research also addresses the development of schedulers for specific application

domains or for specific target machines. One such area is real time systems. In a real time

4The applications considered are a particle-based simulator called MP3D, LU-decomposition on dense matrices, a
parallel implementation of Goldberg and Tarjan’s Maxflow algorithm [94], and a highly optimized block-based parallel
algorithm for multiplying two matrices.

18

system, a scheduling policy must satisfy timing constraints such as deadlines, earliest start

times, etc. of an incoming job. Before a job is assigned one or more physical processors, the

scheduler checks whether the system can satisfy the job’s timing constraints. This analysis

is known as schedulability analysis. Schedulability analysis and scheduling for real time

systems [53, 269, 37, 108, 150, 71, 268] are active areas of research and are not within the

scope of this paper.

3.2 Memory Management

Memory management for UMA multiprocessors is conceptually similar to that for multipro-

grammed uniprocessors. As mentioned earlier, in an UMA architecture, memory access times

are equal for all processors. However, the underlying architecture typically supports some

degree of parallelism in global memory access. As a result, even for UMA machines, operating

system writers must exploit the available hardware parallelism when implementing efficient

memory management. More interesting problems arise for NUMA and NORMA machines.

For early research on memory management in parallel machines, including the implemen-

tation of physically distributed, internally parallel memory managers, the reader is referred

to [119, 120, 89], which present the innovative designs and structures of memory or object

managers for the Cmmp and Cm* multiprocessor systems. Recent research has focussed

primarily on page management, namely, on memory management in the context of virtual

memory systems implemented for parallel machines.

3.2.1 Shared Virtual Memory

A typical virtual memory system manages a memory hierarchy consisting of a cache, uni-

formly accessible primary memory, and significantly slower secondary memory. Unlike the

traditional approach of a three level store, the Accent operating system [84], supports a single

level store, in which primary memory acts as a cache of secondary storage. Filesystem data

and runtime allocated storage are both implemented as disk-based data objects. Copies of

large messages are managed using shadow paging techniques. Other contemporary systems

like the IBM System 38 and Apollo Aegis also use the single level store approach, but limit its

application to the management of files.

A central feature of Accent is the integration of virtual memory and communication. Large

amounts data can be transmitted between processes with high performance using memory

mapping techniques. As a result, client and server processes can exchange potentially large

data objects like files without concern for the traditional data copying cost of message passing.

In effect, Accent carries into the domain of message passing systems the notion that I/O can

be performed through virtual memory management.

The design of the Mach system’s memory management is largely derived from the Accent

system [194, 1, 263, 262]. Its single level store is attractive because it can simplify the

construction of an application program by allowing programmers tomap a file into the address

space of a process, and because it can improve program performance by permitting file data

to be read directly into physical memory pages rather than into intermediate buffers managed

by the operating system. Furthermore, because physical memory is used to cache secondary

storage, repeated references to the same data can often be made without corresponding disk

transfers. The design and implementation of the Mach memory management is discussed in

detail in Section 4.3 below.

Memory management services and implementations are generally dependent on the oper-

ating system5 as well as the underlying machine architecture. Some of the current research

5For example, in real-time executives, memory management services are simple and primitive. General purpose
operating systems such as Unix allow protected address spaces to co-exist on the machine hardware. Some distributed

systems support distributed memory schemes.
19

has focussed on designing memory management functionalities and interfaces which are in-

dependent of the machine architecture and the operating system kernel. For example, the

Mach operating system implements virtual memory management which is machine and op-

erating system independent [194]. The machine-dependent portion of Mach’s virtual memory

subsystem is implemented as a separate module. All information important to the man-

agement of the virtual memory is maintained in machine-independent data structures and

machine-dependent data structures contain only the mappings necessary to run the current

mix of programs [194] (See Section 4.3 for more on the implementation of the Mach virtual

memory management). Similarly, in [2], the authors present the design and the implemen-

tation of a scalable, kernel-independent, Generic Memory Management Interface (GMI) (for

the Chorus [197] nucleus) which is suitable for various architectures (e.g. paged and/or

segmented) and implementation schemes.

Some operating systems [84] allow applications to specify the protection level (inaccessible,

read-only, read-write) of pages, and allow user programs to handle protection violations.

In [12], the authors survey several user-level algorithms that make use of page-protection

techniques, and analyze their common characteristics, in an attempt to identify the virtual-

memory primitives the operating system should provide to user processes. The survey also

benchmarks a number of systems to analyze a few operating systems’ support for user-level

page-protection techniques.

3.2.2 NUMA and NORMA Memory Management

Most early NUMA multiprocessor systems did not offer virtual memory support. However,

recent NUMA or NORMA parallel machines like the Thinking Machines CM-5, the Kendall

Square KSR, and the Intel Paragon, and all UMA operating systems routinely offer virtual

memory.

A NUMA multiprocessor organization leads to memory management design choices that

differ markedly from those that are common in systems designed for uniprocessors or UMA

multiprocessors. Specifically, NUMA machines like the BBN Butterfly do not support cache

or main memory consistency on different processors’ memory modules. Such consistency

is guaranteed only for local memory and caches (i.e., for non-shared memory), or it must

be explicitly enforced for shared memory by user- or compiler-generated code performing

explicit block or page moves [194, 262]. As a result, NUMA architectures implementing a

shared memory programming model typically expose the existing memory access hierarchy

to the application program, as done in BBN’s Uniform System [247]. Motivations for exposing

such information include:

1. Giving programmers the ability to minimize relatively expensive remote vs. less expen-

sive local memory references (i.e., maximize program locality [120]), and

2. permitting programmers to avoid several forms of potential contention (switch or memory

contention) caused by a large number of remote memory references [261].

Recent parallel NUMA architectures like the Kendall Square multiprocessor offer consis-

tent global virtual memory. However, the performance reasons for exposing programmers to

the underlying machine’s NUMA properties persist, leading the system designers to include

hardware instructions for page prefetches and poststores [112].

Research in memory management for parallel machines has focussed on designing tech-

niques for NUMA multiprocessors that relieve programmers from the responsibility of explicit

code and data placement. Realizing that the problem of memory management is similar to the

problem of cache management and consistency for UMA multiprocessors, the Mach operating

20

system’s UMA implementation of memory management [194, 262] attempts to minimize the

amount of data-copying and replication by using page copy-on-write and similar techniques

for reduction of data movement. In essence, the operating system is exploiting the fact that

the sharing of “read-only” data on a multiprocessor does not require the allocation of multiple

private copies; different processes can remotely access a single copy located with the writing

process. On NUMA machines, however, extra data movement in terms of page replication

and migration may result in improved performance, due to decreased page access times for

locally stored pages and due to the elimination of possible switch or memory contention for

access to shared pages, as demonstrated by specific measurements on the BBN Butterfly

multiprocessor reported in several sections below, including Section 4.5.

We briefly discuss several memory management algorithms for NUMA multiprocessors.

Various multiprocessor operating systems such as Mach, Psyche, and PLATINUM use a vari-

ation or a mix of these algorithms.

The algorithms described below are categorized by whether they migrate and/or replicate

data [234, 271]. One algorithm migrates data to the site where it is accessed in an attempt

to exploit locality in data accesses and decreases the number of remote accesses. Two other

algorithms replicate data so that multiple read accesses can happen at the same time using

local accesses.

Migration algorithm: In the migration algorithm, the data is always migrated to the local

memory of the processor which accesses it. If an application exhibits a high locality of

reference, the cost of data migration is amortized over multiple accesses. Such an algorithm

may cause thrashing of pages between local memory.

Read-replication algorithm: One disadvantage of the migration algorithm is that only the

threads on one processor can access the data efficiently. An access from a second processor

may cause another migration. Replication reduces the average cost of read operations, since it

allows read to be simultaneously executed locally at multiple processors. However, a few write

operations become more expensive, since a replica may have to be invalidated or updated to

maintain consistency. If the ratio of reads over writes is large, the extra expense of the write

operation may be offset. Replication can be naturally added to the migration algorithm for

better performance.

Full-replication algorithm: Full replication allows data blocks to be replicated even while

being written to. Keeping the data copies consistent is a major concern in this algorithm.

A number of algorithms are available for this purpose. One of them is similar to the write-

update algorithm for cache consistency. A few such algorithms are discussed in [234], and

some specific NUMA memory management schemes are described for the individual parallel

operating systems in Section 4.

The PLATINUM6 operating system kernel, designed to be a platform for research on mem-

ory management systems for NUMA machines, implements and evaluates [61] a coherent

memory abstraction on top of non-uniform access physical memory architectures. Since co-

herent memory is uniformly accessible from all processors in the system, it makes program-

ming NUMA multiprocessors easier for users. PLATINUM’s goal is to explore the possibility

of achieving performance comparable to that of hand-tuned programs with a simple, easy-to-

program shared-memory model. PLATINUM’s implementation of coherent memory replicates

and migrates data to the processors using it, thus creating the appearance that memory is

uniformly and rapidly accessible. The protocol for controlling the data movement is derived

by extending a directory-based cache coherency algorithm using selective invalidation [13].

6PLATINUM is an acronym for “Platform for Investigating Non-UniformMemory”

21

Page Placement: Other than the Kendall Square Research Corporation’s KSR machines

[195] and the experimental Dash multiprocessors [90], NUMA multiprocessors do not have

broadcast, invalidate, or snooping mechanisms that maintain consistency among multiple

copies of a page when writes occur. Hence, programmers or operating systems restrict

writable pages to a single copy. This gives rise to the page placement problem, which con-

cerns the decision as to which local memory should contain the single page copy. Black et

al. [35] refer to this problem as the migration problem. A similar problem is observed for

read-only pages. Specifically, the replication problem is concerned with determining the set of

local memories that should contain copies of a page. Here, the assumption is made that the

set of local memories that contain copies of the page is monotonically non-decreasing.

In [40], the authors present the implementation of a page placement mechanism to au-

tomatically assign pages of virtual memory to appropriately located physical memory in the

Mach operating system on the IBM ACE multiprocessor workstation. By managing locality

in the operating system, the implementation hides the details of specific memory architec-

tures, thus making programs more portable. The simple strategy for page replacement uses

local memory as a cache over global, managing consistency with a directory-based ownership

protocol similar to that used by Li [145] for distributed shared virtual memory. Their expe-

rience [40] indicates that even simple automatic strategies can produce nearly optimal page

replacement. It also suggests that the dominant remaining source of avoidable performance

degradation is false sharing7 [41], which can be reduced by improving language processors

or by tuning applications.

The DUnX kernel [124], developed as a framework for implementing dynamic page replace-

ment policies, introduces a highly tunable parameterized dynamic page placement policy for

NUMA multiprocessors addressing issues related to the tuning of that policy to suit different

architectures and applications. The policy supports both migration and replication, uses a

directory based invalidation scheme to ensure the coherence of replicated pages and uses

a freeze/defrost8 strategy to control page bouncing. Such a parameterized NUMA memory

management policy can be tuned for architectural as well as application differences. In [124],

the authors perform several experiments with the parameterized page replacement policy

to confirm that dynamic placement policies are efficient, therefore a reasonably simple pa-

rameterized policy may form the basis for the development of machine-independent memory

management subsystems for NUMA machines.

In [136], the authors present the implementation of the memory management system in

the Psyche [220] multiprocessor operating system. The Psyche memory management system

is structured into four layers of abstraction – NUMA, UMA, VUMA (virtual memory) and PUMA

(Psyche memory). These abstractions are shown in Figure 7 and are discussed in Section 4.5.

Weak Memory: The Accent and Mach operating systems [84, 194, 262] for uniprocessor and

UMA multiprocessors demonstrated the use of copy-on-write paging for message passing. Li

at Yale showed that a modified Apollo Aegis kernel can support shared memory on a 10Mhz

token ring [144], and similar results are demonstrated by the Clouds project at Georgia

Tech [68]. Such work is motivated by the fact that parallel programming may be simplified

when the underlying system provides a basic ‘memory’ abstraction for representation of both

local and shared state. Unfortunately, performance penalties can result from the fact that

the underlying system must implement its shared memory abstraction independent of how

applications use it. For example, if the system keeps copies of shared data coherent or

consistent by invalidation on writes, it will invalidate existing copies even when the processors

having these copies will not access them in the future.

Current research is exploring how shared memory may be represented on parallel or dis-

7An object that is not writably shared, but that is on a writably shared page is falsely shared [40].
8Excessive page movement is controlled by freezing the page in place and forcing remote accesses [61]

22

Physical memory

NUMA

UMA

VUMA

PUMARealm

Processor M Processor N

Backing Store

Figure 7: Psyche Memory Management Layers

tributed machines such that its performance can approximate that of message passing sys-

tems. For example, some memory models exploit the fact that synchronization is used to con-

trol access to shared state (e.g., properly labeled memory [90] or data race-free memory [4, 5]).

This allows the underlying system to weaken memory consistency requirements. The result-

ing, weakened shared memory abstraction presented to programmers may be implemented

efficiently because strong consistency and therefore, interprocessor communication is not

required for all memory accesses. Other models of shared memory developed for distributed

architectures exploit programmer directives to reduce the cost of coherence maintenance [50],

or they provide explicit primitives with which users can maintain application-specific notions

of coherence of shared state [7].

Mechanisms for memory or state sharing have significant effects on the performance of

parallel and distributed applications. This is demonstrated by recent designs of and ex-

perimentation with alternative memory models for large scale multiprocessors that exhibit

NUMA memory characteristics due to their use of caches to reduce communication latencies

[90, 236]. In addition, in distributed memory machines like the Intel iPSC series, efficient

state sharing is necessitated by significant differences in access times to local vs. remote in-

formation [211]. This is leading to redesigns of the Mach system paging mechanisms and page

servers for its implementation on the Intel Paragon multiprocessor, and it is resulting in more

general research on shared state or objects in distributed or shared memory parallel machine

[211, 57]. Since differences in remote to local access times are even more pronounced in dis-

tributed machines like sets of workstations connected via high-speed networks [55], notions

of distributed objects have been a topic of research for such systems for quite some time,

as evidenced by work on Clouds [69] at Georgia Tech, on Chorus [197], and on fragmented

objects [227] in France.

3.3 Synchronization

When multiple cooperating processes execute simultaneously, synchronization primitives are

needed for concurrency control. When multiple processes share an address space, synchro-

nization is required for shared memory consistency [99]. Two fundamental properties are

23

enforced by synchronization: (1) mutual exclusion (to protect a critical section) and (2) event

ordering. Classical synchronization primitives like semaphores [72], monitors [107, 131] etc.

are widely discussed in the earlier literature and are therefore, not described here. Also not

discussed are more complex synchronization mechanisms like path expressions and serial-

izers [38], in part because such mechanisms are not in widespread use. Instead, this section

briefly reviews some common and efficient synchronization constructs supported by recent

multiprocessor operating systems.

3.3.1 Locks

A lock is a shared data structure used to enforce mutual exclusion. A critical section is

normally protected by a lock. Although there are exceptions (e.g., read-write locks), a lock is

generally held by only one process at a time. A process holding a lock is called the lock owner.

To enter a critical section, a process first atomically gains ownership of the associated lock

(called locking). A contender process for the lock (or for the critical section protected by the

lock) waits by either spinning or blocking until the lock is released by its current owner. When

a process exits a critical section, it atomically releases lock ownership (called unlocking).

Multiprocessor operating systems typically support multiple types of locks, some of which

are reviewed below.

Spin and Blocking Locks: Spin locks are the most primitive locks. When a lock is busy, a

waiting process spins (busy-waits) until the lock is released. Most hardware supports spin

locks by specific instructions in their instruction sets. Although spin-waiting consumes pro-

cessor, bus, and memory cycles, early research in multiprocessor operating systems clearly

demonstrates the performance advantages of simple locking strategies and lock implementa-

tions [258, 89, 120], showing that spin locks are useful in two situations – when the critical

section is small (compared to the cost of blocking and resuming a process) or when no other

work is available for the processor (since spin waiting results in minimum latency between

lock release and reacquisition) [182].

When using a blocking lock, a waiting process (also called a contender process) blocks

until awakened by the process releasing the lock. Such locks are also known as mutex locks.

Anderson et al. [10] compare the performance of a number of software spin-waiting al-

gorithms. They also propose a few efficient spin-waiting algorithms such as Ethernet style

backoff algorithm (introducing delay between successive spins analogous to Ethernet’s back-

off or Aloha), software queueing of spinning processors, and others. Results are demonstrated

on a Sequent UMA machine, and it is not apparent how their results generalize to NUMA mul-

tiprocessors.

Synchronization for NUMA machines is addressed in [168] by Mellor-Crummey et al., who

survey some spin lock algorithms and propose a new scalable algorithm (a list-based queuing

lock, also known as MCS lock) that generates O(1) remote references per lock acquisition,

independent of the number of processors attempting to acquire the lock.

