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Abstract

This paper proposes an approach to scaling UNIX-like oper-

ating systems for many cores in a backward-compatible way,

which still enjoys common wisdom in new operating system

designs. The proposed system, called Cerberus, mitigates

contention on many shared data structures within OS kernels

by clustering multiple commodity operating systems atop a

VMM, and providing applications with the traditional shared

memory interface. Cerberus extends a traditional VMM with

efficient support for resource sharing and communication

among the clustered operating systems. It also routes system

calls of an application among operating systems, to provide

applications with the illusion of running on a single operat-

ing system.

We have implemented a prototype system based on

Xen/Linux, which runs on an Intel machine with 16 cores

and an AMD machine with 48 cores. Experiments with an

unmodified MapReduce application, dbench, Apache Web

Server and Memcached show that, given the nontrivial per-

formance overhead incurred by the virtualization layer, Cer-

berus achieves up to 1.74X and 4.95X performance speedup

compared to native Linux. It also scales better than a single

Linux configuration. Profiling results further show that Cer-

berus wins due to mitigated contention and more efficient

use of resources.

Categories and Subject Descriptors D.4.7 [Operating

Systems]: Organization and Design

General Terms Design, Experimentation, Performance

Keywords Multicore, Scalability, OS Clustering

1. Introduction

Scaling UNIX-like operating systems on shared memory

multicore or multiprocessor machines has been a goal
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Figure 1: Architecture overview of OS Clustering.

of system researchers for a long time. Currently, there

is a debate on the approach to scaling operating sys-

tems: designing new operating systems from scratch (e.g.,

Corey [Boyd-Wickizer 2008], Barrelfish [Baumann 2009]

and fos [Wentzlaff 2008]); or continuing the traditional path

of refining commodity kernels by iteratively eliminating bot-

tlenecks using both traditional parallel programming skills

or new data structures (e.g., RCU [McKenney 2002], Sloppy

Counter [Boyd-Wickizer 2010]). However, with continual

growth of the number of cores in a single machine and

the still speculative structure of future many-core machines,

there is currently no conclusion on the best long-term direc-

tion.

In this paper, we seek to add a point to the debate, by eval-

uating a middle ground between these two trends, motivated

by the observation that commodity operating systems can

scale well with a small number of CPU cores, and one virtual

machine monitor (VMM) can effectively consolidate multi-

ple operating systems. The proposed approach, called OS

clustering (shown in Figure 1), is an operating system struc-

turing strategy that attempts to provide a near- or middle-

term solution to mitigate the scalability problem of com-

modity operating systems, yet without non-trivial testing ef-

forts and possible backward compatibility issues in new op-

erating system designs. The basic idea is clustering multiple

commodity operating systems atop a VMM to serve one ap-

plication, while providing the familiar POSIX programming



interface to shared-memory applications. The resulting sys-

tem, called Cerberus, supports existing many-core applica-

tions with little or no porting effort.

The goal of Cerberus is to make a bridge between two dif-

ferent directions (i.e., designing new OSes and refining com-

modity OSes) of scaling operating systems. On one hand,

Cerberus incorporates some common wisdom in new oper-

ating system designs, such as state replication and message

passing. On the other hand, Cerberus is designed based on

reusing commodity operating systems, which means Cer-

berus may still share the benefits of improvements to com-

modity operating systems. It should be noted that Cerberus

also comes at the cost of increased resource consumption

due to the increased number of OS instances. However, for

future many-core platforms with likely abundant resources,

we believe it is worthwhile to trade resources for scalability.

In general, Cerberus could mitigate or avoid many in-

stances of resource contention within a single operating sys-

tem as well as in the VMM, due to the reduced number of

CPU cores managed by a single operating system kernel.

It is also easier for the inter-OS communication protocol to

scale with the number of OS instances, rather than with the

number of cores. Thus, contention within many subsystems

could be mitigated for shared-memory multi-threaded and

multiprocessing applications.

As well as state replication and distribution in operat-

ing systems and the VMM, Cerberus also retrofits some

techniques in new OS designs back to commodity oper-

ating systems. Cerberus extends traditional system virtual-

ization techniques with support for efficient resource shar-

ing among the clustered operating systems. Specifically,

the VMM is built with the address range support from

Corey [Boyd-Wickizer 2008] to minimize the page fault

costs for cross-OS memory sharing, which is critical for

some memory-intensive applications. Further, to reduce con-

tention for file accesses, Cerberus incorporates an efficient

distributed file-system among clustered OSes, which opti-

mizes local accesses while maintaining good performance

for remote accesses.

Moreover, Cerberus incorporates a system call virtual-

ization layer that allows processes/threads of an application

to be executed in multiple operating systems, yet provides

users with the illusion of running in a single operating sys-

tem. This layer relies on both message passing and shared

memory mechanisms to route system calls to specific op-

erating systems and marshal the results, thus providing ap-

plications with a unified TCP/IP stack and file system. This

layer uses the notion of “SuperProcess”, which groups pro-

cesses/threads in multiple operating systems, to manage the

spawned processes/threads.

We have implemented a Cerberus prototype based on

Xen-3.3.0 [Barham 2003] and Linux-2.6.18, which runs on

an Intel machine with 16 cores and an AMD machine with

48 cores. The prototype adds 1800 lines of code to the

Xen VMM and requires no code change to the Linux core

kernel. A loadable kernel module and a user-level module

are implemented to support the system call virtualization,

which has 8,800 lines of code in total.

To measure the effectiveness of Cerberus, we have con-

ducted several performance measurements and compared

the performance of a shared memory MapReduce applica-

tion, dbench [Tridgell 2010], Memcached and Apache web

sever running on a single Linux (native Linux and virtual-

ized Linux) and Cerberus with different number of VMs.

Performance results show that though Cerberus incurs over-

head for some primitives, it does provide better performance

scalability. The performance speedup ranges from 1.74X to

4.95X over native Linux and from 1.37X to 11.62X com-

pared to virtualized Linux on 48 cores. The profiling results

using Oprofile [Levon 2004] and Xenprof [Menon 2005] in-

dicate that Cerberus mitigates or avoids many instances of

contention within both Xen and Linux.

In summary, the contributions of this paper are:

• A technique called OS clustering, which provides a

backward-compatible way to scale existing shared mem-

ory applications on multicore machines;

• A set of mechanisms to enable efficient sharing of re-

sources among clustered operating systems;

• The design and implementation of our prototype system

Cerberus, as well as the evaluation of Cerberus using re-

alistic application benchmarks, which demonstrate both

the performance and scalability of our approach.

The rest of the paper is organized as follows. The next

section relates Cerberus with previous work on OS scalabil-

ity. Section 3 provides an overview on the challenges and

approaches of Cerberus. Sections 4 and 5 present the design

of the two major enabling parts of Cerberus, namely Super-

Process and resource sharing. Then, section 6 describes the

implementation details on Xen and Linux. The experimental

results are shown in section 7. We present the discussion of

the limitations and future work in section 8. Finally, we end

this paper with a concluding remark in section 9.

