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Most parallel programs today are written using threads 
and shared variables. Although there is no consensus 
on parallel programming models, there are a number 
of reasons why threads remain popular. Threads  
were already widely supported by mainstream 
operating systems well before the dominance of 
multicore, largely because they are also useful for other 
purposes. Direct hardware support for shared-memory 

potentially provides a performance 
advantage; for example, by implicitly 
sharing read-mostly data without the 
space overhead of complete replica-
tion. The ability to pass memory refer-
ences among threads makes it easier to 
share complex data structures. Finally, 
shared-memory makes it far easier to 
selectively parallelize application hot 
spots without complete redesign of data 
structures.
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Solving the memory model problem will 
require an ambitious and cross-disciplinary 
research direction.
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The memory model, or memory 
consistency model, is at the heart of 
the concurrency semantics of a shared-
memory program or system. It defines 
the set of values that a read in a pro-
gram is allowed to return, thereby de-
fining the basic semantics of shared 
variables. It answers questions such as: 
Is there enough synchronization to en-
sure a thread’s write will occur before 
another’s read? Can two threads write 

to adjacent fields in a memory location 
at the same time? Must the final value 
of a location always be one of those writ-
ten to it?

The memory model defines an in-
terface between a program and any 
hardware or software that may trans-
form that program (for example, the 
compiler, the virtual machine, or any 
dynamic optimizer). It is not possible to 
meaningfully reason about either a pro-

gram (written in a high-level, byte code, 
assembly, or machine language) or any 
part of the language implementation 
(including hardware) without an unam-
biguous memory model.

A complex memory model makes 
parallel programs difficult to write, and 
parallel programming difficult to teach. 
An overly constraining one may limit 
hardware and compiler optimization, 
severely reducing performance. Since 
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it is an interface property, the memory 
model decision has a long-lasting im-
pact, affecting portability and maintain-
ability of programs. Thus, a hardware 
architecture committed to a strong 
memory model cannot later forsake it 
for a weaker model without breaking bi-
nary compatibility, and a new compiler 
release with a weaker memory model 
may require rewriting source code. Fi-
nally, memory-model-related decisions 
for a single component must consider 
implications for the rest of the system. 
A processor vendor cannot guarantee 
a strong hardware model if the mem-
ory system designer provides a weaker 
model; a strong hardware model is not 
very useful to programmers using lan-
guages and compilers that provide only 
a weak guarantee.

Nonetheless, the central role of the 
memory model has often been down-
played. This is partly because formally 
specifying a model that balances all 
desirable properties of programmabil-
ity, performance, and portability has 
proven surprisingly complex. At the 
same time, informal, machine-specific 
descriptions proved mostly adequate in 
an era where parallel programming was 
the domain of experts and achieving the 
highest possible performance trumped 
programmability or portability argu-
ments.

In the late 1980s and 1990s, the area 
received attention primarily in the hard-
ware community, which explored many 
approaches, with little consensus.2 
Commercial hardware memory model 
descriptions varied greatly in precision, 
including cases of complete omission 
of the topic and some reflecting ven-
dors’ reluctance to make commitments 
with unclear future implications. Al-
though the memory model affects the 
meaning of every load instruction in ev-
ery multithreaded application, it is still 
sometimes relegated to the “systems 
programming” section of the architec-
ture manual.

Part of the challenge for hardware 
architects was the lack of clear memory 
models at the programming language 
level. It was unclear what programmers 
expected hardware to do. Although 
hardware researchers proposed ap-
proaches to bridge this gap,3 wide-
spread adoption required consensus 
from the software community. Before 
2000, there were a few programming 

environments that addressed the is-
sue with relative clarity,40 but the most 
widely used environments had unclear 
and questionable specifications.9,32 
Even when specifications were relative-
ly clear, they were often violated to ob-
tain sufficient performance,9 tended to 
be misunderstood even by experts, and 
were difficult to teach.