The new generation of hardwares provide a few powerful atomic operations such as test-

and-set and compare-and-swap which can simplify implementations of synchronization prim-

itives and can even allow certain concurrent data structures to be implemented without

blocking [104, 105]. Moreover, instructions such as fetch-and-add [97] allow certain common

operations to be performed in parallel without critical sections [126].

Other work has evaluated the effects of other kernel components [8, 9, 10, 99] as well

as applications on synchronization. For example, Zahorjan, Lazowska and Eager [265] first

examines the extent to which multiprogramming and data-dependencies in an application

24

complicate an user’s decision to spin or block, then evaluate [266] how the overhead of

spinning is affected by various scheduling policies.

Read-Write Locks: A read-write lock allows either multiple readers or a single writer to

enter a critical section at the same time. The waiting processes may either spin or block

depending on whether the lock is implemented as a spinning read-write lock or a blocking

read-write lock.

Configurable Locks: In [176], Mukherjee and Schwan study the effects of application and

hardware characteristics on multiprocessor locks, and propose a structure for configurable

locks. Such locks allow applications to dynamically alter the waiting (spin, block or both)

mechanism and the request handling mechanism (how the lock is scheduled). Their exper-

iments with configurable locks demonstrate that combined locks (locks that both spin and

block while waiting) improve application performance considerably compared to simple ‘spin’

or ‘blocking’ locks. Furthermore, hints from lock owners may be used to configure a lock for

improving its waiting strategy (‘advisory’ or ‘speculative’ locks). In addition, an adaptation

policy used to configure adaptive multiprocessor locks [177] is shown to improve application

performance. such a lock detects changes in application characteristics and adapt itself to

suit such changes.

In [126], the authors study seven strategies (including a few competitive strategies) for

determining whether and how long to spin before blocking while waiting for a lock. The study

concludes that for competitive strategies, performance is no worse than an optimal off-line

strategy by some constant factor. Measurements indicate that the standard blocking strategy

performs poorly compared to mixed strategies. Among the mixed strategies studied, adaptive

algorithms perform better than non-adaptive ones.

A few object oriented-operating systems such as Choices [47] and Renaissance [202] take

an object-oriented approach to lock configuration/customization. These systems define a

few basic classes which provide simple and crude locks (implemented using hardware pro-

vided instructions). More sophisticated locks are implemented either on top of these existing

classes, or by customizing the existing locks (see Section 4.8 and 4.9).

Barrier locks: A barrier lock implements a barrier in a parallel program. Once a process

reaches a barrier, it is allowed to proceed if and only if all other cooperating processes reach

the barrier. A waiting process may either spin or block depending on the implementation of

the lock.

In [168], Mellor-Crummey et al. survey some barrier algorithms and propose a new scal-

able algorithm (a tree-based barrier) that spins on locally-accessible flag variables only, re-

quires only O(p) space for p processors, performs the theoretical minimum number of net-
work transactions (2p � 2) on machines without broadcast, and performs O(logp) network
transactions on its critical path. Such a barrier lock implementation is reminiscent of lock

implementations used in distributed memory machines, called structured locks.

Structured Locks: In distributed memory machines like hypercube or mesh multiproces-

sors, operating system constructs (e.g., I/O, exception handling, multicast communications,

etc. [119, 139]) are physically distributed in order to offer efficient access to the global operat-

ing system functionalities required by application programs. Synchronization is no exception

because it is a computation that must be performed globally for many physically distributed

processes and processors. As a result, synchronization must be performed using explicit

communication structures like rings or spanning trees, which touch upon all members of the

25

group of processes being synchronized. In essence, a lock in a distributed memory machine

is a fragmented and distributed abstraction shared among several independently executable

processes, where the importance of this particular abstractions is demonstrated by explicit

support in hardware in several parallel machines, including the Intel Paragon and the Think-

ing Machines CM line of machines. However, in contrast to the OS support for UMA and

NUMA multiprocessors, synchronization abstractions for distributed memory machines can

often be optimized substantially if they can be made programmable by application program-

mers or if synchronization can be combined with other communications being performed in

application programs [211, 87].

3.3.2 Other Synchronization Constructs

Condition Variables. Condition variables make it possible for a thread to suspend its exe-

cution while awaiting an action by some other thread. A condition variable is associated with

some shared variables protected by a mutex and a predicate (based on the shared variables).

A process acquires the mutex and evaluates the predicate. If the predicate is not satisfied,

the process waits on the condition variable. Such a wait atomically releases the mutex and

suspends execution of the process. After a process changes the shared variables so that the

predicate may be satisfied, it may signal a waiting thread. The signal allows blocked threads

to resume action, to re-acquire the mutex, and to re-evaluate the predicate to determine

whether to proceed or wait.

Events. Events are mainly used to control thread orderings. A process may wait on an

event; it blocks until the event occurs. Upon event occurrence, a signal wakes up one or all

waiting processes. Events come in different flavors. A state (happened or not happened) may

or may not be associated with an event. A count may be associated with an event, which

enables a process to wait for a particular occurrence of an event. More complicated event

structures have been shown useful for several application domains and target machines,

most prominently including the event handling facilities for active messages [151, 211] or the

synchronization points designed by Gheith for real-time applications [92].

In [29], Birrell et al. present an informal description, implementations and formal specifi-

cations of various thread synchronization primitives (such as Acquire and Release, Condition

variables, semaphores) supported by the Taos operating system.

3.4 Interprocess Communication

3.4.1 Basic Communication Primitives

Cooperating processes or threads in a multiprocessor environment often communicate and

synchronize. Execution of one process can affect another by communication. Interprocess

communication employs one of two schemes: shared variables or message passing

As mentioned earlier, when two processes communicate using shared memory, synchro-

nization is required to guarantee memory consistency. The last section describes a few

popular synchronization primitives. This section focuses on inter-process communication

without using explicit shared variables.

In a shared memory multiprocessor, message passing primitives between disjoint address

space may be implemented using global memory. Exchange of messages is a more abstract

form of communication than accessing shared memory locations. Message passing subsumes

communication, buffering, and synchronization.

26

Multiprocessor operating systems have experimented with a large variety of different com-

munication abstractions, including ports [84, 262] mailboxes [119, 63], links [230, 127] etc.

From an implementation point of view, such abstractions are kernel-handled message buffers.

They may be either unidirectional or bidirectional. A process may send to or may receive mes-

sages from them. There may be rights (like send, receive, or ownership rights) associated with

these entities. Different operating systems define different semantics on these abstractions.

The two basic communication primitives in all such abstractions are send and receive,

which can again come in many different flavors. Sends and receives may be blocking (a

process invoking a primitive blocks until the operation is complete), or they may be non-

blocking (a process does not wait for the communication to be complete), or they may be

conditional vs. unconditional. Communication between processes using these primitives may

be synchronous or asynchronous, etc.

Many issues must be considered when designing an inter-process communication mecha-

nism; they are reviewed in numerous surveys of distributed operating systems [241, 239, 240]

and are not discussed in detail here. Issues include (1) whether the underlying hardware

supports reliable or unreliable communication, (2) whether send and receives are blocking

or non-blocking, (3) whether messages are typed or untyped and of variable or fixed length,

(4) how message queues can be kept short, (5) how to handle queue overflows, (6) how to

support message priority (it may be necessary that some messages are handled at higher

priorities than others), (7) how to transmit names, (8) protection issues, and (9) how kernel

and user programs must interact to result in efficient message transfers. Communication

issues specific to hypercube or mesh machines are reviewed elsewhere [222, 221, 211, 67].

Examples of recent research in communication protocols for high performance or parallel

machines are addressing the association of computational activities with messages [66, 151],

the user-driven configuration of communication protocols for improved performance [110],

and the parallelization of protocol processing [147].

Of interest to this survey is that parallel programs typically use both message mecha-

nisms and shared memory (when available) for inter-process communication. This is demon-

strated by implementations of message systems like PVM on the KSR supercomputer, and

by implementations of message systems for the BBN Butterfly NUMA machine. Interestingly,

comparisons of message passing with direct use of shared memory often result in inconclu-

sive results, in part because such results strongly depend on the sizes, granularities, and

frequencies of communications in parallel programs [138].

3.4.2 Remote Procedure Calls

Most recent shared-memory multiprocessor operating systems support cross-address space

remote procedure calls [25] (RPC) as a means of inter-process communication. RPC is a

higher level abstraction than message passing. It hides the message communication layer

beneath a procedure call layer. RPC allows efficient and secure communications. Further-

more, cross-address space RPCs can be made to look identical to cross-machine RPCs, except

that messages do not go out over the network and in most cases, only one operating system

kernel is involved in RPC processing9. Otherwise, the same basic paradigm for control and

data transfer is used. Messages are sent by way of the kernel between independent threads

bound to different address space. The use and performance of cross-address space RPC is

discussed extensively in [25].

In [21], Bershad et al. propose a new kernel-based communication facility called Lightweight

Remote ProcedureCall (LRPC) which is designed and optimized for communication between ad-

dress space on the same machine. LRPC combines the control transfer and communication

model of capability systems with the programming semantics and large-grained protection

9It is possible to have more than one kernel in a NUMA machine.

27

model of RPC. In [22], Bershad et al. propose another interprocess communication scheme,

called User-level Remote Procedure Call (URPC). URPC decouples processor allocation from

data transfer and thread management by combining fast cross-address space communica-

tion protocol using shared-memory with lightweight threads managed entirely at the user

level. By decoupling, the operating system kernel can be entirely bypassed for cross-address

space communications.

3.4.3 Object Invocations on Shared and Distributed Memory Machines

Recent research on object-oriented operating systems for parallel machines is concerned with

a generalized form of remote procedure calls used for inter-object communications, also called

object invocations. Specific results include the provision of mechanisms for implementation of

alternative ways to invoke an object, as offered by the Spring operating system’s subcontract

mechanism [103] or the CHAOS system’s policy abstraction [92]. The basic need for such al-

ternatives is again derived from performance or reliability considerations, where applications

would like to have the ability to vary the performance or even the semantics of object invoca-

tion (e.g., reliable vs. unreliable invocations) separately from the target objects being invoked

or the precise parameters being passed. This is the ability provided by subcontracts in Spring,

by attributes and policies in CHAOS, and by invocation attributes associated with individual

accesses to fragmented objects built for hypercube machines in [211] and for multiprocessors

in [57]. Sample variations in invocation semantics not concerned with the types of objects or

operations being invoked include asynchronous vs. synchronous invocations, the ability to

wait for acknowledgements of invocation receipt [211] as in distributed RPC implementations

[180], the variation of when an invocation is considered complete (upon successful transmis-

sion of the invocation, upon receipt of the invocation, upon invocation completion, etc.), and

the association of additional parameters governing how and when invocations are scheduled

or processed, the latter being particularly important in real-time systems but also relevant to

parallel applications where some invocations are more important than others.

4 Sample Multiprocessor Operating System Kernels

This section reviews several specific multiprocessor operating system kernels, including Hy-

dra, StarOS, Mach (developed at Carnegie Mellon University), Elmwood and Psyche (developed

at the University of Rochester), Presto (developed at the University of Washington), KTK (de-

veloped at the Georgia Institute of Technology), Choices (developed at the University of Illinois,

Urbana-Champaign), Renaissance (developed at Purdue University), Mach/RP3 (developed at

T. J. Watson Research Center, IBM), and a few successful commercial systems like Dynix

(developed for Sequent Multiprocessors), Chrysalis (developed for BBN Butterfly machines),

UMAX (developed for Encore Multimax multiprocessors).

4.1 HYDRA

HYDRA [258, 256, 257, 259, 142, 58] is one of the earliest successful multiprocessor kernels,

developed at Carnegie-Mellon University and implemented on the C.mmp hardware. Extensive

descriptions of the HYDRA system appear in [120] and [258].

The major goals of HYDRA are:

1. to develop a minimal kernel for multiprocessor systems from which an arbitrary set of

operating system facilities and policies can be easily constructed,

28

2. to allow the arbitrary number of systems created from the kernel to co-exist simultane-

ously, and

3. to provide a uniform protection mechanism.

HYDRA rejects strict hierarchical layering in structuring the operating system, instead

originating the concept of separation of mechanism from policy. Namely, the mechanisms in

the kernel are intended to support the abstract notion of resources, or of policies controlling

these resources.

The salient features of HYDRA are a generalized notion of resources, the definition of exe-

cution domain, and its capability-based protection mechanism controlling access to resources

within a domain. Capabilities may be used to protect any user- or system-level entity. Capa-

bilities are references to objects with sets of access rights; they are manipulated only by the

kernel.

4.1.1 Execution Environment and Processes

Programs in HYDRA consists of three types of objects: procedures, LNSs and processes. A

procedure object is an abstraction of “Algol-like” procedures consisting of code and data

that accept and return parameters. Each procedure object contains a list of capabilities,

which specify the rights for the objects it may reference during execution. These capabilities

therefore, define the procedure’s execution environment. A procedure object also contains

some capability templates only partially specified at the time of procedure creation, which are

filled in for each execution of the procedure and then contain capabilities of the parameter

objects supplied by the caller. Templates are the formal parameter specifications for the actual

parameters expected by the procedure; they are used for type checking and for checking

access rights.

An LNS is a dynamic entity which defines the execution environment for an invocation. It

consists of a single list of capabilities composed of a combination of caller-independent capa-

bilities (listed in the procedure object) and caller-dependent capabilities (actual parameters).

A unique LNS appears with each invocation and disappears after the procedure terminates.

As a result, the execution domain changes each time a procedure is entered or exited. When

an object is passed as a parameter, a new capability is created for the object in the new LNS

which consists of a reference to the object and the right list specified by the template in the

callee. Hence, a callee has more freedom to operate on a parameter object than a caller.

A process, in HYDRA, is defined as the unit of asynchronous processing. It is treated as

“the smallest entity which can be independently scheduled” by an external agent. Internally,

a process is a stack of LNSs representing the state of a single sequential task.

HYDRA implements interprocess communication and synchronization by providing el-

ementary message buffering primitives, spin locks, and Dijkstra-style semaphore opera-

tions. In addition, several alternative implementations of synchronization constructs are

offered, ranging from simple spin locks, to kernel-provided semaphores, to user-level ‘policy’

semaphores.

The HYDRA call mechanism permits a process to call a protected procedure, via the ker-

nel. The kernel then checks the actual parameter capabilities supplied by the caller. If they

meet the protection requirements, the kernel creates a new LNS defining the new environ-

ment. Control is then passed to the code of the procedure. Similarly, the procedure, after

completion, returns through the kernel, whereupon the kernel deletes the callee’s LNS and

restores that of the caller. Thus, the kernel is entered twice for each protected procedure call.

29

4.1.2 Objects and Protection

As mentioned earlier, one of the major goals of HYDRA is to provide a uniform protection

mechanism. HYDRA does not provide security levels (i.e., specific protection policies). In-

stead, it simply provides a flexible protection mechanism with which different types of secu-

rity (policies) can be implemented. An object is the unit of protection. It consists of a unique

name, a type, and a representation. The type of an object contains the unique name of a

“distinguished object”, which serves as the representative of the object’s class. Since objects

can be referenced by multiple capabilities, a reference count is maintained, and an object is

deleted when that count becomes zero.

The representation of an object consists of a capability part and a data part. The data part

of an object can be accessed with appropriate access rights, whereas the capability part is

manipulated only by the kernel.

Each capability contains a rights list which details the operations that may be performed

on an object referenced by the capability. A right list consists of type independent rights

(kernel rights) and type dependent rights (auxiliary rights). Kernel rights define the operations

which the kernel provides for controlled manipulation of objects and capabilities.

4.1.3 HYDRA and Parallel Computing

While the major contributions of HYDRA address protection issues, there are also many

research results relevant to parallel systems, including:� basic results establishing the concept of program locality, the effects of bus and memory
contentions on parallel program performance, and the importance of asynchrony in

parallel program design and implementation [258, 17, 181],� demonstrations that high performance parallel programs require choices in the oper-
ating system mechanisms being provided (e.g., a variety of different synchronization

mechanisms), since programs differ in granularities of parallelism, in frequencies of

access to shared data, etc., and� experiences with the use of specific operating system facilities by parallel programs,
which then led to differences in design decisions for the HYDRA follow-up at CMU,

the StarOS system reviewed next. One such insight was that parallel programmers

seek performance and therefore, will prefer using simple, fast mechanisms over easy-

to-use, slower mechanisms. This insight has affected most modern operating system

designs for parallel machines in areas ranging from process to thread representations,

communication systems designs, and the implementation of synchronization constructs

[120, 258].