2. Related Work

Improving the scalability of UNIX-like operating systems

has been a longstanding goal of system researchers. This

section relates Cerberus to other work in operating system

scalability.

2.1 OS Structuring Strategies

Cerberus is influenced by much existing work on system vir-

tualization, building new scalable OSes and refining existing

OSes. Cerberus differs from existing work mainly in that it

aims at improving performance scalability of existing appli-

cations by using a backward-compatible technique called OS

clustering.



The idea of running multiple operating systems in a single

machine is not new, but rather an inherent goal of system vir-

tualization [Goldberg 1974]. For example, Disco [Bugnion

1997] (and its relative Cellular Disco [Govil 1999]) had run

multiple virtual machines in the form of a virtual cluster

to support distributed applications. Denali [Whitaker 2002]

also safely multiplexes a large number of Internet services

atop a lightweight virtual machine monitor. Cerberus puts

these ideas into the context of multicore architecture, and

more importantly supports efficiently running a contempo-

rary shared-memory application with POSIX APIs on mul-

tiple clustered operating systems with little or no modifica-

tion.

One viable way to scale operating systems is partition-

ing a hardware platform as a distributed system and dis-

tributing replicated kernels among partitioned hardware.

Hive [Chapin 1995] uses a strategy called multicellular,

which organizes an operating system as multiple indepen-

dent kernels (i.e., cells), which communicates with each

other for resource management to provide better reliability

and scalability. Barrelfish [Baumann 2009] tries to scale ap-

plications on multicore system by using a multikernel model,

which distributes replicated kernels on multiple cores and

uses message-passing instead of shared-memory to maintain

their consistency. The factored operating system [Wentzlaff

2008] argues that with the likely abundant cores, it would be

more appropriate to space-multiplex cores instead of time-

slicing them. Helios [Nightingale 2009] is an operating sys-

tem that aims at bridging the heterogeneity of different pro-

cessing units in a platform by using a satellite kernel, which

provides the same abstractions across different processor ar-

chitectures. Cerberus is also influenced by these systems in

the use of replicated kernels and state, but retrofits the ideas

to commodity operating systems to scale existing shared-

memory applications.

Other work has focused on improving OS scalability by

controlling or reducing sharing and improving data locality.

Corey [Boyd-Wickizer 2008] is an exokernel [Engler 1995]

style operating system that provides three new abstrac-

tions (share, address range and kernel core) for applications

to explicitly control sharing of resources. K42 [Appavoo

2007] and its relatives (Tornado [Gamsa 1999] and Hurri-

cane [Unrau 1995]) are designed to reduce contention and to

improve locality for NUMA systems. Cerberus shares some

similarities with the clustered objects of K42, but applies at

a much higher level (complete operating systems).

2.2 Efforts in Commodity OSes

There are extensive studies on the scalability issues of com-

mercial kernels and a lot of approaches are proposed to fix

them. RCU [McKenney 2002], MCS lock [Mellor-Crummey

1991] and local runqueues [Aas 2005] are strategies that

aim at reducing the contention on shared data structures.

Recently, Boyd-Wickizer et al. [Boyd-Wickizer 2010] an-

alyzed and fixed the scalability of many-core applications

on Linux by refining the kernel, and improving applications’

user-level design and use of kernel services. Cerberus also

aims at improving scalability of applications on Linux, but

runs multiple commodity OS instances to host one applica-

tion instead of refining the core kernel.

In summary, the effort of Cerberus is complementary to

the efforts of improving the scalability of existing commer-

cial operating systems. With more scalable operating sys-

tems, Cerberus would require fewer operating systems to

be clustered together to provide a scalable runtime environ-

ment.

3. Overview and Approaches

This section first discusses the challenges and illustrates

the solutions to running a shared-memory application on

multiple operating systems in a virtualized system. Then, we

give an overview of the Cerberus architecture.

3.1 The Case for OS Clustering

To meet its design goals, Cerberus uses pervasive system vir-

tualization. Rather than designing a new OS from scratch

or fixing the internal mechanisms of commodity OSes, Cer-

berus clusters multiple commodity operating systems atop

a VMM, and allows an application to run on multiple clus-

tered operating systems with a shared-memory interface. Us-

ing multiple federated operating systems hosted by a VMM

to run one application means that processes/threads belong-

ing to one shared-memory application now run on multiple

OSes. Hence, Cerberus uses a set of mechanisms to ensure

system consistency.

Single Shared-Memory Interface: To avoid requiring a

port of existing applications, it is critical to provide the exist-

ing shared-memory interface to applications. Usually, appli-

cation programmers using traditional shared-memory APIs

(e.g., POSIX) often make the assumption that their programs

run within an operating system. Thus, a shared-memory ap-

plication running in an operating system in the form of mul-

tiple processes and threads often expects to share a consis-

tent view of system resources. These processes/threads also

rely on the operating system interfaces and services to com-

municate with each other. For example, threads belonging to

one process are expected to see the same address space and

processes in one application have parent-children relations

and use IPCs to notify each other.

To address these issues, Cerberus incorporates a system-

call virtualization layer, which coordinates system calls in

multiple clustered operating systems and marshals the re-

sults. Cerberus uses the notion of SuperProcess (section 4),

which denotes a group of processes/threads executing in

multiple operating systems. Each process/thread in a Super-

Process is called a SubProcess. The SuperProcess coordi-

nates the control delivery and data communication of its Sub-

Processes, to maintain the system’s consistency, and provide
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Figure 2: The Cerberus System Architecture. Cerberus is
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resource sharing; and a kernel module in the guest OS,

which manages the SuperProcess and inter-VM system calls.

the application with the illusion of running on one operating

system.

Efficient Resource Sharing: Another challenge is effi-

cient sharing of resources among processes/threads cross-

ing the operating system boundary, to still provide applica-

tions with a consistent view of system resources. Unfortu-

nately, traditional VMMs are not built with support for shar-

ing many resources between operating systems, but rather,

enforce strong isolation among guest operating systems for

security reasons.

Hence, Cerberus implements a resource-sharing layer in

both the VMM and OSes, which supports efficient sharing

of resources such as address spaces, networking and file sys-

tems. The resource-sharing layer exploits the fact that the

clustered OSes share the hardware to coordinate accesses

to shared resources. Cerberus uses both shared-memory and

message-passing mechanisms to coordinate accesses and

events among clustered operating systems. To serialize ac-

cesses to resources shared by multiple OS instances, it uses

message-passing and lock-free mechanisms when necessary.

For events among instances of different operating systems,

Cerberus uses a two-level message queue to deliver these

events. As the system state of an application is replicated

and by default private, false sharing and unnecessary serial-

ization can be significantly avoided.

3.2 System Architecture

The system architecture of Cerberus is shown in Figure 2.

There are several virtual machines running atop a VMM.