Since 2000, we have been involved in 
efforts to cleanly specify programming-
language-level memory models, first 
for Java and then C++, with efforts now 
under way to adopt similar models for C 
and other languages. In the process, we 
had to address issues created by hard-
ware that had evolved without the ben-
efit of a clear programming model. This 
often made it difficult to reconcile the 
need for a simple and usable program-
ming model with that for adequate per-
formance on existing hardware.

Today, these languages and most 
hardware vendors have published (or 
plan to publish) compatible memory 
model specifications. Although this 
convergence is a dramatic improve-
ment over the past, it has exposed fun-
damental shortcomings in our parallel 
languages and their interplay with hard-
ware. After decades of research, it is still 
unacceptably difficult to describe what 
value a load can return without com-
promising modern safety guarantees or 
implementation methodologies. To us, 

this experience has made it clear that 
solving the memory model problem will 
require a significantly new and cross-
disciplinary research direction for par-
allel computing languages, hardware, 
and environments as a whole.

This article discusses the path that 
led to the current convergence in mem-
ory models, the fundamental shortcom-
ings it exposed, and the implications 
for future research. The central role of 
the memory model in parallel comput-
ing makes this article relevant to many 
computer science subdisciplines, in-
cluding algorithms, applications, lan-
guages, compilers, formal methods, 
software engineering, virtual machines, 
runtime systems, and hardware. For 
practitioners and educators, we pro-
vide a succinct summary of the state of 
the art of this often-ignored and poorly 
understood topic. For researchers, we 
outline an ambitious, cross-disciplinary 
agenda toward resolving a fundamental 
problem in parallel computing today—
what value can a shared variable have 
and how to implement it?

Sequential Consistency
A natural view of the execution of a 
multithreaded program operating on 
shared variables is as follows. Each 
step in the execution consists of choos-
ing one of the threads to execute, and 
then performing the next step in that 
thread’s execution (as dictated by the 
thread’s program text, or program or-
der). This process is repeated until the 
program as a whole terminates. Effec-
tively, the execution can be viewed as 
taking all the steps executed by each 
thread, and interleaving them in some 
way. Whenever an object (that is, vari-
able, field, or array element) is accessed, 
the last value stored to the object by this 
interleaved sequence is retrieved.

For example, consider Figure 1, 
which gives the core of Dekker’s mutual 
exclusion algorithm. The program can 
be executed by interleaving the steps 
from the two threads in many ways. For-
mally, each of these interleavings is a 
total order over all the steps performed 
by all the threads, consistent with the 
program order of each thread. Each ac-
cess to a shared variable “sees” the last 
prior value stored to that variable in the 
interleaving.

Figure 2 gives three possible execu-
tions that together illustrate all possible 

 key insights

 � �Memory models, which describe the 
semantics of shared variables, are 
crucial to both correct multithreaded 
applications and the entire underlying 
implementation stack.  It is difficult 
to teach multithreaded programming 
without clarity on memory models.

 � �After much prior confusion, major 
programming languages are converging 
on a model that guarantees simple 
interleaving-based semantics for  
“data-race-free” programs and most 
hardware vendors have committed to 
support this model.

 � �This process has exposed fundamental 
shortcomings in our languages and 
a hardware-software mismatch. 
Semantics for programs that contain 
data races seem fundamentally difficult, 
but are necessary for concurrency 
safety and debuggability. We call upon 
software and hardware communities 
to develop languages and systems 
that enforce data-race-freedom, and 
co-designed hardware that exploits and 
supports such semantics.
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final values of the non-shared variables 
r1 and r2. Although many other inter-
leavings are also possible, it is not possi-
ble that both r1 and r2 are 0 at the end of 
an execution; any execution must start 
with the first statement of one of the two 
threads, and the variable assigned there 
will later be read as one.

Following Lamport,26 an execution 
that can be understood as such an in-
terleaving is referred to as sequentially 
consistent. Sequential consistency gives 
us the simplest possible meaning for 
shared variables, but suffers from sev-
eral related flaws.

