Characterizing the Caching and Synchronization
Performance of a Multiprocessor Operating System

Josep Torrellas, Anoop Gupta, and John Hennessy
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Good cache memory performance is essential to achieving high
CPU utilization in shared-memory multiprocessors. While the per-
formance of caches is determined by both application and oper-
ating system (OS) references, most research has focused on the
cache performance of applications alone. This is partially due to
the difficulty of measuring OS activity and, as a result, the cache
performance of the OS is largely unknown. In this paper, we char-
acterize the cache performance of a commercial System V UNIX
running on a four-CPU multiprocessor. The related issue of the per-
formance impact of the OS synchronization activity is also studied.
For our study, we use a hardware monitor that records the cache
misses in the machine without perturbing it. We study three multi-
processor workloads: a parallel compile, a multiprogrammed load,
and a commercial database. Our results show that OS misses oc-
cur frequently enough to stall CPUs for 17-21% of their non-idle
time. Further, if we include application misses induced by OS
interference in the cache, then the stall time reaches 25%. A de-
tailed analysis reveals three major sources of OS misses: instruction
fetches, process migration, and data accesses in block operations.
As for synchronization behavior, we find that OS synchronization
has low overhead if supported correctly and that OS locks show
good locality and low contention.

1 Introduction

Cache-based shared-memory multiprocessors rely heavily on cache
memories to bridge the difference in speed between processors and
main memory. This crucial role of caches is well known to devel-
opers of parallel applications and writers of parallelizing compil-
ers, who tune their algorithms for cache performance. In contrast,
there is little published literature on how the references of a mul-
tiprocessor operating system (OS) affect cache performance. This
lack of literature is partially due to the technical difficulty of re-
liably measuring OS activity. Indeed, because of the complexity
and real time nature of the OS activity, these measurements can-
not usually be taken from machine simulators; a real machine is
required. In addition, to avoid perturbing the machine being mea-
sured, sophisticated hardware or software support is required. A
second reason for the lack of data regarding multiprocessor OS
references is that researchers have traditionally focused on the per-
formance of compute-intensive applications, which entail negligible
OS activity. Other common loads, however, like commercial and
software-development loads, may require significant OS activity.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Assaciation for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ASPLOS V - 10/92/MA,USA

© 1992 ACM 0-89791-535-6/92/0010/0162...$1.50

162

Several researchers have pointed out the importance of the cache
performance of the OS in sequential machines. First, Clark [7]
reports that the cache performance of the VAX-11/780 measured
with a performance monitor is lower than the one predicted with
application-only traces. Second, in a simulation using traces of
VAX memory references, Agarwal et al [1] show that the OS can
be responsible for over 50% of the cache miss rate. Related work
by Ousterhout [14] and Anderson et al [2] suggests that OS activity
is making an increasing impact on the performance of machines.
This OS activity causes cache misses directly and also indirectly
in the applications by displacing the state of the applications from
the cache. In work based on application-only simulations, Mogul
and Borg [13] and Gupta et al [9] show the importance of pre-
serving and reusing the cache state of applications. Given all these
previous observations, our goal in this paper is to provide an in-
depth experimental characterization of the cache performance of a
multiprocessor OS.

Our experiments characterize the cache performance of the IRIX
OS running on the Silicon Graphics POWER Station 4D/340, a
multiprocessor with four 33 MHz MIPS R3000 CPUs. In our ex-
periments, we use a hardware monitor to capture all instruction and
data cache misses for each CPU. By using a hardware monitor, we
capture the complete system behavior without any measurement-
induced perturbation. The experiments consist of running each of
three parallel workloads for 1-2 minutes. Two of the workloads
are common engineering workloads: one is a parallel compile of
56 files, the other a parallel numeric program running concurrently
with the parallel compile and five screen edit sessions. The third
workload is an Oracle database.

Our results show that cache misses in the OS stall CPUs for
17-21% of their non-idle time. This stall time reaches 25% if we
add application misses induced by OS interference in the cache. In
our analysis, we identify three main sets of OS misses: instruction
misses, data misses due to process migration, and data misses in
block operations. These misses stall CPUs for about 10%, up to
4%, and up to 6% of their time respectively. Finally, we also
discover that OS synchronization displays good cache performance
if supported correctly.

This paper is organized as follows. Sections 2 and 3 describe the
experimental setup and the workloads evaluated respectively. Sec-
tion 4 characterizes the cache performance of the OS. This section
starts out with a high-level analysis of the behavior of OS misses in
Subsection 4.1, then analyzes the sources of OS misses in Subsec-
tion 4.2, and finally considers application misses induced by the OS
in Subsection 4.3. Next, Section 5 characterizes the synchroniza-
tion performance of the OS. Section 6 discusses the implications of
our results for larger machines. Finally, we conclude in Section 7.

2 Experimental Environment

In this section, we discuss the hardware and software infrastructure
used in our experiments.

2.1 Hardware Setup

Our results are based on the analysis of address traces generated by
a Silicon Graphics POWER Station 4D/340 [4], a bus-based cache-
coherent multiprocessor with four CPUs. Each CPU is a MIPS
R3000 with a 64 Kbyte instruction cache and a two level data
cache: a 64 Kbyte first-level and a 256 Kbyte second-level cache.
All caches are physically~-addressed, direct-mapped, and have 16
byte blocks. The system is configured with 32 Mbytes of main
memory.

We use a hardware monitor to record all bus activity without
affecting the machine. A buffer in the monitor stores the physical
address and ID of the originating processor for over 2 million bus
transactions. Synchronization accesses are not stored since they are
diverted to a special synchronization bus and are therefore invisible
to the monitor. We discuss a scheme to address this problem later.
Time is measured with a granularity of 60 ns using a counter in the
monitor. For the machine’s cache configuration, bus transactions
fill the trace buffer in 0.5 to 4 seconds, depending on the miss rate
of the workload.

To circurnvent the constraint imposed by a trace buffer of limited
size, we periodically suspend and restart the programs that form the
workload being measured. A master process starts them and then
goes to sleep. At regular intervals, the master wakes up and checks
the trace buffer. If the fraction of the trace buffer that is empty is
less than a threshold value, then the master suspends all processes,
therefore sending the CPUs to the idle loop. Then, the master
dumps the trace to disk and restarts the processes. The value of
this threshold is chosen so that the buffer never overflows. With
this approach, we can trace an unbounded continuous stretch of the
workload instead of having to rely on samples interrupted when the
trace buffer is being dumped.

This setup requires some extra support. First, the master is given
real time priority, the highest priority possible. As a result, when
the master wants to run, it is never held back by any other process.
Second, in the original OS, the OS checks for suspend signals only
in the code that schedules processes. To allow the CPUs to detect
the suspend signal immediately after the master issues it, rather
than on expiration of the time quantum, we modified the system
call that sends the suspend signal to force all CPUs to reschedule.
The resulting fast response to the suspend signal prevents the loss
of traces.

Instead of dumping the trace onto a local disk, the master process
sends the trace to a remotely-mounted disk. In the remote machine,
another program postprocesses the trace in parallel while the next
segment of the trace is being generated and transferred. With this
setup, the activity of the postprocessing program does not pollute
the caches and memory of the system under measure. In fact, in
the measured system, only two sources of perturbation occur. One
is the activity of the master process, which we optimized to require
as few cache blocks as possible when checking the status of the
trace buffer and when dumping the trace. The second is the activity
of the network deamons while the data is being transferred across
the network. These deamons partially destroy the I and D-cache
state of the processor on which they run (processor 1 on the SGI
4D/340). The perturbations caused by these deamons are negligible,
however, since the workload runs for 0.5-4 seconds once tracing is

163

resumed, while filling completely empty I and D-caches takes only
about 20 ms.