4.2 StarOS

StarOS [117, 116, 118, 119] is an experimental operating system for the Cm* [121, 89,

77, 88, 238] multi-microprocessor computer developed at Carnegie-Mellon University. The

design of StarOS is influenced by the protection mechanisms of Hydra, the underlying Cm*

architecture, and its principal goals of achieving high performance and reliability for parallel

machine users. Cm* is a Non Uniform Memory Access (NUMA) machine. It consists of a

number of computer modules, each of which consists of a processor (a DEC LSI-11), a bus (an

LSI-11 bus), local memory, a local switch (called the Slocal), and attached devices. The Slocal

switch routes memory references either to a module’s local memory or to the Map Bus, and it

30

also handles references to its local memory originating from non-local processors. Non-local

references are performed via a Map Bus, which connects up to fourteen computer modules

into a cluster. The computer modules of a cluster share a switch, called the Kmap, which

handles intra- and inter-cluster memory references. Clusters are connected via intercluster

buses connecting multiple Kmap switches. The Kmaps and the Slocals together comprise

a hierarchical, distributed switch. A Cm* configuration may have an arbitrary number of

connected clusters. A cluster need not have a direct intercluster bus connection to another

cluster in a configuration.

figuration
Recon-

Transient Process

Computer Module

Kmap

Present Process

Nucleus

ProcessLoader

Scheduler

manager
Object

Input/Output

File Systems

Scheduler

Manager
Object

NucleusNucleusNucleusNucleus

Figure 8: The StarOS Executive Task Force

Objects, capabilities and invocations. Like HYDRA, StarOS is an object-oriented system

enforcing strong object typing, where the type of an object determines the set of functions

defined on it. Furthermore, as with HYDRA, a process must possess a capability for an object

in order to invoke it. A capability names a distinct and unique object, and it specifies object

access rights (much slimmed down compared to HYDRA).

An object consists of two disjoint segments – the data portion (containing a sequence of data

words) and the capability list portion (containing a sequence of capabilities). Similarly, each

process has two name spaces – the capability name space and the immediate address space.

The data portion of an object can be directly mapped to a window in the immediate address

space of a process. Thus, the machine instructions provided by the underlying processor

may directly be used to manipulate the data portion of an object. Such a mechanism allows

an application to use small objects without additional cost compared to standard processors.

31

A process may directly invoke all objects for which it has capabilities.

StarOS allows users to create new objects and new object types dynamically. Existing

or default object types are called representation types. Users may create new abstract types

using these representation types.

One of the attributes of StarOS of interest to parallel systems is its definition of modules,

functions, and module invocations, which are the blueprint for the implementation of similar

functionality in the Intel 432’s iMAX operating system [63] and in modern object-oriented

operating systems like Eden [134], Choices [47], and CHAOS [213, 92]. A module defines an

object by exporting a set of invocable functions. A function invocation by a process is per-

formed asynchronously by passing invocation parameters to a process designated to execute

the function. Invocation parameters are passed by passing a capability for a small object

(called a carrier), which contains the parameters. Another important concept originated with

StarOS is that function (or object) invokers will require substantial flexibility in how syn-

chronization is performed in conjunction with object invocation. As a result, StarOS simply

offers a low-level mechanism for implementing different synchronization schemes, which is a

capability for a mailbox contained in the carrier. This mailbox will not only contain the return

parameters of the invocation, but it can also be used for waiting on the invocation’s com-

pletion. Furthermore, an invocation need not be routed to some fixed number of processes

serving it (called present processes); it can also result in the creation of a new process (called

a transient process) which executes the invoked function and then terminates. Present pro-

cesses typically offer lower latency for function invocation since they can be pre-initialized for

execution of specific functions. Such pre-initialized processes block on a common invocation

mailboxwaiting for an incoming carrier which represents a function request. Therefore, a sec-

ond important innovation in parallel operating systems originating with StarOS is that since

invocations and functions differ in functionality, so should the entities executing function

code, as is the case with kernel- vs. user-level threads in current multiprocessor operating

systems.

A third concept in parallel operating systems originating with both StarOS and the Roscoe

operating system [230] is the structuring of operating systems and even operating system

kernels as micro-kernels (called a nucleus in StarOS). Specifically, a small subset of the

StarOS functions, called instructions, are defined to execute sequentially and synchronously

with the invoking function. Collectively they are referred to as the nucleus. The nucleus is

partly implemented in firmware (in the Kmap) and partly in software. A copy of the nucleus

software runs on each computer module in its own address space, as its micro-kernel. All

other operating system functionality resides in user-level, as present or transient processes,

depending on its frequency of use.

4.2.1 Task Forces

A task force is the abstraction offered by StarOS for representation of parallel programs. A

task force, programmed with the TASK language [117] (or with lower-level library support), is

simply a collection of cooperating StarOS processes which collectively accomplish some joint

task. Compared to a single process performing such a task, a task force can be programmed

to take advantage of parallelism to achieve enhanced reliability (by triplication of selected

services) and performance (by use of parallelism to implement services). In addition, a task

force can be programmed to adapt to changes in user requirements or in the underlying

hardware by growing or shrinking dynamically.

StarOS distinguishes an executable task force from a static task force. An executable task

force is the set of processes with supporting code and data objects that performs the desired

task. A static task force is a collection of modules, each exporting a set of functions, together

32

with some input data. Any task force is first constructed in its static form, and then initialized

to contain some number of processes comprising the executable task force.

Realizing that parallel programs are not simply collections of unrelated, multiple pro-

cesses or threads, StarOS also supports two kinds of relationships between processes in an

executable task force. First, the dependence relationship reflects the relationships between

invoking and invoked processes. It can be used for process suspension and abnormal termi-

nation, and it defines forests of processes rooted at some number of reconfiguration processes

(one of which is provided by default by the operating system). Second, the bailout relationship

associates a mailbox with each process at the time of process creation; it is used to report

process failures. Again, a simple bailout process is provided by default by the operating

system. Modern, threads-based parallel operating systems only provide some of the StarOS

functionality (i.e., the dependence relationship maintained for thread joining and forking),

in part because the process containing its threads can play the role of the entity to which

threads may ‘bail out’.

Naturally, the StarOS operating system itself is also represented as a task force (see Figure

8), where user-level transient or present processes implement higher-level operating system

functions, whereas each processor contains a micro-kernel (the nucleus) implementing the

synchronous instructions defined by the system implementors.

4.2.2 Synchronization and Communication

In response to the underlying NUMA hardware, StarOS is a message based parallel operating

system. A process never blocks as a side effect of a message send or receive. Instead, a

process explicitly suspends its execution when it wishes to wait for the completion of actions

taken by other processes. Such process interactions via messages are supported by StarOS

mailbox objects. A mailbox is created to buffer data messages (single data words) or capability

messages (single capabilities), but not both. The basic functions defined on a mailbox are

Send and Receive, but these functions do not imply synchronization actions in conjunction

with message communications. Such actions may be explicitly programmed using an event

mechanism which permits processes to block on a mailbox when waiting for the occurrence

of a specific event.

The mailboxes and the events are used to implement multiple send and receive semantics.

Specifically, a receive may be invoked either in conditional or registrationmode. If the mailbox

is empty, a conditional receive returns with an error indication and without a message. In

registration mode, the name of the invoker together with an event are placed into a queue

(called a registration queue) associated with the mailbox. The event is defined beforehand by

the process by specifying an event name, a capability for the mailbox, and a location within

its address space where the message is to be stored. The process may then choose to block

on that event. A send delivers a message directly to the registered receivers. The message is

stored in the location associated with the event, and the event is signalled. If the registration

queue is empty and the mailbox is not full, a send buffers a message in the mailbox. A send

fails if the mailbox is full. Communication mechanisms similar to those of StarOS can be

found in the iMAX operating system [63].

4.2.3 Scheduling

Responsibility for scheduling in StarOS is divided between scheduler processes and the mul-

tiplexors. A multiplexor is a low level mechanism that makes short term decisions about

which process to execute next on its processor, whereas a scheduler implements some spe-

cific scheduling policy. Multiplexors use a priority-ordered set of mailboxes as run queues,

33

where with each processor may be associated single or multiple run-queue mailboxes. These

sets of run queues may overlap arbitrarily. A processor’s multiplexor searches for the next

process to run according to the priority order; the selected process is assigned the processor

for some maximum time quantum. If the sum total of execution time of a process exceeds

a scheduler-determined value, the multiplexor sends the process to its designated sched-

uler. There may be multiple schedulers in the system, but StarOS does not provide any

specific support for interactions or possible conflicts among different schedulers, as done in

distributed systems using bidding methods.

Few interesting higher-level schedulers were constructed for the StarOS system. Instead,

the reader is referred to the re-engineered version of StarOS built by Ousterhout (called

the Medusa system [184]), where several interesting, higher-level scheduling strategies were

implemented and evaluated, typically referred to as ‘co-scheduling’ or ‘gang scheduling’ in

the literature [182].

4.2.4 Reconfiguration

System initialization is performed by the reconfiguration module, which gathers data about

the physical resources (e.g., physical memory), creates the first operating system objects,

initializes the Kmap, and initializes the nuclei. Other system initialization functions include

determination of the number of replicated processes to be created for each function, the

placement of code for a function in physical memory, the initial assignment of operating

system processes to run queues etc.

The configuration of StarOS may change with time, as determined by the system’s re-

configuration processes, which periodically examine the environment and adjust the StarOS

configuration accordingly, to improve systemperformance or maintain some desired reliability

level. For example, if a particular function is invoked frequently, more processes are created

to execute that function. Moreover, the reconfiguration module dynamically configures the

system to handle hardware and software faults. For example, if the physical environment

changes (e.g., addition or removal of clusters), StarOS can be expanded or reduced to accom-

modate such changes.

4.3 Mach

Mach [3, 191, 242, 243, 95, 192, 15] is a multiprocessor operating system kernel developed

at Carnegie-Mellon University first for distributed systems, then for tightly-coupled UMA

multiprocessors. Later extensions of Mach also address NUMA and NORMA machines [255].

Mach runs on a wide variety of uniprocessor and multiprocessor architectures, including the

DEC VAX system, Sun 3 workstations, IBM PCs, the IBM RP3 multiprocessor, the Encore

Multimax, and recently, the Intel Paragon. Mach is also supported as a product by a number

of hardware vendors. Mach is the base technology for the OSF/1 operating system from the

Open Software Foundation.

Mach10 separates the Unix process abstraction into tasks and threads [190]. In addition,

Mach provides the following:� Machine independent virtual memory management [194].� A capability based interprocess communication facility.� Language support for RPC [76, 122, 123].� Support for remote file accesses between autonomous systems.
10Mach is binary compatible with Berkley’s Unix 4.3 bsd release

34

� Lightweight user-level threads known as Mach Cthreads [60, 173].� Miscellaneous other support like debuggers for multithreaded applications [51], excep-
tion handling [33] etc.

Structurally, Mach is organized horizontally (developed using micro-kernel technology).

The Mach kernel is a minimal, extensible kernel which provides a small set of primitive

functions. It provides a base upon which complete system environments may be built. The

actual system running on any particular machine is implemented by servers on the top of the

kernel. The Mach kernel supports the following basic abstractions:

1. Task: A task, an execution environment for threads, is a collection of system resources

including an address space.

2. Thread: A thread is defined as the basic unit of execution. Mach threads belong to the

middle-weight process class (defined in Section 3.1.1).

3. Port: A port is a communication channel and is similar to an object reference in an

object-oriented system. Any object other than messages may be represented by a port.

An operation on an object is performed by sending a message to the corresponding port.

4. Message: A message is a typed collection of data objects used for communication be-

tween active threads.

5. Memory Object: A memory object is a repository of data which can be mapped into the

address space of a task.

4.3.1 Memory Management

The Mach virtual memory management [84, 194, 1, 262, 263] system is designed to be archi-

tecture and operating system independent. Architecture independence is achieved by dividing

the virtual memory implementation into machine independent and machine dependent por-

tions. The machine independent portion has full knowledge of all the virtual memory related

information, whereas the machine dependent portion manages the “pmaps”, which are hard-

ware defined physical address maps (e.g., VAX page tables). The machine dependent portion

only contains the mappings essential to run the current programs. All mapping informa-

tion for any page in the system can be reconstructed from the information in the machine

independent portion at fault time. Due to this separation between machine dependent and

independent portions, the page sizes in both portions may not be the same – the machine

independent page size is a boot time parameter and must be a power of two of the machine

dependent size.

The main data structures in the Mach virtual memory system are: a resident page table,

which keeps track of information about machine independent pages, an address map which

is a per-task doubly linked list of map entries, each of which maps a range of addresses to

a region of a memory object, a memory object which is the unit of backing storage, and the

Pmaps which maintain the machine dependent memory mapping information. Using these

data structures, Mach supports large, sparse virtual address spaces and memory mapped

files [1, 194, 244].

Mach implements a single level store by treating all primary memory as a cache for virtual

memory objects. Mach allows tasks to allocate and deallocate regions of virtual memory, and

to set the protection and inheritance of virtual memory regions. Inheritance may be specified

as shared, copy or none on a per page basis. A page specified as shared is shared for reads and

writes by both parent and child tasks, whereas a page specified as copy is effectively copied

35

into the child’s address map. However, for efficiency, a copy-on-write technique is used. A

page specified as none is not passed to the child. The copy-on-write sharing between unrelated

tasks is also employed for passing large messages between them. The virtual memory system

exploits lazy evaluation, such as Copy-on-write and Map-on-reference whenever possible.

Another important feature of the Mach virtual memory system is its ability to handle page

faults and to page out data requests at the user level [263]. A few basic paging services are

provided inside the kernel. However, a pager may be specified and implemented outside the

kernel at user level. This has become particularly important for real-time implementations of

Mach and for implementations addressing the needs of specific parallel architectures.

The Mach kernel does not have specific support for distributed shared memory. However,

DSM can be implemented using a server on top of the kernel [85].

4.3.2 Interprocess Communication

A port is a kernel-protected entity that is the basic transport abstraction in Mach. Messages

are sent to and received from a port. A task gets access to a port by receiving a port capability

with send or receive rights. Mach 3.0 also supports send-once rights for ports; these are useful

for implementing RPC. It also provides dead names and dead-name notifications, which allow

servers and clients to detect each others’ terminations [75].

Messages are variable size collections of typed data. Mach supports both synchronous and

asynchronous message transfers. The copy-on-write technique is employed for large message

transfers. The ports and the messages together provide location independence, security, and

data type tagging [75, 76, 122, 123].

Mach 3.0 supports port sets to let a few threads serve requests for multiple objects. A

receive operation on a port set returns the next message sent to any of the member ports. A

no-sender detection mechanism allows object servers to garbage collect the receive right and

the represented object. In [75], the author discusses the design and the implementation of

an IPC interface for Mach 3.0.

The Mach kernel implements messages only within a single machine. However, the trans-

parency of Mach interprocess communication (IPC) allows a user-level server (network mes-

sage servers) to extend the IPC across a network [100].

On top of the general message primitives, Mach implements various flavors of communica-

tion including server-client remote procedure calls, distributed object-oriented programming,

and streams.

4.3.3 Scheduling

TheMach scheduler [36, 34, 35] consists of two parts, one responsible for processor allocation,

the other responsible for scheduling threads on individual processors.

Processor Allocation. A user-level server performs processor allocation, using the mecha-

nisms provided by the underlying Mach kernel. The processor allocation facility adds two new

objects to the Mach kernel – the processor and the processor set. Much like the iMAX kernel’s

facilities [63], a processor object manipulates the physical processors, whereas a processor

set is an independent entity to which processors and threads can be assigned. An application

creates a processor set, and uses it as the basis of communication with the server. A server

performs processor allocation by assigning processors to the processor sets provided by the

clients. Thus, clients have the power to use and manage processors without having direct

36

control over them. A server satisfies a client’s requests in strict order in a greedy fashion

[36, 34].

Thread Scheduling. Mach uses a priority based time-sharing scheduling technique within

each processor set. Mach schedules individual threads without using any knowledge about

the relationships among threads. The scheduler maintains a global run queue shared by

the processors and a local run queue for each processor. Each run queue is a priority

queue of runnable threads. Priority calculation for threads is discussed in detail in [36, 35].

Mach is “self scheduling” – a processor consults the run queue when it needs a thread to

run. As mentioned in Section 3.1.3, the Mach scheduler accepts two kinds of user hints –

discouragement hints and hand-off hints.

4.3.4 The Mach 3.0 Micro-kernel

The Mach 3.0 micro-kernel has evolved from Mach 2.5 by eliminating all the compatibility

code for BSD Unix from the kernel. Major changes include the optimization of its IPC imple-

mentation (by optimizing ports and port rights) as well as the use of new algorithms, the use

of continuations11 [74, 75, 146] in scheduling, IPC, exception, and new page fault handling

facilities [32].

Application

Library
Emulation

Server

Unix

Multi-threaded

Mach Kernel

Figure 9: Unix Server on Mach Kernel

The basic facilities provided by the Mach kernel support the implementation of operating

systems as Mach applications [32]. Figure 9 shows the organization of an application, the

Unix Server and its relationship to the Mach kernel. The Unix server is implemented as a

Mach task with multiple threads of control managed by the Mach Cthreads package. The

11A continuation is the address of a routine to call when a thread continues execution, plus a small data structure that
contains local state needed by that routine

37

emulation library functions both as a translator for system service requests and as a cache

for their results [32].