First, sequential consistency can be 
expensive to implement. For Figure 1, 
a compiler might, for example, reorder 
the two independent assignments in 
the red thread, since scheduling loads 
early tends to hide the load latency. In 
addition, modern processors almost al-
ways use a store buffer to avoid waiting 
for stores to complete, also effectively 
reordering instructions in each thread. 
Both the compiler and hardware opti-
mization make an outcome of r1 == 0 
and r2 == 0 possible, and hence may re-
sult in a non-sequentially consistent ex-
ecution. Overall, reordering any pair of 
accesses, reading values from write buf-
fers, register promotion, common sub-
expression elimination, redundant read 
elimination, and many other hardware 
and compiler optimizations commonly 
used in uniprocessors can potentially 
violate sequential consistency.2

There is some work on compiler 
analysis to determine when such trans-
formations are unsafe (for example, 
Shasha and Snir37). Compilers, howev-
er, often have little information about 
sharing between threads, making it 
expensive to forego the optimizations, 
since we would have to forego them ev-
erywhere. There is also much work on 
speculatively performing these optimi-
zations in hardware, with rollback on 
detection of an actual sequential con-
sistency violation (for example, Ceze 
et al.14 and Gharachorloo et al.21). How-
ever, these ideas are tied to specific im-
plementation techniques (for example, 
aggressive speculation support), and 
vendors have generally been unwilling 
to commit to those for the long term (es-
pecially, given non-sequentially consis-
tent compilers). Thus, most hardware 
and compilers today do not provide se-
quential consistency.

Second, while sequential consisten-
cy may seem to be the simplest model, 
it is not sufficiently simple and a much 
less useful programming model than 
commonly imagined. For example, it 
only makes sense to reason about in-
terleaving steps if we know what those 
steps are. In this case, they are typically 
individual memory accesses, a very low-
level notion. Consider two threads con-
currently assigning values of 100,000 
and 60,000 to the shared variable X on 
a machine that accesses memory 16 bits 
at a time. The final value of X in a “se-
quentially consistent” execution may 
be 125,536 if the assignment of 60,000 
occurred between the bottom and top 
half of the assignment of 100,000. At 
a somewhat higher level, this implies 
the meaning of even simple library op-
erations depends on the granularity at 
which the library carries out those op-
erations.

More generally, programmers do 
not reason about correctness of parallel 
code in terms of interleavings of indi-
vidual memory accesses, and sequential 
consistency does not prevent common 
sources of concurrency bugs arising 
from simultaneous access to the same 
shared data (for example, data races). 
Even with sequential consistency, such 
simultaneous accesses can remain dan-
gerous, and should be avoided, or at 
least explicitly highlighted. Relying on 
sequential consistency without such 
highlighting both obscures the code, 
and greatly complicates the implemen-
tation’s job.

Data-Race-Free
We can avoid both of the problems 
mentioned here by observing that:

˲˲ The problematic transformations 
(for example, reordering accesses to 
unrelated variables in Figure 1) never 
change the meaning of single-threaded 
programs, but do affect multithreaded 
programs (for example, by allowing 
both r1 and r2 to be 0 in Figure 1).

˲˲ These transformations are de-
tectable only by code that allows two 
threads to access the same data simul-
taneously in conflicting ways; for ex-
ample, one thread writes the data and 
another reads it.

Programming languages generally 
already provide synchronization mecha-
nisms, such as locks, or possibly trans-
actional memory, for limiting simulta-

neous access to variables by different 
threads. If we require that these be used 
correctly, and guarantee sequential 
consistency only if no undesirable con-
current accesses are present, we avoid 
the above issues.

We can make this more precise as 
follows. We assume the language allows 
distinguishing between synchroniza-
tion and ordinary (non-synchronization 
or data) operations (see below). We say 
that two memory operations conflict if 
they access the same memory location 
(for example, variable or array element), 
and at least one is a write.