2.2 Software Suppont
ol

In all of our experiments, we use release 3.2 of IRIX, the OS that is
shipped with the multiprocessor. IRIX is in turn based on UNIX [3]
System V and is fully multithreaded except for network functions,
which run on CPU 1. All OS data is shared by all threads.

We instrument the OS code to record a variety of events:

o Entries and exits from the OS.
& ID of the processes that are currently running.

¢ Changes in the per-CPU TLBs, to be able to translate the
physical address traces back to virtual addresses. The virtual
addresses are required, for example, to determine whether an
application reference is an access to the instruction or data
cache.

o Entries and exits from interrupts.

o Cache flushing and other events that we need for particular
experiments.

In addition to all this information, which is gathered at run time,
we need to determine the state of the machine when tracing starts.
To this end, a system call dumps the contents of the TLBs and
some process state onto the trace buffer when tracing starts.

Because our hardware monitor stores addresses only, and not
data, all the information listed above that we transfer to trace has to
be encoded as accesses to addresses that the postprocessing program
can distinguish. For our experiments, we devised an encoding that
allows us to transfer any information to the trace as cheaply as
one or more cache misses. This encoding is based on using two
hardware features. First, the MIPS address space allows the OS
to access physical addresses directly, bypassing the TLB. Second,
the hardware allows certain accesses to bypass the two levels of
caches. Therefore, we choose a range of physical addresses where
only OS code ever lives and generate uncached byte reads to odd
(i.e. not even) addresses in that range. These escape references
cannot be confused with real code accesses because they read odd
addresses.

While some of these escape references may be as simple as a
single byte read — for example, reading the address that signals
Entering the OS - others require more state. For instance, when
we want to record that a new entry is added to the TLB, we send
to the trace four pieces of information: the index of the TLB entry,
the number of the virtual page added, the number of its correspond-
ing physical page, and the ID of the process that owns the page.
To transfer this information, we first read the location that signals
TLB entry change. Then, one at a time, we take each of the four
pieces of information to send, shift them left one bit, set the least
significant bit to make the data odd, take the resulting value as an
uncached physical address, and then byte-read from it. Although
the resulting four addresses can be anywhere in the address space,
the postprocessing program will easily distinguish each escape in
this escape sequence by looking for four loads from odd addresses
by this CPU in the trace following the TLB entry change access
(remember that the CPU ID is included in the trace). All other
misses generated by this CPU while sending the escapes are in-
struction misses necessarily and hence access even addresses only.
To ensure that process rescheduling does not interrupt the escape
sequence, we disable interrupts while dumping escape sequences.
To summarize, we can transfer to the trace any amount of informa-
tion as cheaply and non-intrusively as one or more cache misses.

Some extra instrumentation may be required when we want to
determine what OS data structure or OS code sequence causes a
given cache miss. In general, we compare the address missed on
with the entries in the symbol table of the OS image. This approach,
however, does not work for the data. structures in the OS that are
dynamically allocated. To solve this problem, when we want to
measure the cache behavior of these data structures, we instrument
all entries and exits in all OS subroutines. This approach provides
the extra information of what subroutine was executing while a
data miss occwrred. With this information, we are usually able to
determine what dynamic data structure was involved in the miss.

Finally, we can also measure synchronization activity with little
intrusion. Since synchronizing accesses are diverted to a synchro-
nization bus, they are invisible to our hardware monitor. To mea-
sure them, we do the following. First, we modified the OS to keep
statistics on its synchronization activity while running. Second, we
modified the OS to allow user processes to map the physical pages
that contain these statistics into the processes” address space. As a
result, if a user process maps these pages, it can, at any time, read
the statistics that the OS keeps on synchronization. Therefore, to
measure the OS synchronization performance of a workload, we
run a special user process that maps these pages and compares the
synchronization statistics before and after an uninterrupted execu-
tion of the workload.

3 Workloads Evaluated

The choice of what workloads to use is a major issue for any study
of this type because of its impact on the results. We chose three
parallel workloads. Two of them are common engineering work-
loads: one is a parallel compile, the other a parallel numeric pro-
gram running concurrently with a parallel compile and some screen
edit sessions. Our third choice is a typical commercial workload,
namely an Oracle database. We now describe each workload in
detail.

e Pmake is a parallel make of 56 C files with, on average,
480 lines of code each. The files are compiled such that, at
the most, 8 jobs can run at once (-J flag is 8). While this
workload has some compute-intensive periods when the opti-
mizing phase of the compiler runs, it usually exhibits heavy
1/O activity,

o Mulipgm is a timesharing load composed of a numeric pro-
gram plus Pmake and five screen edit sessions. All programs
are started at the same time. The numeric program, called
Mp3d [11], is a 3-D particle simulator used in aeronautics
and run using four processes and 50000 particles. Each edit
session is created as follows. An input file with ed commands
is fed to a program that simulates a user typing at a terminal,
and the resulting command piped to an ed invocation. The
program that simulates the user simply sends the characters
in the input file to the screen and to the pipe in bursts of 1-15
characters at a time. A call to rand() determines the number
of characters to be sent at a given time. At the most, however,
25 characters can be sent every five seconds. The commands
in the input file force the ed session to do character searches
and text editing.

e Oracle is a scaled down instance of the TP1 database bench-
mark [8] running on an Oracle database. We do not run the
standard-sized benchmark because we have limited memory
and disk resources and I/O would be a heavy bottleneck. In-
stead, we reduce the size of the benchmark so that it fits in
main memory. The resulting benchmark is not standard: it

lo4

has 10 branches, 100 tellers, 10,000 accounts, and achieves
59 transactions per second (TPS).

To see if the size of the database affects the cache performance
of the OS, we ran a subset of the experiments using a standard-
sized benchmark. We show in [18] that the characteristics of
the OS misses in the standard benchmark are qualitatively the
same as the ones in Oracle.

3.1 Overview of the Cache Behavior

We traced each of the workloads for 1-2 minutes. Table 1 presents
some of the workload characteristics that show the importance of
the OS. First, in columns 2-4, we divide the execution time of the
workloads into user, system, and idle time. From the table, we
see that the OS accounts for as much as 32-47% of the non-idle
execution time in these workloads. Next, in column 5, we consider
the fraction of OS misses in the workloads. From the table, we
observe that this fraction varies from 25 to 50%.

We now consider the performance impact of the cache misses.
The last three columns of Table 1 show the fraction of time pro-
cessors waste in stalls due to all application and OS misses, due to
OS misses only, and due to OS plus OS-induced application misses
respectively. OS-induced application misses result from the OS
displacing the application from the caches. We compare the stall
time against the non-idle execution time because the amount of
time that CPUs spend in the idle loop is a function of the memory
and disk resources in the machine. The stall time is estimated by
assuming that each bus access stalls the CPU for 35 cycles, a num-
ber slightly over the zero-contention latency of a memory access
in the machine. This estimate does not handle two situations that
occur in the real machine. First, processors can potentially overlap
a write miss with computation. Second, processors may be stalled
on a miss and we may not be aware of it. This may happen when a
CPU misses in the first level cache but the bus is not accessed be-
cause the miss hits in the second level data cache. In this situation
the CPU could be stalled for about 15 cycles. If the first situa-
tion dominates, our results on miss stall times are excessive; if the
second dominates, our results are conservative. These two effects,
however, only apply to data misses, which account for 45% of the
misses in the workloads. In addition, we will see that data misses
in the OS are often caused by the OS sweeping through blocks of
data (Section 4.2.2). This effect may cluster the misses in time,
fill the write buffer, and prevent writes from being overlapped with
other computation. For these reasons, we believe that our results
do not overestimate the amount of stall time.

