
90 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

I
l

l
u

s
r

a
t

i
o

n
 b

y
 G

w
e

n
 V

a
n

h
e

e

Most parallel programs today are written using threads
and shared variables. Although there is no consensus
on parallel programming models, there are a number
of reasons why threads remain popular. Threads
were already widely supported by mainstream
operating systems well before the dominance of
multicore, largely because they are also useful for other
purposes. Direct hardware support for shared-memory

potentially provides a performance
advantage; for example, by implicitly
sharing read-mostly data without the
space overhead of complete replica-
tion. The ability to pass memory refer-
ences among threads makes it easier to
share complex data structures. Finally,
shared-memory makes it far easier to
selectively parallelize application hot
spots without complete redesign of data
structures.

doi:10.1145/1787234.1787255

Solving the memory model problem will
require an ambitious and cross-disciplinary
research direction.

by Sarita V. Adve and Hans-J. Boehm

Memory
Models:
A Case for
Rethinking
Parallel
Languages
and Hardware

august 2010 | vol. 53 | no. 8 | communications of the acm 91

The memory model, or memory
consistency model, is at the heart of
the concurrency semantics of a shared-
memory program or system. It defines
the set of values that a read in a pro-
gram is allowed to return, thereby de-
fining the basic semantics of shared
variables. It answers questions such as:
Is there enough synchronization to en-
sure a thread’s write will occur before
another’s read? Can two threads write

to adjacent fields in a memory location
at the same time? Must the final value
of a location always be one of those writ-
ten to it?

The memory model defines an in-
terface between a program and any
hardware or software that may trans-
form that program (for example, the
compiler, the virtual machine, or any
dynamic optimizer). It is not possible to
meaningfully reason about either a pro-

gram (written in a high-level, byte code,
assembly, or machine language) or any
part of the language implementation
(including hardware) without an unam-
biguous memory model.

A complex memory model makes
parallel programs difficult to write, and
parallel programming difficult to teach.
An overly constraining one may limit
hardware and compiler optimization,
severely reducing performance. Since

Art in Development

92 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

it is an interface property, the memory
model decision has a long-lasting im-
pact, affecting portability and maintain-
ability of programs. Thus, a hardware
architecture committed to a strong
memory model cannot later forsake it
for a weaker model without breaking bi-
nary compatibility, and a new compiler
release with a weaker memory model
may require rewriting source code. Fi-
nally, memory-model-related decisions
for a single component must consider
implications for the rest of the system.
A processor vendor cannot guarantee
a strong hardware model if the mem-
ory system designer provides a weaker
model; a strong hardware model is not
very useful to programmers using lan-
guages and compilers that provide only
a weak guarantee.

Nonetheless, the central role of the
memory model has often been down-
played. This is partly because formally
specifying a model that balances all
desirable properties of programmabil-
ity, performance, and portability has
proven surprisingly complex. At the
same time, informal, machine-specific
descriptions proved mostly adequate in
an era where parallel programming was
the domain of experts and achieving the
highest possible performance trumped
programmability or portability argu-
ments.

In the late 1980s and 1990s, the area
received attention primarily in the hard-
ware community, which explored many
approaches, with little consensus.2
Commercial hardware memory model
descriptions varied greatly in precision,
including cases of complete omission
of the topic and some reflecting ven-
dors’ reluctance to make commitments
with unclear future implications. Al-
though the memory model affects the
meaning of every load instruction in ev-
ery multithreaded application, it is still
sometimes relegated to the “systems
programming” section of the architec-
ture manual.

Part of the challenge for hardware
architects was the lack of clear memory
models at the programming language
level. It was unclear what programmers
expected hardware to do. Although
hardware researchers proposed ap-
proaches to bridge this gap,3 wide-
spread adoption required consensus
from the software community. Before
2000, there were a few programming

environments that addressed the is-
sue with relative clarity,40 but the most
widely used environments had unclear
and questionable specifications.9,32
Even when specifications were relative-
ly clear, they were often violated to ob-
tain sufficient performance,9 tended to
be misunderstood even by experts, and
were difficult to teach.

Since 2000, we have been involved in
efforts to cleanly specify programming-
language-level memory models, first
for Java and then C++, with efforts now
under way to adopt similar models for C
and other languages. In the process, we
had to address issues created by hard-
ware that had evolved without the ben-
efit of a clear programming model. This
often made it difficult to reconcile the
need for a simple and usable program-
ming model with that for adequate per-
formance on existing hardware.

Today, these languages and most
hardware vendors have published (or
plan to publish) compatible memory
model specifications. Although this
convergence is a dramatic improve-
ment over the past, it has exposed fun-
damental shortcomings in our parallel
languages and their interplay with hard-
ware. After decades of research, it is still
unacceptably difficult to describe what
value a load can return without com-
promising modern safety guarantees or
implementation methodologies. To us,

this experience has made it clear that
solving the memory model problem will
require a significantly new and cross-
disciplinary research direction for par-
allel computing languages, hardware,
and environments as a whole.

This article discusses the path that
led to the current convergence in mem-
ory models, the fundamental shortcom-
ings it exposed, and the implications
for future research. The central role of
the memory model in parallel comput-
ing makes this article relevant to many
computer science subdisciplines, in-
cluding algorithms, applications, lan-
guages, compilers, formal methods,
software engineering, virtual machines,
runtime systems, and hardware. For
practitioners and educators, we pro-
vide a succinct summary of the state of
the art of this often-ignored and poorly
understood topic. For researchers, we
outline an ambitious, cross-disciplinary
agenda toward resolving a fundamental
problem in parallel computing today—
what value can a shared variable have
and how to implement it?

Sequential Consistency
A natural view of the execution of a
multithreaded program operating on
shared variables is as follows. Each
step in the execution consists of choos-
ing one of the threads to execute, and
then performing the next step in that
thread’s execution (as dictated by the
thread’s program text, or program or-
der). This process is repeated until the
program as a whole terminates. Effec-
tively, the execution can be viewed as
taking all the steps executed by each
thread, and interleaving them in some
way. Whenever an object (that is, vari-
able, field, or array element) is accessed,
the last value stored to the object by this
interleaved sequence is retrieved.

For example, consider Figure 1,
which gives the core of Dekker’s mutual
exclusion algorithm. The program can
be executed by interleaving the steps
from the two threads in many ways. For-
mally, each of these interleavings is a
total order over all the steps performed
by all the threads, consistent with the
program order of each thread. Each ac-
cess to a shared variable “sees” the last
prior value stored to that variable in the
interleaving.

Figure 2 gives three possible execu-
tions that together illustrate all possible

 key insights

 � �Memory models, which describe the
semantics of shared variables, are
crucial to both correct multithreaded
applications and the entire underlying
implementation stack. It is difficult
to teach multithreaded programming
without clarity on memory models.

 � �After much prior confusion, major
programming languages are converging
on a model that guarantees simple
interleaving-based semantics for
“data-race-free” programs and most
hardware vendors have committed to
support this model.