The VMM manages the underlying hardware resources and

partitions the resources among the VMs. Currently, Cerberus

requires the VMs to run the same operating system kernel for

simplicity. Roughly speaking, Cerberus organizes the Super-

Process in the form of a coordinated distributed system, us-

ing both messages and shared memory. Multiple processes

of one application run on multiple OSes in the form of a Su-

perProcess, which consists of one master daemon and mul-

tiple slave daemons. There is exactly one slave daemon for

an application in VMs not running the master daemon. The

master daemon is responsible for loading the initial parts of

an application and creating the slave daemons. Afterwards,

the master daemon works similarly to the slave daemon, ac-

cording to the semantics of the application.

The daemons communicate with each other to decide

which VMs should serve a process/thread creation request,

to balance load among clustered OSes. To run a process in a

VM other than the requesting VM, the SuperProcess daemon

issues a remote spawn, which replicates the current running

state to the target VM.

Cerberus also routes system calls using the SuperProcess

module in each operating system, which is a loadable kernel

module. The module intercepts system calls made by an

application. To retain the semantics of system calls and a

consistent view of the execution context, the module routes

the system calls, as well as marshalling and translating the

results.

Cerberus uses cross-VM message-passing mechanisms

to handle communication between daemons in multiple

VMs. A daemon uses the message-passing mechanism to

send process/thread creation requests and signal remote pro-

cesses/threads. There is also a shared-memory area for data

communication among multiple VMs.

Currently, Cerberus decides the number of operating sys-

tems to run based on a user-specified heuristic for simplicity

(the scalability limit of an application with certain number of

cores). By default, Cerberus allocates a fixed, equal portion

of resources to an operating system and lets the application

decide the assignment of processes/threads to operating sys-

tems. Each operating system is pinned on a fixed number of

cores.

In the following sections, we will describe the mecha-

nisms in Cerberus to support SuperProcess (section 4) and

efficient sharing of address space, file system and network-

ing among clustered operating systems (section 5).

4. Supporting SuperProcess

This section describes the underlying design to support the

SuperProcess abstraction, which provides applications with

the illusion of running on a single operating system.

4.1 Remote Process/Thread Spawning

Cerberus uses techniques from traditional process check-

point/restart mechanisms to support remote process spawn-

ing. As shown in Figure 3, Cerberus first checkpoints the

state of the current running process, including the regis-

ter state, memory mappings and opened files, among oth-

ers. The checkpointed process state is then put into a shared
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memory area. To spawn a process on behalf of the request-

ing daemon in a different operating system, the daemon in

the target OS first spawns a child process itself. Then, it re-

trieves the checkpointed state from the shared memory area,

and restores it to the child process.

Currently, many applications use the threaded program-

ming model. As all threads of a threaded application share

the same binary image, Cerberus proactively creates a res-

ident process (similar to the dispatcher in K42 [Krieger

2006]) for each clustered operating system, and maintains

the consistency of each resident process by propagating

changes to the application’s global resources. For example,

Cerberus automatically propagates memory mapping and

unmapping requests in the issuing operating system to other

clustered operating systems. Thus, for applications that cre-

ate a large number of threads, the cost of remote spawning

of threads is reduced, as the thread creation requests can be

done locally by each resident process.

It should be noted that although creating a remote process

or thread in Cerberus is more heavyweight than within a

single OS, Cerberus supports parallel fork/clone that allows

simultaneously creating processes/threads in multiple VMs,

which amortizes the cost of a single operation.

4.2 Process Management

Cerberus relies mainly on the system call interception

and redirection mechanisms to group processes distributed

across multiple operating systems to provide correct seman-

tics.

Cerberus virtualizes the process identity (such as the pro-

cess ID), the parent-child relationship and the group infor-

mation. To achieve this, Cerberus intercepts the system calls

manipulating such information, translates the arguments be-

fore dispatching the operations, and marshals the results be-

fore returning to applications.

For process IDs, Cerberus maintains a global mapping ta-

ble of the virtual process ID (seen by applications) and the

physical ID (seen by the operating system). Cerberus thus

relies on the virtual ID to maintain the process relationship.

For example, the PID passed by the kill shell command will

be translated by the Cerberus system call interception layer.

If the virtual PID belongs to the current operating system,

the signal will be delivered to the process associated with

the real PID. Otherwise, Cerberus will redirect the signal to

the corresponding operating system. Cerberus also maintains

a logical to physical CPU mapping table and provides the

correct cores and operating systems to run threads and pro-

cesses. For example, the pthread library provides interfaces

to get and set the affinity (pthread get(/set) affinity) that ob-

tain the set of cores on which a thread can run and assign

specific threads to run on some cores, and Cerberus trans-

lates these calls.

4.3 Coordination of State Accesses

As the state of an application is shared or replicated among

multiple clustered operating systems, Cerberus uses lock-

free mechanisms and message passing to coordinate changes

to the state from each OS. For some shared state among

OSes, Cerberus uses compare-and-swap to allow each OS

to eagerly access some replicated state such as page table

pages. Upon a conflict, Cerberus rolls back the changes to

state from one OS. For some shared data structures such as

the virtual file descriptor table and inode table, Cerberus par-

titions these data structures to individual OSes, to avoid ac-

cess serialization and cache ping-ponging, and uses message

passing to coordinate the state.

Cerberus also implements an inter-VM notification mech-

anism that uses a hierarchical message-passing mechanism:

when a process notifies processes in other VMs on the oc-

currences of certain events (e.g., signals, unmap requests),

it first sends a message to the SubProcess in that VM. The

SubProcess will queue the message marked with the type

of the message and deliver the message to the appropri-

ate VM. Then the receiver VM will send the correspond-

ing event to the appropriate threads/processes. For example,

for a futex [Franke 2002]1 call on the address of a remote

thread, Cerberus will translate the address into the real ad-

dress to monitor. On being notified by the local operating

system about the change of the address, Cerberus will send

a message to the receiving thread.

5. Supporting Resource Sharing

Cerberus supports the efficient sharing of address spaces,

file systems and networks across the clustered operating

systems, to provide a consistent view for applications.

5.1 Sharing Address Spaces

Cerberus identifies the range of shared address space by in-

terpreting the application’s semantics. An application run-

ning in a multi-threading mode should normally have its ad-

dress space shared with all threads in a process. A forked

process usually shares little with its parent. For a multi-

1 A futex allows two entities to synchronize with each other using a shared

memory location. The pthread mutex is implemented based on this mecha-

nism.



threaded application, Cerberus maintains a global list of the

shared address ranges. It intercepts the memory mapping re-

quests (e.g., mmap) from each thread and updates the list ac-

cordingly. Cerberus creates a virtual memory mapping for

that shared address range to let the page fault handler be

aware of that address range. When handling a page fault,

the Cerberus module first checks for a pending list entry and

updates the virtual memory mapping before resolving the

faulting address.