We observe from column 6 of Table 1 that cache misses stall
CPUs for 40-60% of their time. Column 7 shows that the stall time
due to OS misses is as large as 17-21%. In the following section,
we analyze what causes this stall time, Finally, column 8 shows
that the stall time caused by both OS and OS-induced application
misses reaches 25%.

4 Characterization of the Cache Per-
formance of the Operating System

We start this section on the cache performance of the OS with
a high-level view of the behavior of OS misses. After that, the
bulk of this section characterizes the major sources of OS misses.
Finally, we consider the misses in the application caused by OS
interference.

Table 1:

Characteristics of the workloads.

[“Workload Execution Time OS Misses / | Appl. + OS Miss OS Miss OS + OS Induced Miss
User | Sys. | Idle | Total Misses Stall Time / Stall Time / Stall Time /
@ | @) | & %) Non-ldle Time | Non-Idle Time Non-ldle Time
- (%) (%) (%)
[Pmake 49.4 | 31.1 | 19.5 109 21.0 25.8
Mulipgm 532 | 467 | 0.1 46.3 46.5 21.5 24.9
Oracle 624 | 294 8_2_ 26.6 62.5 16.6 26.8
Pmake Multpgm Oracle
61800 cyc (1.9ms) _ L 11400 cyc (0.4ms)
18300 , 31500 cyc 4900 cyc 6400 cyc
268 (I+D)miss 81 (1+D)miss 289 (I+D)miss
1541miss o {1y B Fanlts. Bach: ~ 301M8 7 U1 B Faults. Each: ~ 66Imiss 30 UTLB Fauits. Each:
141 Dmiss 14 cyc, 0.02 Imiss, 39Dmiss 15 cyc, 0.00 Imiss, 35Dmiss 16 cyc, 0.03 Imiss,
0.10 Dmiss. 0.06 Dmiss. 0.08 Dmiss.
b OS in the Idle Loop w—e= Application

os

Figure 1:

/ Series of Interruptions
by the OS

Average times and cache misses in the basic pattern that repeats throughout the trace. Time is measured in 30 ns

processor cycles. Within each figure, distances are drawn to scale.

4.1 High-Level View of the Cache Activity of
the Operating System

To understand the cache performance of the OS we first need to
understand the interleaving of OS and application activity. In this
section, we characterize the interleaving of OS and application in-
vocations, the duration of these invocations, and the number of
misses involved. This data is also useful to build analytic models
of OS and application referencing activity.

Our measurements show that the OS interrupts the application
in two ways. First, with frequent spikes of activity that are nearly
miss-free; second, with relatively infrequent and long bursts of ac-
tivity where most of the OS misses occur. The former are generated
by TLB faults that only require copying a virtual to physical page
association from an OS data structure to the TLLB (UTLB faults).
The latter we call OS invocations and are caused by system calls,
interrupts, and other TLB faults.

Figure 1 shows the average characteristics of the basic pattern
of execution that repeats throughout the trace. In the figure, the
execution time is divided into OS, OS in the Idle Loop, and Ap-
plication. In the upper part of the figure we show time duration
in cycles. In the lower part we show numbers of misses. Finaily,
below the arrows, we show the number of UTLB faults that occur
in an application invocation, as well as their cost in cycles and
misses. In the figure, while the miss counts are exact, the cycle
counts are distorted by our instrumentation: they are 1.5%, 5%,
and 7% larger than they should be in Pmake, Multpgm, and Oracle
respectively.

Several observations may be made from Figure 1. First, while
the UTLB fauit handler is invoked frequently, it causes very few
cache misses and is very fast. On average, one invocation causes
less than 0.1 misses. In addition, it can be shown that the distribu-
tions for the number of I- and D-misses generated in one invocation

165

are strongly skewed towards very small values [18]. Overall, from
the cost of UTLB faults shown in Figure 1, we compute that UTLB
fault handling takes the equivalent of 1.5% of application cycles.

Second, the OS is invoked on average as frequently as once every
1.9 ms in Pmake, 0.4 ms in Multpgm, and 0.7 ms in Oracle. These
intervals are an order of magnitude smaller than the 10 ms period
of the OS clock. The small size of these intervals is due to the
high frequency of several OS operations. For the case of Multpgm,
Figure 2 shows the relative frequency of the operations executed
by the OS without including UTLB faults. Although more than one
operation can be performed per OS invocation, — for example two
nested interrupts — we see that several types of operations occur
more frequently than clock interrupts. We see that about 50% of
the OS operations are system calls associated with synchronization
(sginap system calls), about 20% are TLB faults, about 20% are I/O
system calls, and only 5% are clock interrupts. The sginap system
call is issued by the synchronization library after 20 unsuccessful
attempts to acquire a lock. This call reschedules the CPU, in the
hope of giving the process that holds the lock a chance to run and
release the lock. As we will see in Section 4.2.3, the sginap system
call is not common in the other workloads. As a result, the time
between OS invocations is larger in the other workloads.

Finally, we note that an OS invocation replaces only a small
fraction of the cache contents. For example, the average OS in-
vocation causes 154 I- and 141 D-misses in Pmake (Figure 1), a
small number compared to the number of blocks in the I- or D-
caches. To see the complete picture, Figure 3-(a) and (b) show the
distribution of the number of I-misses and D-misses respectively in
Pmake’s OS invocations. In reality, the fraction of the cache that
is replaced in an OS invocation is smaller than that suggested by
Figure 3, since from 10% to 25% of the OS misses replace blocks
that have already been missed on in the same OS invocation.

For completeness’ sake, Figure 3-(c) shows the distribution of

o
o

Fraction of
Operations
o
E-N

0 St
Sginap TLB YO Clock Other
System Faults System Interpts.
Calls Calls

Figure 2: Frequency of the operations executed by the
OS invocations in Multpgm.

the duration of Pmake’s OS invocations. Figure 3 can be used to
build an analytic model of the OS activity in Pmake. The corre-
sponding charts for Mulipgm and Oracle are shown in [18]. They
show that, as in Pmake, an individual OS invocation has a small
impact on the cache contents. For completeness’ sake, [18] also
shows distributions for the number of misses and cycles in invoca-
tions of the application for Pmake, Multpgm, and Oracle.

3 g 0.6 0.6 0.6
g 3 0.4 0.4 0.4
02 ' | 02 [0.2
d:f’:ol L. llllolinnL
[~ =N =] [o000 [=3K -1
T958ge TUDgEy EEEEE
syvyl Yeyuyl 33
8983 Sags VIV Y
"2 “sgg 3233
Number of I-Misses Number of D-Misses g § § §
Number of Cycles
Figure 3: Characterization of the OS invocations in

Pmake. From left to right, the charts show the distribution
of the number of I-misses per invocation, D-misses per in-
vocation, and cycles per invocation. The latter does not
include the time in the idle loop.