 � �This process has exposed fundamental
shortcomings in our languages and
a hardware-software mismatch.
Semantics for programs that contain
data races seem fundamentally difficult,
but are necessary for concurrency
safety and debuggability. We call upon
software and hardware communities
to develop languages and systems
that enforce data-race-freedom, and
co-designed hardware that exploits and
supports such semantics.

review articles

august 2010 | vol. 53 | no. 8 | communications of the acm 93

final values of the non-shared variables
r1 and r2. Although many other inter-
leavings are also possible, it is not possi-
ble that both r1 and r2 are 0 at the end of
an execution; any execution must start
with the first statement of one of the two
threads, and the variable assigned there
will later be read as one.

Following Lamport,26 an execution
that can be understood as such an in-
terleaving is referred to as sequentially
consistent. Sequential consistency gives
us the simplest possible meaning for
shared variables, but suffers from sev-
eral related flaws.

First, sequential consistency can be
expensive to implement. For Figure 1,
a compiler might, for example, reorder
the two independent assignments in
the red thread, since scheduling loads
early tends to hide the load latency. In
addition, modern processors almost al-
ways use a store buffer to avoid waiting
for stores to complete, also effectively
reordering instructions in each thread.
Both the compiler and hardware opti-
mization make an outcome of r1 == 0
and r2 == 0 possible, and hence may re-
sult in a non-sequentially consistent ex-
ecution. Overall, reordering any pair of
accesses, reading values from write buf-
fers, register promotion, common sub-
expression elimination, redundant read
elimination, and many other hardware
and compiler optimizations commonly
used in uniprocessors can potentially
violate sequential consistency.2

There is some work on compiler
analysis to determine when such trans-
formations are unsafe (for example,
Shasha and Snir37). Compilers, howev-
er, often have little information about
sharing between threads, making it
expensive to forego the optimizations,
since we would have to forego them ev-
erywhere. There is also much work on
speculatively performing these optimi-
zations in hardware, with rollback on
detection of an actual sequential con-
sistency violation (for example, Ceze
et al.14 and Gharachorloo et al.21). How-
ever, these ideas are tied to specific im-
plementation techniques (for example,
aggressive speculation support), and
vendors have generally been unwilling
to commit to those for the long term (es-
pecially, given non-sequentially consis-
tent compilers). Thus, most hardware
and compilers today do not provide se-
quential consistency.

Second, while sequential consisten-
cy may seem to be the simplest model,
it is not sufficiently simple and a much
less useful programming model than
commonly imagined. For example, it
only makes sense to reason about in-
terleaving steps if we know what those
steps are. In this case, they are typically
individual memory accesses, a very low-
level notion. Consider two threads con-
currently assigning values of 100,000
and 60,000 to the shared variable X on
a machine that accesses memory 16 bits
at a time. The final value of X in a “se-
quentially consistent” execution may
be 125,536 if the assignment of 60,000
occurred between the bottom and top
half of the assignment of 100,000. At
a somewhat higher level, this implies
the meaning of even simple library op-
erations depends on the granularity at
which the library carries out those op-
erations.

More generally, programmers do
not reason about correctness of parallel
code in terms of interleavings of indi-
vidual memory accesses, and sequential
consistency does not prevent common
sources of concurrency bugs arising
from simultaneous access to the same
shared data (for example, data races).
Even with sequential consistency, such
simultaneous accesses can remain dan-
gerous, and should be avoided, or at
least explicitly highlighted. Relying on
sequential consistency without such
highlighting both obscures the code,
and greatly complicates the implemen-
tation’s job.

Data-Race-Free
We can avoid both of the problems
mentioned here by observing that:

˲˲ The problematic transformations
(for example, reordering accesses to
unrelated variables in Figure 1) never
change the meaning of single-threaded
programs, but do affect multithreaded
programs (for example, by allowing
both r1 and r2 to be 0 in Figure 1).

˲˲ These transformations are de-
tectable only by code that allows two
threads to access the same data simul-
taneously in conflicting ways; for ex-
ample, one thread writes the data and
another reads it.

Programming languages generally
already provide synchronization mecha-
nisms, such as locks, or possibly trans-
actional memory, for limiting simulta-

neous access to variables by different
threads. If we require that these be used
correctly, and guarantee sequential
consistency only if no undesirable con-
current accesses are present, we avoid
the above issues.

We can make this more precise as
follows. We assume the language allows
distinguishing between synchroniza-
tion and ordinary (non-synchronization
or data) operations (see below). We say
that two memory operations conflict if
they access the same memory location
(for example, variable or array element),
and at least one is a write.

We say that a program (on a particu-
lar input) allows a data race if it has a
sequentially consistent execution (that
is, a program-ordered interleaving of
operations of the individual threads)
in which two conflicting ordinary op-
erations execute “simultaneously.” For
our purposes, two operations execute
“simultaneously” if they occur next to
each other in the interleaving and corre-
spond to different threads. Since these
operations occur adjacently in the inter-
leaving, we know that they could equally
well have occurred in the opposite or-
der; there are no intervening operations
to enforce the order.

To ensure that two conflicting ordi-
nary operations do not happen simulta-
neously, they must be ordered by inter-
vening synchronization operations. For
example, one thread must release a lock
after accessing a shared variable, and

Figure 1. Core of Dekker’s algorithm.
Can r1 = r2 = 0?

Initially X=Y=0

Red Thread Blue Thread

X = 1; Y = 1;

r1 = Y; r2 = X;

Figure 2. Some executions for Figure 1.

Execution 1 Execution 2 Execution 3

X = 1; Y = 1; X = 1;

r1 = Y; r2 = X; Y = 1;

Y = 1; X = 1; r1 = Y;

r2 = X; r1 = Y; r2 = X;

// r1 == 0 // r1 == 1 // r1 == 1

// r2 == 1 // r2 == 0 // r2 == 1

94 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

the other thread must acquire the lock
before its access. Thus, it is also possi-
ble to define data races as conflicting ac-
cesses not ordered by synchronization,
as is done in Java. These definitions are
essentially equivalent.1,12

A program that does not allow a data
race is said to be data-race-free. The da-
ta-race-free model guarantees sequen-
tial consistency only for data-race-free
programs.1,3 For programs that allow
data races, the model does not provide
any guarantees.

The restriction on data races is
not onerous. In addition to locks for
avoiding data races, modern program-
ming languages generally also provide
a mechanism, such as Java’s vola-
tile variables, for declaring that cer-
tain variables or fields are to be used
for synchronization between threads.
Conflicting accesses to such variables
may occur simultaneously—since they
are explicitly identified as synchroniza-
tion (vs. ordinary), they do not create a
data race.

To write Figure 1 correctly under da-
ta-race-free, we need simply identify the
shared variables X and Y as synchroni-
zation variables. This would require the
implementation to do whatever is nec-
essary to ensure sequential consistency,
in spite of those simultaneous accesses.
It would also obligate the implementa-
tion to ensure that these synchroniza-
tion accesses are performed indivisibly;
if a 32-bit integer is used for synchroni-
zation purposes, it should not be visibly
accessed as two 16-bit halves.