4.4 Elmwood

Elmwood [167, 137] is an object-oriented multiprocessor operating system designed and im-

plemented at the University of Rochester. The major design goals of Elmwood are:� to provide orthogonality of its mechanisms,� to support significant protection domains,� to support multiple users, and� to structure the operating system in an object-oriented fashion with a small kernel.
In Elmwood, objects encapsulate abstractions within protection domains, logical object

names (LON) provide access to protection domains, processes represent asynchrony, semaphores

and condition variables provide synchronization, and exceptions report error conditions.

Elmwood consists of a series of layers implemented on the BBN Butterfly hardware. The

first software layer is the program development layer. The next layer contains mechanisms

to support concurrent programming. Subsequent layers constitute the Elmwood kernel,

which implements process-like threads, physical memory allocation, objects, interprocess

communication, and RPC.

4.4.1 Objects and LONS

An Elmwood object, which is a passive entity consisting of code and data, represents an

instance of an abstract data type. An object is the basic unit of encapsulation, abstraction

and protection. Each object exports a set of entry procedures to manipulate its local data.

Elmwood supports the creation of long-lived processes that continue to perform object-related

duties for the duration of the object’s existence.

A LON is similar to a capability of an object. To invoke an entry procedure, a caller must

have the appropriate LON. A LON refers to a unique object and a user-interpreted context

value, which provides a mechanism to implement various security policies. LONs map many-

to-one to objects. The different LONs for an object are the handles for different context values,

enabling the object to distinguish clients. An object can create and invalidate a LON with

a desired context value. Coarse-grain protection for access to objects is implemented by

the kernel using LONs and fine-grain protection for access to operations within an object is

implemented by the object using context values.

A LON may be passed as a parameter in an RPC. Once the creator of a LON passes it to

another object, it loses control over the distribution of the LON. However, the object retains

control over the interpretation of the context values. Only the object that creates a LON

invalidates it. The kernel maintains the association between the LON used to invoke an

object and the corresponding context value.

Since an object may contain active processes at deletion time, Elmwood supports two

distinct object deletion mechanisms. The first mechanism deletes the object after all the

activity within the object ceases whereas the second mechanism allows an object to be deleted

immediately if and only if it is referenced using its canonical LON (The LON returned in object

creation time).

38

4.4.2 Processes and Synchronization

The primitives for process management and synchronization in Elmwood are implemented as

object operations implemented in the kernel. Processes do not have protected address spaces.

A process executes the code associated with an object. Such orthogonality of processes and

objects allow any number of processes executing simultaneously inside an object (much

like is done in the Clouds operating system [68]). Any necessary synchronization must be

provided by the object’s implementation using synchronization primitives like semaphores

and condition variables, both of which are implemented by Elmwood system objects. Elmwood

supports multiprogramming, either time-slicing or multiprocessing transparently.

4.4.3 Interprocess Communication

Remote procedure call (RPC) is the only mechanism for communication between processes.

Processes communicate using a common object as an intermediary. To avoid the need for

compiler support, Elmwood requires an object programmer to provide a dispatcher for an

object’s entries, including initialization.

4.5 Psyche

Psyche [217, 218, 219, 220, 80] is a general-purpose operating system for large-scale shared-

memory multiprocessors developed at the University of Rochester. Psyche is implemented on

the BBN Butterfly Plus hardware.

The major design goals of the Psyche project are to support multi-model parallel computing

[160] and to provide user-level flexibility in general. The intent is to allow applications or

application components that use the machine in different ways to coexist and to interact

productively.

Psyche provides a low-level kernel interface. It provides minimality of functions in the

kernel rather than minimality of the kernel interface. It makes extensive use of shared

data structures between the kernel and the user to minimize kernel calls and to make the

hardware more readily available to a user-level code. The kernel exists primarily to implement

protection and to perform operations that must occur in a privileged hardware state.

The Psyche kernel interface is based on the following four abstractions, all of which are

shown in Figure 10:

1. Realm: A realm is the unit of data sharing. It encapsulates code and data. Interprocess

communication is effected by invoking operations of realms accessible to more than one

process. A computation in Psyche happens by invocation of the realm operations. An

invocation may be optimized or protected depending on the degree of desired protection.

2. Process: A process in Psyche is a thread of control implemented at the user-level.

3. Virtual Processor: Virtual processors are the kernel level abstractions of physical pro-

cessors. Processes run on virtual processors. One virtual processor schedules more

than one use-level processes. A single process may run on different virtual processors

at different times.

4. Protection Domain: Protection domains implement amechanism to limit access to realms.

A realm belongs to a distinguished protection domain in which protected calls to its

operations execute. A process moves to that distinguished domain once it performs a

protected invocation of the realm. Thus, protection domains provide the boundaries

39

Virtual processors

Processes

Realms

Protection domains

Figure 10: Basic Psyche Abstractions

between distinct models of parallelism. Implementation-wise, each protection domain

has a separate page table which maps its realms.

To facilitate sharing of arbitrary realms at run time, Psyche arranges for every realm

to have a unique system-wide virtual address space. Processes in different domains may

be represented differently. The kernel keeps track of the call chains of processes moving

between protection domains. However, it does not keep information regarding the represen-

tation/scheduling of processes inside a domain.

To execute a process within a protection domain, a user must ask the kernel to create a set

of virtual processors which determines the maximum level of physical parallelism available to

the domain’s processes. The kernel then time-slices among the virtual processors currently

located on a physical node.

The Psyche kernel is symmetric. Each cluster (node in case of Butterfly) contains a sep-

arate copy of most of the kernel code. The original Psyche implementation uses shared

memory as the primary kernel-to-kernel communication mechanism. However, for better

performance, the design was later modified so that the kernels communicate with each other

via remote invocations [80] instead.

4.5.1 Synchronization

The Psyche kernel implements four types of synchronization – disabled preemption (for processor-

local data structures), locked-out interrupts (to synchronize with device handlers), spin locks,

and semaphores. Interesting experimental results with these primitives are reported in [168].

40

4.5.2 Memory Management

The Psyche virtual memory system (Figure 7) has the goal to integrate NUMA memory man-

agement with other kernel functions. The design [136] consists of four distinct abstraction

layers. The lowest layer encapsulates physical page frames and page tables. The next layer

provides an illusion of uniform memory access time through page replication and migration.

The third layer provides a default pager for backing store and a mechanism for user level

pagers, and the final layer implements the Psyche uniform address space and protection

domains.

The Psyche virtual memory implementation has evolved over time to provide more user

control. The data migration and replication layer is removed from the current implementation

resulting in a simpler virtual memory system, where each virtual address space is represented

by a hardware page table on a node that executes it. Code is replicated automatically on each

executing processor. The creator of a realm owns the right to specify whether the replication

should occur when the realm is created, when it is opened for access in a particular protection

domain, or page by page on demand.

4.5.3 Scheduling

Psyche employs a two level scheduling scheme. The kernel scheduler schedules virtual pro-

cessors on physical processors, and the user-level scheduler schedules processes on virtual

processors. To support user-level scheduling the kernel provides a user with virtual proces-

sors, software interrupts, and magic pages [161].

The kernel scheduler schedules virtual processors on physical processors in a round-robin

fashion. Users create the processes to run on virtual processors and have complete control

over the scheduling of these processes.

Whenever a scheduling decision has to be made, the kernel communicates with virtual

processors using software interrupts. Users can define handlers for each type of interrupt.

When an interrupt occurs, a data structure shared between the kernel and the user is set

to contain the state of the running process. A handler can use such information to perform

context switch or to make long-term scheduling decisions.

The kernel maintains relevant information (e.g., load on each physical processor, map-

ping between virtual and physical processors, states of virtual processors etc.) in magic

pages, which it updates periodically. Such information facilitate decisions regarding user-

level scheduling.

4.6 PRESTO

PRESTO [24, 23], developed at the University of Washington, is a set of tools for building

parallel programs on shared-memory multiprocessors. PRESTO is not an operating system

in the true sense. Instead, it is implemented on top of an existing operating system. However,

PRESTO is included in this survey because it addresses issues concerning operating system

configurability important to parallel systems research.

PRESTO’s goal is to provide a framework within which programmers can easily build a

programming model that is most appropriate for a given application domain. PRESTO allows

this degree of customization using an object-oriented programming paradigm. It encapsulates

system entities like processor control, scheduling, concurrency, and synchronization inside

default structures with fixed interfaces. Such interfaces insulate users from an object’s

internal state and implementation. As long as the interface remains the same, a change in

41

an object’s behavior or implementation is not noticed by others.

PRESTO supports five fundamental objects:

1. Thread: A thread can be created, destroyed, put to sleep and awakened.

2. Spinlock: A spinlock guards a critical section.

3. Synchronization Object: A synchronization object consists of a spinlock (spinlock imple-

ments the mutual exclusion), a queue (threads block in this queue), and a few objects

required to implement its semantics. PRESTO does not enforce any semantics on a

synchronization object.

4. Scheduler: The scheduler maintains a pool of threads.

5. Processor: It encapsulates a hardware processor. When idle, it extracts a thread from a

pool maintained by the scheduler and executes it. The thread then becomes active.

4.6.1 Customization

The lowest levels of PRESTO’s runtime kernel can be modified and/or extended by an ap-

plication, if required. However, PRESTO does not support the idea of reconfiguration at the

operating system kernel level. As stated by the authors in [24]:

“ ... it is infeasible for an operating system to permit easy redefinition of the

concepts of a processor, scheduler, lock or even a thread. These are the most basic

components of an operating system, and allowing users the freedom to change

them could result in chaos. ”

In PRESTO, customization is performed in three basic ways:

1. Layered Extension: Layered extension allows programmers to build new from existing

primitives. The major problems with such layering are performance degradation and the

difficulties in expressing a new abstraction in terms of existing ones. Layering is useful

for building new abstractions, but it does not allow existing abstractions to be changed.

2. Differential Extension: Using the inherent property of the hierarchical type system of

object-oriented languages, differential extension allows a programmer to build a new

class from the existing ones by only specifying the changes.

3. Lateral Extension: Lateral extension allows programmers to change the behavior of

objects dynamically. In PRESTO, for example, it is possible to replace the existing

scheduler with a completely different one during program execution.

PRESTO was implemented on a Sequent shared memory multiprocessor. Some of the

issues explored with the implementation include the utility of alternative internal represen-

tations of objects, so that an object “can maintain its own internal parallelism and control

any concurrency imposed upon it by other objects” and the development of “synchro object”

useful for efficient representation of complex events.

4.7 KTK

The Kernel ToolKit (KTK) [213, 92, 91, 178] under development at the Georgia Institute of

Technology is a configurable object-based operating system kernel (designed using micro-

kernel technology). The major design goal of the KTK project is to provide explicit support for

42

on- and off-line program configuration. KTK is layered on a portable and configurable threads-

based micro-kernel [178]. As a result, KTK can be run on diverse platforms, including at user

level on SUN SPARCstations, on a Kendall Square Research supercomputer, SGI machines,

and as a native operating system kernel on the GP1000 BBN Butterfly multiprocessor.

Figure 11: Structure of the Kernel Toolkit (KTK)

KTK structure. The Kernel Toolkit consists of the three major components shown in Figure

11: (1) a configurable micro-kernel as the threads layer, (2) the Kernel Toolkit’s built-in object

types and its support for attributes and policies, and (3) the various policies and attributes

implemented for the application programs built with KTK.

The configurable micro-kernel is the partially machine dependent component [174] that

implements the basic abstractions used by the remainder of KTK: execution threads, virtual

memory regions, synchronization primitives,monitoring support for capture of parallel program

and KTK state, and a limited number of basic attributes for the configuration of threads-level

abstractions, such as synchronization primitives and low-level scheduling.

Objects. A KTK application program consists of a number of independent objects which

interact by invoking each other’s operations (methods). Each object maintains its own state,

and that state is not directly accessible to other objects. Objects can range from light-weight

procedure-like entities to multi-threaded servers with associated concurrency control and

scheduling policies. Complex objects can be built by having objects as components of other

objects, starting with four built-in object classes chosen due to their usefulness in a wide va-

riety of parallel applications constructed with KTK: ‘ADT’, ‘TADT’, ‘Monitor’ and ‘Task’12

An ‘ADT’ (abstract data type) defines an object that has no execution threads of its own
and does not synchronize concurrent calls. Calling an ADT is performed in the address

space of the caller. Calling a ‘TADT’ (threaded abstract data type) creates a new execution
thread for execution of the called operation, but also does not synchronize concurrent calls.

12The built-in object classes in KTK are quite similar to concurrent object constructs offered in recent designs and
implementations of object-oriented concurrent languages like CC++.

43

A ‘Monitor’ [107] is an object without execution threads that only allows a single call to
be active at a time. It can also define condition variables on which calls can wait, thereby

allowing other calls to proceed, until the condition variable is signaled. A ‘Task’ (like Ada
tasks) has a single execution thread. It defines a number of entries which can be called from

other objects. All calls are performed in the context of the ‘TASK’ and are taken one at a
time. In addition to these primitive objects, KTK also provides support for distributed objects

(DSA)[57] which permits programmers to define and create encapsulated, fragmented objects,

and offers low-level mechanisms for implementing efficient, abstraction-specific communica-

tions among object fragments.

Typical KTK programs consist of complex objects constructed from the four built-in object

classes (called ‘layered’ extension in PRESTO). KTK offers the other methods of extension

identified by PRESTO and additional, dynamic configuration by permitting the definition of

new policy classes and their linkage with the kernel, and by offering two distinct views of each

object exist: (1) the application view and (2) the system view. The application view of objects is

presented in terms of their classes characterizing their external interfaces (methods), where

a class is an abstraction for a number of similar objects. The system view, on the other hand,

is defined by each object’s policy and attributes. Essentially, policies define a parameterized

execution environment for objects in terms of attributes, invocation semantics, and kernel

interactions:� A policy interprets attributes defined at the time of creation for classes, objects, states
and operations.� A policy can define the invocation semantics to an object by intercepting invocation
requests and by defining and interpreting invocation time attributes that can be specified

as part of the invocation.� A policy can also extend the KTK interface with special services.
Since policies are executed implicitly as a result of object creation and invocation, typical

application programs see only the objects and classes defined in their code and offered by

KTK.

Synchronization. In addition to primitive spin and blocking locks, KTK supports config-

urable lock objects which can be configured to suit application’s requirements [176, 177].

Such locks contain a set of implementation-dependent attributes which can be dynamically

altered to result in a continuous spectrum of lock configurations ranging from ‘busy waiting’

to ‘blocking’ (Some useful configurations are: combined locks, advisory locks, priority locks,

handoff locks, and adaptive locks). Furthermore, configurable locks implement a “customized

monitor” module that can be used to sense the current state of a lock [177].

Configuration. KTK’s support for reconfiguration consists of three mechanisms – attributes,

policies, and a monitoring mechanism (to sense current program state). The Kernel Toolkit

offers explicit support for on- and off-line object configuration using the above mechanisms:� KTK allows the specification of (configuration) attributes for object classes, object in-
stances, state variables, operations and object invocations.� Attributes are interpreted by system- or programmer-defined policies, which may be
varied separately from the abstractions with which they are associated. For example,

policies and attributes may be used to vary objects’ internal implementations without

changing their functionalities, or to vary the semantics and implementations of object

44

invocations without affecting the methods being invoked. A policy can be associated

with any of the program components object instance’, ‘class’, ‘state variable’, ‘method’,

and even ‘object invocation’. This association is performed such that the program com-

ponent’s implementation and specification are not affected.� Dynamic configuration may be performed by policies at or below the object level of
abstraction, therefore permitting programmers to make dynamic changes of selected

attributes of lower-level runtime libraries and to exploit peculiarities of the underlying

multiprocessor hardware. KTK also offers efficient mechanisms for the on-line capture

of the program or operating system state required for dynamic configuration.

The mechanisms for configuration in KTK can also be used for kernel customization by

specializing and/or modifying existing kernel abstractions. In addition, KTK is extensible

in that new abstractions and functionality (ie., classes, policies, and attributes) are easily

added while potentially maintaining a uniform kernel interface (e.g., when not adding any

new kernel classes) [92, 147].

4.8 Choices

The operating system family called Choices (Class Hierarchical Open Interface for Custom

Embedded Systems) [46, 47, 199, 200, 203, 155] is part of the Embedded Operating Sys-

tem (EOS) project at the University of Illinois at Urbana-Champaign. The Choices kernel is

implemented on a 10 processor Encore Multimax multiprocessor using the C++ language.

Choices is an example of a customizable operating system that can be tailored for a partic-

ular hardware configuration or for a particular application. Choices is targeted towards large

multiprocessors interconnected by shared-memory or high speed networks. It uses a class

hierarchy and inheritance to represent the proper abstractions for deriving and building new

instances of a Choices system.