We say that a program (on a particu-
lar input) allows a data race if it has a 
sequentially consistent execution (that 
is, a program-ordered interleaving of 
operations of the individual threads) 
in which two conflicting ordinary op-
erations execute “simultaneously.” For 
our purposes, two operations execute 
“simultaneously” if they occur next to 
each other in the interleaving and corre-
spond to different threads. Since these 
operations occur adjacently in the inter-
leaving, we know that they could equally 
well have occurred in the opposite or-
der; there are no intervening operations 
to enforce the order.

To ensure that two conflicting ordi-
nary operations do not happen simulta-
neously, they must be ordered by inter-
vening synchronization operations. For 
example, one thread must release a lock 
after accessing a shared variable, and 

Figure 1. Core of Dekker’s algorithm.  
Can r1 = r2 = 0?

Initially X=Y=0

Red Thread Blue Thread

X = 1; Y = 1;

r1 = Y; r2 = X;

Figure 2. Some executions for Figure 1.

Execution 1 Execution 2 Execution 3

X = 1; Y = 1; X = 1;

r1 = Y; r2 = X; Y = 1;

Y = 1; X = 1; r1 = Y;

r2 = X; r1 = Y; r2 = X;

// r1 == 0 // r1 == 1 // r1 == 1

// r2 == 1 // r2 == 0 // r2 == 1
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the other thread must acquire the lock 
before its access. Thus, it is also possi-
ble to define data races as conflicting ac-
cesses not ordered by synchronization, 
as is done in Java. These definitions are 
essentially equivalent.1,12

A program that does not allow a data 
race is said to be data-race-free. The da-
ta-race-free model guarantees sequen-
tial consistency only for data-race-free 
programs.1,3 For programs that allow 
data races, the model does not provide 
any guarantees.

The restriction on data races is 
not onerous. In addition to locks for 
avoiding data races, modern program-
ming languages generally also provide 
a mechanism, such as Java’s vola-
tile variables, for declaring that cer-
tain variables or fields are to be used 
for synchronization between threads. 
Conflicting accesses to such variables 
may occur simultaneously—since they 
are explicitly identified as synchroniza-
tion (vs. ordinary), they do not create a 
data race.

To write Figure 1 correctly under da-
ta-race-free, we need simply identify the 
shared variables X and Y as synchroni-
zation variables. This would require the 
implementation to do whatever is nec-
essary to ensure sequential consistency, 
in spite of those simultaneous accesses. 
It would also obligate the implementa-
tion to ensure that these synchroniza-
tion accesses are performed indivisibly; 
if a 32-bit integer is used for synchroni-
zation purposes, it should not be visibly 
accessed as two 16-bit halves.

This “sequential consistency for da-
ta-race-free programs” approach allevi-
ates the problems discussed with pure 
sequential consistency. Most important 
hardware and compiler optimizations 

continue to be allowed for ordinary ac-
cesses—care must be taken primarily 
at the explicitly identified (infrequent) 
synchronization accesses since these 
are the only ones through which such 
optimizations and granularity consid-
erations affect program outcome. Fur-
ther, synchronization-free sections of 
the code appear to execute atomically 
and the requirement to explicitly iden-
tify concurrent accesses makes it easier 
for humans and compilers to under-
stand the code. (For more detail, see our 
technical report.11)

Data-race-free does not give the 
implementation a blanket license to 
perform single-threaded program op-
timizations. In particular, optimiza-
tions that amount to copying a shared 
variable to itself; such as, introducing 
the assignment x = x, where x might 
not otherwise have been written, gener-
ally remain illegal. These are commonly 
performed in certain contexts,9 but 
should not be. 

Although data-race-free was for-
mally proposed in 1990,3 it did not see 
widespread adoption as a formal model 
in industry until recently. We next de-
scribe the evolution of industry models 
to a convergent path centered around 
data-race-free, the emergent shortcom-
ings of data-race-free, and their implica-
tions for the future.