This “sequential consistency for da-
ta-race-free programs” approach allevi-
ates the problems discussed with pure
sequential consistency. Most important
hardware and compiler optimizations

continue to be allowed for ordinary ac-
cesses—care must be taken primarily
at the explicitly identified (infrequent)
synchronization accesses since these
are the only ones through which such
optimizations and granularity consid-
erations affect program outcome. Fur-
ther, synchronization-free sections of
the code appear to execute atomically
and the requirement to explicitly iden-
tify concurrent accesses makes it easier
for humans and compilers to under-
stand the code. (For more detail, see our
technical report.11)

Data-race-free does not give the
implementation a blanket license to
perform single-threaded program op-
timizations. In particular, optimiza-
tions that amount to copying a shared
variable to itself; such as, introducing
the assignment x = x, where x might
not otherwise have been written, gener-
ally remain illegal. These are commonly
performed in certain contexts,9 but
should not be.

Although data-race-free was for-
mally proposed in 1990,3 it did not see
widespread adoption as a formal model
in industry until recently. We next de-
scribe the evolution of industry models
to a convergent path centered around
data-race-free, the emergent shortcom-
ings of data-race-free, and their implica-
tions for the future.

Industry Practice and Evolution
Hardware memory models. Most hard-
ware supports relaxed models that are
weaker than sequential consistency.
These models take an implementation-
or performance-centric view, where the
desirable hardware optimizations drive
the model specification.1,2,20 Typical
driving optimizations relax the program

order requirement of sequential consis-
tency. For example, Sparc’s TSO guar-
antees that a thread’s memory accesses
will become visible to other threads in
program order, except for the case of a
write followed by a read. Such models
additionally provide fence instructions
to enable programmers to explicitly im-
pose orderings that are otherwise not
guaranteed; for example, TSO pro-
grammers may insert a fence between
a thread’s write and read to ensure the
execution preserves that order.

Such a program-orderings + fences
style of specification is simple, but
many subtleties make it inadequate.1,2
First, this style implies that a write is
an atomic or indivisible operation that
becomes visible to all threads at once.
As Figure 3 illustrates, however, hard-
ware may make writes visible to differ-
ent threads at different times through
write buffers and shared caches. Incor-
porating such optimizations increases
the complexity of the memory model
specification. Thus, the full TSO speci-
fication, which incorporates one of the
simplest atomicity optimizations, is
much more involved than the simple
description here. PowerPC implements
more aggressive forms of the optimiza-
tion, with a specification that is com-
plex and difficult to interpret even for
experts. The x86 documentation from
both AMD and Intel was ambiguous on
this issue; recent updates now clarify
the intent, but remain informal.

Second, in well-written software, a
thread usually relies on synchronization
interactions to reason about the order-
ing or visibility of memory accesses on
other threads. Thus, it is usually overkill
to require that two program-ordered
accesses always become visible to all
threads in the same order or a write ap-
pears atomic to all threads regardless of
the synchronization among the threads.
Instead, it is sufficient to preserve order-
ing and atomicity only among mutually
synchronizing threads. Some hardware
implementations attempt to exploit
this insight, albeit often through ad hoc
techniques, thereby further complicat-
ing the memory model.

Third, modern processors perform
various forms of speculation (for ex-
ample, on branches and addresses)
which can result in subtle and complex
interactions with data and control de-
pendences, as illustrated in Figure 4.1,29

Figure 3. Hardware may not execute atomic or indivisible writes.

Initially X = Y = 0

Core 1 Core 2 Core 3 Core 4

X = 1; Y = 1; r1 = X; r3 = Y;

fence; fence;

r2 = Y; r4 = X;

Can r1 = 1, r2 = 0, r3 =1, r4 = 0, violating write atomicity?

Assume a fence imposes program order. Assume core 3’s and core 4’s caches have X and Y.
The two writes generate invalidations for these caches. These could reach the caches in a different
order, giving the result shown and a deduction that X’s update occurs both before and after Y’s.

review articles

august 2010 | vol. 53 | no. 8 | communications of the acm 95

Incorporating these considerations in a
precise way adds another source of com-
plexity to program-order + fence style
specifications. As we discuss later, pre-
cise formalization of data and control
dependences is a fundamental obstacle
to providing clean high-level memory
model specifications today.

In summary, hardware memory
model specifications have often been
incomplete, excessively complex, and/
or ambiguous enough to be misinter-
preted even by experts. Further, since
hardware models have largely been
driven by hardware optimizations, they
have often not been well-matched to
software requirements, resulting in in-
correct code or unnecessary loss in per-
formance, as discussed later.

High-level language memory mod-
els. Ada was perhaps the first widely
used high-level programming lan-
guage to provide first-class support for
shared-memory parallel programming.
Although Ada’s approach to thread syn-
chronization was initially quite differ-
ent from both that of the earlier Mesa
design and most later language designs,
it was remarkably advanced in its treat-
ment of memory semantics.40 It used a
style similar to data-race-free, requiring
legal programs to be well-synchronized;
however, it did not fully formalize the
notion of well-synchronized and left un-
certain the behavior of such programs.

Subsequently, until the introduc-
tion of Java, mainstream programming
languages did not provide first-class
support for threads, and shared-mem-
ory programming was mostly enabled
through libraries and APIs such as Posix
threads and OpenMP. Previous work de-
scribes why the approach of an add-on
threads library is not entirely satisfac-
tory.9 Without a real definition of the
programming language in the context
of threads, it is unclear what compiler
transformations are legal, and hence
what the programmer is allowed to as-
sume. Nevertheless, the Posix threads
specification indicates a model similar
to data-race-free, although there are sev-
eral inconsistent aspects, with widely
varying interpretations even among ex-
perts participating in standards com-
mittee discussions. The OpenMP mod-
el is also unclear and largely based on
a flush instruction that is analogous to
fence instructions in hardware models,
with related shortcomings.

The Java memory model. Java pro-
vided first-class support for threads
with a chapter specifically devoted to
its memory model. Pugh showed that
this model was difficult to interpret
and badly broken—common compiler
optimizations were prohibited and in
many cases the model gave ambiguous
or unexpected behavior.32 In 2000, Sun
appointed an expert group to revise the
model through the Java community
process.33 The effort was coordinated
through an open mailing list that at-
tracted a variety of participants, repre-
senting hardware and software and re-
searchers and practitioners.

It was quickly decided that the Java
memory model must provide sequen-
tial consistency for data-race-free pro-
grams, where volatile accesses (and
locks from synchronized methods
and monitors) were deemed synchro-
nization.

However, data-race-free is inad-
equate for Java. Since Java is meant to
be a safe and secure language, it cannot
allow arbitrary behavior for data races.
Specifically, Java must support untrust-
ed code running as part of a trusted ap-
plication and hence must limit damage
done by a data race in the untrusted
code. Unfortunately, the notions of safe-
ty, security, and “limited damage” in a
multithreaded context were not clearly
defined. The challenge with defining
the Java model was to formalize these
notions in a way that minimally affected
system flexibility.