Choices support multitasking, where each task may use multiple processors. The Choices’

support for an application is divided into two parts – Germ and Kernel. A set of classes, called

as Germ, encapsulates the major hardware dependencies, implements the mechanisms for

managing physical resources, and provides a uniform hardware architecture to the rest of the

classes in the hierarchy, whereas, a Kernel is a set of classes that implements the resource

allocation policies and supports applications. A customized system is built using tailored

kernel classes and derived germ classes to suit a particular hardware.

4.8.1 Tasks and Threads

Choices implement threads in the kernel [200]. It supports multiple threads within a single

task. Although they are called lightweight threads in [47], according to the terminology

introduced in this paper they are middleweight threads. A task is a collection of address

spaces and active threads.

4.8.2 Interprocess Communication

Communication in Choices is achieved mainly via shared memory. The operating system

class hierarchy provides a few common shared memory and message passing communication

schemes that can be extended or customized. The existing communication schemes include

a Path C++ class, monitors, semaphores, and simple varieties of guarded commands.

45

Communication between address spaces (tasks) is performed using shared persistent ob-

jects, which support stream-based communications, broadcasts, multicasts, and block I/O.

4.8.3 Memory Management

Germs provide two classes of objects for memory managements:

1. Store: A store encapsulates the physical memory. The operations allowed on a store are

store instantiation, store destruction, page allocation, and page deallocation.

2. Space: A space encapsulates the paged virtual address range and its mapping onto

physical memory and/or fault handler. The operations provided are space creation,

space destruction, virtual page allocation and deallocation, mapping virtual pages onto

physical pages of a store, and installation of fault handlers.

The Universe class represents the aggregate of the spaces in a virtual memory. A task can

be constructed to use any space region. The threads within a task created in the kernel space

are always resident and addressable.

4.8.4 Persistent Objects

Persistent objects are the instances of the classes that reside in memory for a longer period

than the execution time of a particular task. Persistent objects are shared between tasks and

implement many operating system components in a protected space outside the kernel. Germ

and kernel objects are a few examples of persistent objects in Choices. Persistent objects may

be active and may act as servers.

A task accesses a persistent object using an object descriptor and a method. The object

descriptor implements a capability based addressing scheme. When accessed, persistent

objects are mapped into an Object Space. Therefore, the contents of an object space may

change over time according to requests from tasks associated with the object space. Multiple

processors may map a persistent object in their virtual memory simultaneously.

4.8.5 Exception Handling

In Choices, there are two kinds of exceptions:

1. Events: Events are asynchronous mechanisms generated by hardware (handled by event

mechanism in germs) or by software (kernel provided).

2. Traps: Traps, generated by an executing thread, are handled by kernel-provided or

user-provided trap handler objects.

4.9 Renaissance

Renaissance [202], a successor of Choices [47, 199, 200, 203] operating system, is currently

under development at Purdue University. It extends the ideas of Choices into a distributed

object environment. The goal of Renaissance is to provide transparent access to remote

objects that are distributed throughout a network of machines. Renaissance is an object-

oriented operating system and is implemented using C++ language.

46

4.9.1 Process Management

A process represents a single control path through a program in execution. Three abstract

classes manage the functions of process management and scheduling. The Process class rep-

resents a process and defines its context, the Process Container class represents a collection

of Process classes (represents process queues), and the Processor class represents a physical

processor (stores processor-specific information such as local ready queues). Instances of

these classes manipulate the process model.

The context of a process is split into two objects. The Process object contains the archi-

tecture independent context and another object called ProcessorContext contains the archi-

tecture dependent context. Sending an appropriate message to a Processor object returns

the next process in its ready queue and context switch between two processes is initiated by

sending messages to corresponding Process objects.

4.9.2 Synchronization

Renaissance supports several mutual exclusion and synchronization classes. The Lock class

defines a low-level mutual exclusion object. The lowest level concrete synchronization class is

the PrimitiveSpinLock class which provides a simple and crude spin lock, implemented using

hardware provided atomic test-and-set instructions. SpinLock is a subclass of PrimitiveSpin-

Lock and implements a more sophisticated busy waiting lock. Other important synchroniza-

tions classes include the Semaphore Class (implements Dijkstra’s counting semaphore [72]),

the GraciousSemaphore13 class, the BusyWaitingReadWriteLock and the BlockingReadWrite-

Lock classes, the TimedSemaphore class (augments a counting semaphore with a timeout

mechanism), and the Event class.

4.10 DYNIX

The Dynix operating system [224, 223] is an enhanced version of the Unix operating system

developed to run on the Sequent multiprocessors. The Sequent multiprocessor is a bus based

uniform access shared memory (UMA) machine.

4.10.1 Process Management and Scheduling

Like Unix, Dynix supports heavyweight processes. The processors in the system share a

set of run queues. In addition, each processor has a private run queue. Dynix supports a

preemptive priority based scheduling. The processes are grouped into 32 queues according

to priorities. An idle processor first checks its private queue for a runnable process. If there

is none, it selects a process to execute from the highest-priority non-empty shared queue.

Within a queue, the processes are executed in a time shared, round robin fashion.

The priority of a process may change over its lifetime. Periodically (a system-defined time

period), the priority of a process is recalculated. The priority of a CPU-intensive process is

lowered gradually. A user may also alter the priority of a process to a certain extent.

In Dynix, a process can restrict itself to a particular processor14; the process is placed in

the private queue of the processor.

A version of Dynix provides a parallel programming library which supports less expensive

processes or threads of control. It supports multiple threads of control in one Dynix process.

13Gracious semaphore is originally introduced in [203]. Such a semaphore causes the current process to immediately
relinquish the processor when a V message is sent and there are blocked processes.
14also known as processor/process affinity.

47

4.10.2 Synchronization

The Dynix kernel provides locks and semaphores for mutual exclusion and synchronization.

The interrupt priority of a processor holding a lock is set to ensure that the processor is not

interrupted. A semaphore is used to guard a large critical section.

4.10.3 Memory Management

The virtual memory system of Dynix is an enhanced version of Unix. Unlike Unix, which

uses a global model, Dynix uses a local model. A process has a greater role in its own paging

activity.

4.11 UMAX

UMAX [171] like Dynix is an extension of Unix, and runs on Encore Multimax multiprocessors.

The Encore Multimax is a bus based, shared memory multiprocessor.

There are two versions of UMAX – UMAX 4.2 and UMAX V. UMAX 4.2 is compatible with

Unix 4.2 bsd, whereas UMAX V is compatible with Unix System V.

4.11.1 Process Management and Scheduling

UMAX is a multi-user, multi-programmed, and multithreaded operating system. It is similar

to Dynix, including its support of heavyweight “Unix-like” processes. A parallel program is

constructed using multiple “Unix-like” processes sharing a portion of the process data space.

However, for medium grained parallelism, UMAX also provides a multitasking library which

implements the notion of tasks, which are similar to Mach threads. Each process may have

multiple tasks sharing its address space.

4.11.2 Synchronization

The synchronization primitives provided are spin locks, semaphores (Dijkstra style), and

Read/Write locks. Locks and semaphores are used hierarchically to prevent deadlock and

indefinite postponement.

4.11.3 Memory Management

Both versions of UMAX support demand-paged virtual memory to provide up to 16 megabytes

of virtual address space per processor.

4.12 Chrysalis

The Chrysalis operating system [64, 130, 81] provides a “Unix-like” environment on the But-

terfly parallel processor. The Butterfly is a non-uniform memory access (NUMA) shared mem-

ory multiprocessor which uses an interconnection network as a processor/memory switch.

Each machine node consists of a processor and its local memory. Collectively, the local

memories of all processor nodes form the shared global memory of the machine. A processor

can access any memory in the machine using the switch. A remote memory access is more

expensive than a local memory access.

48

4.12.1 Process Management and Scheduling

The kernel provides the lowest level of the Chrysalis operating system functions, and it runs

on each processor. It supports processes and per-processor schedulers which allow more

than one process to run in a node concurrently with processes on other nodes.

4.12.2 Memory Management

The Butterfly hardware uses a segmented virtual memory management system. Memory

protection (kernel/user mode read, write and execute attributes) is enforced on a per seg-

ment basis. Memory mapping is managed by the kernel and can be controlled directly by

applications. The Chrysalis kernel provides another level of abstraction above the hardware’s

memory management by supporting objects which are associated with areas of physical mem-

ory or special system data structures. Such objects provide processor independent names for

areas of memory or for system structures. An object can be mapped into the virtual address

space of a process; object identifiers (called object handles) can be passed between processors

via inter-process communication facilities.

4.12.3 Synchronization

The objects associated with system data structures provide inter-process communication and

synchronization primitives. The two most common synchronization primitives are events and

dual queues. Dual queues are interlocked data queues which are used as locks or to pass

data between processes. A process may suspend on an event. When the event is posted, the

process is scheduled to run. A few micro-coded atomic memory operations are also provided

to build simple locks and other synchronization primitives.

A number of servers are implemented on top of the kernel to provide additional function-

alities such as network capabilities, remote debugging, remote file system etc.

The application libraries built for Chrysalis export the operating system’s interface to

an application program. Such libraries includes the Uniform System which is used to de-

velop parallel programs for the Butterfly parallel system, a buffer management package for

communicating applications, a stream-oriented i/o interface, and a library of performance

measurement tools for parallel applications.

4.13 RP3

The RP3 [45, 44] is a NUMA shared memory multiprocessor developed at T. J. Watson Re-

search Center, IBM. The RP3 hardware is designed to be scalable up to 512-way multipro-

cessing. A 64-way prototype machine was built and made operational. The RP3 architecture

is designed to give an application direct control over the hardware as a way of enabling the

application to achieve speedups on the parallel machine (e.g., an application program may

choose to be in charge of cache coherence).

The RP3 architecture consists of a number of processor memory elements (PME’s) con-

nected via an interconnection network. A PME consists of a RISC processor, a floating point

unit, an I/O interface, a MMU, cache, a memory controller, a memory module, a network

interface, a switch interface, and a performance measurement chip.

The RP3 operating system, like most other commercial systems, is an extension of Unix.

Mach is the base implementation of Unix on the RP315. Like Mach, Mach/RP3 also has a

master processor, which is reserved for Unix system call service.

15A second operating system for the RP3 developed at NYU was never deployed on the actual machine [6].

49

4.13.1 Process Management and Scheduling

Mach/RP3 supports a version of co-scheduling or gang scheduling known as family schedul-

ing. A family is a set of cooperating processes (possibly exchanging messages, sharing part or

all of their address space, synchronizing often) working towards a single goal. A thread family

is the largest schedulable unit on the RP3, and corresponds to the notion of a family. A port is

associated with a family. A thread that has rights to a family port can request a processor to

be allocated to or deallocated from the family. The threads in a family are allowed to run only

on the allocated processors; non-family threads are barred from the allocated processors.

The members of a family time-share its processors. A thread in a family can choose to be

bound to a particular processor. A notable feature of RP3 family scheduling interface is its

flexibility in allowing a thread to issue requests for other threads. For example, a thread can

bind another thread, and a thread can request processor allocation for another family.

4.13.2 Memory Management

RP3 exports the non-uniform memory model to applications and therefore, does not deal with

issues like data placement and cacheability. Mach/RP3 allows a task to specify virtualmemory

attributes for pages of its virtual address space (like inheritance and protection attributes

in Mach). Such attributes include location attributes (a thread may specify ranges of virtual

pages to be placed in the local memory), replication attributes (a thread can request to replicate

ranges of virtual memory in different memory modules), and cacheability attributes (a thread

can request ranges of virtual pages to be made cacheable).

4.14 Operating Systems for Distributed Memory Machines

There has not been much work on operating systems for distributed memory machines, in

part because of designers’ hardware backgrounds, in part due to a narrow focus on attaining

high performance for application programs, where ‘less operating system’ was considered to

result in ‘better performance’ for such machines. However, recent commercial ventures do

not have these characteristics, because industry end users are demanding operating system

compatibility with existing workstation or sequential supercomputer platforms. Instead, cur-

rent distributed memory machines like the Intel Paragon and the Thinking Machines CM-5

offer full OSF Unix operating systems. Unfortunately, system implementors cannot make

use of a plethora of past research results. A brief outline of operating system research on

distributed memory machines follows.

The Caltech hypercube developments resulted in broad interest in the concept of active

messages. The basic idea of active messages is to associate computing tasks with message

transfers such that the system minimizes the delay between message arrival at some node

and the initiation of computations enabled by that message. Dally at MIT is constructing

hardware support for active message machines [66]. Livny and Manber explore a similar

idea in their work on ‘active channels’ [152, 151], in which a token ring communication

protocol is extended such that three classes of operations could be performed directly on the

node interfaces: arithmetic, selection, and counting. Simulation studies of their hardware

proposals show its usefulness in several applications, including dynamic load balancing,

sorting, work distribution in DIB [82], etc.

As with Livny and Manber’s work, research on an active message construct called ‘topolo-

gies’ on hypercubes [211] and ‘distributed shared abstractions’ on shared memory multipro-

cessors [57] is based on previous work in message-based operating systems for hypercubes,

since it is assuming the presence of reliable message delivery and of processes on the in-

50

PRECONDITIONS

POSTCONDITIONS

Service Routine

Service Routine

Pool of
Invocation

Blocks

Service

Table

Private

Vertices

User
Threads

Input Q

Output Q

Input Edge Q

Output Edge Q

Vertices

Data

Figure 12: Object Fragments

dividual nodes of the hypercube. Based on such a lower-level message protocol, kernel- or

user-level services are associated with the receipt or sending of individual messages, some-

what resembling the explicit user-level communication calls issued by user programs in the

Crystalline operating system [86]. The event-driven execution model of ‘topologies’ is similar

to the execution model supported by the reactive kernel [221] for the Symult series of multi-

computers, which schedules user processes according to conditions that concern the receipt

of messages for which processes are waiting.

A sample object fragment as defined in [211] and in [57] appears in Figure 12. The basic

idea of active messages is reflected here, in terms of user threads and service routines closely

associated with the incoming or outgoing message buffers of the communication topology

linking object fragments. Simpler and higher performance implementations of services or

threads attached to messages are being implemented in systems like those designed by Dally

at MIT [66].

In other work, slight generalizations of the functionality of the Crystalline operating sys-

tem are the MOOSE operating system [205] designed at CalTech and the early commercial

operating systems developed at Intel and NCube for their hypercube machines. For example,

MOOSE explicitly addresses process migration and load balancing, and the Intel operating

51

systems offer simple notions of processes and process communication constructs, later am-

plified by support for concurrent I/O.

5 Conclusions and Future Work

Having reviewed this much material on multiprocessor operating systems, it is tempting to

try to predict future developments in parallel operating systems. We will resist that tempta-

tion. Instead, we conclude by apologizing to the many system developers whose work is not

mentioned in this survey and by stating our motivation for highlighting specific topics and

systems.

Our main motivation for writing this survey is the realization that current multiprocessor

developments can be assisted tremendously by judicious reviews of past research. This is

particularly important in the case of parallel operating systems because the OS community’s

research focus on parallel systems in the late 70’s shifted to distributed systems for much of

the 80’s and is only now again addressing parallel machines. Hoping to remind researchers

of past results and insights, we have included relatively ‘old’ operating systems like HYDRA

in this survey which can be thought of as one of the culminations of research on protection

issues as well as a starting point for operating system developments for parallel machines.

Similarly, the StarOS system along with Roscoe [230] and Medusa [184] provides early im-

plementations of micro-kernels, of user-level operating system services, of internally parallel

or reliable system services, and of alternative operating system constructs providing similar

functionalities at differing costs. Another motivation for the inclusion of HYDRA and StarOS

is our expectation that their insights on protection in operating systems may become more

important with 64 bit address spaces on large-scale parallel machines.

A second motivation for writing this paper is the aforementioned ‘convergence’ of several

technologies relevant to parallel computing. First, the convergence of high performance com-

puting and networking technologies are now resulting in large-scale, physically distributed,

and heterogeneous parallel machines. The associated technologies were originally developed

for parallel vs. distributed systems, by partially divergent technical communities and some-

times discussed with different terminologies. Technological convergence is driven by recent

hardware developments, where (1) multiprocessor engines, when scaled to hundreds of pro-

cessors, can appear much like distributed sets of machines, and (2) distributed machines

linked by high performance networks (especially local area networks or network devices de-

rived from current ATM or even supercomputer routing technologies) are being increasingly

used as parallel computing engines. This has become increasingly obvious with the evolution

of the Mach operating system from one that addressed single or networks of workstations,

to one also running on NUMA and now on NORMA machines. It has prompted us to in-

clude NUMA operating systems like Elmwood and Psyche in this survey, along with operating

systems like the reactive kernel and constructs like topologies for NORMA machines, while

also mentioning developments originally proposed for distributed systems like weak memory

systems. We believe that many of the ideas in those designs and implementations can be

fruitfully applied toward the development of future parallel machine operating systems.