4.2 Analysis of the Cache Misses in the Op-
erating System

While the previous section showed the behavior of the OS misses, it
did not explain the causes for these misses. We focus on the causes
in this section. There arc three main causes of cache misses in the
OS, namely first-time references, displacement of the cache blocks
from the cache by other OS references or application references,
and coherence activity. Coherence misses in the data cache are the
result of data sharing; coherence misses in the instruction cache
result from the I-caches being invalidated when physical pages that
contain code are reallocated. In addition, we also distinguish a sub-
set of the misses that result from displacement by OS references:
the misses where the application was not invoked between the dis-
placing OS reference and the OS miss. These misses are interesting
because they can be reduced by restructuring the OS code. This
whole classification is summarized in Table 2. In the following,
~ we first analyze the I-misses and then the D-misses.

166

4,2.1 Analysis of the Instruction Misses

The instruction misses in the OS are classified into their subcompo-
nents in Figure 4-(a). In the figure, the total number of OS misses
is normalized to 100. The most striking fact in Figure 4-(a) is that
instruction misses constitute as much as 40-65% of all OS misses.
Instruction accesses, therefore, are the first of the major sources
of OS misses that we identify. Using the same method as in Ta-
ble 1, we estimate that these OS misses stall CPUs for 10.9, 9.2,
and 10.6% of their non-idle time in Pmake, Multpgm, and Oracle
respectively. This large impact contrasts with the behavior of engi-
neering or scientific applications, where instruction misses are less
frequent than data misses and are often discounted in performance
studies. This relatively poor I-cache performance of the OS is due
to the scarcity of loops in the OS code.

Table 2: Classification of the cache misses in the OS
from an architectural perspective. Except for Dispossame
misses, a given miss belongs to only one class.

r_ﬁass {I Explanation il
Cold Misses gencrated when a processor accesses a
physical memory block for the processor’s first time.
Duspos Misses that occur when the requested data used

to be in the cache but has been displaced by an
intervening OS reference.

Despap Misses that occur when the data requested used

to be in the cache but has been displaced by an
intervening application reference.

D-cache misses resulting from OS data being shared
of migraling among processors.

Inval I-cache misses resulting from invalidation of the
I-cache when physical pages that contained code
are reallocated. The reallocation of data pages
does not require invalidating the D-caches because
the snooping hardware automatically updates them.

Sharing

Uncached OS accesses that bypass the caches.
Dispossame || Dispos misses that occur when the application was

not invoked between the displacing OS reference
and the OS miss.

A second observation is that the OS often interferes with itself
in the I-cache. This is shown by the sizable contribution of Dispos
misses in Figure 4-(a). To understand this self-interference better,
we measure what parts of the OS code cause Dispos misses. The
result of this experiment for Pmake is shown in Figure 5. The figure
shows the number of Dispos misses as a function of the physical
address of the OS routine where these misses occur. In the figure,
instead of measuring the X-axis in bytes, we measure it in multiples
of the I-cache size (64 Kbytes), We note that these self-interference
misses are concentrated in short address ranges and therefore occur
mostly in a few routines. We will consider the implications of this
fact in the section that studies optimizations.

We note that this self-interference often occurs within the same
OS invocation as opposed to across OS invocations. This makes
this interference easier to understand and eliminate. The misses
resulting from self-interference within the same OS invocation are
called Dispossame misses. Figure 4-(b) shows the contribution of
the Dispossame misses to the self-interference misses. We note
that the magnitude of this contribution is related to the duration
and frequency of the OS invocations. For example, Dispossame
misses are a larger fraction of Dispos misses in Pmake than in
Multpgm because Pmake has longer OS invocations than Multpgm
(Figure 1).

Finally, the contributions of the remaining categories of I-misses
in Figure 4-(a) depend on the behavior of the user applications

100":
0T
0
10— i1 Data
60—

- I Uncached
S0 O Inval
40— Dispap Instr.
30— Dispos
20— B Cold
S
0—m

" Pmake Multpgm Oracle
(®
Figure 4:

100™—= S
90—
80—
70— {} Data
60—
o [Restof OS
— Rest of Instr.
40— Dispos
30— BA Dispossame

2

1 (—

0 P

®)

Classification of the instruction misses in the OS. Chart (a) shows the contribution of each class of instruction

misses as a fraction of the total number of OS misses. Chart (b) shows the Dispossame component of the Dispos misses.

running. For example, Dispap misses dominate in Oracle because
the working set of the database code is large and therefore the
database interferes with the OS.

60000
40000
20000

Dispos Misses

0 J) e
0123456 178910111213 141516
Physical Address (Multiples of the I-Cache Size)

Figure 5 Number of self-interference (Dispos) misses
in Pmake’s OS instructions as a function of the physical
address of the OS routine where the misses occur. The X-
axis is measured in multiples of 64 Kbytes, the size of the
I-cache.

Removing Instruction Misses

One way to improve the hit rate of the OS instructions is to
reduce the amount of self-interference. This can be accomplished
by purposely laying out the basic blocks in the OS object code
t0-avoid cache conflicts. The thin spikes in Figure 5 suggest that
localized changes in this layout may achieve a reduction of misses.
The techniques used to optimize the basic block layout, however,
should be slightly different from the existing ones. Current tech-
niques [12] are targeted towards code with frequent loop nests.
They are based on identifying the most frequently executed loops
and then placing the rest of the code to avoid interference with
these loops. Techniques for the OS code, instead, should take into
account that commonly-executed OS paths often contain a long se-
ries of loop-less operations. It is beyond the scope of this paper to
consider these techniques.

A second way 1o reduce these self-interference misses and, in
general, all displacement misses, is to increase the associativity
of the I-cache. Unfortunately, set-associative caches are slower.
Disregarding any speed considerations, however, we simulated the
effect of set-associative and larger caches on the I-misses of the
OS. The results of the simulation are shown in Figure 6. The
figure plots the miss rate of the OS instructions for direct-mapped
and two-way set-associative caches of different sizes relative o the

167

miss rate in the machine measured. In our simulations, we use the
references that miss in the caches of the real machine to simulate
larger caches. For this reason, we cannot simulate a two-way set-
associative cache of 64 Kbytes. Note that both application and
OS instruction traces are simulated, although only OS misses are
plotted in the figure.

We see in Figure 6 that increasing the associativity of the I-
cache to two produces a noticeable reduction in OS misses. The
effectiveness of set-associativity is not surprising given the amount
of cache interference present in OS instructions.

A second observation from the plots is that, naturally, larger
caches eliminate an increasing number of misses. The drop in the
number of misses is particularly steep in Oracle — all the way to 1
Mbyte caches. This effect is due to the large instruction working
set of the database. The curves for Pmake and Multpgm, on the
other hand, satvrate at 256 Kbytes. This behavior is caused mostly
by cache invalidations, which create Inval misses. This is illus-
trated by Figure 6, which shows the effect of the misses caused by
cache invalidations for direct-mapped caches. The dashed curve
bounds the drop of the relative miss rate curve for direct-mapped
caches. From the figure, we observe that both Pmake and Mulipgm
are seriously limited by these misses. Note, however, that the fig-
ure assumes that the algorithm used to invalidate caches does not
change as caches increase in size.

4.2.2 Analysis of the Data Misses

The data misses in the OS are decomposed into their constituent
classes in Figure 7-(a). As in Figure 4, the total number of OS
misses is normalized to 100, From the figure, we note that the
dominant class of data misses is Sharing misses. The remaining
misses are caused by both cache displacement and cold references.
A large fraction of these remaining misses — and a small amount
of Sharing misses as well — occur when the OS executes block
operations. In the following, we first analyze Sharing misses and
then the misses caused by block operations.