Figure 4(b) illustrates these issues.
The program has a data race and is bug-
gy. However, Java cannot allow its reads
to return values out-of-thin-air (for ex-
ample, 42) since this could clearly com-
promise safety and security. It would,
for example, make it impossible to
guarantee that similar untrusted code
cannot return a password that it should
not have access to. Such a scenario ap-
pears to violate any reasonable cau-
sality expectation and no current pro-
cessor produces it. Nevertheless, the
memory model must formally prohibit
such behavior so that future specula-
tive processors also avoid it.

Prohibiting such causality violations
in a way that does not also prohibit
other desired optimizations turned out
to be surprisingly difficult. Figure 5 il-
lustrates an example that also appears
to violate causality, but is allowed by the

Hardware
memory model
specifications
have often been
incomplete,
excessively
complex, and/or
ambiguous enough
to be misinterpreted
even by experts.

96 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

common compiler optimization of re-
dundant read elimination.29 After many
proposals and five years of spirited de-
bate, the current model was approved
as the best compromise. This model
allows the outcome of Figure 5, but not
that of Figure 4(b). Unfortunately, this
model is very complex, was known to
have some surprising behaviors, and
has recently been shown to have a bug.
We provide intuition for the model be-
low and refer the reader to Manson et
al.26 for a full description.

Common to both Figure 4(b) and
Figure 5 are writes that are executed
earlier than they would be with sequen-
tial consistency. The examples differ
in that for the speculative write in the
latter (Y=1), there is some sequentially
consistent execution where it is exe-

cuted (the execution where both reads
of X return 0). For Figure 4(b), there is
no sequentially consistent execution
where Y=42 could occur. This notion of
whether a speculative write could occur
in some well-behaved execution is the
basis of causality in the Java model, and
the definition of well-behaved is the key
source of complexity.

The Java model tests for the legal-
ity of an execution by “committing”
one or more of its memory accesses at
a time—legality requires all accesses to
commit (in any order). Committing a
write early (before its turn in program
order) requires it to occur in a well-
behaved execution where (informally)
the already committed accesses have
similar synchronization and data race
relationships in all previously used well-

behaved executions, and the to-be com-
mitted write is not dependent on a read
that returns its value from a data race.
These conditions ensure that a future
data race will never be used to justify a
speculative write that could then later
justify that future data race.

A key reason for the complexity in
the Java model is that it is not opera-
tional—an access in the future can de-
termine whether the current access is
legal. Further, many possible future
executions must be examined to deter-
mine this legality. The choice of future
(well-behaved) executions also gives
some surprising results. In particular,
as discussed in Manson29 if the code of
one thread is “inlined” in (concatenated
with) another thread, then the inlined
code can produce more behaviors than
the original. Thus, thread inlining is
generally illegal under the Java model
(even if there are no synchronization-
and deadlock-related considerations).
In practice, the prohibited optimiza-
tions are difficult to implement and this
is not a significant performance limi-
tation. The behavior, however, is non-
intuitive, with other implications—it
occurs because some data races in the
original code may no longer be data rac-
es in the inlined code. This means that
when determining whether to commit a
write early, a read in a well-behaved ex-
ecution has more choices to return val-
ues than before (since there are fewer
data races), resulting in new behaviors.

More generally, increasing synchro-
nization in the Java model can actually
result in new behaviors, even though
more synchronization conventionally
constrains possible executions. Recent-
ly, it has been shown that, for similar
reasons, adding seemingly irrelevant
reads or removing redundant reads
sometimes can also add new behaviors,
and that all these properties have more
serious implications than previously
thought.36 In particular, some optimiza-
tions that were intended to be allowed
by the Java model are in fact prohibited
by the current specification.

It is unclear if current hardware or
JVMs implement the problematic op-
timizations noted here and therefore
violate the current Java model. Cer-
tainly the current specification is much
improved over the original. Regardless,
the situation is still far from satisfac-
tory. First, clearly, the current specifi-

Figure 4. Subtleties with (a) control and (b) data dependences.

It is feasible for core 1 to speculate that its read of X will see 1 and speculatively write Y. Core 2
similarly writes X. Both reads now return 1, creating a “self-fulfilling” speculation or a “causality
loop.” Within a single core, no control dependences are violated since the speculation appears correct;
however, most programmers will not expect such an outcome (the code is in fact data-race-free since
no sequentially consistent execution contains a data race). Part (b) shows an analogous causal loop
with data dependences. Core 1 may speculate X is 42 (for example, using value prediction based on
previous store values) and (speculatively) write 42 into Y. Core 2 reads this and writes 42 into X, thereby
proving the speculation right and creating a causal loop that generates a value (42) out-of-thin-air.
Fortunately, no processor today behaves this way, but the memory model specification needs to reflect
this property.

Initially X=Y=0

Core 1 Core 2

r1 = X;
if (r1 == 1)
	 Y = 1;

r2 = Y;
if (Y == 1)
	 X = 1;

Is r1 = r2 = 1 allowed?

(a)

Initially X=Y=0

Core 1 Core 2

r1 = X;
Y = r1;

r2 = Y;
X = r2;

Is r1 = r2 = 42 allowed?

(b)

Figure 5. Redundant read elimination must be allowed.

Initially X=Y=0

Original Code

Thread 1 Thread 2

r1 = X;
r2 = X;
if (r1 == r2)
	 Y = 1;

r3 = Y;
X = r3;

After compiler transformation

Thread 1 Thread 2

Y = 1;
r1 = X;
r2 = r1;
if (true);

r3 = Y;
X = r3;

Is r1 = r2 = r3 = 1 allowed?

For thread 1, the compiler could eliminate the
redundant read of X, replacing r2=X with r2=r1.
This allows deducing that r1==r2 is always
true, making the write of Y unconditional. Then
the compiler may move the write to before
the read of X since no dependence is violated.
Sequential consistency would allow both the
reads of X and Y to return 1 in the new but not
the original code. This outcome for the original
code appears to violate causality since it seems
to require a self-justifying speculative write of Y.
It must, however, be allowed if compilers are to
perform the common optimization of redundant
read elimination.

review articles

august 2010 | vol. 53 | no. 8 | communications of the acm 97

cation does not meet its desired intent
of having certain common optimizing
transformations preserve program
meaning. Second, its inherent com-
plexity and the new observations make
it difficult to prove the correctness of
any real system. Third, the specification
methodology is inherently fragile—
small changes usually result in hard-to-
detect unintended consequences.

The Java model was largely guided
by an emergent set of test cases,33 based
on informal code transformations that
were or were not deemed desirable.
While it may be possible to fix the Java
model, it seems undesirable that our
specification of multithreaded program
behavior would rest on such a complex
and fragile foundation. Instead, the sec-
tion entitled “Implications for Languag-
es” advocates a fundamental rethinking
of our approach.

