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StarOS is a message-based, object-oriented,
multiprocessor operating system, specifically designed
to support task forces, large collections of

cohcurrently executing processes that cooperate to
accomplish a single purpose. StarOS has been
implemented at Carnegie-Mellon University for the 50
processor Cm* multi-microprocessor computer.

In this paper, we first discuss the attributes of task
force software and of the Cm#* architecture. We then
discuss some of the facilities in StarOS that allow
development. and experimentation with task forces.
StarOS itself is presented as an example task force.

1. Introduction

Technological advances have made it attractive to
interconnect many less expensive processors and
memories to construct a powerful, cost-effective
combuter. Potential benefits Include increased
cost-performance resulting from the exploitation of
many cheap processors, enhanced reliability in the
integrity of data and in the availability of useful
processing cycles, and a physically adaptable
computer whose capacity can be expanded or
reduced by addition or removal of modular components.
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Realizing these potent/al benefits requires software
structures that make effective use of the hardware.

StarOS is an experimental operating system for
Cm#, a multi-microprocessor with approximately 50
processors and 3M bytes of main memory (in 1979)
[5]. StarOS is designed for the support of and
experimentation with task forces, software composed
of many cooperating, communicating "small*
processes, together with supporting code and data.
Collectively, the task force components accomplish a
single task. Our objective is to determine whether
task force software is conducive to achieving the
potential benefits of multiprocessors, and to
understand the design issues related to operating
system facilities that support task forces. A limited
version of StarOS has been running since 1977. An
adapted and expanded version is now being
completed.

It is appropriate to analyze task forces in detail.
Processes of a task force are typicaily small in
comparison to counterparts in a uniprocessor
multiprogramming system, and there are more of them.
The desirability of many small processes, rather than a
few larger ones, derives directly from the three
potential benefits listed above: To achieve
cost-performance or even absolute performance, a
computation is decomposed into small parts, each of
which is performed by a separate process executing
in parallel with the others. This strategy maximizes
usage of the available parallelism. Enhanced reliability
may result if the task is decomposed such that no one
process performs an indispensable function. If an
error can be contained so that it results in the
destruction of no more than one process, the task
might still be completed. In this case, a more reliable
implementation results. The third potential benefit of
hardware adaptability will be well served if the task
force can grow (or shrink) with the addition (or
removal) of processor and memory resources. This is
particularly easy if data structures are separately
locatable and addressable entities whose size or
number can vary. Likewlse, it is particularly easy to



do when the task force Is composed, in part, of
duplicated processes or data.

An individual process in a task force is specialized;
it has only a small part of the overall work of the task
force to accomplish. Hence, it needs to access
relatively little data or code. As a result, the address
domain of a process may be small. This suggests that
each unit of code and each data structure should be
separately addressable so that address domains can
be' tailored to the requirements of the individual
process.

Processes of a task force rely more on other
processes than is the case In ‘the typical
multiprogramming system. What is performed by a
subroutine in the multiprogramming system may be
performed by a separate process in the task force.
Inter-process communication and synchronization are
substantially more frequent. Hence, each process
must be able to address some data objects, such as
mailboxes and semaphores, for communication and
synchronization.

Task forces vary along dimensions not even found
in multiprogramming systems. For example, the number
of processes in a single task force may vary not with
the number of functions to be performed, but with
available resources. Where several processors are
availé'xble, input data may be partitioned and processes
replicated so that each process performs the same
function, but on a restricted portion of data.

In summary, the process in a task force is
small--small because the function it executes is a
small portion of the overall task, and small in the size
of its addressing domain. A task force consists of
potentially a large number of components, related in a
complex structure. The structure and composition of a
task force may vary to a considerable extent
dynamically. The task force is the unit of
responsibility for any functionality other than the most
primitive. Hence, it Is the unit of accountability and
the unit for which major resource scheduling decisions
are made.

We have defined task forces quite generally. For
example, a sequence of three processes connected
via Unix pipes would constitute a task force [14].
However, such a task force is exceedingly simple:
neither its structure, nor its composition, change
dynamically; it does not require any but
straightforward synchronization based on data passing
thrdugh the pipes; it exhibits no communication paths
or organizational structure for handiing errors so that
they can be related to the task force as a whole,
rather than a single process; and it provides no basis
for coordinating the output that appears on the user
terminal. While an extremely useful program
organization, such structures are not sufficient to
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cope with the problems that arise in large applications

designed to exploit the parallelism inherent in
distributed systems--whether {oosely or tightily
coupled. it is our objective to explore facilities that
do so.