To efficiently share an address space across operating sys-

tems, Cerberus incorporates the address range abstraction

from Corey [Boyd-Wickizer 2008]. This supports sharing

a subset of the root page table by multiple guest VMs, ac-

cording to the address range. The level of page table sharing

might be changed according to the virtual memory mapping

of an operating system. Cerberus also dynamically coalesces

and splits the sharing of page tables according to the appli-

cation’s memory mapping requests. According to the list of

shared address ranges, the page fault handler in the VMM

will connect the page table of a shared address range in one

VM’s page table to that in other VMs, when there is a first

access to that shared address range in those domains. Cer-

berus determines the level of sharing based on the size of the

address range.

5.2 Sharing File Systems

Running a single application on multiple operating systems

raises the problem of sharing files among processes in each

clustered operating system. This is because each operating

system will have its own file system and device driver, pre-

venting a process from accessing files managed by another

operating system. One intuitive approach would be the use

of a networked file system managed by one operating sys-

tem, with other operating systems as NFS clients to access

files in the operating system running the NFS server. How-

ever, this creates two performance problems. First, all file

accesses are now centralized to one operating system, which

can easily make the accesses the new performance bottle-

neck. Second, there are some inherent performance over-

heads, as a networked file system usually has inferior per-

formance compared to a local one. For example, recent mea-

surements [Nightingale 2005, Zhao 2006] showed that NFS

could be several times slower than a native file system such

as ext3.

Fortunately, most files in many multiprocessing applica-

tions are usually accessed exclusively, with few opportuni-

ties to be accessed by multiple processes (except some non-

performance-critical ones such as log files)2. Hence, Cer-

berus uses a hybrid approach of both networked and local

file system, which seeks to give accesses to private files little

2 For multi-threaded applications, applications usually map the files into

memory using mmap and then threads can modify the memory-mapped file

directly, which will be discussed in the following sections.

contention and high performance, while maintaining accept-

able performance for shared files.
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Figure 4: Architecture of the Cerberus file system (CFS),

which is organized as a mesh of networked file systems: each

OS manages its local partition and exposes it to other OSes

through the CFS client. Cerberus dispatches accesses to files

and marshals the results according the managed metadata.

Figure 4 shows the architecture of our approach, which

forms of a mesh of networked file systems: each operating

system manages a local partition and exposes it to other op-

erating systems through an NFS-like interface; processes in

such an operating system access private files directly in the

local partition and access files in other partitions through the

CFS client. To identify a file as shared or private, Cerberus

maintains a mapping from each inode describing a file to the

owner ID (e.g., virtual machine ID). As the metadata of files

in each partition is maintained only by one operating system,

Cerberus offers a similar metadata consistency and crash-

recover model to native systems. It should be noted that the

CFS implemented by Cerberus does not rely on network but

rather on the virtual machine communication interfaces for

communication and shared memory. This avoids redundant

file data copies and the associated data exchange, and thus is

more efficient than NFS [Zhao 2006]. Again, the sharing of

a file between the CFS client and CFS server is done using

the address range abstraction to minimize soft page faults.

To provide applications with a consistent view of the

clustered file system, Cerberus intercepts accesses to the at-

tributes or state of each file and directory, distributes ac-

cesses to each partition when necessary, and marshals the

results before returning to user applications. Such operations

(e.g., list a directory) are relatively costly compared to those

in a single operating system. However, they are rare and usu-

ally occur in non-performance critical paths of applications.



5.3 Sharing File Contents

For multithreaded applications, it is common that the content

of a file is shared by multiple threads. Thus, Cerberus sup-

ports the sharing of a file based on the address space sharing

in Cerberus to maintain consistency for a file accessed by

multiple operating systems. Cerberus uses memory mapped

I/O (MMIO) to map a file into a shared address range, which

is visible to all threads in multiple operating systems. Cer-

berus only allows the SuperProcess to access shared files

using MMIO. To provide backward compatibility for appli-

cations using the traditional read/write APIs, Cerberus han-

dles file I/O to shared files using a similar idea to that in

Overshadow [Chen 2008], by translating file related I/Os to

MMIOs. On the first read/write operation to the file, Cer-

berus maps the file in a shared address space using the mmap

system call. Cerberus ensures that the buffer is mapped us-

ing the MAP SHARED flag. Cerberus also ensures that the

address range of the memory buffer is shared among clus-

tered operating systems using the address range abstraction.

Thus, changes from one operating system will be directly

visible to other operating systems. Then, Cerberus emulates

the read/write system calls by operating on the mmapped

area.

To provide file-I/O semantics, Cerberus maintains a vir-

tual file metadata structure that reflects the logical view of

the files seen by a process. Cerberus also virtualizes the sys-

tem calls that operate on the metadata of files. For example,

the fseek system call will advance the file position main-

tained in the virtualized metadata and return the state in vir-

tualized metadata for fstat-like system calls.

Note that this scheme is transparent to the in-kernel file

systems and buffer cache management, as each buffer cache

will have a consistent view of the file. The same piece of

a file might be replicated among multiple buffer caches,

causing wasted memory. However, multiple replicas also in-

crease the concurrency of file access and avoid unnecessary

contention.

5.4 Shared Networking Interfaces

To provide applications with a consistent view of network-

ing interfaces, Cerberus exploits the fact that typical servers

are usually equipped with multiple NICs, and each NIC is

now hardware virtualizable (e.g., through SR-IOV [PCI-SIG

2010]). Hence, Cerberus directly assigns either virtualized

NICs or physical NICs to each operating system for high

performance. This could avoid contention on TCP/IP stacks

if the operations are done on the local (virtual) NICs. To

hide applications from such geographic distributions, Cer-

berus virtualizes the socket interface by intercepting related

system calls and relies on the file descriptor virtualization

described previously to manage socket descriptors. Cerberus

maintains the (virtual) NIC information, and redirects calls

that bind to a NIC if necessary. Cerberus then dispatches re-

lated operations (e.g., send, receive) to the VM that manages

the NIC. The associated data will be exchanged using the

shared memory area managed by Cerberus to avoid possible

data copies.

6. Prototype Implementation

We have implemented Cerberus based on Xen to run multi-

ple Linux instances with a single shared memory interface,

using the shadow mode of page table management in Xen.

The system call layer in Cerberus currently supports only a

subset of the POSIX interface, but is sufficient to run many

applications including shared-memory MapReduce applica-

tions, Apache, Memcached and file system benchmarks. For

simplicity, Cerberus currently requires applications to be

statically linked3, and to link with a small piece of user-level

code containing a few Cerberus-specific signal handlers, that

handle remote requests such as futex and socket operations.

6.1 Inter-VM Message Passing

The inter-VM message passing mechanism is implemented

by leveraging the cross-VM event channel mechanism in

Xen. Cerberus creates a point-to-point event channel be-

tween each pair of clustered operating systems. The SuperP

module inside each operating system has a handler to receive

such cross-VM events and distribute them to the receivers.

In the case of concurrent cross-VM events, each operating

system maintains a cross-event queue to buffer the incoming

events, and handles them in order. All cross-VM communi-

cation of Cerberus, such as futex and signal operations, uses

this mechanism.