The C++ memory model. The situa-
tion in C++ was significantly different
from Java. The language itself provided
no support for threads. Nonetheless,
they were already in widespread use,
typically with the addition of a library-
based threads implementation, such as
pthreads22 or the corresponding Micro-
soft Windows facilities. Unfortunately
the relevant specifications, for example
the combination of the C or C++ stan-
dard with the Posix standard, left sig-
nificant uncertainties about the rules
governing shared variables.9 This made
it unclear to compiler writers precisely
what they needed to implement, result-
ed in very occasional failures for which
it was difficult to assign blame to any
specific piece of the implementation
and, most importantly, made it difficult
to teach parallel programming since
even the experts were unable to agree on
some of the basic rules, such as whether
Figure 4(a) constitutes a data race. (Cor-
rect answer: No.)

Motivated by these observations,
we began an effort in 2005 to develop
a proper memory model for C++. The
resulting effort eventually expanded to
include the definition of atomic (syn-
chronization, analogous to Java vola-
tile) operations, and the threads API
itself. It is part of the current Commit-
tee Draft24 for the next C++ revision. The
next C standard is expected to contain
a very similar memory model, with very
similar atomic operations.

This development took place in the

face of increasing doubt that a Java-like
memory model relying on sequential
consistency for data-race-free programs
was efficiently implementable on main-
stream architectures, at least given the
specifications available at the time.
Largely as a result, much of the early dis-
cussion focused on the tension between
the following two observations, both of
which we still believe to be correct given
existing hardware:

˲˲ A programming language model
weaker than data-race-free is probably
unusable by a large fraction of the pro-
gramming community. Earlier work10
points out, for example, that even
thread library implementors often get
confused when it comes to dealing ex-
plicitly with memory ordering issues.
Substantial effort was invested in at-
tempts to develop weaker, but compa-
rably simple and usable models. We do
not feel these were successful.

˲˲ On some architectures, notably
on some PowerPC implementations,
data-race-free involves substantial im-
plementation cost. (In light of modern
(2009) specifications, the cost on oth-
ers, notably x86, is modest, and limited
largely to atomic (C++) or volatile
(Java) store operations.)

This resulted in a compromise mem-
ory model that supports data-race-free
for nearly all of the language. However,
atomic data types also provide low-lev-
el operations with explicit memory or-
dering constraints that blatantly violate
sequential consistency, even in the ab-
sence of data races. The low-level op-
erations are easily identified and can
be easily avoided by non-expert pro-
grammers. (They require an explicit
memory_order_ argument.) But they
do give expert programmers a way to
write very carefully crafted, but portable,
synchronization code that approaches
the performance of assembly code.

Since C++ does not support sand-
boxed code execution, the C++ draft
standard can and does leave the seman-
tics of a program with data races com-
pletely undefined, effectively making it
erroneous to write such programs. As
we point out in Boehm and Adve12 this
has a number of (mostly) performance-
related advantages, and better reflects
existing compiler implementations.

In addition to the issues raised
in the “Lessons Learned” section, it
should be noted that this really only

pushes Java’s issues with causality into
a much smaller and darker corner of
the specification; exactly the same is-
sues arise if we rewrite Figure 4(b) with
C++ atomic variables and use low-
level memory_order_relaxed op-
erations. Our current solution to this
problem is simpler, but as inelegant
as the Java one. Unlike Java, it affects a
small number of fairly esoteric library
calls, not all memory accesses.

As with the Java model, we feel that
although this solution involves compro-
mises, it is an important step forward. It
clearly establishes data-race-free as the
core guarantee that every programmer
should understand. It defines precisely
what constitutes a data race. It finally
resolves simple questions such as: If x.a
and x.b are assigned simultaneously,
is that a data race? (No, unless they are
part of the same contiguous sequence
of bit-fields.) By doing so, it clearly iden-
tifies shortcomings of existing compil-
ers that we can now begin to remedy.

Reconciling language and hard-
ware models. Throughout this process,
it repeatedly became clear that cur-
rent hardware models and supporting
fence instructions are often at best a
marginal match for programming lan-
guage memory models, particularly in
the presence of Java volatile fields
or C++ atomic objects. It is always pos-
sible to implement such synchroniza-
tion variables by mapping each one to
a lock, and acquiring and releasing the
corresponding lock around all accesses.
However, this typically adds an over-
head of hundreds of cycles to each ac-
cess, particularly since the lock accesses
are likely to result in coherence cache
misses, even when only read accesses
are involved.

Volatile and atomic variables are
typically used to avoid locks for exactly
these reasons. A typical use is a flag that
indicates a read-only data structure has
been lazily initialized. Since the initial-
ization has to happen only once, nearly
all accesses simply read the atomic/
volatile flag and avoid lock acquisi-
tions. Acquiring a lock to access the flag
defeats the purpose.

On hardware that relaxes write ato-
micity (see Figure 3), however, it is often
unclear that more efficient mappings
(than the use of locks) are possible; even
the fully fenced implementation may
not be sequentially consistent. Even

98 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

on other hardware, there are apparent
mismatches, most probably caused by
the lack of a well-understood program-
ming language model when the hard-
ware was designed. On x86, it is almost
sufficient to map synchronization loads
and stores directly to ordinary load and
store instructions. The hardware pro-
vides sufficient guarantees to ensure
that ordinary memory operations are
not visibly reordered with synchroniza-
tion operations. However it fails to pre-
vent reordering of a synchronization
store followed by a synchronization
load; thus this implementation does
not prevent the incorrect outcome for
Figure 1.

This may be addressed by translat-
ing a synchronization store to an ordi-
nary store instruction followed by an ex-
pensive fence. The sole purpose of this
fence is to prevent reordering of the syn-
chronization store with a subsequent
synchronization load. In practice, such
a synchronization load is unlikely to fol-
low closely enough (Dekker’s algorithm
is not commonly used) to really con-
strain the hardware. But the only avail-
able fence instruction constrains all
memory reordering around it, includ-
ing that involving ordinary data access-
es, and thus overly constrains the hard-
ware. A better solution would involve
distinguishing between two flavors of
loads and stores (ordinary and synchro-
nization), roughly along the lines of
Itanium’s ld.acq and st.rel.23 This,
however, requires a change to the in-
struction set architecture, usually a dif-
ficult proposition.

We suspect the current situation
makes the fence instruction more ex-
pensive than necessary, in turn moti-
vating additional language-level com-
plexity such as C++ low-level atomics or
lazySet() in Java.

Lessons Learned
Data-race-free provides a simple and
consistent model for threads and
shared variables. We are convinced it
is the best model today to target during
initial software development. Unfortu-
nately, its lack of any guarantees in the
presence of data races and mismatch
with current hardware implies three
significant weaknesses:

Debugging. Accidental introduction
of a data race results in “undefined be-
havior,” which often takes the form of

nating the debugging issues associated
with data races.

Unfortunately, these both take us to
active research areas, with no clear off-
the-shelf solutions. We discuss some
possible approaches here.