Our third motivation for writing this survey is the current excitement in operating systems

research in general, where new applications like interactive distributed systems and new

software technologies like object-oriented software development and languages are prompting

designers to seek new dimensions of system configurability not only for large-scale parallel

machines addressed by this survey but also for sequential machines ranging from simple

hand held communication and computation devices to supercomputers. One example of an

industry effort to apply object-oriented technologies to operating system development is the

52

Spring operating system now being commercialized at SUN microsystems [103]. The sample

research systems we included in this survey are Elmwood, Kernel ToolKit, Psyche, Choices,

and Renaissance.

Two insights concerning operating systems for parallel machines underly much of this

paper’s presentation. First, modern operating systems are built using multiple and often

related system structuring techniques, and they will inevitably offer different implementa-

tions of common functionality tailored to their target architectures and intended application

domains. Second, no single set of operating system facilities will result in high performance

for all possible parallel application programs. As a result, modern systems strive to place

more and more system functionality into user-level code or even offer multiple and different

user-level operating system platforms for parallel computing on a single underlying system

kernel. Interesting future research questions include: What are the cutpoints between user-

level vs. kernel functionality? What are the appropriate interfaces between both? What are

the most suitable mechanisms for provision of such externally driven system configurability?

A different statement posing the same questions is the admission that there is probably no

single parallel programming model that is appropriate for all parallel application programs.

As a result, future systems are more likely to offer multiple, diverse programming model

rather than focus on a single powerful parallel programming paradigm.

References

[1] Jr. A. Tevanian. Architecture-Independent Virtual Memory Management for Parallel and

Distributed Environments. PhD thesis, School of Computer Science, Carnegie-Mellon

University, December 1987. Technical Report CMU-CS-88-106.

[2] V. Abrossimov, M. Rozier, and M. Shapiro. Generic virtual memory management for

operating system kernels. In Proceedings of the 12th symposium on operating systems

principles (SIGOPS Notices vol.23, no.5), pages 123–36, December 1989.

[3] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian, and

Michael Young. Mach: A new kernel foundation for unix development. In Proceed-

ings of the Summer 1986 Usenix Conference, pages 93–112, July 1986.

[4] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In Proceedings of the

17th Annual International Symposium on Computer Architecture, pages 2–14, May 1990.

[5] Sarita V. Adve and Mark D. Hill. A unified formalization of four shared-memory models.

Technical Report 1051, Department of Computer Science, University of Wisconsin,

Madison, September 1991.

[6] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin/Cummings, Redwood

City, Calif., 1989.

[7] R. Ananthanarayanan, Mustaque Ahamad, and Richard J. LeBlanc. Application specific

coherence control for high performance distributed shared memory. In Proceedings of

the 3rd USENIX Symposium on Experience with Distributed and Multiprocessor Systems

(SEDMS III), pages 109–28, March 1992.

[8] T. E. Anderson. The perfomance of spin lock alternatives for shared-memory multi-

processors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16, January

1990.

53

[9] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.

Scheduler activations: Effective kernel support for the user-level management of par-

allelism. Transactions on Computer Systems, ACM, 10(1):53–79, February 1992.

[10] Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The performance

implications of thread management alternatives for shared-memory multiprocessors.

IEEE Transactions on Computers, 38(12):1631–1644, December 1989.

[11] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. Lazowska.

The interaction of architecture and operating system design. In Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems (SIGPLAN Notices vol.26, no.4), pages 108–20, April 1991.

[12] A. Appel and K. Li. Virtual memory primitives for user programs. In Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems (SIGPLAN Notices, vol.26, no.4), pages 96–107, April 1991.

[13] J. Archibald. The Cache Coherence Problem in Shared-Memory Multiprocessors. PhD

thesis, Department of Computer Science, University of Washington, February 1987.

[14] R. Atkinson, A. Demers, C. Hauser, C. Jacobi, P. Kessler, and M. Weiser. Experi-

ences creating a portable cedar. In Proceedings of the ACM SIGPLAN ’89 Conference on

Programming Language Design and Implementation, pages 322–8, Portland, OR, June

1989.

[15] R. Baron, D. Black, W. Bolosky, J. Chew, R. Draves, D. Golub, R. Rashid, A. Tevanian,

and M. Young. Mach Kernel Interface Manual. School of Computer Science, Carnegie

Mellon University, August 1990.

[16] Forest Baskett, John Howard, and John Montague. Task communication in demos.

Proceedings of the Sixth ACM Symposium on Operating Systems Principles, pages 23–31,

Nov. 1977.

[17] Gerard M. Baudet. The Design and Analysis of Algorithms for Asynchronous Multipro-

cessors. PhD thesis, Computer Science Department, Carnegie-Mellon University, April

1978.

[18] J. Bennett. The design and implementation of distributed smalltalk. In OOPSLA’87

Conference Proceedings, pages 318–330, October 1987.

[19] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory

based on type-specific memory coherence. In Second ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, Seattle, (SIGPLAN Notices, vol.25, no.3),

pages 168–76. ACM, March 1990.

[20] B. Bershad. The increasing irrelevance of ipc performance for microkernel-based op-

erating systems. In Proceedings of the USENIX Workshop on Micro-Kernels and Other

Kernel Architectures, pages 205–211, April 1992.

[21] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote procedure call.

ACM Transactions on Computer Systems, 8(1):37–55, February 1990. Also appeared in

Proceedings of the 12th ACM Symposium on Operating Systems Principles, Dec. 1989.

[22] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. User-level interprocess commu-

nication for shared memory multiprocessors. ACM Transactions on Computer Systems,

9(2):175–198, May 1991.

54

[23] B. Bershad, E. Lazowska, and H. Levy. Presto: A system for object-oriented parallel

programming. Software: Practice and Experience, 18(8):713–732, August 1988.

[24] B. Bershad, E. Lazowska, H. Levy, and D. Wagner. An open environment for building

parallel programming systems. In Proceedings of the Symposium on Parallel Program-

ming: Experience with Applications, Languages and Systems, pages 1–9, July 1988.

[25] Brian N. Bershad. High performance cross-address space communication. Technical

Report 90-06-02, Dept. of Computer Science and Eng., University of Washington, June

1990. Ph.D. dissertation.

[26] T. Bihari and K. Schwan. A comparison of four adaptation algorithms for increasing

the reliability of real-time software. In Proceedings of the Ninth Real-Time Systems

Symposium, Huntsville, AL, pages 232–241. IEEE, Dec. 1988.

[27] T. Bihari and K. Schwan. Dynamic adaptation of real-time software. ACM Transactions

on Computer Systems, 9(2):143–174, May 1991.

[28] Kenneth P. Birman and et.al. Implementing fault-tolerant distributed objects. IEEE

Transactions on Software Engineering, pages 502–508, June 1985.

[29] A. Birrell, J. Guttag, J. Horning, and R. Levin. Synchronization primitives for a mul-

tiprocessor: A formal specification. In Proceedings of the 11th ACM Symposium on

Operating Systems Principles, pages 94–102. ACM, December 1987.

[30] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM Transactions on

Computer Systems, 2(1):39–59, February 1984.

[31] P. Biswas, K. Ramakrishnan, D. Towsley, and C. Krishna. Performance analysis of

distributed file systems with non-volatile caches. In Proceedings of the 2nd International

Symposium on High Performance Distributed Computing, pages 252–262, July 1993.

[32] D. Black, D. Golub, D. Julin, R. Rashid, R. Draves, R. Dean, A. Forin, J. Barrera,

H. Tokuda, G. Malan, and D. Bohman. Microkernel operating system architectures

and mach. In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures, pages 11–30, April 1992.

[33] D. Black, D. Golub, R. Rashid, A. Tevanian, and M. Young. The mach exception han-

dling facility. Technical Report CMU-CS-88-129, School of Computer Science, Carnegie

Mellon University, April 1988.

[34] David L. Black. The mach cpu server: An implementation of processor allocation.

School of Computer Science, Carnegie-Mellon University, August 1989.

[35] David. L. Black. Scheduling and Resource Management Techniques for Multiproces-

sors. PhD thesis, School of Computer Science, Carnegie Mellon University, July 1990.

Techreport CMU-CS-90-152.

[36] David. L. Black. Scheduling support for concurrency and parallelism in the mach

operating system. IEEE Computer, 23(5):35–43, May 1990.

[37] Ben A. Blake and Karsten Schwan. Experimental evaluation of a real-time scheduler

for a multiprocessor system. IEEE Transactions on Software Engineering, 17(1):34–44,

January 1991.

[38] Toby Bloom. Dynamic Module Replacement in a Distributed Programming System.

PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,

MIT/LCS/TR-303, March 1983.

55

[39] S.H. Bokhari. Dual processor scheduling with dynamic reassignment. IEEE Transac-

tions on Software Engineering, SE-5(4):341–349, July 1979.

[40] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective techniques for numa mem-

ory management. In Proceedings of the twelfth ACM symposium on Operating Systems

Principles, pages 19–31, December 1989.

[41] W. Bolosky and M. Scott. False sharing and its effect on shared memory performance.

In Proceedings of the USENIX Symposium on Experiences with Distributed and Multipro-

cessor Systems (SEDMS IV), pages 57–71, September 1993.

[42] A. Bomberger, N. Hardy, A. Frantz, C. Landau, W. Frantz, J. Shapiro, and A. Hardy.

The keykos nanokernel architecture. In Proceedings of the USENIX Workshop on Micro-

Kernels and Other Kernel Architectures, pages 95–112, April 1992.

[43] Ronald F. Brender and Isaac R. Nassi. What is ada? IEEE Computer Magazine, 14(6):17–

25, June 1981.

[44] R. Bryant, H. Y. Chang, and B. Rosenburg. Experience developing the rp3 operating

system. In Proceedings of the 2nd Usenix Symposium on Experience with Distributed

and Multiprocessor Systems (SEDMSII), pages 1–18, March 1991.

[45] R. Bryant, H. Y. Chang, and B. Rosenburg. Operating system support for parallel

programming on rp3. IBM Journal of R & D, November 1991.

[46] R. Campbell, N. Islam, and P. Madany. Choices, frameworks and refinement. Computing

Systems, 5(3):217–57, Summer 1992.

[47] R. Campbell, G. Johnston, and V. Russo. Choices (class hierarchical open interface for

custom embedded systems). Operating Systems Review, 21(3):9–17, July 1987.

[48] R. Campbell, V. Russo, and G. Johnston. The design of a multiprocessor operating

system. In Proceedings of the USENIX C++ Conference, pages 109–25, November 1987.

[49] Nicholas Carriero and David Gelernter. The s/netś linda kernel. ACM Transactions on

Computer Systems, 4(2):110–129, may 1986.

[50] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of

munin. In Proceedings of the thirteenth ACM symposium on Operating Systems Princi-

ples, pages 152–164, October 1991.

[51] D. Casewell and D. Black. Implementing a mach debugger for multithreaded applica-

tions. In Proceedings of the Winter 1990 Usenix Technical Conference and Exhibition,

pages 25–39, January 1990.

[52] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The amber system:

Parallel programming on a network of multiprocessors. In Proceedings of the 12th ACM

Symposium on Operating Systems and Principles, pages 147–158, December 1989.

[53] Sheng-Chang Cheng, John A. Stankovic, and Krithi Ramamritham. Scheduling algo-

rithms for hard real-time systems - a brief survey. In Tutorial Hard Real-Time Systems,

pages 150–173. IEEE, 1988.

[54] D. Cheriton. The v kernel: A software base for distributed systems. IEEE Software,

1(2):19–42, April 1984.

[55] D. R. Cheriton. Problem-oriented shared memory: A decentralized approach to dis-

tributed system design. Proceedings of the sixth. International Conference on Distributed

Computing Systems, Cambridge,MA., pages 190–197, May 1986.

56

[56] D.R. Cheriton, M.A. Malcolm, L.S. Melen, and G.R. Sager. Thoth, a portable real-time

operating system. Comm. of the Assoc. Comput. Mach., 22(2):105–115, Feb. 1979.

[57] Christian Clemencon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed

shared abstractions (dsa) on large-scale multiprocessors. In Proc. of the Fourth USENIX

Symposium on Experiences with Distributed and Multiprocessor Systems, pages 227–

246. USENIX, September 1993. To be published in IEEE Transactions of Software

Engineering.

[58] E. Cohen and D. Jefferson. Protection in the hydra operating system. In Proceedings of

the 5th ACM Symposium on Operating Systems Principles, pages 141–160. ACM, 1975.

[59] R. Colwell, E. Gehringer, and E. Jensen. Performance effects of architectural complexity

in the intel 432. ACM Transactions on Computer Systems, 6(3):296–339, August 1988.

[60] E. Cooper and R. Draves. C threads. Technical Report CMU-CS-88-154, Dept. of

Computer Science, Carnegie Mellon University, June 1988.

[61] A. Cox and R. Fowler. The implementation of a coherent memory abstraction on a

numa multiprocessor: experiences with platinum. In Proceedings of the twelfth ACM

symposium on Operating Systems Principles, pages 32–44, December 1989.

[62] G. Cox, M. Corwin, K. Lai, and F. Pollack. Interprocess communication and processor

dispatching on the intel 432. ACM Transactions on Computer Systems, 1(1):45–66,

February 1983.

[63] George Cox, William M. Corwin, Konrad K. Lai, and Fred J. Pollack. A unified model

and implementation for interprocess communication in a multiprocessor environment.

In Proceedings of the 8th Symposium on Operating System Principles, Asilomar, pages

44–53. Assoc. Comput. Mach., Dec. 1981.

[64] W. Crowther, J. Goodhue, R. Gurwitz, R. Rettberg, and R. Thomas. The butterfly(tm)

parallel processor. Technical report, BBN Laboratories Incorporated.

[65] S. Curran and M. Stumm. A comparison of basic cpu scheduling algorithms for multi-

processor unix. Computing Systems, 3(4):551–79, October 1990.

[66] Dally, Chao, Chein, Hassoun, Horwat, Kaplan, Song, Totty, and Wills. Architecture of

a message driven processor. Proceedings of the 14th Annual International Symposium

On Computer Architecture, 15(2):189–196, Jun 1987.

[67] W. Dally and C. Seitz. The torus routing chip. J. Distributed Computing, 1(4), 1986.

[68] Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umakishore Ramachan-

dran. The CLOUDS distributed operating system. IEEE Computer, 24(11):34–44, Nov.

1991.

[69] Partha Dasgupta, Richard J. LeBlanc Jr., and William F. Appelbe. The clouds dis-

tributed operating system: Functional description, implementation details and related

work. In Proceedings of the 9th International Conference on Distributed Computing Sys-

tems, San Jose, CA., pages 2–9. IEEE, June 1988.

[70] J. Dennis and E. Van Horn. Programming semantics for multiprogrammed computa-

tions. Communications of the ACM, 9(3), March 1966.

[71] M. L. Dertouzos and A. K. Mok. Multiprocessor on-line scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506, Dec. 1989.

57

[72] E. Dijkstra. The structure of the “the”-multiprogramming system. Communications of

the ACM, 11(5):341–346, May 1968.

[73] L. Dowdy. On the partitioning of multiprocessor systems. Technical Report 88-06,

Department of Computer Science, Vanderbilt University, July 1988.

[74] P. D. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean. Using continuations to im-

plement thread management and communication in operating systems. In Proceedings

of the 13th ACM Symposium on Operating System Principles, pages 122–136, October

1991.

[75] R. Draves. The revised ipc interface. In Proceedings of the Usenix Mach Conference,

pages 101–122, October 1990.

[76] R. Draves, M. Jones, and M. Thompson. Mig – the mach interface generator. Depart-

ment of Computer Science, Carnegie-Mellon University, July 1989.

[77] Eds. I. Durham, S.F. Fuller, and A.K. Jones. The cm* review report. Technical report,

Comp. Science Dept., Carnegie-Mellon Univ., 1977.

[78] D. Eager, J. Zahorjan, and E. Lazowska. Speedup versus efficiency in parallel systems.

IEEE Transactions on Computers, 38(3):408–23, March 1989.

[79] J. Edler, J. Lipkis, and E. Schonberg. Process management for highly parallel unix

systems. In Proceedings of the USENIX Workshop on UNIX and Supercomputers, pages

1–17, September 1988.

[80] Jr. E.M. Chaves, P.C. Das, T.L. LeBlanc, B.D. Marsh, and M.L. Scott. Kernel-kernel

communication in a shared-memory multiprocessor. Concurrency: Practice and Experi-

ence, 5(3):171–192, May 1993.

[81] W. Milliken et al. Chrysalis Programmer’s Manual, version 2.2. BBN Laboratories, June

1985.

[82] R. Finkel and U. Manber. Dib - a distributed implementation of backtracking. ACM

Transactions on Programming Languages and Systems, 9(2):235–255, April 1987.

[83] R. Finlayson. Object-oriented operating systems. TCOS Newsletter, 5(1):17–21, 1991.