6.2 Memory Management

In Cerberus, the sharing of page tables is implemented in the

shadow page tables, and by manipulating the P2M (physical-

to-machine) table, thus is transparent to guest operating sys-

tems. We have also investigated an implementation of page

sharing for Xen’s direct mode (with writable page tables),

with the aim of supporting para-virtualization. However, our

preliminary results show that supporting writable page ta-

bles could result in significant changes to guest operating

systems, as well as incurring non-trivial performance over-

head.

On x86-64, Xen uses 4-levels of page tables and Cer-

berus supports sharing at the lower three levels (i.e., L1 –

L3). Cerberus records the root page table page for an address

range when the guest kernel connects an allocated page ta-

ble page to the upper-level page table. When sharing a page

table page among multiple OSes, one machine page might

be accessed by multiple OSes, and thus might correspond to

more than one guest-physical page in Xen. Hence, Cerberus

creates a per-VM representation of each shared page table,

but in an on-demand way. When a VM tries to write a page

table page for the first time, Cerberus will create a represen-

3 This will not increase much memory usage, as application code is shared

by default.



tation of the page table page in that VM and map it to a single

machine page by manipulating the P2M table, which maps

guest physical memory to the host machine memory. Cer-

berus uses compare-and-swap to serialize updates to shared

page table pages among multiple VMs: when a VM tries to

update the shared page table, it uses a compare-and-swap to

see if the entry has already been filled by other VMs, and

frees the duplicated page table page if so.

Other than sharing page tables, Cerberus also needs

to synchronize the virtual memory area (VMA) mappings

across clustered VMs. As threads on different VMs have

separate address spaces, they maintain their VMAs individ-

ually. Memory management system calls (e.g., mmap) on a

single VM only change the VMA mappings of the threads

in that VM. Thus, Cerberus intercepts most memory man-

agement system calls (e.g., mmap, mremap, mprotect, mun-

map and brk). Before handling the memory management

system call, Cerberus will first force the VM to handle the

virtual memory synchronization requests from other VMs.

After finishing the call, Cerberus will allow the VM to prop-

agate the system call to all other VMs in the system. This

is done by adding a virtual memory synchronization request

with appropriate parameters to the request queue of each re-

ceiver VM.

6.3 Cerberus File System

Inodes in a Cerberus file system (CFS) are divided into two

kinds, namely local inodes and remote inodes. Local inodes

describe files on a domain-local file system, and may be ac-

cessed directly. Remote inodes correspond to files stored on

remote domains. A remote inode can be uniquely identified

by its owner domain and its inode number in that domain.

When a remote inode is created, CFS will keep track of

this unique identifier. Each time a remote inode access is

required, CFS will pack the inode identifier and other infor-

mation into a message, and send it to remote domain via the

inter-VM message passing mechanism.

Another data structure we track is the dentry. A dentry is

an object describing relationships between inodes, and stor-

ing names of inodes. Unlike inodes, dentries in the original

Linux file system do not have identifiers. To simplify remote

dentry access, we assign a global identifier to each remote

dentry. The dentry id is assigned in a lazy way, that is, only

when a dentry is visited from a remote domain for the first

time, will we assign a global identifier to it.

6.4 Virtualizing Networking

Cerberus virtualizes the socket interface by intercepting the

related system calls. The socket operations are divided into

two kinds, namely local and remote socket operations. We

use virtual file descriptor numbers to distinguish the opera-

tions. Each virtual file descriptor number is associated with

a virtual file descriptor. The virtual file descriptor describes

the owner VM, the responder (a user-level daemon on the

owner VM) and the real file descriptor corresponding to it.

When a process accesses a virtual file descriptor, Cerberus

will first check the corresponding owner VM. If it is a local

access, Cerberus just handles the request as in native Xen-

Linux using the real file descriptor. Otherwise, Cerberus will

send a remote socket operation request to the target VM, and

let the responder handle the socket request. With this simple

mechanism, Cerberus can currently support several socket-

related operations (such as bind, listen, accept, read, write,

select, sendto and recvmsg).

6.5 System Call Virtualization

We classify system calls into two types according to which

system state they access. The first type includes system calls

that only access local state or are stateless (e.g., get systime).

For such system calls, replicating calls among multiple OSes

will not cause state consistency problems, and thus Cerberus

does not need to handle them specially. The second type in-

cludes system calls that access and modify global state in

the operating system (e.g., mmap). Cerberus needs to inter-

cept this kind of system call, coordinate state changes, and

marshal the results to support cross-VM interactions. To do

interceptions, the Cerberus module modifies the system call

table to change the function pointers of certain system call

handlers to Cerberus-specific handlers during loading. When

a system call is invoked, the Cerberus handler checks if it

should be handled by Cerberus, and if so, invokes specific

handlers provided by Cerberus.

We have currently virtualized 35 POSIX system calls (be-

longing to the second type) at either system call level or

virtual file system level. They are divided into five cate-

gories: process/thread creation and exit (e.g., fork, clone,

exec, exit, exit group, getpid and getppid); thread commu-

nication (e.g., futex and signal); memory management (e.g.,

brk, mmap, munmap, mprotect and mremap); network op-

erations (e.g., socket, connect, bind, accept, listen, select,

sendto, recvfrom, shutdown and close); and file operations

(e.g., open, read, write, mkdir, rmdir, close and readdir). We

currently leave system calls related to security, realtime sig-

nals, debugging and kernel modules unhandled. In our expe-

rience, virtualizing a system call is usually not very difficult,

as it mostly involves partitioning/marshaling the associated

cross-process state. Table 1 gives some typical examples of

how they are implemented.

6.6 Implementation Efforts

In total, the implementation adds 1,800 lines of code to

Xen to support management of Cerberus and efficient shar-

ing of data among SubProcess in multiple Linux instances.

The support for system call interception, super-process and

Cerberus file system is implemented as a loadable kernel

module, which is comprised of 8,800 lines of code. It takes

1,250 lines of code to enable SuperProcess management.

About 800 lines of code are used to support network vir-

tualization and 750 lines of code to support the Cerberus

file system. The Cerberus system call virtualization layer
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clone Cerberus first makes sure each VM has the resident process. Then, it queries the SuperProcess daemons for the target domain.

Native clone is invoked for a local clone. Otherwise a remote clone request with the marshalled parameters (e.g., stack

address) is sent. The resident process on the target domain then creates a new thread.

getpid Cerberus returns a virtual pid to the caller. The virtual pid contains the domain id and the SubProcess number.

signal Cerberus scans the mapping between virtual pid and process to find the target domain and process. A remote signal request is

sent when necessary. The native signal call is then invoked on the receiver domain.
mmap Cerberus first handles the VMA synchronization request, and then makes the native mmap call. Finally, it broadcasts the

mmap result to other VMs.
accept Cerberus checks the virtual fd table to get the owner domain of the fd. A remote accept request is sent when necessary. The

accept operation is done by the corresponding responder with the real fd, and the resulting virtual fd of the created connection

is sent back.

sendto If the fd does not refer to a remote connection (either the socket is not established or it is a local connection), Cerberus will

invoke the native sendto. Otherwise, Cerberus will query the virtual fd table to get the owner domain. A remote sendto request

is sent and handled by the corresponding responder with the real fd.

mkdir Cerberus first gets the global identifiers of the inode and dentry of the parent directory. If it is a local request, Cerberus passes

it to the native file system. Otherwise, Cerberus gets the owner domain id and sends a remote CFS request with the global

identifiers, the type of the new node (directory in this case) and the directory name. The owner domain creates the new child

directory and sends the corresponding global identifier of the newly created inode and dentry back to the request domain.