Implications for Languages
In spite of the dramatic convergence
in the debate on memory models,
the state of the art imposes a difficult
choice: a language that supposedly has
strong safety and security properties,
but no clear definition of what value a
shared-memory read may return (the
Java case), versus a language with clear
semantics, but that requires abandon-
ing security properties promised by lan-
guages such as Java (the C++ case). Un-
fortunately, modern software needs to
be both parallel and secure, and requir-
ing a choice between the two should
not be acceptable.

A pessimistic view would be to
abandon shared-memory altogether.
However, the intrinsic advantages of a
global address space are, at least anec-
dotally, supported by the widespread
use of threads despite the inherent
challenges. We believe the fault lies not
in the global address space paradigm,
but in the use of undisciplined or “wild
shared-memory,” permitted by current
systems.

Data-race-free was a first attempt to
formalize a shared-memory discipline
via a memory model. It proved inad-
equate because the responsibility for
following this discipline was left to the
programmer. Further, data-race-free
by itself is, arguably, insufficient as a
discipline for writing correct, easily
debuggable, and maintainable shared-
memory code; for example, it does not
completely eliminate atomicity viola-
tions or non-deterministic behavior.

Moving forward, we believe a critical
research agenda to enable “parallelism
for the masses” is to develop and pro-
mote disciplined shared-memory models
that:

˲˲ are simple enough to be easily teach-
able to undergraduates; that is, mini-
mally provide sequential consistency to
programs that obey the required disci-
pline;

˲˲ enable the enforcement of the disci-
pline; that is, violations of the discipline
should not have undefined or horren-
dously complex semantics, but should

surprising results later during program
execution, possibly long after the data
race has resulted in corrupted data. Al-
though the usual immediate result of
a data race is that an unexpected, and
perhaps incomplete value is read, or
that an inconsistent value is written,
we point out in prior work12 that other
results, such as wild branches, are also
possible as a result of compiler opti-
mizations that mistakenly assume the
absence of data races. Since such races
are difficult to reproduce, the root cause
of such misbehavior is often difficult to
identify, and such bugs may easily take
weeks to track down. Many tools to aid
such debugging (for example, CHESS30
and RaceFuzzer35) also assume sequen-
tial consistency, somewhat limiting
their utility.

Synchronization variable perfor-
mance on current hardware. As dis-
cussed, ensuring sequential consis-
tency in the presence of Java volatile
or C++ atomic on current hardware
can be expensive. As a result, both C++,
and to a lesser extent Java, have had to
provide less expensive alternatives that
greatly complicate the model for ex-
perts trying to use them.

Untrusted code. There is no way to
ensure data-race-freedom in untrusted
code. Thus, this model is insufficient
for languages like Java.

An unequivocal lesson from our ex-
periences is that for programs with data
races, it is very difficult to define seman-
tics that are easy to understand and yet
retain desired system flexibility. While
the Java memory model came a long
way, its complexity, and subsequent
discoveries of its surprising behaviors,
are far from satisfying. Unfortunately,
we know of no alternative specification
that is sufficiently simple to be consid-
ered practical. Second, rules to weaken
the data-race-free guarantee to better
match current hardware, as through
C++ low-level atomics, are also more
complex than we would like.

The only clear path to improvement
here seems to be to eliminate the need
for going beyond the data-race-free
guarantee by:

˲˲ Eliminating the performance moti-
vations for going beyond it, and

˲˲ Ensuring that data races are never
actually executed at runtime, thus both
avoiding the need to specify their be-
havior and greatly simplifying or elimi-

review articles

august 2010 | vol. 53 | no. 8 | communications of the acm 99

be caught and returned back to the pro-
grammer as illegal;

˲˲ are general-purpose enough to ex-
press important parallel algorithms and
patterns; and

˲˲ enable high and scalable perfor-
mance.

Many previous programmer-produc-
tivity-driven efforts have sought to raise
the level of abstraction with threads; for
example, Cilk,19 TBB,25 OpenMP,39 the
recent HPCS languages,28 other high-
level libraries, frameworks, and APIs
such as java.util.concurrent and the C++
boost libraries, as well as more domain-
specific ones. While these solutions go
a long way toward easing the pain of
orchestrating parallelism, our memory-
models driven argument is deeper—we
argue that, at least so far, it is not pos-
sible to provide reasonable semantics
for a language that allows data races,
an arguably more fundamental prob-
lem. In fact, all of these examples either
provide unclear models or suffer from
the same limitations as C++/Java. These
approaches, therefore, do not meet our
enforcement requirement. Similarly,
transactional memory provides a high-
level mechanism for atomicity, but the
memory model in the presence of non-
transactional code faces the same is-
sues as described here.38

At the heart of our agenda of disci-
plined models are the questions: What
is the appropriate discipline? How to
enforce it?

A near-term transition path is to
continue with data-race-free and focus
research on its enforcement. The ideal
solution is for the language to elimi-
nate data races by design (for example,
Boyapati13); however, our semantics dif-
ficulties are avoided even with dynamic
techniques (for example, Elmas et al.,17
Flanagan and Freund,18 or Lucia et al.27)
that replace all data races with excep-
tions. (There are other dynamic data
race detection techniques, primarily for
debugging, but they do not guarantee
complete accuracy, as required here.)

A longer-term direction concerns
both the appropriate discipline and its
enforcement. A fundamental challenge
in debugging, testing, and reasoning
about threaded programs arises from
their inherent non-determinism—an
execution may exhibit one of many pos-
sible interleavings of its memory ac-
cesses. In contrast, many applications

written for performance have determin-
istic outcomes and can be expressed
with deterministic algorithms. Writing
such programs using a deterministic
environment allows reasoning with se-
quential semantics (a memory model
much simpler than sequential consis-
tency with threads).

A valuable discipline, therefore, is to
provide a guarantee of determinism by
default; when non-determinism is in-
herently required, it should be request-
ed explicitly and should not interfere
with the deterministic guarantees for
the remaining program.7 There is much
prior work in deterministic data paral-
lel, functional, and actor languages. Our
focus is on general-purpose efforts that
continue use of widespread program-
ming practices; for example, global
address space, imperative languages,
object-oriented programming, and
complex, pointer-based data structures.

Language-based approaches with
such goals include Jade34 and the recent
Deterministic Parallel Java (DPJ).8 In
particular, DPJ proposes a region-based
type and effect system for determinis-
tic-by-default semantics—“regions”
name disjoint partitions of the heap
and per-method effect annotations
summarize which regions are read and
written by each method. Coupled with
a disciplined parallel control structure,
the compiler can easily use the effect
summaries to ensure that there are no
unordered conflicting accesses and
the program is deterministic. Recent
results show that DPJ is applicable to a
range of applications and complex data
structures and provides performance
comparable to threads code.8

There has also been much recent
progress in runtime methods for deter-
minism.4,5,16,31

Both language and runtime ap-
proaches have pros and cons and still
require research before mainstream
adoption. A language-based approach
must establish that it is expressive
enough and does not incur undue pro-
grammer burden. For the former, the
new techniques are promising, but the
jury is still out. For the latter, DPJ is at-
tempting to alleviate the burden by us-
ing a familiar base language (currently
Java) and providing semiautomatic
tools to infer the required programmer
annotations.41 Further, language anno-
tations such as DPJ’s read/write effect

Data-race-free
provides a simple
and consistent
model for threads
and shared
variables. We
are convinced
that it is the best
model today to
target during
initial software
development.