Sharing Misses

To understand what causes Sharing misses, we start by dividing
these misses into their contributing data structures. This is shown in

Figure 8. From the figure, we note that Sharing misses are spread
over a lot of different data structures. The size of these data struc-

Relative OS Relative OS Relative OS
I-MissRate ~ Pmake I-MissRate ~ Multpgm I-Miss Rate ~ Oracle
1.0 & Diroct-Mapped 1.0 = Direct-Mapped 1.0 = Diroct Mapped
0.8 =~ 2-Way Set-Assoc. 0.8 == 2.Way Set-Assoc. 0.8 = 2-Way Set-Assoc.
06 - Invalin Direct-Mapped -~ Inval in Direct-Mapped 06 -~ Inval in Direct-Mapped
0.4 ’\:_ - 0.4 0.4
—
02 ¢ —* 0.2 0‘_:_\..8——0-—0 02 \
0 T ICache O ICache O &——® | Cache
64 128 256 S12 1024 Size(KB) 64 128 256 512 1024 Size(KB) 64 128 256 512 1024 Size (KB)

Figure 6;

Effect of the size and associativity of the I-cache on the I-miss rate of the OS. For the direct-mapped caches, we

also plot the effect of the misses caused by invalidations of the cache (Inval misses). The three curves have the same Y-axis.

Chart (a) shows the contribution of each class of data misses
as a fraction of the total number of OS misses. For com-
pleteness’ sake, Chart (b) shows the Dispossame component
of the Dispos misses.

22| M Uncached
[Sharing
N Dispap Data
. Dispos
T B Cold
so— { § i i ot Tnsir
100 H ; H H
Pmake Multpgm Oracle
(a)
EA Dispossame
Rest of Data
Dispos
[J Rest of OS
i1 Instr.
100—
Pmake Mulipgm Oracle
®)
Figure 7: Classification of the data misses in the OS.

168

tures and a brief description of their function are shown in Table 3.
From the table, we see that these data structures vary widely. For
example, some of them are large and seemingly sparsely-shared,
while others are small, frequently shared, and can potentially cause
hot spots.

100 geeeen £=1 11 Other
90— é g - Hi_,ndProc
80— i i [0 FreePgBuck
— i B3 Run_Queue
n_ Inode
60— _H i Y Buffer
so—— P2 Pfdat
— BEH Bclear
a0 [Bcopy
30— BH Process_Table
yo—— BA User_Str. Rest
— Al User_Str. Eframe
10T [d User_Str. PCB
0— I [J Kemel_Stack
Pmake Oracle
Multpgm
Figure 8: Classification of the Sharing misses in the OS

according to the data structures that cause them. Each of
the data structures under category Other accounts for less
than the smallest category in the figure.

The major contributing data structures are those that mostly store
per-process private state, namely the Kernel Stack, the three com-
ponents of the User Structure, and the Process Table (See Table 3).
Together, they account for 40-65% of the Sharing misses. Except
for the Process Table in some cases, these data structures store
per-process state that is accessed only by the CPU executing that
process. If these data structures appear to be shared, therefore, it
is because the process migrates among CPUs.

Process migration is our second major source of OS misses. Al-
though process migration possibly contributes to the Sharing misses
of most data structures of Figure 8 and also causes instruction
misses, we conservatively assume that it only causes the Sharing
misses in the three data structures considered. We call these misses
migration misses. As shown in Table 4, these data misses account
for 10-44% of the data misses in the OS and slow down our work-
loads by up to 4%.

Migration misses often occur when the OS manages the run
queue, handles exceptions, or sets up read and write system calls.

Table 5 shows the individual contribntions of these three operations
to the number of migration misses. From the table, we see that
these operations account for 25-50% of the migration misses. In
the table, the Management of the Run Queue category includes the
contributions of the seven routines that form the core of the run
queue management. These routines save and restore the state of a
process, put a process in the run queue, find a process to run, and
manage the scheduler.

Table 3: Data structures that contribute the most to the
Sharing misses in the OS.

[l Data Structure 1ze Function
(Bytes)

Kemel Stack 4096

Stack used by the OS while executing
in the context of the process.

PCB section 240 Place where the process registers are
of the saved when a context switch occurs,
User Structure
Eframe section 172 Piace where the process registers are
of the saved when the process gets an
User Structure exception.

[Rest of the 3684 | Contains descriptors for filcs opened
User Structure by the process and system buffers

allocated for the process, maintains
the retum values of system calls, etc.
Contains the process state, priority,
signals, scheduling parameters, etc.
Pages or fragments of pages accessed
by the block copy routine,

Pages or fragments of pages accessed
by the block clear routine.

Array of descriptors to the physical
pages. Each descriptor contains the
disk block number corresponding to
the page, a pointer to the related inode,
links to various lists of pages, etc.
Array of buifer headers for the buffer
cache. Each buffer contains the disk
block number whose data the buffer
stores, a pointer to the actual data,
links to several lists of buffers, etc.
Table of memory-resident inodes.
Each inode containg the file type,
access state, current file position, etc.
Structure at the head of the run queue.
It contains pointers to several queues
and processes.

Array of buckets that start hash lists
to which free physical pages are tied.
Flag used to make some decisions on
priority scheduling,

————— ———

Process Table 46080

Beopy —_

Bclear —

Pfdat 210044

Buffer 17408

Inode 6

Run Queue 24

FreePgBuck 3072

Hindproc 1

Table 4: Conservative estimate of the data misses and
stall time caused by process migration.

Workload % of OS Data Misses Proc. Migr.
Kemel | User | Process | Total D-Miss

Stall Time /
Non-Idle

Stack | Struc. Table
Execution Time
(%)

Pmake 7y 3 26 5.9 ;
Mupgm || 144 | 116 | 78 | 338 42
Oracle 18.0 19.0 7.1 44,1 26

The second category in Table 5, namely Low-Level Exception
Handling, groups the contributions of the initial and final stages
of exception handling. These stages are coded in assembly for

169

higher performance and perform low-level operations like deter-
mining what class of exception occurred or saving and restoring
the registers. Exceptions include interrupts and TLB fanlts.

Table 5: Fraction of the migration misses accounted for
by three common operations.
‘Operation % of Migration Misses
| 'ma tpgm racle
~Management of
the Run Queue 11.5 20.5 14.3
‘Low-Level
Exception Handling 7.3 12.9 14.5
Recognition and Sewup of
Read and Write System Calls 6.4 13.2 20.7
Total 25.2 46.6 49.5

Lastly, Table 5 shows the contribution of the recognition and
setup of the read and write system calls. We see that these op-
erations have a noticeable effect in workloads with frequent [/O
activity.

As a final note, we observe from Figure 8 that a significant
fraction of the migration misses occur while saving and restoring
registers in context switches and exceptions (PCB and Eframe cate-
gories respectively). This implies that these two simple operations,
namely register saving and restoring, have a noticeable performance
impact.

Removing Sharing Misses

Larger data caches cannot eliminate Sharing misses. Conse-
quently, since Sharing misses are the majority of data misses, larger
data caches can only moderately increase the data cache perfor-
mance of the OS.

One way to eliminate some of the Sharing misses is to restrict
process migration. Process migration not only causes the data
misses isolated above; it also causes other data and instruction
misses in the OS as well as a (possibly larger) number of misses in
the application. Process migration should not be completely elimi-
nated, however, for it ensures load balance in the machine. Affinity
scheduling [16, 19, 20] is one technique that removes misses by
encouraging processes to remain in the same CPU while still tol-
erating process migration for load balance.