Table 1: System call implementation examples

takes about 3000 lines of code, including marshaling mul-

tiple system calls (e.g., clone). The Cerberus system sup-

port code consists of 3000 lines, including the management

of shared memory pool, cross-VM messages and process

checkpointing and restoring (including 700 lines of code

from Crak [Zhong 2001]).

7. Experimental Results

This section evaluates the potential costs and benefits in per-

formance and scalability of Cerberus’s approach to mitigat-

ing contention in operating system kernels.

7.1 Experimental Setup

The benchmarks used include histogram from the Phoenix

testsuite [Ranger 2007]4, dbench 3.0.4 [Tridgell 2010],

Apache web server 2.2.15 [Fielding 2002] and Memcached

1.4.5 [Fitzpatrick 2004].

Moreover, we present the costs of basic operations in

Cerberus. We use OProfile to study the time distribution of

histogram, dbench, Apache and Memcached on Cerberus,

Xen-Linux and Linux.

Most experiments were conducted on an AMD 48-core

machine with 8 6-core AMD 2.4 GHz Opteron chips. Each

core has a separate 128 KByte L1 cache and a separate 512

KByte L2 cache. Each chip has a shared 8-way 6 MByte

L3 cache. The size of physical memory is 128 GByte. We

use Debian GNU/Linux 5.0, which is installed on a 147

GByte SCSI hard disk with the ext3 file system. There are a

total of four network interface cards and each is configured

with different IPs in a subnet. The input files and executable

4 The reason we chose histogram is because it has severe performance

scalability problems on our testing machine, which other programs don’t

exhibit.

for testing are stored in a separate 300 GByte SCSI hard

disk with ext3 file system. The Apache and Memcached

benchmarks were conducted on a 4 quad-core Intel machine

with 8 NICs (as it has more NICs than the AMD machine), to

reduce the bottlenecks from the NIC itself. Due to resource

limitations, we can run up to 24 virtual machines on the

AMD machine. All performance measurements were tested

at least three times and we report the mean.

Cerberus is based on is Xen 3.3.0, which by default runs

with the Linux kernel version 2.6.18. We thus use the kernel

version 2.6.18 for the three measured systems. Xen-Linux

uses the privileged domain (Dom0) in direct paging mode,

for good performance. As Xen-3.3.0 can support at most 32

VCPUs for one VM, we only evaluate Xen-Linux with up to

32 cores.

We compare the performance and scalability of Cerberus

with Linux. We also present the performance results of Xen-

Linux to show the performance overhead incurred by the

virtualization layer, as well as the performance benefit of

Cerberus over typical virtualized systems. To investigate

the performance gain of Cerberus, we used Oprofile and

Xenoprof to collect the distribution of time of histogram,

dbench, Apache and Memcached on Xen-Linux and Linux

and that on Cerberus using the 2 core per-VM configuration.

All profiling tests use the CPU CYCLE UNHALTED event

as the performance counter event.

7.2 Cerberus Primitives

We also wrote a set of microbenchmarks to evaluate the cost

of many primitives of Cerberus, to understand the basic cost

underlying Cerberus.

Sending Signals: To evaluate the performance of the Cer-

berus signal mechanism, we use a micro-benchmark to test



localhost remote host

Native Linux 12.5ms 125.5ms

Xen-Linux 42.9ms 132.6ms

Cerberus local 43.1ms 131.8ms

Cerberus remote 87.1ms 154.7ms

Table 2: Cost of ping-ponging one packet 1000 times

Intel AMD

Native Linux 7.9ms 4.0ms

Xen-Linux 38.7ms 74.1ms

Cerberus local 43.1ms 72.3ms

Cerberus remote 25.8ms 45.0ms

Table 3: Cost of ping-ponging 1000 signals

the time it takes to send a signal using a ping-pong scheme

(e.g., sending a signal to a process and that process sending

a signal back to the originator) on both the Intel and AMD

machines. Table 3 depicts the evaluation results. It can be

seen that the virtualization layer introduces some overhead

to the signal mechanism. However, sending a cross-VM sig-

nal takes less time than sending a local signal. There are two

reasons: 1) The inter-VM message passing mechanism is ef-

ficient; 2) Sending a signal to a remote process only needs

to forward the request to the target VM, so signaling the tar-

get process and executing the sender process can be done in

parallel.

Primitive Config Time

1 process 5.40 ms
remote fork

24 processes 31.77 ms

1 thread 3.21 ms
remote clone

24 threads 30.79 ms

Table 4: The costs of fork and clone in Cerberus

Remote Fork and Clone: The first and second columns

of Table 4 show the cost of spawning 1 processe/thread on a

remote VM in the AMD machine with 2 VMs and concur-

rently spawning 24 processes/threads on remote VMs in the

AMD machine with 24 VMs. Cerberus suffers from some

overhead due to checkpointing, transferring and restoring

process/thread state from the issuing VM to the receiving

VMs. However, with increasing numbers of VMs, the steps

of creating remote threads can be processed in parallel. This

helps to reduce some overhead of creating threads as shown

in the table.

Inter-VM Message Passing: To evaluate the costs of

inter-VM message passing, we pass a message between VMs

in order using a ping-pong scheme, e.g., sending that mes-

sage to a VM and the VM responds by sending a message

back to the sender. The time for one round-trip is around

10.24 µs within the same chip and 11.34 µs between chips,

which we believe is modest and acceptable.

Reading a File with CFS: To evaluate the performance

of (CFS), we write a micro-benchmark to test the time it

costs to read the beginning portion of a simple file on the

AMD machine. We generate one hundred files with random

content, clear the buffer cache, read the first ten bytes of each

file, and then calculate the average execution time. The re-

sult shows that one read operation on a native Xen-Linux

file takes 6.47 µs, and one read operation on a local CFS file

takes 6.52 µs, while on a remote CFS file it will cost 17.81

µs. The performance of local read operations on the CFS is

close to that of native Xen-Linux file system. However, re-

mote read operations introduce some performance overhead.

Sending and Receiving Packets: To evaluate the per-

formance of the Cerberus network system, we use a micro-

benchmark to test the time for sending and receiving net-

work packets, using a ping-pong scheme on the Intel ma-

chine. The micro-server establishes a network connection

with the client and creates a child to handle the following

requests. The client will send an 8 byte string to the server

through a socket connection (localhost/remote host) to trig-

ger the test. Table 2 depicts the evaluation results. It shows

the execution time of ping-ponging one message 1000 times

under different configurations. It can be seen that the vir-

tualization layer introduces some overhead for sending and

receiving packets, while forwarding a packet in Cerberus in-

troduces more overhead. However, if the connection is from

a remote host, the overhead of the packet forwarding is be-

low 25% compared to native Linux.