100 communications of the acm | august 2010 | vol. 53 | no. 8

review articles

summaries are valuable documenta-
tion in their own right—they promote
lifetime benefits for modularity and
maintainability, arguably compensat-
ing for upfront programmer effort. Fi-
nally, a static approach benefits from no
overhead or surprises at runtime.

In contrast, the purely runtime ap-
proaches impose less burden on the
programmer, but a disadvantage is
that the overheads in some cases may
still be too high. Further, inherently, a
runtime approach does not provide the
guarantees of a static approach before
shipping and is susceptible to surpris-
es in the field.

We are optimistic that the recent
approaches have opened up many
promising new avenues for disciplined
shared-memory that can overcome the
problems described here. It is likely
that a final solution will consist of a ju-
dicious combination of language and
runtime features, and will derive from a
rich line of future research.

Implications for Hardware
As discussed earlier, current hard-
ware memory models are an imperfect
match for even current software (data-
race-free) memory models. ISA changes
to identify individual loads and stores
as synchronization can alleviate some
short-term problems. An established
ISA, however, is difficult to change, es-
pecially when existing code works most-
ly adequately and there is not enough
experience to document the benefits of
the change.

Academic researchers have taken
an alternate path that uses complex
mechanisms (for example, Blundell et
al.6) to speculatively remove the con-
straints imposed by fences, rolling
back the speculation when it is detect-
ed that the constraints were actually
needed. While these techniques have
been shown to work well, they come
at an implementation cost and do not
directly confront the root of the prob-
lem of mismatched hardware/software
views of concurrency semantics.

Taking a longer-term perspective,
we believe a more fundamental solu-
tion to the problem will emerge with
a co-designed approach, where future
multicore hardware research evolves
in concert with the software models re-
search discussed in “Implications for
Languages.” The current state of hard-

ware technology makes this a particu-
larly opportune time to embark on such
an agenda. Power and complexity con-
straints have led industry to bet that fu-
ture single-chip performance increases
will largely come from increasing num-
bers of cores. Today’s hardware cache-
coherent multicore designs, however,
are optimized for few cores—power-ef-
ficient, performance scaling to several
hundreds or a thousand cores without
consideration of software requirements
will be difficult.

We view this challenge as an op-
portunity to not only resolve the prob-
lems discussed in this article, but in
doing so, we expect to build more ef-
fective hardware and software. First,
we believe that hardware that takes
advantage of the emerging disciplined
software programming models is likely
to be more efficient than a software-
oblivious approach. This observation
already underlies the work on relaxed
hardware consistency models—we
hope the difference this time around
will be that the software and hardware
models will evolve together rather than
as retrofits for each other, providing
more effective solutions. Second, hard-
ware research to support the emerging
disciplined software models is also
likely to be critical. Hardware support
can be used for efficient enforcement
of the required discipline when static
approaches fall short; for example,
through directly detecting violations of
the discipline and/or through effective
strategies to sandbox untrusted code.

Along these lines, we have recently
begun the DeNovo hardware project at
Illinois15 in concert with DPJ. We are
exploiting DPJ-like region and effect
annotations to design more power-
and complexity-efficient, software-
driven communication and coher-
ence protocols and task scheduling
mechanisms. We also plan to provide
hardware and runtime support to deal
with cases where DPJ’s static informa-
tion and analysis might fall short. As
such co-designed models emerge,
ultimately, we expect them to drive the
future hardware-software interface in-
cluding the ISA.

Conclusion
This article gives a perspective based
on work collectively spanning approxi-
mately 30 years. We have been repeat-

We believe that
hardware that
takes advantage
of the emerging
disciplined software
programming
models is likely to
be more efficient
than a software
oblivious approach.

review articles

august 2010 | vol. 53 | no. 8 | communications of the acm 101

edly surprised at how difficult it is to
formalize the seemingly simple and
fundamental property of “what value a
read should return in a multithreaded
program.” Sequential consistency for
data-race-free programs appears to
be the best we can do at present, but it
is insufficient. The inability to define
reasonable semantics for programs
with data races is not just a theoretical
shortcoming, but a fundamental hole
in the foundation of our languages
and systems. It is well accepted that
most shipped software has bugs and it
is likely that much commercial multi-
threaded software has data races. De-
bugging tools and safe languages that
seek to sandbox untrusted code must
deal with such races, and must be given
semantics that reasonable computer
science graduates and developers can
understand.

We believe it is time to rethink how
we design our languages and systems.
Minimally, the system, and preferably
the language, must enforce the absence
of data races. A longer term, potentially
more rewarding strategy is to rethink
higher-level disciplines that make it
much easier to write parallel programs
and that can be enforced by our languag-
es and systems. We also believe some
of the messiness of memory models to-
day could have been averted with closer
cooperation between hardware and
software. As we move toward more dis-
ciplined programming models, there is
also a new opportunity for a hardware/
software co-designed approach that re-
thinks the hardware/software interface
and the hardware implementations of
all concurrency mechanisms. These
views embody a rich research agenda
that will need the involvement of many
computer science sub-disciplines, in-
cluding languages, compilers, formal
methods, software engineering, algo-
rithms, runtime systems, and hardware.

Acknowledgments
This article is deeply influenced by a
collective 30 years of collaborations and
discussions with more colleagues than
can be named here. We would particu-
larly like to acknowledge the contribu-
tions of Mark Hill for co-developing
the data-race-free approach and other
foundational work; Kourosh Ghara-
chorloo for hardware models; Jeremy
Manson and Bill Pugh for the Java mod-

Implementation, 2009.
19.	 Frigo, M., Leiserson, C.E. and Randall, K.H. The

implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, 1998, 212–223.

20. Gharachorloo, K. Memory consistency models for
shared-memory multiprocessors. Ph.D. thesis, 1996,
Stanford University, Stanford, CA.

21.	 Gharachorloo, K., Gupta, A. and Hennessy, J. Two
techniques to enhance the performance of memory
consistency models. In Proceedings of the Intl. Conf.
on Parallel Processing, 1991, I355–I364.

22.	 IEEE and The Open Group. IEEE Standard 1003.1-
2001. 2001.

23.	 Intel. Intel Itanium Architecture: Software
Developer’s Manual, Jan 2006.

24.	 ISO/IEC JTC1/SC22/WG21. ISO/IEC 14882,
Programming languages - C++ (final committee draft)
2010; http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2010/n3092.pdf.