2. Cm* Architecture

The design of an operating system is influenced by
the hardware resources it manages. Hence, it is
appropriate to sketch the salient aspects of the Cm#*
architecture. Additional descriptive detail can be
found in papers by Fuller and Swan, et al. [5, 15].
Cm# was designed and a prototype implemented at
Carnegie-Mellon University. The prototype began
running’ in Spring, 1977. By Fall, 1979 it included 50
processors.

The Cmx* muiti-miniprocessor  consists  of
interconnected computer modules, each an
autonomous computing engine‘ In the existing system
each computer module is implemented by a DEC
LSI-11, a standard LSI-11 bus, memory, and devices.
All primary memory in the system is potentiaily
accessible to each processor. Each computer module
includes a local switch, the Slocal, which selectively
routes processor memory references either to the
local memory of the computer module or else onto the
Map Bus. The Slocal likewise accepts references to
its local memory that emanate from distant processors.
Up to fourteen computer modules may be connected to
a Map Bus so that they share the use of a single
Kmap, a processor responsible for routing memory
requests and data between Slocals. Together, the
Slocals and the Kmap implement a distributed switch.

The computer modules, Kmap, and Map Bus together
comprise a cluster. Clusters are connected via
intercluster Buses running between the Kmaps. A Cm#
configuration can have an arbitrary number of
clusters, although clusters need not have direct
Intercluster Bus connections to every other cluster in
a configuration. The number of computer modules in a
cluster and the number of clusters in a system may
vary. Currently, our Cm* implementation consists of
five clusters, 50 processors, and 3 megabytes of
primary memory distributed relatively evenly across
the clusters and across the computer modules.
Synchronous Line Units are provided on several

processors for connecting terminal devices or
multiplexors. Each cluster is connected to to a DEC
KL10 processor with high speed "DA Links." For

on-line storage of data, each cluster is provided with
one or more moving-head disk controliors. An example

1The name CmX* stands for an arbitrary number of Cm's, or Computer
Modules. The * is derived from the notation introduced by Kleene for
regular expressions.
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Figure 1: Five Cluster Cm» Configuration

configuration of Cmx is shown in Figure 1. It is quite

similar to the current implementation.

Collectively, the Kmaps mediate each processor
reference placed on the Map Bus; thus they can
sustain the appearance of a single large memory.
However, memory Is organized in a performance
hierarchy; approximate inter-reference times for local,
intracluster, and intercluster references are 3, 9, and
26 ys, respectively, as measured in benchmark tests
[4]. The distributed switch consisting of the Slocals,
Kmaps and associated busses is message switched;
references are interleaved.

Using the 4 kiloword writable control store of the
Kmap, operating system functions beyond those for
address mapping may be microprogrammed to increase
system performance. The Kmap is muitiprogrammed,
and can retain sufficient context to manage up to
eight active requests for memory references or
microcoded operating system functions at once.

3. Star0S Architecture

the objectives of StarOS are to support the
construction and execution of task forces and to
exploit, and to allow the user to exploit, the. facilities
present in the Cm% architecture. An additional StarOS
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experimentation and

to
measurement with system behavior.

objective s support

StarOS is an object-oriented system. In this regard
it is similar to Plessey 250 [2], CAL time sharing
system [10], CAP [12], and Hydra [16]. All
information Is encoded and stored in objects. Objects
are typed; the type of an object determines that set
of functions, which alone determine the behavior of
the object. All objects are distinct and unique.

To access an object to extract information stored
in it, or to alter the object, a process invokes some
function defined on the object. To be successful in
making such an access a process must possess a
capability or "protected address" for the object
[9, 3, 16]. A capability not only names a distinct,
unique object; it also specifies authority to manipulate
the object using some subset of the functions defined
for that object. Permission to perform a specific
function on an object is called a right.

The size of an object’'s representation in StarOS is
between 2 and 4096 bytes. An object is comprised
of° two disjoint portions: the data portion, which
contains a sequence of data words, and the capability
list portion, which contains a sequence of capabilities.
The symbolic names provided by the programming
language can be used to mask the segregation of data
from capabilities. StarOS differs from the Plessey



250 system in which objects contain either data or
capabilities, but not both.