Industry Practice and Evolution
Hardware memory models. Most hard-
ware supports relaxed models that are 
weaker than sequential consistency. 
These models take an implementation- 
or performance-centric view, where the 
desirable hardware optimizations drive 
the model specification.1,2,20 Typical 
driving optimizations relax the program 

order requirement of sequential consis-
tency. For example, Sparc’s TSO guar-
antees that a thread’s memory accesses 
will become visible to other threads in 
program order, except for the case of a 
write followed by a read. Such models 
additionally provide fence instructions 
to enable programmers to explicitly im-
pose orderings that are otherwise not 
guaranteed; for example, TSO pro-
grammers may insert a fence between 
a thread’s write and read to ensure the 
execution preserves that order.

Such a program-orderings + fences 
style of specification is simple, but 
many subtleties make it inadequate.1,2 
First, this style implies that a write is 
an atomic or indivisible operation that 
becomes visible to all threads at once. 
As Figure 3 illustrates, however, hard-
ware may make writes visible to differ-
ent threads at different times through 
write buffers and shared caches. Incor-
porating such optimizations increases 
the complexity of the memory model 
specification. Thus, the full TSO speci-
fication, which incorporates one of the 
simplest atomicity optimizations, is 
much more involved than the simple 
description here. PowerPC implements 
more aggressive forms of the optimiza-
tion, with a specification that is com-
plex and difficult to interpret even for 
experts. The x86 documentation from 
both AMD and Intel was ambiguous on 
this issue; recent updates now clarify 
the intent, but remain informal.

Second, in well-written software, a 
thread usually relies on synchronization 
interactions to reason about the order-
ing or visibility of memory accesses on 
other threads. Thus, it is usually overkill 
to require that two program-ordered 
accesses always become visible to all 
threads in the same order or a write ap-
pears atomic to all threads regardless of 
the synchronization among the threads. 
Instead, it is sufficient to preserve order-
ing and atomicity only among mutually 
synchronizing threads. Some hardware 
implementations attempt to exploit 
this insight, albeit often through ad hoc 
techniques, thereby further complicat-
ing the memory model.

Third, modern processors perform 
various forms of speculation (for ex-
ample, on branches and addresses) 
which can result in subtle and complex 
interactions with data and control de-
pendences, as illustrated in Figure 4.1,29 

Figure 3. Hardware may not execute atomic or indivisible writes.

Initially X = Y = 0

Core 1 Core 2 Core 3 Core 4

X = 1; Y = 1; r1 = X; r3 = Y;

fence; fence;

r2 = Y; r4 = X;

Can r1 = 1, r2 = 0, r3 =1, r4 = 0, violating write atomicity?

Assume a fence imposes program order. Assume core 3’s and core 4’s caches have X and Y.  
The two writes generate invalidations for these caches. These could reach the caches in a different 
order, giving the result shown and a deduction that X’s update occurs both before and after Y’s.
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Incorporating these considerations in a 
precise way adds another source of com-
plexity to program-order + fence style 
specifications. As we discuss later, pre-
cise formalization of data and control 
dependences is a fundamental obstacle 
to providing clean high-level memory 
model specifications today.

In summary, hardware memory 
model specifications have often been 
incomplete, excessively complex, and/
or ambiguous enough to be misinter-
preted even by experts. Further, since 
hardware models have largely been 
driven by hardware optimizations, they 
have often not been well-matched to 
software requirements, resulting in in-
correct code or unnecessary loss in per-
formance, as discussed later.

High-level language memory mod-
els. Ada was perhaps the first widely 
used high-level programming lan-
guage to provide first-class support for 
shared-memory parallel programming. 
Although Ada’s approach to thread syn-
chronization was initially quite differ-
ent from both that of the earlier Mesa 
design and most later language designs, 
it was remarkably advanced in its treat-
ment of memory semantics.40 It used a 
style similar to data-race-free, requiring 
legal programs to be well-synchronized; 
however, it did not fully formalize the 
notion of well-synchronized and left un-
certain the behavior of such programs.