Misses in Block Operations

The OS often sweeps through large arrays of data, primarily in
block copy and clear operations and when traversing the physical
page descriptors (Pfdats). As an example, a block copy occurs
when a child process writes on a non-shared page that belongs to
its parent. In that case, a copy of the page is made for the child.
An example of block clear occurs when the OS allocates a page for
data. The page has to be zeroed out before being used. Finally, a
traversal of the array of page descriptors occurs when free memory
is needed. In this case, the OS traverses the array to find out what
pages need to be written out to disk.

These three block operations constitute our third major source of
OS misses. Table 6 shows that they cause from 10 to 61% of the
data misses. These misses are mostly displacement misses (Dispap
or Dispos) or Cold misses, although Figure 8 showed that a few of
them appear as Sharing misses. As seen in Table 6, they stall the
CPUs by up to 6%.

These operations are more harmful than Table 6 suggests for two
reasons. First, by accessing large data structures, these operations
often wipe out a large fraction of the data cache. The data displaced
from the cache may have to be fetched again later on. Second, the

Table 6;: Data misses and stall time caused by the three
block operations.
Workload "% of OS Data Misses Block Ops.
Block | Block | Travers. | Total D-Miss
Copy | Clear of Stall Time /
Descrip. Non-Idle
Execution Time
(%)
Pmake 176 23.7 19.7 61.0 6.2
Multpgm 15.1 72 15.7 380 4.7
Oracle 8.6 1.0 1.0 | 106 0.6

data fetched by these operations is often not reused. As an example,
consider a page copy. The copy operation brings two pages into
the cache; one of the pages will probably not be accessed anymore,
and only a few words of the second page may be accessed in the
near future.

Removing Misses in Block Operations

Block operations often access regular and relatively large blocks.
This fact makes potential optimization easier. As an example, Ta-
ble 7 characterizes the sizes of the blocks copied or cleared in
Pmake. The table classifies the operations according to the size of
the data operated on. For the operations in a given category, the
table shows the relative frequency of invocation and one or more
examples. From the table, we note that 50% and 70% of the in-
vocations of block copy and clear respectively operate on a full 4
Kbyte page or a large, regular fraction of it.

Table 7: Characterization of the sizes of the blocks
copied or cleared in Pmake.
Block || Size of Freq. of | Example I
Oper. | Block Invoc. (%)
Copy |[| Full Page 5 Update of a copy-on-write
page.
egular Page 45 Transfer of data in/out of
Fragment buffer cache.
(e.g. 1/4
of Page)
“Trregular 50 Copy of strings or system
Chunk call parameters.
Clear || Full Page 70 Allocation of a page for
page table entries.
First referencc to a
demand-zero page.
Trregular 30 Tnitialization of structures
Chunk allocated in the kemel
heap or inode-related
data structures.

One way to eliminate misses in block operations is to use special
hardware and software support to prefeich data. In this way, if the
data to be copied or cleared is prefetched in advance while other
computation is in progress, the latency of the misses is hidden.
A second technique is to bypass the cache when block transfer
operations are performed. In this case, we still pay the cost of the
cache miss latency, but do not wipe out other relevant state in the
cache with this seldom-reused data. The data accessed with cache
bypassing should not be fetched from memory one word at a time,
but in blocks of contiguous data. This helps exploit the spatial
Jocality of the reference stream and therefore reduces data transfer
costs. Finally, more sophisticated support for block operations has
been suggested by Cheriton et al [6].

170

4.2.3 Analysis of the Operating System Cache Misses
from a Functional Perspective

For completeness’ sake, we now briefly analyze the OS misses from
a functional viewpoint. We classify them according to the high-
level operation that the OS was executing when the misses occurred.
The operations considered are expensive and cheap TLB faults, /O
system calls, the sginap system call, the remaining system calls, and
interrupts. These operations are defined in Table 8, and the results
of measuring both the data and instruction misses are shown in
Figure 9. In the rest of this section, we first analyze the observations
and then discuss the implications.

Table 8: High-level OS operations.
|l Operation " || Explanation 1

Expensive TLB faults that require the allocation of a physical

TLB page. They may involve simply grabbing a page from

Faults the list of free pages, sometimes performing a page
copy or clear, or they may also require doing I/O 1o
read or write pages to disk.

Cheap 'TLB faults that require neither physical memory

TLB allocation nor I/0. Conceptually, the OS simply

Faults copies some information from global page tables to
the TLB. They include UTLB faults.

1/0 System]| System calls that involve file system reads or writes.

Calls

Sginap stern call used by a user process to reschedule the

System CPU on which it is running. Sginap is called by the

Call synchronization library after a process has been
unsuccessfully spinning on a lock 20 times.

Other Remaining system calls.

System

Calls

Internupts Any interrupt, such as disk and terminal [/O, inter-
CPU, or clock interrupts.

Analysis of the Data and Instruction Misses

Let us begin with the data misses, shown in the leftmost chart of
Figure 9. Clearly, the majority of them are caused by I/O system
calis and TLB faults. The latter are mostly of the expensive type. In
Oracle, the database requests allocation of pages itself and manages
its own file activity. As a result, the expensive TLB fault activity
is lumped into the I/O system call category.

The sginap system call is another source of data misses if, as in
Multpgm, lock activity is common in the workload. The rationale
under invoking sginap is that the process that currently holds the
lock may not be running. With a CPU reschedule, that process
may be picked up from the run queue and eventually release the
lock. We note that each invocation of sginap produces only 25
data misses on average; it is the frequent invocation of sginap what
makes these misses significant.

Tuming to instruction misses in the rightmost chart of Figure 9,
we see that IfO system calls are the largest contributors. We also
note that, like I/O system calls, interrupts contribute more to the
instruction misses than to the data misses in relative terms. The
reason is that these two operations execute long stretches of code
while referencing relatively few data items. In contrast, expensive
TLB activity shows the opposite behavior. The reason is that it is
composed of small kernels like Copy or Clear that reference large
chunks of data.

Discussion of the Data and Instruction Misses

The numerous misses on the code executed in [/O system calls
suggest that, should code layout optimization be attempted, this
part of the OS should be studied first. Indeed, this part of the code

Data

Pmake Muiltpgm Oracle

Figure 9:
occurred.

as it is now can quickly wipe out the whole cache. For example,
some I/O drivers have a size comparable to the instruction cache.

A second observation is that cheap faults in our 64-entry fully-
associative TLB are responsible for a small fraction of the cache
misses only. This suggests that, even if we eliminated all entry
conflicts in the TLB by using an infinite TLB, the savings in cache
miss time would be small.

424 Summary

Table 9 consolidates the performance impact of the three major
sets of OS misses that we identified, namely instruction misses,
data misses due to process migration, and data misses in block op-
erations. We now summarize the optimizations that we proposed.
First, to reduce the number of instruction misses, we suggest exam-
ining associativity in the instruction cache or optimizing the layout
of the OS code. Second, to eliminate migration-induced misses,
we suggest exploring cache affinity scheduling. This technique op-
timizes the combined cache performance of application and OS.
Finally, for misses in block operations, we suggest supporting data
prefetching and/or selective cache bypassing in machines with a
high cache miss penalty.

Instructions

.‘....!!