Each process has two name spaces, the capability
name space and the immediate addressing space of
64 kilobytes, divided into 16 windows. The Load
function will cause the 4 kilobytes of addresses of a
specific window to address bytes of the data portion
of an object. When this occurs, we refer to the
object as mapped. In this manner, processor memory
references have immediate access to the data portion
of an object--that is, the data may be manipulated
using the instructions of the LSI-11., This is in
contrast to HYDRA where a kernel entry is required to
read and write individual bytes in the data portion of
all objects other then 8 kilobyte "page objects". The
advantage of immediate addressing is that users are
not penalized for using small objects tailored to the
needs of the application.

The capability name space of a process is defined
by the capability list portion of the process object (to
be described later). A process may directly name all
objects for which capabilities appear in this list
together with the components of those objects. The
microcoded capability functions can interpret these
direct names for objects and perform the required
function without software intervention. iIf an object is
not directly nameable, some capability function must
be performed to make it directly nameable. Only then
may it be used as a parameter for some function.

The StarOS system defines several types of

objects. In addition, users may freely define
additional types together with the associated
functions. Strong typing is uniformly enforced. To
explain some of the ramifications of dynamic type
creation by users, we first distinguish between
abstract types and representation types.

Representation types are defined by StarOS and are
the basis for building all abstract types. Here we
discuss the most useful two: basic and deque. The
most general purpose type is called basic. It contains
a vector of data words and a vector of capabilities.
individual words or capabilities may be named by
index. The functions defined on data words include:

- Read the value,
- Write the value,
= Increment the value indivisibly, and

~ Decrement the value indivisibly if it is
not zero.

The Increment and Decrement functions are the basis
for programming simple software locks. Cm#
processors cannot otherwise perform an indivisible
read-modify-write action. The basic type is defined
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s0 that if a basic object is mapped to the immediate
address space of a process, the processor memory
requests perform Read and Write functions on the
data portion of the object. [n this way the data
portion behaves as a conventional memory segment.
Program code is typically stored in basic objects that
have no capability list.

A variety of functions are defined for the
mabnipulation of capabilities:

- Copy a capability from a position in the
capability list portion of an object into
another position in the same or some
different capability list,

- Restrict rights recorded in a capability,
and

~ Transfer a capability stored in one
position to another position, perhaps in a
different object. (Note that the original
capability Is erased.)

Another generally useful representation type is the
deque, defined to buffer 16-bit words of data.
Associated functions include:

- PushFront--to insert a data word at the
front of the deque,

- PushRear--to insert a data word at the
rear of the deque,

- PopFront--to remove a data word at the
front of the deque, if any,

- PopRear--to remove a data word from
the rear of the deque, Iif any.

Deques may be used to implement stacks by

employing only the PushFront and PopFront functions,
or queues by employing only the PushRear and
PopFront functions, or deques, by using all the defined
functions. When the deque is mapped onto the
immediate address space of a process, memory
references to the deque are interpreted by the Kmap
as invocations on the deque functions; the specific
function invoked depends on the specific address
within the window.

3.1. Synchronization and Message Communication

StarOS Is a message-based system. The motivation
for this is to allow concurrent, and possible parallel,
execution whenever feasible--that is, whenever not
restricted by the logic of the algorithm, The scheduler
and multiplexor are responsible for ensuring that
concurrent processes execute in parailel whenever



possible, consistent with the scheduling policy.

In this message-~bhased system processes
frequently send messages, which are requests for
work to be done. A process may have muitiple
requests outstanding. Wherever possible, the StarOS
design does not preempt the user's ability to program
concurrent processes. Hence, a process does not
ever suspend execution as a side-effect of a
message send or receive. The process explicitly
controls when execution is to he suspended to await
the completion of actions taken by other processes.

StarOS supplies an event mechanism which
processes may use to await the occurrence of
specific events. A set of events is defined by each
process. The process may Block, that is, suspend
execution, awaiting any one of a subset of the
defined events to occur. Routinely, a process
assocliates an event with the receipt of a message
from a specific mailbox.

To support rapid message communication .among
processes, StarOS implements a mailbox type of
object. It is capable of buffering messages which are
either single data words or single capabilities. When
created, a mailbox is defined to huffer either data
messages or capability messages, but not both, The
type-specific functions are Send and Receive.