Subsequently, until the introduc-
tion of Java, mainstream programming 
languages did not provide first-class 
support for threads, and shared-mem-
ory programming was mostly enabled 
through libraries and APIs such as Posix 
threads and OpenMP. Previous work de-
scribes why the approach of an add-on 
threads library is not entirely satisfac-
tory.9 Without a real definition of the 
programming language in the context 
of threads, it is unclear what compiler 
transformations are legal, and hence 
what the programmer is allowed to as-
sume. Nevertheless, the Posix threads 
specification indicates a model similar 
to data-race-free, although there are sev-
eral inconsistent aspects, with widely 
varying interpretations even among ex-
perts participating in standards com-
mittee discussions. The OpenMP mod-
el is also unclear and largely based on 
a flush instruction that is analogous to 
fence instructions in hardware models, 
with related shortcomings.

The Java memory model. Java pro-
vided first-class support for threads 
with a chapter specifically devoted to 
its memory model. Pugh showed that 
this model was difficult to interpret 
and badly broken—common compiler 
optimizations were prohibited and in 
many cases the model gave ambiguous 
or unexpected behavior.32 In 2000, Sun 
appointed an expert group to revise the 
model through the Java community 
process.33 The effort was coordinated 
through an open mailing list that at-
tracted a variety of participants, repre-
senting hardware and software and re-
searchers and practitioners.

It was quickly decided that the Java 
memory model must provide sequen-
tial consistency for data-race-free pro-
grams, where volatile accesses (and 
locks from synchronized methods 
and monitors) were deemed synchro-
nization.

However, data-race-free is inad-
equate for Java. Since Java is meant to 
be a safe and secure language, it cannot 
allow arbitrary behavior for data races. 
Specifically, Java must support untrust-
ed code running as part of a trusted ap-
plication and hence must limit damage 
done by a data race in the untrusted 
code. Unfortunately, the notions of safe-
ty, security, and “limited damage” in a 
multithreaded context were not clearly 
defined. The challenge with defining 
the Java model was to formalize these 
notions in a way that minimally affected 
system flexibility.

Figure 4(b) illustrates these issues. 
The program has a data race and is bug-
gy. However, Java cannot allow its reads 
to return values out-of-thin-air (for ex-
ample, 42) since this could clearly com-
promise safety and security. It would, 
for example, make it impossible to 
guarantee that similar untrusted code 
cannot return a password that it should 
not have access to. Such a scenario ap-
pears to violate any reasonable cau-
sality expectation and no current pro-
cessor produces it. Nevertheless, the 
memory model must formally prohibit 
such behavior so that future specula-
tive processors also avoid it.

Prohibiting such causality violations 
in a way that does not also prohibit 
other desired optimizations turned out 
to be surprisingly difficult. Figure 5 il-
lustrates an example that also appears 
to violate causality, but is allowed by the 

Hardware 
memory model 
specifications 
have often been 
incomplete, 
excessively 
complex, and/or 
ambiguous enough 
to be misinterpreted 
even by experts.
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common compiler optimization of re-
dundant read elimination.29 After many 
proposals and five years of spirited de-
bate, the current model was approved 
as the best compromise. This model 
allows the outcome of Figure 5, but not 
that of Figure 4(b). Unfortunately, this 
model is very complex, was known to 
have some surprising behaviors, and 
has recently been shown to have a bug. 
We provide intuition for the model be-
low and refer the reader to Manson et 
al.26 for a full description.

Common to both Figure 4(b) and 
Figure 5 are writes that are executed 
earlier than they would be with sequen-
tial consistency. The examples differ 
in that for the speculative write in the 
latter (Y=1), there is some sequentially 
consistent execution where it is exe-

cuted (the execution where both reads 
of X return 0). For Figure 4(b), there is 
no sequentially consistent execution 
where Y=42 could occur. This notion of 
whether a speculative write could occur 
in some well-behaved execution is the 
basis of causality in the Java model, and 
the definition of well-behaved is the key 
source of complexity.

The Java model tests for the legal-
ity of an execution by “committing” 
one or more of its memory accesses at 
a time—legality requires all accesses to 
commit (in any order). Committing a 
write early (before its turn in program 
order) requires it to occur in a well-
behaved execution where (informally) 
the already committed accesses have 
similar synchronization and data race 
relationships in all previously used well-

behaved executions, and the to-be com-
mitted write is not dependent on a read 
that returns its value from a data race. 
These conditions ensure that a future 
data race will never be used to justify a 
speculative write that could then later 
justify that future data race.