AN M Other System Calls

7/ fH Sginap System Call
4 [0 Interrupts

Cheap TLB Faults

Expensive TLB Faults

[1/O System Calls

Table 9: Components of the stall time directly caused
by OS misses.
'orkl 188 ime / Non-Idle Execution Time
(%)
Total Instr. | Migration Block Rest
OS | Misses | D-Misses Oper. of OS
| Misses D-Misses { Misses
Pmake T~ 21.0 | 109 1.0 €2 | 29 |
Multpgm 215 92 42 47 34
Qracle 16.6 10.6 2.6 0.6 2.8
AVERAGE || 19.7 10.2 2.6 38 3.0

4.3 Application Misses Caused by Operating
System Interference

To finish this section on the cache performance of the OS, we
now consider the misses that the OS induces in the application by

171

Pmake Multpgm Oracle

Classification of the OS cache misses according to the high-level operation performed by the OS when the misses

displacing its state from the caches. These application misses we
call Ap.dispos misses. Their contribution to the overall number of
application misses is shown in Figure 10. In the figure, the total
number of application misses in the workload is normalized to 100
and divided into data misses, labeled with D, and instruction misses,
labeled with I. Overall, Ap_dispes misses account for 22-27% of
all application misses.

100—
90— D
80—

60— [Rest of
50— Application
so— Bl Ap_dispos

Pmake Mulipgm Oracle

Figure 10; Fraction of application misses induced by OS
interference (Ap.dispos). The total number of application
misses is normalized to 100 and divided into data misses,
labeled with D, and instruction misses, labeled with L.

5 Characterization of the Synchroniza-
tion Performance of the Operating
System

Afier analyzing the cache performance of the OS, we now consider

its synchronization performance. We first present the CPU stall

time caused by OS synchronization accesses and then analyze the
patterns of these accesses.

5.1 CPU Stall Time Due to Operating System
Synchronization

Since our hardware monitor does not capture the activity of the
synchronization bus, the CPU stall times presented so far do not
include the contribution of OS synchronization accesses. Using the
technique detailed in Section 2.2, however, we measure that the
stall time caused by OS synchronization accesses is 4.2-4.7% of the
CPU time (column ‘Current Machine’ of Table 10). This overhead
is largely the result of the protocol used in the synchronization bus,
which suffers from the processor’s lack of support for an atomic
read-modify-write operation.

Later in this section, we show that OS locks exhibit good lo-
cality and low contention. These two properties imply that locks
should perform well in a cache-based invalidation protocol like the
one used for regular data in the machine. To illustrate this, we use
traces of the lock accesses to simulate a machine where synchro-
nization accesses use the main bus and the same cache coherence
protocol as regular accesses. In the simulation, we assume support
for atomically reading-modifying-writing lock variables using the
Joad-linked and store-conditional instructions of the MIPS R4000
processor [15]. The resulting stall time due to OS synchroniza-
tion misses is now only 0.7-1.0% of the CPU time (last column of
Table 10). This indicates that, with efficient synchronization sup-
port, the stall time caused by OS synchronization accesses can be
negligible,

Table 10: Stall time caused by OS synchronization
accesses, The last column corresponds to a simulated sce-
nario where the processor supports atomic read-modify-
write (RMW) accesses to locks.

Workload || Stall Time Due to OS Synch. Accesses /
Non-Idle Execution Time

(%)
Current Atomic RMW
Machine Main Bus + Caches

Pmake 2 0.
Mulipgm 4.6 0.8
Oracle 4.7 1.1

5.2 Synchronization Access Patterns

A more detailed analysis of our measurements reveals characteristic
patterns of access to OS locks. Due to lack of space, we do not
present data for all of the workloads here. However, we show
in [17] that they all exhibit similar behavior.

Overall, the OS synchronizes frequently. For example, the rou-
tines that acquire and release locks and semaphores in the OS are
usually executed 3-5 times more frequently than the most popular
non-synchronizing routines in the OS. In addition, we note that a
large fraction of these acquire and release operations are directed to
a few locks. Table 11 explains the function of the most important
of these locks. To get an idea of the frequency of access to these
locks, the second column of Table 12 shows the average number
of cycles between two consecutive successful acquires for the most
popular locks in Pmake. From the table, we observe that these
locks are acquired once every 9000-36000 cycles. These cycles
include CPU idle time,

While OS locks are frequently accessed, they show low con-
tention, We expected low lock contention because, at the most,
only four OS threads are active and therefore can pursue the same

172

Table 11: Functions performed by the most frequently-
acquired locks. The postfix _x means that the lock is log-
ically part of an array of locks where each one protects a
similar data structure.

I Lock] What the Tock Protects |

Memlock Data struct. that allocate/deallocate physical memory.
Runglk Scheduler’s mun queue.

Ifree List of free inodes.

Dfbmapik || Table of free blocks on the disk.

Bfreelock List of free buffers for the buffer cache.

Calock Table of outstanding actions like alarms or timeouts.
Shrx Per-process page tables and related structures.
Streamsx || Management of a character-oriented device.

Inox Operations on a given inode, like read or write.
Semlock Array of semaphores for the programmer to use.

Table 12: Characteristics of the most frequently acquired
locks in Pmake.

Lock # of % of #of | % Two Misses
Cycles Failed | Waiters | Acqu's Cached /
between | Acqu’s | if Any | by Same Misses
Acqu’s CPU Uncached
(Thous.) w/o (%)
Interv.]
Memiock 9.5 22 1.02 9.9 12
Runglk 16.5 13.7 1.29 36.9 43
Ifree 16.7 0.8 1.00 91.4 5
Dfbmaplk 19.4 0.0 1.00 99.0 0
Bfreelock 22.5 1.5 1.00 72.6 15
Calock 35.1 0.3 1.00 114 45|

lock in our four CPU machine. To see the degree of lock con-
tention, column 3 of Table 12 presents the fraction of attempts to
acquire a lock that find it taken. To generate this data, of course,
we ignore any spinning on the lock. Of all the locks studied, we see
that the only one with significant contention with four processors
is Runglk. In addition to exhibiting low contention, these locks are
not kept locked long enough to build up queues before their release.
This is shown in column 4 of Table 12. This column presents the
number of waiters when the lock is released if there is at least one
waiter. From the table, we note that this parameter is usually very
close to one.

Despite overall low lock contention with four CPUs, however,
we observe a steady increase in lock contention as the number
of CPUs increases. This effect is particularly obvious in Runglk.
For example, Figure 11 shows the number of failed acquires per
millisecond for the locks with the highest contention in Multpgm
as the number of CPUs increases. As before, we do not include
the spins on a taken lock. This plot suggests that contention for
Runglk will be significant for machines with more CPUs.

Finally, OS lock accesses have high locality. As an example, the
second to last column of Table 12 shows the fraction of successful
lock acquires where the CPU that acquires the lock is the same as
the one that last acquired it and no other CPU tried to access the
lock in between. Except for Calock and, to a lesser extent, Runglk,
the numbers in the table are high, usually over 75%. This overall
high locality makes caching locks advantageous. By caching we
mean a cache coherence protocol where a CPU does not need an
off-cache access when acquiring a lock that has not been accessed
by anyone since this same CPU released it. For example, the
load-linked and store-conditional MIPS R4000 instructions provide
support for this protocol to work. The gains of caching are seen

Failed Acquires
per msec
L
0.30 <
Runglk
0.60
0.40 =
0.20 4 Shr_x
Memlock
0.0 - Bfreelock
1 2 3 4 Number of CPUs
Figure 11: Lock contention as a function of the number

of CPUs. This figure plots the number of failed acquires
per millisecond for the locks with the highest contention in
Multpgm. The Y-axis includes idle time.

in the last column of Table 12, which shows the ratio between the
number of bus accesses in a machine that caches the locks and a
machine that does not.

To conclude, the negligible stall time and low contention prop-
erties of OS locks imply that, if OS locks are cachable, then OS
synchronization has a low performance cost in these small multi-
Processors.