7.3 Performance Results

For histogram and dbench, we ran each workload on the

AMD 48-core machine under Xen-Linux and Linux with the

number of cores increasing from 2 to 48. For Cerberus, we

evaluate two configurations, which run one and two cores for

each VM (Cerberus-1core and Cerberus-2cores), running on

a different number of cores, increasing from 2 to 48. When

running one virtual machine on two cores, we configured

each VM with cores that have minimal communication costs

(e.g., sharing the L3 cache). For the Apache web server and

Memcached service benchmarks, we run each workload on

the Intel 16-core machine under Cerberus, Xen-Linux and

Linux with different number of cores, increasing from 2 to

16. As both applications require a relatively large number

of NICs, we did not test them on 48-core AMD machine.

During the Apache and Memcached tests, we setup one

instance of the web server on each core, which accepts

service requests from clients running on a pool of 16 dual-

core machines (32 clients for Apache and 64 clients for

Memcached).

Histogram: Figure 5 shows the performance and scala-

bility of histogram processing 4 GByte of data on Cerberus,

native Linux and Xen-Linux. All input data is held in an in-

memory tmpfs to avoid applications being bottlenecked by
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Figure 5: The execution time and speedup of histogram on

Cerberus compared to those on Linux and Xen-Linux under

two configurations: which use 1 and 2 cores/domain accord-

ingly.

disk I/O. Cerberus performs significantly worse than Linux

for a small number of cores, due to the performance over-

head in shadow page management and the inherent virtual-

ization overhead. However, as the number of cores increases,

the execution time of histogram eventually decreases and

outperforms native Linux. The speedup of Cerberus over

Xen-Linux is around 51% on 24 cores for the one core per-

VM configuration, and 30% on 30 cores for the two cores

per-VM configuration. The speedup over Linux is around

43% on 24 cores for one core per-VM, and 37% on 48 cores

for two cores per-VM. The performance of two cores per-

VM is worse than that of one core per-VM, due to the in-

creased contention on the shadow page table inside Xen. The

speedup of Cerberus degrades a little (57% vs. 37%) from

42 cores to 48 cores, probably because the costs of creat-

ing threads and communication increases, thus the benefit

degrades.

Table 5 shows the top 3 hottest functions in the profiling

report of the histogram benchmark. Linux suffers from con-

tention in up read and down read trylock due to memory

management. Xen-Linux spends most of its time in address

0x0 (/vmlinux-unknown) when the number of cores exceeds

eight5, which might be used for a para-virtualized kernel to

interact with the hypervisor. However, Cerberus does not en-

counter contention in Linux and Xen-Linux, the time spent

5 The profiling results are obtained through Xenoprof using the

CPU CYCLE UNHALTED event
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Figure 6: The throughput and speedup of dbench on Cer-

berus compared to those on Linux and Xen-Linux under two

configurations: which use 1 and 2 cores/domain accordingly.

in the lock-free implementation (cmpxchg) increases a little

with the increasing number of cores.

dbench: Figure 6 depicts the throughput and speedup

of dbench on Cerberus over Xen-Linux and Linux. The

throughput of dbench on Xen-Linux and Linux degrades dra-

matically when the number of cores increases from 6 to 12

and degrades slightly afterwards. By contrast, though the

throughput of Cerberus is worse than that on Linux for a

small number of cores (1-6), its throughput scales well to 18

cores and 12 cores for the one and two core per-VM con-

figuration. It appears that dbench has reached its extreme

throughput here and has no further space for improvement.

Starting from 12 cores or 18 cores, the throughput degrades

slightly due to the increased process creation and inter-VM

communication costs. Again, the one core per-VM configu-

ration is slightly better than the two cores per-VM configu-

ration, due to the per-VM lock on the shadow page table. In

total, the speedup is 4.89X for the one core per-VM config-

uration on 24 cores, 4.95X for 42 cores, and 4.61X for 48

cores.

Table 6 shows the top 3 hottest functions in the profiling

report of dbench benchmark. We ignore the portion of sam-

ples related to mwait idle, as it means the CPU has nothing

to do. From the table we can see that Linux and Xen-Linux

both spend substantial time in ext3 file system operations,

which may be the reason for poor scalability. On the other

hand, Cerberus does not encounter such scalability prob-

lems, but is slightly affected by the shadow paging mode.



The evaluation on histogram and dbench also shows that

these applications poorly utilize multicore resources when

the number of cores reaches a certain level. This indicates

that horizontally allocating more cores to such applications

may not be a good idea. Instead, allocating a suitable amount

of cores to such applications could result in better utilization

and performance tradeoff.

Threads Top 3 Functions Percent

Linux

up read 38.6%

48 down read trylock 35.9%

calc hist 8.3%

calc hist 81.2%

1 find busiest group 0.06%

page fault 0.03%

Xen-Linux

/vmlinux-unknown 70.9%

32 calc hist 11.6%

handle mm fault 3.2%

calc hist 60.3%

1 handle mm fault 3.6%

sh gva to gfn guest 4 2.7%

Cerberus

calc hist 22.5%

2/VM sh x86 emulate cmpxchg guest 2 8.9%

/xen-unknown 8.3%

Table 5: The summary of the top 3 hottest functions in his-

togram benchmark profiling

Threads Top 3 Functions Percent

Linux

ext3 test allocatable 66.6%

48 bitmap search next usable block 18.2%

journal dirty metadata 0.02%

/lib/libc-2.7.so 20.7%

1 copy user generic 14.1%

d lookup 0.03%

Xen-Linux

ext3 test allocatable 59.7%

32 bitmap search next usable block 17.7%

/vmlinux-unknown 5.99%

/lib/libc-2.7.so 13.7%

1 copy user generic 9.9%

d lookup 4.1%

Cerberus

sh x86 emulate cmpxchg guest 2 11.2%

2/VM /xen-unknown 8.67%

sh x86 emulate write guest 2 5.2%

Table 6: The summary of the top 3 hottest functions in dbench

benchmark profiling
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Figure 7: The per-core throughput of Apache on Cerberus

compared to those on Linux and Xen-Linux

Apache Web Server: Figure 7 shows the per-core

throughput of Apache on the Intel 16-core machine under

Cerberus, Xen-Linux and Linux. There are a total of eight

NICs, and each is configured with a different IP in a subnet.

We run one web server instance on each core and share one

NIC between two web servers. The throughput of Apache

on Linux significantly degrades with the growing number of

cores. When evaluating Cerberus, we directly assign 8 NICs

to 8 different VMs (using PCI passthrough). The per-core

throughput of 16 cores is only 1085 requests/sec for Linux,

which is 12.1% of that on 1 core. By contrast, the through-

put of Cerberus is quite stable. Although Cerberus performs

worse than Linux for a small number (1-2) of cores (4603 vs.