A key reason for the complexity in 
the Java model is that it is not opera-
tional—an access in the future can de-
termine whether the current access is 
legal. Further, many possible future 
executions must be examined to deter-
mine this legality. The choice of future 
(well-behaved) executions also gives 
some surprising results. In particular, 
as discussed in Manson29 if the code of 
one thread is “inlined” in (concatenated 
with) another thread, then the inlined 
code can produce more behaviors than 
the original. Thus, thread inlining is 
generally illegal under the Java model 
(even if there are no synchronization- 
and deadlock-related considerations). 
In practice, the prohibited optimiza-
tions are difficult to implement and this 
is not a significant performance limi-
tation. The behavior, however, is non-
intuitive, with other implications—it 
occurs because some data races in the 
original code may no longer be data rac-
es in the inlined code. This means that 
when determining whether to commit a 
write early, a read in a well-behaved ex-
ecution has more choices to return val-
ues than before (since there are fewer 
data races), resulting in new behaviors.

More generally, increasing synchro-
nization in the Java model can actually 
result in new behaviors, even though 
more synchronization conventionally 
constrains possible executions. Recent-
ly, it has been shown that, for similar 
reasons, adding seemingly irrelevant 
reads or removing redundant reads 
sometimes can also add new behaviors, 
and that all these properties have more 
serious implications than previously 
thought.36 In particular, some optimiza-
tions that were intended to be allowed 
by the Java model are in fact prohibited 
by the current specification.

It is unclear if current hardware or 
JVMs implement the problematic op-
timizations noted here and therefore 
violate the current Java model. Cer-
tainly the current specification is much 
improved over the original. Regardless, 
the situation is still far from satisfac-
tory. First, clearly, the current specifi-

Figure 4. Subtleties with (a) control and (b) data dependences. 

It is feasible for core 1 to speculate that its read of X will see 1 and speculatively write Y. Core 2 
similarly writes X. Both reads now return 1, creating a “self-fulfilling” speculation or a “causality 
loop.” Within a single core, no control dependences are violated since the speculation appears correct; 
however, most programmers will not expect such an outcome (the code is in fact data-race-free since 
no sequentially consistent execution contains a data race). Part (b) shows an analogous causal loop 
with data dependences. Core 1 may speculate X is 42 (for example, using value prediction based on 
previous store values) and (speculatively) write 42 into Y. Core 2 reads this and writes 42 into X, thereby 
proving the speculation right and creating a causal loop that generates a value (42) out-of-thin-air. 
Fortunately, no processor today behaves this way, but the memory model specification needs to reflect 
this property.

Initially X=Y=0

Core 1 Core 2

r1 = X; 
if (r1 == 1) 
	 Y = 1;

r2 = Y; 
if (Y == 1) 
	 X = 1;

Is r1 = r2 = 1 allowed?

(a)

Initially X=Y=0

Core 1 Core 2

r1 = X; 
Y = r1;

r2 = Y; 
X = r2;

Is r1 = r2 = 42 allowed?

(b)

Figure 5. Redundant read elimination must be allowed. 

Initially X=Y=0

Original Code

Thread 1 Thread 2

r1 = X; 
r2 = X; 
if (r1 == r2) 
	 Y = 1;

r3 = Y; 
X = r3;

After compiler transformation

Thread 1 Thread 2

Y = 1; 
r1 = X; 
r2 = r1; 
if (true);

r3 = Y; 
X = r3;

Is r1 = r2 = r3 = 1 allowed?