6 Implications for Larger Machines

So far we have focused on the performance of the OS on a small
multiprocessor. In this section, we discuss the implications of our
results for large shared-memory machines organized in clusters such
as DASH [10], Paradigm [5], or Encore’s Gigamax [21].

First, it may be appropriate to replicate the OS executable across
clusters in these machines. This optimization is suggested by the
numerous instruction misses in the OS. By storing a copy of the OS
image in each cluster, instruction misses are serviced locally and
therefore cache miss penalties are low. In addition, we avoid having
a hot spot in the memory module where the OS code resides. Of
course, this approach implies that a substantial chunk of memory
is made unavailable for general use.

Second, the run queue should be distributed across clusters. As
the number of CPUs in the machine increases, the potential for
process migration increases too. One way to mitigate the effects
of process migration is to distribute the run queue across clusters.
Processes can then be encouraged to remain in the same run queue
and therefore run mostly on the CPUs of one cluster. As a re-
sult, process migration will be less frequent and will cause mostly
intracluster misses.

In general, shared data structures should be distributed across
clusters and sharing limited to the CPUs within the cluster as much
as possible. Except for the structures that store per-process private
state, most of the structures in Figure 8 can be investigated for
distribution.

Third, block transfers across clusters should be supported effi-
ciently. For these machines, the frequent block operations studied
in this paper are costly if performed across clusters. Therefore,
memory should be allocated so that these operations access pages
in the local cluster only. However, since this is not always possible,
these machines benefit from support for efficient inter-cluster block
transfers.

173

Finally, contention for the active locks will almost certainly in-
crease with the number of CPUs. Table 11 showed the most active
locks in the small machine characterized. To minimize the perfor-
mance degradation, these locks should be distributed across clusters
or new synchronization algorithms designed. The distribution does
not apply, of course, to the locks whose name finishes with _x, for
these belong to individual structures.

7 Summary

Understanding the cache performance of shared-memory multipro-
cessors is fundamental to continued success in speeding up these
machines. One aspect of the cache performance of these machines
that was not well understood is the cache performance of the OS.
In this study, we use a hardware monitor to intercept the activity of
the OS and are therefore able to characterize the cache performance
of the OS.

The data shows that OS misses can slow down software-
development and commercial workloads by 17-21%. The analysis
of the data reveals three major sources of these misses, namely
instructions fetches, process migration, and data accesses in block
operations. Among these sources, the role of instruction fetches is
larger than previously suspected. In addition, we also show that OS
synchronization costs little if locks are cachable. In our analysis,
we identify the most frequently acquired OS locks and their high
locality and low contention properties.

One experience drawn from this study of the OS cache perfor-
mance is that there is no single dominant issue that overwhelms
the rest. While this is positive in that it suggests OS maturity, it
also implics that there is no simple fix that will boost performance
significantly.

Acknowledgments

This research is funded by DARPA contract N00039-91-C-0138.
Josep Torrellas is supported by La Caixa d’Estalvis per a la Vellesa
i de Pensions and the Ministerio de Educacion y Ciencia, both
of Spain. Anoop Gupta is also supported by an NSF Presidential
Young Investigator award. We gratefully acknowledge the help and
encouragement provided by Luis Stevens and Ruby Lee. We also
thank Daniel Lenoski, James Laudon, David Nakahira, Truman Joe,
David Ofelt, and Jeff Kuskin for their help with the performance
monitoring hardware.

References

[11 A. Agarwal, J. Hennessy, and M. Horowitz. Cache Perfor-
mance of Operating System and Multiprogramming Work-
loads. ACM Transactions on Computer Systems, 6(4):393~
431, November 1988.

[2] T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The
Interaction of Architecture and Operating System Design. In
Proceedings of the 4th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 108-120, April 1991.

[3]1 M. J. Bach. The Design of the UNIX Operating System.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1986.

[4] F. Baskett, T. Jermoluk, and D. Solomon. The 4D-MP Graph-
ics Superworkstation: Computing + Graphics = 40 MIPS +
40 MFLOPS and 100,000 Lighted Polygons per Second. In
Proceedings of the 33rd IEEE Computer Society International
Conference - COMPCON 88, pages 468-471, February 1988.

[5] D. Cheriton, H. Goosen, and P. Boyle. Paradigm: A Highly
Scalable Shared-Memory Multicomputer Architecture. IEEE
Computer, pages 3346, February 1991.

[6] D. Cheriton, A. Gupta, P. Boyle, and H. Goosen. The VMP
Multiprocessor: Initial Experience, Refinements and Perfor-
mance Evaluation. In Proceedings of the 15th Annual Interna-
tional Symposium on Computer Architecture, pages 410-421,
May 1988.

[7] D. Clark. Cache Performance in the VAX-11/780. ACM
Transactions on Computer Systems, 1(1):24-37, February
1983.

[8]1 J.Gray. The Benchmark Handbook for Database and Transac-
tion Processing Systems. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1991.

[9] A.Gupta, A. Tucker, and S. Urushibara. The Impact of Oper-
ating System Scheduling Policies and Synchronization Meth-
ods on the Performance of Parallel Applications. In ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 120132, May 1991,

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Proto-
col for the DASH Muitiprocessor. In Proceedings of the 17th
Annual International Symposium on Computer Architecture,
pages 148-159, May 1990.

[11] J. D. McDonald and D. Baganoff. Vectorization of a Par-
ticle Simulation Method for Hypersonic Rarified Flow. In
AIAA Thermodynamics, Plasmadynamics and Lasers Confer-
ence, June 1988.

[12] S. McFarling. Program Optimization for Instruction Caches.
In Proceedings of the 3rd International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 183-191, April 1989.

[13] J. Mogul and A. Borg. The Effect of Context Switches on
Cache Performance. In Proceedings of the 4th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 75-84, April 1991,

[14] J. Ousterhout. Why Aren’t Operating Systems Getting Faster
as Fast as Hardware? In Proceedings Summer 1990 USENIX
Conference, pages 247-256, June 1990.

[15] P. Ries. MIPS R4000 Caches and Coherence. In Hot Chips
III Symposium Record, pages 6.1-6.5, August 1991,

[16] M. Squillante and E. Lazowska. Using Processor-Cache Affin-
ity in Shared-Memory Multiprocessor Scheduling. Technical

Report 89-060-01, Department of Computer Science, Univer-
ity of Washington, June 1989.

[17] J. Torrellas. Multiprocessor Cache Memory Performance:
Characterization and Optimization. Ph.D, dissertation, Stan-
ford University, to appear, 1992.

[18] J. Torrellas, A. Gupta, and J. Hennessy. Characterizing the
Cache Performance and Synchronization Behavior of a Mul-
tiprocessor Operating System. Technical Report CSL-TR-92-
512, Stanford University, January 1992.

174

[19]

[20]

[21]

J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Benefits
of Cache-Affinity Scheduling in Shared-Memory Multiproces-
sors. Technical report, Stanford University, July 1992.

R. Vaswani and J. Zahorjan. The Implications of Cache Affin-
ity on Processor Scheduling for Multiprogrammed, Shared
Memory Multiprocessors. In Proceedings of the 13th ACM
Symposium on Operating System Principles, pages 26-40, Oc-
tober 1991.

A. W. Wilson. Hierarchical Cache/Bus Architecture for
Shared Memory Multiprocessors. In Proceedings of the 14th

Annual International Symposium on Computer Architecture,
pages 244-252, June 1987.