[84] R. Fitzgerald and R. Rashid. The integration of virtual memory management and inter-

process communication in accent. ACM Transactions on Computer Systems, 4(2), May

1986.

[85] A. Forin, J. Barrera, M. Young, and R. Rashid. Design, implementation and perfor-

mance evaluation of a distributed shared memory server for mach. In Proceedings of

the Winter Usenix Technical Conference, January 1989.

[86] G.C. Fox and A. Kolawa. Implementation of the high performance cystalline operating

system on intel ipsc hypercube. Technical report, Caltech Concurrent Computational

Program and Physics Dept., Caltech, Pasadena CA, Jan. 1986.

[87] Geoffrey C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.

Walker. Solving Problems On Concurrent Processors. Prentice-Hall, 1988.

[88] S.H. Fuller, J.K. Ousterhout, L. Raskin, P.I. Rubinfeld, P.J. Sindhu, and R.J. Swan.

Multiprocessors: An overview and working example. Proceedings of the IEEE, 66(2):216–

228, Feb. 1978.

58

[89] Edward F. Gehringer, Daniel P. Siewiorek, and Zary Segall. Parallel Processing: The

Cm* Experience. Digital Press, Digital Equipment Corporation, 1987.

[90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory consistency and event ordering in scalable shared mem-

ory multiprocessors. In Proceedings of the 17th Annual International Symposium on

Computer Architecture, pages 15–26, May 1990.

[91] Ahmed Gheith, Bodhisattwa Mukherjee, Dilma Silva, and Karsten Schwan. Ktk: Kernel

support for configurable objects and invocations. In Second International Workshop on

Configurable Distributed Systems. IEEE, ACM, March 1994.

[92] Ahmed Gheith and Karsten Schwan. Chaos-arc – kernel support for multi-weight ob-

jects, invocations, and atomicity in real-time applications. ACM Transactions on Com-

puter Systems, 11(1):33–72, April 1993.

[93] M. Gien. Micro-kernel design. UNIX REVIEW, 8(11):58–63, November 1990.

[94] A. Goldberg and R. Tarjan. A new approach to the maximum flow problem. In Proceed-

ings of the 18th ACM Symposium on Theory of Computing, pages 136–146, 1986.

[95] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an application program. In

Proceedings of the Summer Usenix Technical Conference, pages 87–96, June 1990.

[96] Prabha Gopinath and Karsten Schwan. Chaos: Why one cannot have only an operat-

ing system for real-time applications. Operating Systems Review, 23(3):106–125, July

1989.

[97] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir. The nyu

ultracomputer. IEEE Transactions on Computers, C-32(2):175–189, February 1990.

[98] Y. Gourhant and M. Shapiro. Fog/c++: a fragmented-object generator. In Proceedings

of the USENIX C++ Conference, pages 63–74, April 1990.

[99] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multipro-

cessors. IEEE Computer, 23(6):60–70, June 1990.

[100] MACH Networking Group. Network server design. School of Computer Science,

Carnegie Mellon University, August 1989.

[101] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating systems scheduling

policies and synchronization methods of the performance of parallel applications. In

Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pages 120–32, May 1991.

[102] S. Habert, L. Mosseri, and V. Abrossimov. Cool: Kernel support for object-oriented

environments. In ECOOP/OOPSLA’90Conference (SIGPLAN Notices vol.25, no.10, pages

269–277. ACM, October 1990.

[103] G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A flexible base for distributed

programming. Technical report, Sun Microsystems Laboratories Inc., SMLI TR-93-13,

April 1993.

[104] M. Herlihy. Impossibility and universality results for wait-free synchronization. In Pro-

ceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing,

pages 276–90, August 1988.

59

[105] M. Herlihy. A methodology for implementing highly concurrent data structures. In

Proceedings of the Second ACM Sigplan Symposium on Principles and Practice of Parallel

Programming (SIGPLAN Notices vol.25, no.3), pages 197–206, March 1990.

[106] D. Hildebrand. An architectural overview of qnx. In Proceedings of the USENIXWorkshop

on Micro-Kernels and Other Kernel Architectures, pages 113–126, April 1992.

[107] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications

of the ACM, 17(10):549–557, 1974.

[108] W. A. Horn. Some simple scheduling algorithms. Naval Res. Logist. Quart., 21:177–185,

1974.

[109] R. Hou and Y. Patt. Trading disk capacity for performance. In Proceedings of the 2nd

International Symposium on High Performance Distributed Computing, pages 263–270,

July 1993.

[110] N. Hutchinson, L. Peterson, M. Abbott, and S. O’Malley. Rpc in the x-kernel: Evalu-

ating new design techniques. In Proceedings of the 12th ACM Symposium on Operating

Systems Principles, pages 91–101, December 1989.

[111] K. Hwang and F. Briggs. Computer Architecture and Parallel Processing. Computer

Science Series. McGraw-Hill, New York, 1984.

[112] H. Burkhardt III, S. Frank, B. Knobe, and J. Rothnie. Overview of the ksr1 computer

system. Technical Report KSR-TR-9202001, Kendall Square Research, Boston, Febru-

ary 1992.

[113] Sun Microsystem Inc. Sun OS 4.0 Reference Manual, November 1987. Section 3L.

[114] Intel Corporation, Oregon. Intel iPSC/2 and iPSC/860 User’s Guide, 1989.

[115] Intel Corporation, Beaverton, Oregon. Touchstone Delta System User’s Guide, 1991.

[116] A. Jones, R. Chansler Jr., I. Durham, P. Feller, and K. Schwans. Software manage-

ment of cm* – a distributed multiprocessor. In Proceedings of the National Computer

Conference, pages 657–663, 1977.

[117] A. Jones and K. Schwans. Task forces: Distributed software for solving problems

of substantial size. In Proceedings of the Fourth International Conference on Software

Engineering, 1979.

[118] A.K. Jones, R.J. Chansler, I. Durham, P. Feiler, D. Scelza, K. Schwan, and S. Vegdahl.

Programming issues raised by a multiprocessor. Proceedings of the IEEE, 66(2):229–

237, Feb. 1978.

[119] A.K. Jones, R.J. Chansler, I. Durham, J. Mohan, K. Schwan, and S. Vegdahl. Staros,

a multiprocessor operating system. In Proceedings of the 7th Symposium on Operating

System Principles, Asilomar, CA, pages 117–127. Assoc. Comput. Mach., Dec.10-12

1979.

[120] Anita K. Jones and Peter Schwarz. Experience using multiprocessor systems: A status

report. Surveys of the Assoc. Comput. Mach., 12(2):121–166, June 1980.

[121] Eds. A.K. Jones and Ed Gehringer. The cm* multiprocessor project: A research review.

Technical report, School of Computer Science, Carnegie-Mellon University, CMU-CS-

80-131, July 1980.

60

[122] M. Jones and R. Rashid. Mach and matchmaker: Kernel and language support for

object-oriented distributed systems. Technical Report CMU-CS-88-129, School of Com-

puter Science, Carnegie Mellon University, September 1986.

[123] M. Jones, R. Rashid, and M. Thompson. Matchmaker: An interface specification lan-

guage. In Proceedings of the ACM Conference on Principles of Programming Languages,

January 1985.

[124] Richard Larowe Jr., Carla Ellis, and Laurence Kaplan. The robustness of numa mem-

ory management. In Proceedings of the 13th ACM Symposium on Operating Systems

Principles, pages 137–151, October 1991.

[125] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emerald

system. ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

[126] A. Karlin, K. Li, M. Manasse, and S. Owicki. Empirical studies of competitive spinning

for a shared-memory multiprocessor. In Proceeding of the thirteenth ACM symposium

on operating systems principles, pages 41–55, October 1991.

[127] J. Kepecs. Lightweight processes for unix implementation and application. In Proceed-

ings of the Proc. 1985 USENIX Summer Conference, pages 299–308, 1985.

[128] Y. Khalidi and M. Nelson. An implementation of unix on an object oriented operating

system. In Proceedings of the 1993Winter Usenix Conference, San Diego, January 1993.

[129] Jeff Kramer and Jeff MaGee. Dynamic configuration for distributed systems. IEEE

Transactions on Software Engineering, SE-11(4):424–436, April 1985.

[130] BBN Laboratories. Butterfly(TM) Parallel Processor Overview. BBN Computer Company,

Cambridge, MA, 1st edition, June 1985.

[131] B. Lampson and D. Redell. Experiences with processes and monitors in mesa. Commu-

nications of the ACM, 23(2):105–117, 1980.

[132] B. Lampson and H. Sturgis. Reflections on an operating system design. Communications

of the ACM, 19:25–65, 1976.

[133] H. Lauer and R. Needham. On the duality of operating system structures. Operating

Systems Review, 13(2):3–19, February 1979.

[134] E. Lazowska, H. Levy, G. Almes, M. Fischer, R. Fowler, and S. Vestal. The architecture

of the eden system. In Proceedings of the 8th ACM Symposium on Operating Systems

Principles, pages 148–159, December 1981.

[135] E. Lazowska and M. Squillante. Using processor-cache affinity in shared-memory

multiprocessor scheduling. IEEE Transactions on Parallel and Distributed Systems,

4(2):131–43, February 1993.

[136] T. Leblanc, B. Marsh, and M. Scott. Memory management for large-scale numa multi-

processors. Technical Report TR 311, Department of Computer Science, University of

Rochester, March 1989.

[137] T. Leblanc, J. Mellor-Crummey, N. Gafter, L. Crowl, and P. Dibble. The elmwood mul-

tiprocessor operating system. Software - Practice and Experience, 19(11):1029–1056,

November 1989.

[138] T. J. Leblanc. Shared memory versus message-passing in a tightly-coupled multipro-

cessor: A case study. In Proceedings of the 1986 International Conference on Parallel

Processing, pages 463–466, August 1986.

61

[139] Thomas J. LeBlanc and S.A. Friedberg. Hierarchical process composition in distributed

operating systems. In Proceedings of the 5th International Conference on Distributed

Computing Systems, Denver, Colorado, pages 26–34, May 1985.

[140] C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-5. In

Proceedings of the 1992 ACM Symposium on Parallel Algorithms and Architectures, 1992.

[141] S. Leutenegger and M. Vernon. The performance of multiprogrammed multiproces-

sor scheduling policies. In Proceedings of the 1990 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pages 226–36, May 1990.

[142] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation

in hydra. In Proceedings of the 5th Symposium on Operating System Principles, Austin,

Texas, Nov. 1975.

[143] H.M. Levy and R.H. Eckhouse. Computer Programming and Architecture. Digital Press,

1989.

[144] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Dept. of

Computer Science, Yale University, 1986.

[145] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, 7(4):321–359, November 1989.

[146] J. Liedtke. Fast thread management and communication without continuations. In

Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel Architectures,

pages 213–21, April 1992.

[147] Bert Lindgren, Bobby Krupczak, Mostafa Ammar, and Karsten Schwan. An architecture

and toolkit for parallel and configurable protocols. In Proceedings of the International

Conference on Network Protocols (ICNP-93), September 1993.

[148] B. Liskov. Abstraction mechanisms in clu. Communications of the ACM, 20(8):564–576,

March 1977.

[149] Barbara Liskov and Robert Scheifler. Guardians and actions: Linguistic support for

robust, distributed programs. ACM Trans. on Prog. Lang. and Systems., 5(3):381–404,

July 1983.

[150] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in hard

real-time environment. Journal of the Association for Computing Machinery, 20(1):46–

61, January 1973.

[151] M. Livny and U. Manber. Distributed computation via active messages. IEEE Transac-

tions on Computers, C-34(12):1185–1190, Dec 1985.

[152] M. Livny and U. Manber. Active channels and their applications to parallel computing.

In Proceedings of the 1987 International Conference on Parallel Processing, pages 367–

369, August 1987.

[153] S. Lo and V. Gilgor. A comparative analysis of multiprocessor scheduling algorithms.

In Proceedings of the 7th International Conference on Distributed Computing Systems,

September 1987.

[154] C. Douglas Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,

Carnegie Mellon University, 1986.

62

[155] P. Madany, R. Campbell, V. Russo, D. Leyens, and S. Cook. A class hierarchy for

building stream-oriented file systems. In Proceedings of the 1989 European Conference

on Object-Oriented Programming (ECOOP ’89), pages 311–28, July 1989.

[156] P. Madany, D. Leyens, V. Russo, and R. Campbell. A c++ class hierarchy for building

unix-like file systems. In Proceedings of the USENIX C++ Conference, pages 65–79,

October 1988.

[157] S. Majumdar, D. Eager, and R. Bunt. Scheduling in multiprogrammed parallel systems.

In Proceedings of the 1988 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, pages 104–13, May 1988.

[158] S. Majumdar, D. Eager, and R. Bunt. Characterisation of programs for scheduling

in multiprogrammed parallel systems. Performance Evaluation, 13(2):109–30, October

1991.

[159] M. Makpangou, Y. Gourhant, and M. Shapiro. Boar: a library of fragmented object

types for distributed abstractions. In Proceedings of the 1991 International Workshop

on Object Orientation in Operating Systems, pages 164–8, October 1991.

[160] B. Marsh, C. Brown, T. Leblanc, M. Scott, T. Becker, C. Quiroz, P. Das, and J. Karlsson.

The rochester checkers player: multimodel parallel programming for animate vision.

IEEE Computer, 25(2):12–19, February 1992.

[161] B. Marsh, M. Scott, T. Leblanc, and E. Markatos. First-class user-level threads. In

Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, pages

110–21, October 1991.

[162] H. Massalin and C. Pu. Reimplementing the synthesis kernel on the sony news work-

station. In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures, pages 177–186, April 1992.

[163] Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernel. In

Proceedings of the 12th Symposium on Operating Systems Principles, pages 191–201.

SIGOPS, Assoc. Comput. Mach., Dec. 1989.

[164] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor scheduling pollicy

for multiprogrammed, shared memory multiprocessors. Technical Report 90-03-02,

Department of Computer Science and Engineering, University of Washington, March

1991.

[165] P. McJones and G. Swart. Evolving the unix system interface to support multithreaded

programs. In Proceedings of the USENIX Winter Conference, pages 393–404, 1989.

[166] G. Mealy, B. Witt, and W. Clark. The functional structure of os/360. IBM Systems

Journal, 5(1), January 1966.

[167] J. Mellor-Crummey, T. Leblanc, L. Crowl, N. Gafter, and P. Dibble. Elmwood - an object-

oriented multiprocessor operating system. Technical Report BPR 20, Department of

Computer Science, University of Rochester, September 1987.

[168] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-

memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, Feb.

1991.

63

[169] J. Mogul and A. Borg. The effects of context switches on cache performance. In Pro-

ceedings of the Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (SIGPLAN Notices vol.26, no.4), pages 75–84, April

1991.

[170] Joseph Mohan. Performance of Parallel Programs: Model and Analyses. PhD thesis,

Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pa., July 1984.

[171] R. Moore, I. Naasi, and D. Siewiorek J. O’Neil. The encore multimax (tm): A multi-

processor computing environment. Technical Report ETR 86-004, Encore Computer

Corporation, 1986.

[172] P. Muckelbauer and V. Russo. Distributed object interoperability via a network type

system. In Proceedings of the 1991 International Workshop on Object Orientation in

Operating Systems, pages 169–72, October 1991.

[173] Bodhisattwa Mukherjee. A portable and reconfigurable threads package. In Proceedings

of the Sun User Group Technical Conference, pages 101–112, June 1991.

[174] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine indepen-

dent interface for lightweight threads. Technical Report GIT-CC-93-53, College of Com-

puting, Georgia Institute of Technology, August 1993. To be published in Operating

System Review.

[175] Bodhisattwa Mukherjee and Karsten Schwan. Experimentation with a reconfigurable

micro-kernel. In Proc. of the USENIX Symposium on Microkernels and Other Kernel

Architectures, pages 45–60, September 1993.

[176] Bodhisattwa Mukherjee and Karsten Schwan. Experiments with a configurable lock

for multiprocessors. In Proc. of the twenty secondth International Conference on Parallel

Processing, volume 2, pages 205–208, August 1993.

[177] Bodhisattwa Mukherjee and Karsten Schwan. Improving performance by use of adap-

tive objects: Experimentation with a configurable multiprocessor thread package. In

Proc. of the second International Symposium on High PerformanceDistributed Computing,

pages 59–66, July 1993.

[178] Bodhisattwa Mukherjee and Karsten Schwan. Survey of real-time operating systems.

Technical Report GIT-CC-93/18,College of Computing, Georgia Institute of Technology,

March 1993.

[179] R. Needham. The cambridge cap computer and its protection system. In Proceedings of

the 6th ACM Symposium on Operating Systems Principles, pages 1–10, Purdue Univer-

sity, November 1977. Assoc. Comput. Mach., SIGOPS.

[180] B.J. Nelson. Remote Procedure Call. PhD thesis, Department of Computer Science,

Carnegie-Mellon University, May 1981.