First consider the Receive function: it will remove,
then return, a buffered message if the mailbox is not
empty. If the mailbox is empty, the Receive function
will act differently depending on whether Receive was
invoked in conditional or registration mode. In
conditional mode the Receive function merely returns
with no message. If the invoker specified registration
mode, then the name of the invoker together with an
event name is written onto the Registration queue
associated with the mailbox. The process must have
defined the event to be associated with the receipt
of a message from the particular mailbox. To define
the event, the process specifies an event name, a
capability for the mailbox, and a location within the
address space of the process capable of storing a
message delivered from the mailbox. The process may
then select that event as a condition for the Block
function.

Send will deliver a message to a registered
receiver, if one Is listed in the registration queue.
Alternatively, Send will buffer the message if the
registration queue is empty and the mailbox is not full.
Send will fail if the mailbox is full. If the message is
transmitted to a receiver, the receiver is removed
from the registration queue, the transmitted message
is stored in the location associated with the event.
The event named in the registration queue is then
Signalled to the receiving process. |f the process is
Blocked waiting on that event, execution of the
process will be resumed.
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Note that StarOS mailboxes are finite and that
processes communicating via the mailboxes are not
Blocked as side-effect of performing a message
function on a mailbox. Note also that the mailbox
functions complete before the invoker is permitted to
continue operation. Mailbox functions are implemented
partially in microcode and partially in software.

3.2. Program and Process Construction

Module objects are the basis for program
construction and the dynamic creation of processes.
From a behavioral point of view, a module defines and
exports a set of functions for use by code in other
modules. It may also define a new type of object. At
any instant, each user or system process Is executing
a particular function of a particular module.

From an implementation point of view, a module is an
object containing capabilities for those code and data
objects shared by the processes executing the
functions of the module. The /nvoke function is
defined on modules. Before /nvoking an
asynchronously executed function, a process
prepares a carrier to hold invocation parameters. A
carrier is a small basic object; a capability for it will
be sent to the process that is to execute the invoked
function. One parameter always inciuded in the carrier
is a capability for a mailbox. The process executing
the function will return the carrier to this mailbox
when the function is completed. The requesting
process can wait for the function completion by
Blocking on an event associated with this mailbox.

Transmittal of the carrier may occur in several
ways. In the simplest case, /nvoke will cause the
creation of a new process to execute the invoked
function. That new process will be created with what
is referred to as an "invocation" maitbox. Invocation
is complete when the carrier is sent to the invocation
mailbox of the new process. Such a process is said to
be "transient" because it will terminate after the
function execution is completed.

Alternatively, one or more processes may be
pre-~initialized to execute a particular function. Such
processes are cyclic; they B8lock on a common
invocation mailbox, awaiting arrival of a carrier that
represents a function request. If one or more such
processes exist executing the function, we refer to
the function as being "present". Note that if multiple
processes exist for the same present function, they
share the module object, the invocation mailbox, and
all objects for which there are capabilities in the
modutle object.

It should be evident that the StarOS implementation
of modules and processes provides support for



programming according to the tenets of the "data
abstraction" methodology [11, 13]). Recall that a
module may define some new type of abstract object.
The functions exported for invocation by code
external to the module can implement the functions of
the abstract type. Hence, only the code of the
module can directly access the data words and
capabilities that in the object of representation type
that implements the representation of the object of
abstract type.

The mechanism to support dynamic type creation is
as follows. To create a new type, an initialization
function of the module. would dynamically request
StarOS to create a new type token, which it would
then place in the module object. To create an
instance of the new abstract object, a function of the
module would first create an object of the proper
representation type. It would then manipulate the
data and capability positions in that object to initialize
the abstract object’s representation. It would then
mark the object as being of the abstract type by
storing the name of the module in the descriptor of the
object, maintained by StarOS. The type token is
sufficient authority to mark an object. The type token
also allows the Conversion of capabilities for the
object into abstract capabilities. An abstract
capability is a pointer to an abstract object; it
authorizes no functions of the representation type of
the object, but rather authorizes invocation of
functions of the module that defines the abhstract
type.