8118 on 2 cores), it outperforms Linux when the number of

cores exceeds 4 and scales nearly linearly. Cerberus achieves

a speedup of 3.49X and 3.53X over Linux and Xen-Linux

(3833 vs. 1099 and 1085).

The profiling of Apache shows that more CPU time is

spent idle with the increasing number of cores used to

host web servers, and there is some load imbalance. Opro-

file shows that the same server instance takes 2.57X more

CPU cycles under 1-core configuration than that under 16-

core configuration. The same scenario also appears in Xen-

Linux(2.39X). This may be caused by contention in the net-

work layer in Linux and Xen-Linux. However, Cerberus

does not encounter such a problem and can fully utilize its

CPU resources. This evaluation shows that Cerberus could

also avoid some imbalance caused by Linux, and achieve

more efficient use of resources.

Memcached: Figure 8 shows the average throughput of

Memcached server on the Intel 16-core machine under Cer-

berus, Xen-Linux and Linux. The configuration is similar

to Apache. We run one Memcached server instance on each

core and share one card by two servers listening to different

UDP ports. The throughput of Memcached server on Linux

significantly degrades when the number of cores exceeds 4.

By contrast, the throughput of Cerberus does not degrade un-

til the Memcached instances start to provide service on the

same VM, as two instances affect each other heavily. How-

ever Cerberus still outperforms Xen-Linux and Linux.
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Figure 8: The per-core throughput of Memcached on Cer-

berus compared to that on Linux and Xen-Linux

The profiling of Memcached shows that many CPU cy-

cles are spent polling network events. Further per-CPU pro-

filing shows that a few Memcached instances spend much

time in the ep poll callback and task rq lock functions, and

seem to block other instances.

We also evaluated histogram, dbench, Apache and Mem-

cached on other Linux versions (Linux 2.6.26, the standard

kernel for Debian GNU/Linux, and Linux 2.6.35, the newest

stable kernel). Only the scalability of histogram improves in

Linux 2.6.35. Others still suffer from heavy contention, and

have similar performance and scalability.

Performance of Different Configurations: We also

measured the performance of different cores per-VM using

48 cores. As shown in Table 7, the performance actually

degrades when the number of cores per-VM increases. The

degradation is especially significant due to heavy contention

on shadow page table management, with the execution time

increasing more than 12X (10.624s vs. 0.860s) when the

number of cores per-VM increases from 2 to 8. The eval-

uation shows that Cerberus does not rely on the scalability

of the VMM and can also mitigate performance scalability

problems within the VMM when configured properly.

#Cores/VM Histogram(sec) Dbench(MB/sec)

2 0.860 2123.6

4 1.130 1805.0

8 10.624 1273.8

Table 7: Performance of histogram and dbench with different

number of cores per-VM

Performance Comparison with Xen-Linux Shadow

Mode: As Cerberus is based on the shadow mode of Xen-

Linux, we also give a performance comparison with Xen-

Linux for reference. We used Domain0 in shadow mode and

direct mode running 32 virtual cores to run histogram and

dbench. Due to heavy contention in shadow mode, Xen-

Linux experiences extremely bad performance, spending

about 246.54s on histogram, and has only 3.4 MB/s through-

put for dbench. Yet, for the direct mode, the execution time

for histogram is 1.80s and the throughput is 246.54 MB/s for

dbench. Hence, when running parallel workloads on multi-

ple cores, it should be better to use direct mode rather than

shadow mode. The performance evaluation also shows that

Cerberus could not only mitigate the contention within oper-

ating systems, but also reduce the contention from multiple

cores accessing the shared state owned by a single virtual

machine (i.e., shadow page management).

8. Discussion and Future Work

Though Cerberus has demonstrated the applicability of scal-

ing applications with OS clustering, There are still ample

optimization and research opportunities remaining. We de-

scribe our current limitations as well as possible extensions.

Viability of Our Approach: Our approach is not a

panacea to the scalability of applications on multicore, but

is only effective in specific scenarios where applications

themselves have good parallelism and do not have intensive

communication. Specifically, Cerberus might not show per-

formance advantages in the following scenarios. First, ap-

plications that clone a number of short-lived, intensively-

communicating threads/processes will probably not benefit

from our approach, due to the relatively expensive cost of

message passing and thread creation. Second, as remote net-

work and remote file introduce overhead in Cerberus, appli-

cations with frequent remote resource access might experi-

ence degraded performance. Finally, applications with fre-

quent small-size memory mapping operations (e.g., mmap,

mremap) will stress the current synchronization mechanism

for virtual memory in Cerberus and might have some perfor-

mance degradation.

Application Cooperation: To retain application trans-

parency, Cerberus relies on some relatively expensive op-

erations (such as inter-VM fork/clone) to support cross-OS

execution of an application. In our future work, we would

like to investigate ways of adding some appropriate appli-

cation programming interfaces and libraries to let applica-

tions cooperate with Cerberus, thus further reducing the per-

formance overhead. For example, it would be interesting to

let user applications explicitly specify which address space

range should share the page table, to avoid unnecessary seri-

alization and contention. Moreover, in a fork-intensive appli-

cation, it would be beneficial for applications to direct Cer-

berus on which parts need to be checkpointed.

Hardware-assisted Virtualization: Currently, Cerberus

is implemented based on hardware platform without

hardware-assisted virtualization, thus come with the asso-

ciated (usually non-trivial) overhead of virtualization. How-

ever, hardware-assisted virtualization techniques such as In-

tel VT-x and AMD SVM with extended page tables or nested

page tables are commercially available. Our future work in-

cludes incorporating hardware-assisted virtualization to re-

duce the virtualization overhead, thus further enlarging the

performance benefits of Cerberus.



Fault Tolerance: Currently, Cerberus does not provide

fault tolerance to applications. While running applications

on multiple VMs, it would be desiable when one process

fails, processes in other VMs could take over the tasks and

proceed as if the failure never happened. However, in Cer-

berus, if one process of a SuperProcess failed in one VM,

it is uncertain what would happen to other processes on the

other VMs.

9. Conclusions

Scaling operating systems on many-core systems is a criti-

cal issue for researchers and developers to fully harness the

likely abundant future processing resources. This paper has

presented Cerberus, a system that runs a single many-core

application on multiple commodity operating systems, yet

provides applications with the illusion of running on a sin-

gle operating system. Cerberus has the potential to mitigate

the pressure of applications on the efficiency of operating

systems managing resources on many cores. Cerberus is en-

abled by retrofitting a number of new design techniques back

to commodity operating systems to mitigate contention and

to support efficient resource sharing. A system call virtual-

ization layer coordinates accesses from process instances in

clustered operating systems to ensure state consistency. Ex-

periments with four applications on a 48-core AMD machine

and a 16-core Intel machine show that Cerberus outperforms

native Linux for a relatively large number of cores, and also

scales better than Linux.
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