25.	R einders, J. Intel Threading Building Blocks: Outfitting
C++ for Multi-core Parallelism. O’Reilly, 2007.

26.	L amport, L. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers C-28, 9 (1979), 690–691.

27. Lucia, B. et al. Conflict exceptions: Simplifying
concurrent language semantics with precise
hardware exceptions for data-races. In Proceedings
of the International Symposium on Computer
Architecture, 2010.

28.	L usk, E. and Yelick, E. Languages for high-productivity
computing: The DARPA HPCS language project.
Parallel Processing Letters 17, 1 (2007) 89–102.

29.	 Manson, J., Pugh, W. and Adve, S.V. The Java memory
model. In Proceedings of the Symp. on Principles of
Programming Languages, 2005.

30.	 Musuvathi, M. and Qadeer, S. Iterative context
bounding for systematic testing of multithreaded
programs. In Proceedings of the ACM Conference on
Programming Language Design and Implementation,
2007, 446–455.

31.	O lszewski, M., Ansel, J., and Amarasinghe, S. Kendo:
Efficient deterministic multithreading in software.
In Proceedings Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems.
Mar. 2009.

32.	 Pugh, W. The Java memory model is fatally flawed.
Concurrency-Practice and Experience 12, 6 (2000),
445–455.

33.	 Pugh, W. and the JSR 133 Expert Group. The Java
memory model (July 2009); http://www.cs.umd.
edu/~pugh/java/memoryModel/.

34.	R inard, M.C. and Lam, M.S. The design,
implementation, and evaluation of Jade. ACM
Transactions on Programming Languages and
Systems 20, 3 (1998), 483–545.

35.	S en, K. Race directed random testing of concurrent
programs. In Conf. on Programming Language Design
and Implementation, 2008.

36.	S evcik, J. and Aspinall, D. On validity of program
transformations in the Java memory model. In
Proceedings of the European Conference on Object-
Oriented Programming, 2008, 27–51.

37.	S hasha, D and Snir, M. Efficient and correct execution
of parallel programs that share memory. ACM
Transactions on Programming Languages and
Systems 10, 2 (Apr. 1998), 282–312.

38.	S hpeisman, T. et al. Enforcing isolation and ordering
in STM. In Proceedings of the ACM Conference on
Programming Language Design and Implementation,
2007.

39.	T he OpenMP ARB. OpenMP application programming
interface: Version 3.0. May 2008; http://www.openmp.
org/mp-documents/spec30.pdf.

40.	United States Department of Defense. Reference
Manual for the Ada Programming Language: ANSI/
MIL-STD-1815A-1983 Standard 1003.1-2001.
Springer, 1983.

41.	 Vakilian, M. et al. Inferring method effect summaries
for nested heap regions. In Proceedings of the 24th
Intl. Conf. on Automated Software Engineering, 2009.

Sarita V. Adve (sadve@illinois.edu) is a professor in the
Department of Computer Science at the University of
Illinois at Urbana-Champaign.

Hans-J. Boehm (Hans.Boehm@hp.com) is a member of
Hewlett-Packard’s Exascale Computing Lab, Palo Alto, CA.

© 2010 ACM 0001-0782/10/0800 $10.00

el; Lawrence Crowl, Paul McKenney,
Clark Nelson, and Herb Sutter, for the
C++ model; and Vikram Adve, Rob Boc-
chino, and Marc Snir for ongoing work
on disciplined programming models
and their enforcement. We thank Doug
Lea for continuous encouragement to
push the envelope. Finally, we thank Vi-
kram Adve, Rob Bocchino, Nick Carter,
Lawrence Crowl, Mark Hill, Doug Lea,
Jeremy Manson, Paul McKenney, Bratin
Saha, and Rob Schreiber for comments
on earlier drafts.

Sarita Adve is currently funded by
Intel and Microsoft through the Illinois
Universal Parallel Computing Research
Center.	

References
1.	A dve, S.V. Designing Memory Consistency Models

for Shared-Memory Multiprocessors. PhD thesis.
University of Wisconsin-Madison, 1993.

2.	A dve, S.V. and Gharachorloo, K. Shared memory
consistency models: A tutorial. IEEE Computer 29, 12
(1996), 66–76.

3.	A dve, S.V. and Hill, M.D. Weak ordering—A new
definition. In Proceedings of the 17th Intl. Symp.
Computer Architecture, 1990, 2–14.

4.	A llen, M.D., Sridharan, S. and Sohi, G.S. Serialization
sets: A dynamic dependence-based parallel execution
model. In Proceedings of the Symp. on Principles and
Practice of Parallel Programming, 2009.

5.	B erger, E.D., Yang, T., Liu, T. and Novark, G. Grace: Safe
multithreaded programming for C/C++. In Proceedings
of the Intl. Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, 2009.

6.	B lundell, C, Martin, M.M.K. and Wenisch, T. Invisifence:
Performance-transparent memory ordering in
conventional multiprocessors. In Proceedings of the
Intl. Symp. on Computer Architecture, 2009.

7.	B occhino, R. et al. Parallel programming must be
deterministic by default. In Proceedings of the 1st
Workshop on Hot Topics in Parallelism, 2009.

8.	B occhino. R. et al. A type and effect system for
Deterministic Parallel Java. In Proceedings of the
Intl. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, 2009.

9.	B oehm, H.-J.. Threads cannot be implemented as a
library. In Proceedings of the Conf. on Programming
Language Design and Implementation, 2005.

10.	B oehm, H.-J. Reordering constraints for pthread-style
locks. In Proceedings of the 12th Symp. Principles and
Practice of Parallel Programming, 2007, 173–182.

11.	B oehm, H.-J. Threads basics. July 2009; http://www.
hpl.hp.com/personal/Hans_Boehm/threadsintro.html.

12.	B oehm, H.-J. and Adve, S.V. Foundations of the
C++ concurrency memory model. In Proceedings
of the Conf. on Programming Language Design and
Implementation, 2008, 68–78.

13.	B oyapati, C., Lee, R., and Rinard, M. Ownership types
for safe programming: Preventing data races and
deadlocks. In Proceedings of the Intl. Conf. on Object-
Oriented Programming, Systems, Languages, and
Applications, 2002.

14.	 Ceze, L et al. BulkSC: Bulk Enforcement of Sequential
Consistency. In Proceedings of the Intl. Symp. on
Computer Architecture, 2007.

15. Choi, B. et al. DeNovo: Rethinking Hardware for
Disciplined Parallelism. In Proceedings of the 2nd
Workshop on Hot Topics in Parallelism, June 2010.

16.	D evietti, J. et al. DMP: Deterministic shared memory
processing. In Proceedings of the Intl. Conf. on
Architectural Support for Programming Languages
and Operating Systems (Mar. 2009), 85–96.

17.	E lmas, T., Qadeer, S. and Tasiran, S. Goldilocks: A race
and transaction-aware Java runtime. In Proceedings
of the ACM Conference on Programming Language
Design and Implementation, 2007, 245–255.

18.	 Flanagan, C. and Freund, S. FastTrack: Efficient and
precise dynamic race detection. In Proceedings of
the Conf. on Programming Language Design and