Functions in a module defining some abstract type
may, using the type token, Amplify an alstract
capability to produce a capability for the
representation object. Hence, Amplify returns a
capability for the same object with rights so that the
object can be manipulated using those functions
defined as part of its representation type.

To maintain complete control over the behavior of
all instances of the abstract type it defines, a module
must observe the following:

- The type token must not be exercised
by any process, other than those
executing the functions of the moduie.

- All capabilities for objects defined by a

module must be Converted to be
abstract, before being transmitted to
processes executing code that s

outside the module.

If these rules are followed, no manipulation of the
object can be accomplished except via the functions
of the module.
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3.3. Scheduling

The responsibility for scheduling is divided between
processes, which are called schedulers, and a low
level mechanism called the multiplexor, which Iis
executed by each LSI-11 processor independently.
The multiplexor makes short term decisions about
which process to assign to execute on each
processor. Each scheduler is desighed to implement a
specific policy. The StarOS multiplexor may be
initialized to Iimplement a variety of policies:
round-robin, preemptive, first-come/first-serve,
priority, and the scheduling of processes on prefered
processors so that a process will execute in the same
computer module where the objects containing the
code and data are located. We intend to experiment
with alternative scheduling policies, but have not yet
done so.

At system load time, we associate--with each
processor--a priority ordered set of mailboxes to
serve as queues of processes. These sets of run
queues may overlap arbitrarily, and the priority order is
processor-specific. When it is appropriate for a
processor to switch what process it is executing, the
multiplexor determines the next process to execute
by searching the queues in priority order. The
selected process is assigned to execute on the
processor for a prescribed maximum time quantum. [f
the sum total of time which the process executes
ever exceeds a scheduler determined value, the
multiplexor will Send the process back to the
scheduler. It is assumed that only one scheduler is
resbonsible for each process. Multiple schedulers
may coexist. it is possible for a scheduler to alter the
priority of a run queue for some processor or it may
add or remove a queue from the set associated with a
processor. It is assumed that if muitiple schedulers
exist, they do not act in conflict with one another.

3.4, StarOS Instructions

In a distributed system, parallelism is natural.
Hence, for any function, its designer must decide if it
is to be executed sequentially or concurrently with
respect to further execution by its invoker. Where a
function is to be performed sequentially, it can be
viewed as an extension of the LSI-11 processor
instruction set. Where we wish to state explicitly
that a function is performed sequentially with respect
to its invoker, we wili refer to it as an instruction, All
functions defined for representation types are
instructions. All instructions are invoked, or triggered,
by making a LSI-11 reference to a mapped object, or
to special addresses reserved for communication
between a process and its underlying machine.
References to mapped objects are interpreted by the
Kmap. If more than a single 16 bit parameter is



required, the process first initializes a parameter
block--typically on the process stack--and then then
makes an appropriate mapped reference to transmit
the address of the parameter block to the part of
StarOS that implements instructions. The Kmap has
"first refusal" of all StarOS instructions. Requests for
instructions not in firmware are passed to software.
An instruction may be implemented in software,
firmware, or a mixture of the two.

We have given an overview of many StarOS
functions. Those implemented as instructions, are in
the following categories: accessing the
representation types of objects, synchronization,
message passing, invocation of a function, process
switching, and trap and interrupt handling. The latter
three categories are predominantly implemented in
software. All  other StarOS functions are
asynchronous. That is, the invoking process may
continue execution in parallel with the invoked
function, which is executed by another process. The
invoker may choose if and when it will await a reply
from the invoked function. The important point to be
made here is that only a modest portion of the
operating system is defined to be synchronous.

4. Task Force Descriptions

To realize a task force in StarOS, we distinguish
between the executable task force--that set of
processes with supporting code and data objects that
actually performs the desired computation--and the
static task force--that code and perhaps initial input
data from which the executable task force is
instantiated. The difference between the two is
analogous to the difference between an executing
instance of a procedure and the procedure declaration
in a programming language.

As an aid for the construction of task forces,
StarOS supports the TASK language[8]. The author of
a task force describes the components of his task
force--code, input data, processes, and
communication mailboxes. The TASK compiler
generates a list of the sequence of functions calls
that must be executed by the StarOS program loader.
TASK provides three specialized services:
initialization of the capability name space and the
immediate address space of the task force
processes; interface to the BLISS[1] programming
language used to implement task forces to provide
symbolic names for objects; and specification of the
initial placement and assignment decisions for the
objects and process of the task force to improve
system performance.

in the following two sections we describe Star0S
itself as an example task force. This will permit us
simultaneously to show both a task force with
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lnterestl'ng structure, and to explain some
ramifications of its implementation. We do not intend
to suggest that StarOS is a typical task force, or even
an example of the style in which a large class of
users might structure their applications.