[181] P. Oleinick. The Implementation and Evaluation of Parallel Algorithms on a Multiproces-

sor. PhD thesis, Carnegie-Mellon University, 1978.

[182] J. Ousterhout. Scheduling techniques for concurrent systems. In Proceedings of Dis-

tributed Computing Systems Conference, pages 22–30, October 1982.

[183] J.K. Ousterhout. Partitioning and Cooperation in a Distributed Operating System. PhD

thesis, Department of Computer Science, Carnegie-Mellon University, April 1980.

64

[184] John K. Ousterhout, Donald A. Scelza, and Pradeep Sindhu. Medusa: An experiment in

distributed operating system structure. Comm. of the Assoc. Comput. Mach., 23(2):92–

104, Feb. 1980.

[185] IEEE POSIX P1003.4a. Threads Extension for Portable Operating Systems.

[186] J. Pallas and D. Ungar. Multiprocessor smalltalk: a case study of a multiprocessor-

based programming environment. In Proceedings of the SIGPLAN ’88 Conference on Pro-

gramming Language Design and Implementation (SIGPLAN Notices, vol.23, no.7), pages

268–77, Atlanta, GA, June 1988.

[187] K. Park and L. Dowdy. Dynamic partitioning of multiprocessor systems. International

Journal of Parallel Programming, 18(2):91–120, April 1989.

[188] D. Patterson and J. Hennessy. Computer architecture : a quantitative approach. Morgan

Kaufman Publishers, San Mateo, Calif., 1990.

[189] M. Powell, S. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. Sunos multi-thread

architecture. In Proceedings of the USENIX winter conference, pages 1–14, 1991.

[190] R. Rashid. Threads of a new system. Unix Review, 4(8):37–49.

[191] R. Rashid. From rig to accent to mach: The evolution of a network operating system. In

Proceedings of the ACM/IEEE Computer Society Fall Joint Computer Conference, pages

1128–37, November 1986.

[192] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr, and R. Sanzi. Mach:

A foundation for open systems. In Proceedings of the 2nd Workshop on Workstation

Operating Systems,IEEE, pages 109–13, September 1989.

[193] R. Rashid and G. Robertson. Accent: A communnication oriented network operat-

ing system kernel. In Proceedings of the 8th ACM Symposium on Operating Systems

Principles, pages 64–75, December 1981.

[194] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, and

J. Chew. Machine-independent virtual memory management for paged uniprocessor

and multiprocessor architectures. IEEE Transactions on Computers, 37(8):896–908,

August 1988.

[195] Kendall Square Research. Technical summary, 1992.

[196] D. Ritchie and K. Thompson. The unix time-sharing system. Communications of the

Assoc. Comput. Mach., 17(7), 1974.

[197] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrman,

C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Overview of the chorus operating

system. In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures, pages 39–69, April 1992.

[198] V. Russo. Object-oriented operating system design. TCOS Newsletter, 5(1):34–38, 1991.

[199] V. Russo and R. Campbell. Virtual memory and backing storage management in mul-

tiprocessor operating systems using object-oriented design techniques. In OOPSLA’89

Conference Proceedings (SIGPLAN Notices vol.24, no.10), pages 267–78, October 1989.

65

[200] V. Russo, G. Johnston, and R. Campbell. Process management and exception han-

dling in multiprocessor operating systems using object-oriented design techniques. In

Proceedings of the 3rd Annual Conference on Object-Orientated Programming Systems,

Languages, and Applications (OOPSLA 88, SIGPLAN Notices, vol.23, no.11), pages 248–

58, September 1988.

[201] V. Russo, P. Madany, and R. Campbell. C++ and operating systems performance: a

case study. In Proceedings of the USENIX C++ Conference, pages 103–14, April 1990.

[202] V. Russo and P. Muckelbauer. Process scheduling and synchronization in the renais-

sance object-orientedmultiprocessor operating system. In Proceedings of the 2nd Usenix

Symposium on Experiences with Distributed and Multiprocessor Systems (SEDMS II),

pages 117–32, March 1991.

[203] V. F. Russo. An Object-Oriented Operating System. PhD thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign, 1991.

[204] P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite element graphs onto

processors meshes. IEEE Transactions On Computers, C-36(12):1408–1420, Dec 1987.

[205] J. Salmon and S. Callahan. Moose: A multitasking os for hypercubes. In Proceedings

of the 3rd Conference on Hypercube Concurrent Computers and Applications, Pasadena,

CA, pages 391–396. ACM, JPL, Jan. 1988.

[206] J. Saltzer and M. Schroeder. The protection of information in computer systems. Pro-

ceedings of the IEEE, 63(9):1278–1308, September 1975.

[207] M. Schroeder and M. Burrows. Performance of firefly rpc. ACM Transactions on Com-

puter Systems, 8(1):1–17, February 1990.

[208] P. Schuller, H. Hartig, W. Kuhnhauser, and H. Streich. Performance of the birlix oper-

ating system. In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures, pages 147–160, April 1992.

[209] Karsten Schwan, Thomas E. Bihari, and Ben Blake. Adaptive, reliable software for

distributed and parallel, real-time systems. In Proceedings of the Sixth Symposium on

Reliability in Distributed Software, Williamsburg, Virginia, pages 32–44. IEEE, March

1987.

[210] Karsten Schwan, Tom Bihari, Bruce W. Weide, and Gregor Taulbee. High-performance

operating system primitives for robotics and real-time control systems. ACM Transac-

tions on Computer Systems, 5(3):189–231, Aug. 1987.

[211] Karsten Schwan and Win Bo. Topologies – distributed objects on multicomputers. ACM

Transactions on Computer Systems, 8(2):111–157, May 1990.

[212] Karsten Schwan, Harold Forbes, Ahmed Gheith, Bodhisattwa Mukherjee, and Yiannis

Samiotakis. A cthread library for multiprocessors. Technical Report GIT-ICS-91/02,

College of Computing, Georgia Institute of Technology, 1991.

[213] Karsten Schwan, Prabha Gopinath, and Win Bo. Chaos – kernel support for objects in

the real-time domain. IEEE Transactions on Computers, C-36(8):904–916, July 1987.

[214] Karsten Schwan and Anita K. Jones. Specifying resource allocation for the cm* multi-

processor. IEEE Software, 3(3):60–70, May 1984.

66

[215] Karsten Schwan and Rajiv Ramnath. Adaptable operating software for manufacturing

systems and robots: A computer science research agenda. In Proceedings of the 5th

Real-Time Systems Symposium, Austin, Texas, pages 255–262. IEEE, Dec. 1984.

[216] Karsten Schwan, Hongyi Zhou, and Ahmed Gheith. Multiprocessor real-time threads.

Operating Systems Review, 25(4):35–46, Oct. 1991. Also appears in the Jan. 1992 issue

of Operating Systems Review.

[217] M. Scott, T. Leblanc, and B. Marsh. Design rationale for psyche, a general purpose

multiprocessor operating system. In Proceedings of the 1988 International Conference

on Parallel Processing (V II - Software), pages 255–262, August 1988.

[218] M. Scott, T. Leblanc, and B. Marsh. Evolution of an operating system for large scale

shared-memory multiprocessors. Technical Report TR 309, Department of Computer

Science, University of Rochester, March 1989.

[219] M. Scott, T. Leblanc, and B. Marsh. Multi-model parallel programming in psyche. In

Proceedings of the Second ACM SIGPLANSymposium on Principlesand Practice of Parallel

Programming, pages 70–78, March 1990.

[220] M. Scott, T. Leblanc, B. Marsh, T. Becker, C. Dubnicki, E. Markatos, and N. Smithline.

Implementation issues for the psyche multiprocessor operating system. Computing

Systems, 3(1):101–137, Winter 1990.

[221] C. Seitz. Reactive kernel. In Proceedings of the 3rd Conf. On Hypercube Concurrent

Computers and Applications, Pasadena, CA, pages 1520–1528. ACM, Jan. 1988.

[222] Charles Seitz and William Athas. Multicomputers: Message-passing concurrent com-

puters. IEEE Computer, 21(8):9–24, August 1988.

[223] Sequent Computer Systems, Inc. Dynix Programmer’s Manual, 1986.

[224] Sequent Computer Systems, Inc. Symmetry Technical Summary, Rev 1.4, 1987.

[225] K. Sevcik. Characterizations of parallelism in applications and their use in scheduling.

In Proceedings of the 1989 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, pages 171–80, May 1989.

[226] M. Shapiro. Structure and encapsulation in distributed systems: The proxy principle.

In Proceedings of the Sixth International Conference on Distributed Computing Systems,

Boston, Mass., pages 198–204. IEEE, May 1986.

[227] M. Shapiro. Object-support operating systems. TCOS Newsletter, 5(1):39–42, 1991.

[228] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot. Sos: An

object-oriented operating system – assessment and perspectives. Computing Systems,

2(4):287–338, December 1989.

[229] M. Shapiro and M. Makpangou. Distributed abstractions, lightweight references. In

Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel Architectures,

pages 263–7, April 1992.

[230] M.H. Solomon and R.A. Finkel. The roscoe distributed operating system. In Proceedings

of the 7th Symposium on Operating System Principles, Asilomar, CA, pages 108–114.

Assoc. Comput. Mach., Dec.10-12 1979.

[231] A. Spector, D. Daniels, D. Duchamp, J. Eppinger, and R. Pausch. Distributed transac-

tions for reliable systems. In Proceedings of the Eleventh ACM Symposium on Operation

Systems Principles, pages 127–146. ACM SIGOPS, Nov. 1987.

67

[232] M. Squillante and R. Nelson. Analysis of task migration in shared-memory multi-

processor scheduling. In Proceedings of the 1991 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pages 143–55, May 1991.

[233] Harold S. Stone. High-performance computer architecture. Addison-Wesley Pub. Co.,

Reading, Mass., 1987.

[234] M. Stumm and S. Zhou. Algorithms implementing distributed shared memory. IEEE

Computer, 23(5):55–64, May 1990.

[235] H. Sturgis. A postmortem for a time sharing system. Technical Report CSL-1974-001,

Xerox, 1974.

[236] SUN. The SPARC Architecture Manual. Sun Microsystems Inc., No. 800-199-12, Version

8, January 1991.

[237] Liba Svobodova. Resilient distributed computing. IEEE Transactions on Software Engi-

neering, pages 257–267, May 1984.

[238] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. Cm*: A modular, multi-microprocessor.

In Proceedings of the National Computer Conference, pages 637–644. Assoc. Comput.

Mach., 1977.

[239] A. Tanenbaum. Operating Systems: Design and Implementation. Prentice-Hall, Engle-

wood Cliffs, NJ, 1987.

[240] A. Tanenbaum. Modern operating systems. Prentice-Hall, Englewood Cliffs, N.J., 2nd

edition, 1992.

[241] A. Tanenbaum and R. Van Renesse. Distributed operating systems. Computing Surveys,

17(4):419–470, December 1985.

[242] A. Tevanian and R. Rashid. Mach: A basis for future unix development. Technical Re-

port CMU-CS-87-139, School of Computer Science, Carnegie-Mellon University, June

1987.

[243] A. Tevanian, R. Rashid, D. Golub, D. Black, E. Cooper, and M. Young. Mach threads

and the unix kernel: The battle for control. In Proceedings of the Summer 1987 USENIX

Conference, pages 185–97, June 1987.

[244] A. Tevanian, R. Rashid, M. Young, D. Golub, M. Thompson, W. Bolosky, and R. Sanzi. A

unix interface for sharedmemory and memory mapped files undermach. In Proceedings

of the Summer 1987 USENIX Conference, pages 53–67, June 1987.

[245] D. Thiebaut and H. Stone. Footprints in the cache. ACM Transactions on Computer

Systems, 5(4):305–329, November 1987.

[246] Thinking Machines Corporation, Cambridge, Massachusetts. The Connection Machine

CM-5 Technical Summary, October 1991.

[247] R. Thomas and W. Crowther. The uniform system: An approach to runtime support for

large scale shared memory parallel processors. In Proceedings of the 1988 International

Conference on Parallel Processing, V. II – Software, pages 245–254, August 1988.

[248] J. Torrellas, A. Tucker, and A. Gupta. Benefits of cache-affinity scheduling in shared-

memory multiprocessors. In Proceedings of the 1993 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, pages 272–4, May 1993.

68

[249] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed

shared memory multiprocessors. In Proceedings of the 12th ACM Symposium on Oper-

ating Systems Principles, pages 159–166, December 1989.

[250] R. Vaswani and J. Zahorjan. The implications of cache affinity on processor scheduling

for multiprogrammed, shared memory multiprocessors. In Proceedings of the thirteenth

ACM Symposium on Operating Systems Principles, pages 26–40, October 1991.

[251] J. Walpole, J. Inouye, and R. Konuru. Modularity and interfaces in micro-kernel design

and implementation: A case study of chorus on the hp pa-risc. In Proceedings of the

USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 71–82, April

1992.

[252] M. Wehner, J. Ambrosiano, J. Brown, W. Dannevik, P. Eltgroth, and A. Mirin. Toward

a high performance distributed memory climate model. In Proceedings of the 2nd Inter-

national Symposium on High Performance Distributed Computing, pages 102–113, July

1993.

[253] B.W. Weide, M.E. Brown, J.A.S. Alegria, and G.R. Meyer. A graphical interconnection

language and its application to concurrent and real- time programming. In Proceedings

of the 20th Annual Allerton Conf. on Comm, Control, and Comp., Univ. of Ill., pages

567–576. IEEE, Oct. 1982.

[254] M. Weiser, A. Demers, and C. Hauser. The portable common run-time approach to

interoperability. In Proceedings of the 12th ACM Symposium on Operating Systems

Principles, pages 114–122, December 1989.

[255] J. Wendorf. Operating System/Application Concurrency in Tightly Coupled Multiproces-

sor Systems. PhD thesis, School of Computer Science, Carnegie Mellon University,

December 1987. Technical Report CMU-CS-88-117.

[256] W. Wulf. Reliable hardware/software architecture. IEEE Transactions on Software

Engineering, SE-1(2):233–240, June 1975.

[257] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. Hydra: The

kernel of a multiprocessor operating system. Communications of the ACM, 17(6):337–

345, June 1974.

[258] W. Wulf, R. Levin, and S. Harbison. Hydra/C.mmp: An Experimental Computer System.

McGraw-Hill Advanced Computer Science Series, 1981.

[259] W. Wulf, R. Levin, and C. Pierson. Overview of the hydra operating system. In Pro-

ceedings of the 5th Symposium on Operating System Principles, Austin, Texas, pages

122–131. ACM, Nov. 1975.

[260] G. Yaoqing and Y. Kwong. A survey of implementations of concurrent, parallel and

distributed smalltalk. SIGPLAN Notices, 28(9):29–35, September 1993.

[261] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot ad-

dressing in large-scale multiprocessors. IEEE Transactions on Computers, C-36(4):388–

395, April 1987.

[262] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black,

and R. Baron. The duality of memory and communication in the implementation of a

multiprocesor operating system. In Proceedings of the 11th ACM Symposium on Operat-

ing Systems Principles (SIGOPS Notices vol.21, no.5), pages 63–76, November 1987.

69

[263] M. W. Young. Exporting a User Interface to Memory Management from a Communication-

Oriented Operating System. PhD thesis, School of Computer Science, Carnegie Mellon

University, November 1989. Technical Report CMU-CS-89-202.

[264] Tse yun Feng. A survey of interconnection networks. IEEE Computer, pages 12–27,

December 1981.

[265] J. Zahorjan and E. Lazowska amd D. Eager. Spinning versus blocking in parallel

systemswith uncertainty. In Proceedings of the International Symposiumon Performance

of Distributed and Parallel Systems, December 1988.

[266] J. zahorjan, E. Lazowska, and D. Eager. The effect of scheduling discipline on spin over-

head in shared memory parallel systems. IEEE Transactions on Parallel and Distributed

Systems, 2(2):180–98, April 1991.

[267] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors.

In Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, pages 214–225, May 1990.

[268] Wei Zhao, Krithi Ramamritham, and J. A. Stankovic. Preemptive scheduling under time

and resource constraints. IEEE Transactions on Computers, C-36(8):949–960, August

1987.

[269] Hongyi Zhou and Karsten Schwan. Dynamic scheduling for hard real-time systems:

Toward real-time threads. In Proceedings of the Joint IEEE Workshop on Real-Time Op-

erating Systems and Software and IFAC Workshop on Real-Time Programming, Atlanta,

GA. IEEE, May 1991.

[270] Hongyi Zhou, Karsten Schwan, and Ian Akyildiz. Performance effects of information

sharing in a distributed multiprocessor real-time scheduler. Technical report, College

of Computing, Georgia Tech, GIT-CC-91/40, Sept. 1991. Abbreviated version in Pro-

ceedings of the 1992 IEEE Real-Time Systems Symposium, Phoenix.

[271] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous distributed shared memory.

IEEE Transactions on Parallel and Distributed Systems, 3(5):540–54, september 1992.

70