4.1. The StarOS Static Task Force

Following the data abstraction methodology, we
assume a static task force to be a set of modules,
each exporting a set of functions, together with some
input data. It is in this static form that the task force
is originally constructed and updated. The StarOS
loader creates module objects for each module in the
static task force. Data may exist in the StarOS file
system or in the DEC TOPS-10 system to which Cm* is
directly connected via the high speed DA Link.

We have already discussed selected functions from
some StarOS modules and the representation or
abstract types which they define. StarOS includes
modules for capability addressing of objects, defining

basic objects and deque objects, message
communication, dynamic type creation, object
management (e.g. primary memory management),

creation and maintenance of module objects and
process objects, input/output transmission, the file
system, loader, scheduler, clock, and reconfiguration.

Logically, the static StarOS task force is the
collection of moduies, each divided into levels. Each
level is dependent only on lower levels of itself or
levels of other modules. The levels form a hierarchy
as defined by Habermann, et al. [6]. Detailed
discussion of the structure of the original StarOS
system are discussed in [7]. We do not discuss the
static task force structure of the revised system in
any further here, but turn to the executable task
force.

4.2, The Star0OS Executable Task Force

In this section we describe the components of the
StarOS executable task force and their realization as
StarOS objects. As discussed earlier, a subset of the
StarOS functions, referred to as /nstructions, are
defined to execute sequentially and synchronously
with the process requesting the function; that is, the
process is suspended for the duration of the
function's execution. Collectively, the StarOS
instructions are called the nucleus and they define the
sequential portion of the abstract machine that StarOS
provides to its users. The remaining functions are ali
performed by processes other than that of the
requesting process, so that the two may execute
concurrently.

The nucleus is implemented partly in Kmap
microcode (about 2000 80-bit micro-instructions), and



partly Iin software (roughly 4 Kilobytes). The
microcoded Kmap has "first refusal" of each request
to execute a StarOS instruction. If it can perform the
Instruction, it does so while both the requesting
process and its processor are suspended. If the
instruction is not implemented in microcode, the Kmap
arranges for the suspended processor to accept a
trap into the "kernel addressing space" where the
nucleus software commences execution. The Slocal
and Kmap hardware allows StarOS to support two
independent address spaces for each processor.
These address spaces roughly correspond to the
distinction between "kernel/supervisor/monitor" mode
and "user" mode of a conventional processor. The
kernel address space is reserved by StarOS for the
nucleus. The multiplexor, part of the nucleus, chooses
a process for the "user address space". Traps,
interrupts  and StarOS instruction invocations may
cause a switch between spaces. As noted earlier, the
nucleus software performs any StarOS instructions
refused by the Kmap, or any instructions that could
not be completed by the Kmap because of error or an
unduely complicated situation. '

For almost all purposes, the nucleus software that
executes on each computer module appears to run as
a standard StarOS process. In fact, it is implemented
as a StarOS process object. It, like all other
processes, is constrained to perform only those
actions for which it has proper authority. In particular,
it cannot access an object for which it does not
possess a capability., However, by virtue of executing
in the kernel space, the hardware permits the nucleus
to execute the "privileged machine instructions” that
change processor state such as the interrupt priority
level. The nucleus is constrained more than other
processes; it may not invoke any concurrent function,
thus the nucleus is not dependent on the correct
execution of other processes.

At any instant, the StarOS executable task force
consists of a separate nucleus process for each
physical computer module, together with a set of
present and transitory processes that were created
as a result of the invocation of asynchronous StarOS
functions. The exact configuration of the executable
task force will vary: transitory processes are created
and terminate. Muitiple present processes to perform
the same function may exist. The assignment of
specific processes to processors, or sets of
processors, may change dynamically or with each
system initialization.

System initialization is performed by functions of
the reconfiguration module. The first program loaded
includes the reconfiguration functions that measure
the amount of available memory in the computer
module; define the first few objects; provide the Kmap
with the information required locate objects; and
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initialize the nucleus process. It is then possible for a
reconfiguration function to execute as a StarOS
process. This function locates and initializes the other
computer modules in the cluster.

A nucleus process will be created and installed in
each computer module successfully initialized.
Subsequently, the reconfiguration process will attempt
to configure additional clusters into the system if
instructed to do so. Currently, the reconfiguration
process expects to find the nucleus microcode
ailready loaded, though we have plans to have
microcode loaded automatically as part of system
startup. Initialization is completed by creating the
other modules of the StarOS task force and executing
their initialization functions.

For both enhanced reliability and performance, the
few thousand bytes of the nucleus code is typically
duplicated in each computer module’s memory; each
nucleus process executes. code from its local memory.
Typically, but not necessarily, we configure StarOS so
that each Cm# cluster is functionally complete: each
StarOS function can be executed within the cluster.
During system initialization the reconfiguration function
determines the number of replicated, present
processes to be created for each function, the
placement of code for the function in specific physical
memory, and the assignment of processes to run
queues, and hence to individual processors or sets of
processors. As part of nucleus initialization, each
module which has some function implemented in the
nucleus has the opportunity to execute initialization
code. For example, it is this initialization code which
creates the desired run queues and the priority
ordered search list for each muitiplexor.

Figure 2 depicts an example StarOS configuration
on onée cluster. A large rectangular box represents a
physical computer module processor and its memory.
Solid ovals represent present processes that are
assigned to execute on the computer module; their
code may be assumed to be local. Note that each
computer module has a private nucleus process with
local code. Dotted ovals represent transitory
processes that exist only for the duration of the
single invocation that they service.

Alternative configurations can be loaded. For
example, it is possible to configure the task force so
that two object manager processes share some or all
of their code and that they execute on the same or
different processors.

4.3, Variation in Configurations

As was mentioned above, StarOS is typically
configured so that a cluster is functionglly complete.
Cluster autonomy, however, depends upon the
behavior of resource managers as well as upon the
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configuration decisions. ‘For example, the StarOS
object manager partitions the physical memory into
clusters. The object manager processes that
execute in a cluster have jurisdiction over allocating
physical memory in only that cluster. Any request to
allocate space In a remote cluster is mailed to a
companion object manager in the remote cluster.
Object manager initialization provides the mailboxes
for such communication.

Reliability is one of the potentials of a
multiprocessor. To achieve this the software must be
constructed so that single failures do not render an
entire module useless. To cite one examplie, the
object manager is designed so that a process
responding to an allocation request will contain
internal state about only a single request at a time. In
addition, a separate data structure is used to record
the allocation state of each computer module's
memory. An object manager process may iock only
one such structure at a time. |nh case of failure of a
process, the module will continue to provide for object
management, though in a possibly degraded fashion.

The configuration of StarOS may change from time
to time for any of three reasons: performance
enhancement, fault recovery, and accommodating
environmental changes. Ideally, StarOS should
respond to changing demands for its services. For
instance, if demand for a particular function is high,
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more processes can be created to perform that
function. Processes executing reconfiguration
functions examine the environment and adjust the
StarOS configuration to improve system performance.
Note that the system does not spontaneously
duplicate processes or physically move objects to
enhance performance at the present time.

Dynamic reconfiguration can be exploited so that
the system may recover from hardware or software
failure. For instance, if an object manager process
were to fail, a reconfiguration function could destroy
that process, and then create another to assume its
management responsibilities.

Similarly, if the physical environment changes--such
as the addition of a new computer module or entire
cluster, StarOS could be expanded to take advantage
of this. Alternatively, if physical resources are
removed, the task force configuration can be reduced,
In this way an engineer might instruct the system to
exclude a particular system resource from use so that
it might be repaired.

4.4, Process Relations

The executable task force can be usefully
envisioned as a graph of processes. For this purpose
we ignore the module, code, data and mailbox objects
which are also components of this task force. Such a
graph can be constructed in different ways to reflect
the different relations processes in a task force may
have to one another. We will discuss two of the
relations which StarOS supports.

The first relation is the dependence relation.
Whenever a process is created as a result of an
invocation, it is either dependent on the invoking
process, or on a distinguished StarOS reconfiguration
process. The choice is statically determined by a
value recorded in the module of the function used to
create the process--that is, it is determined by the
author of the module of which the invoked function is
a part.

The dependence relation defines forests of trees; it
is used as the basis for process suspension and
abnormal termination. For example, the function Kill
will destroy all processes in the dependence tree
rooted in the specified process. Note the following
behavior based on the dependence relation. Suppose
that a user process invoked a StarOS function which
resulted in the creation of a new process P that is not
dependent on the invoker. Killing the invoker process
will not cause the destruction of the system process
P, and P will be able to complete its work, restoring
system data structures to a consistent state before
terminating normally. Certainly, caution must be
exercised to ensure that arbitrary users do not create
such processes Indiscriminately.



The bailout relation induces a second relation
among processes. When a process is created, a
bailout mailbox is assoclated with it. This mailbox Is
either specified by the invoker, or it is a system
mailbox supplied by StarOS. When a process becomes
incapable of further execution because of an internal
error that it is unable to cope with, the process is
suspended and a capability for the process is -mailed
to its bailout mailbox. Presumably, the receiver of a
bailout message can respond to the process failure.
Users are free to relate processes arbitrarily using
the bailout relation.

The dependence relation among the StarOS
processes establishes a shallow tree in each cluster.
The roots are the reconfiguration processes for each

cluster. All nucleus processes and any present
processes are directly dependent on the
reconfiguration processes of the cluster.

Reconfiguration processes in different clusters are
not dependent. Likewise, a mailbox serviced by the
reconfiguration process is the bailout mailbox for all
StarOS processes in a cluster, and for processes of
user task forces that elect not to handle bailout
processing.

5. Concluding Remarks

Because experience with the system is limited, it is

uncertain how well StarOS facilities will support
application task forces. However, a retrospective
look at the StarOS design reveals some

characteristics of the system are pervasive in the
StarOS task force. It is likely that they would
influence the design of any application task force.

The consistent use of typed objects and
capability-based authorization. Except for the object
manager, which creates capabilities and objects, and
the nucieus which implements object addressing, no
StarOS function can access an object without
referencing it with a cabe\bility.2 Two benefits
accrue. First, processes are endowed with a limited
sphere of influence derived from the corresponding
moduie object. A process is granted authority
commensurate with its responsibility, and thus the
effects of process--both g¢good and bad--are
restricted to a limited domain. Second, the low level
facilities of the system provide an attractive means of
structuring the elements of computation. The system
encourages the programmer to build multi-level
structures in a natural way.

2Because the addresses generated by direct memory access /0
devices cannot be mapped by the Slocal or Kmap, functions controlling
these devices must make use of the physical address of the objects used
as buffers., We view this as a defficiency, and not an opportunity.
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Interface Uniformity. From both within and without
the StarOS system, functions are requested and
executed in a uniform manner. For example, access to
words or capabilities within representation types of
objects is independent of the size or location of the
object. This gives the user and system freedom to
separate the issues of task force performance and
task force correctness. At a higher ievel, the StarOS
instruction /nvoke provides a single uniform means of
requesting functions of modules whether the modules
belong to the StarOS task force or to a user task
force. Because of the resulting uniformity of
structures, StarOS processes can be distinguished
from user processes only by examining the
interprocess relations that define task forces.

Preservation of the multi-processor aspects of Cm*.
The lnvoke instruction results in the parallel execution
of concurrent processes. The basic mechanisms for
communication are built around the asynchronous
transmission of messages. This type of process
structure is well-suited to the asynchronous parallel
execution of the Cm* processors. There is, of course,
the constraint of processor scheduling. For the user
who wishes to concern himself with the details of
process assighment and scheduling, it is possible to
obtain the proper capabilities for the user’s processes
and for a subset of the run queues. This is possible
because StarOS distinguishes the basic mechanisms
for the multiplexor from the management decisions
made by system or user scheduler processes.

Allocation of overheads. For the most part, the use
of simple features of the system does not incur
overheads associated with the implementation of more
complex features. For example, a reference to the
data portion of a StarOS basic object requires about
the same time as a similar memory reference in the
most simple Cm# system. In general, the cost of
referencing a StarOS object is directly proportional to
the amount of data that must be transferred. For this
reason, once processes have been created, an
overhead directly related to the /nvoke instruction,’
they may communicate rapidly using message
communications. The cost of moving messages to and
from mailbox objects is low.
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