For thread 1, the compiler could eliminate the 
redundant read of X, replacing r2=X with r2=r1. 
This allows deducing that r1==r2 is always 
true, making the write of Y unconditional. Then 
the compiler may move the write to before 
the read of X since no dependence is violated. 
Sequential consistency would allow both the 
reads of X and Y to return 1 in the new but not 
the original code. This outcome for the original 
code appears to violate causality since it seems 
to require a self-justifying speculative write of Y. 
It must, however, be allowed if compilers are to 
perform the common optimization of redundant 
read elimination.
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cation does not meet its desired intent 
of having certain common optimizing 
transformations preserve program 
meaning. Second, its inherent com-
plexity and the new observations make 
it difficult to prove the correctness of 
any real system. Third, the specification 
methodology is inherently fragile—
small changes usually result in hard-to-
detect unintended consequences.

The Java model was largely guided 
by an emergent set of test cases,33 based 
on informal code transformations that 
were or were not deemed desirable. 
While it may be possible to fix the Java 
model, it seems undesirable that our 
specification of multithreaded program 
behavior would rest on such a complex 
and fragile foundation. Instead, the sec-
tion entitled “Implications for Languag-
es” advocates a fundamental rethinking 
of our approach.

The C++ memory model. The situa-
tion in C++ was significantly different 
from Java. The language itself provided 
no support for threads. Nonetheless, 
they were already in widespread use, 
typically with the addition of a library-
based threads implementation, such as 
pthreads22 or the corresponding Micro-
soft Windows facilities. Unfortunately 
the relevant specifications, for example 
the combination of the C or C++ stan-
dard with the Posix standard, left sig-
nificant uncertainties about the rules 
governing shared variables.9 This made 
it unclear to compiler writers precisely 
what they needed to implement, result-
ed in very occasional failures for which 
it was difficult to assign blame to any 
specific piece of the implementation 
and, most importantly, made it difficult 
to teach parallel programming since 
even the experts were unable to agree on 
some of the basic rules, such as whether 
Figure 4(a) constitutes a data race. (Cor-
rect answer: No.)

Motivated by these observations, 
we began an effort in 2005 to develop 
a proper memory model for C++. The 
resulting effort eventually expanded to 
include the definition of atomic (syn-
chronization, analogous to Java vola-
tile) operations, and the threads API 
itself. It is part of the current Commit-
tee Draft24 for the next C++ revision. The 
next C standard is expected to contain 
a very similar memory model, with very 
similar atomic operations.

This development took place in the 

face of increasing doubt that a Java-like 
memory model relying on sequential 
consistency for data-race-free programs 
was efficiently implementable on main-
stream architectures, at least given the 
specifications available at the time. 
Largely as a result, much of the early dis-
cussion focused on the tension between 
the following two observations, both of 
which we still believe to be correct given 
existing hardware:

˲˲ A programming language model 
weaker than data-race-free is probably 
unusable by a large fraction of the pro-
gramming community. Earlier work10 
points out, for example, that even 
thread library implementors often get 
confused when it comes to dealing ex-
plicitly with memory ordering issues. 
Substantial effort was invested in at-
tempts to develop weaker, but compa-
rably simple and usable models. We do 
not feel these were successful.

˲˲ On some architectures, notably 
on some PowerPC implementations, 
data-race-free involves substantial im-
plementation cost. (In light of modern 
(2009) specifications, the cost on oth-
ers, notably x86, is modest, and limited 
largely to atomic (C++) or volatile 
(Java) store operations.)

This resulted in a compromise mem-
ory model that supports data-race-free 
for nearly all of the language. However, 
atomic data types also provide low-lev-
el operations with explicit memory or-
dering constraints that blatantly violate 
sequential consistency, even in the ab-
sence of data races. The low-level op-
erations are easily identified and can 
be easily avoided by non-expert pro-
grammers. (They require an explicit  
memory_order_ argument.) But they 
do give expert programmers a way to 
write very carefully crafted, but portable, 
synchronization code that approaches 
the performance of assembly code.

Since C++ does not support sand-
boxed code execution, the C++ draft 
standard can and does leave the seman-
tics of a program with data races com-
pletely undefined, effectively making it 
erroneous to write such programs. As 
we point out in Boehm and Adve12 this 
has a number of (mostly) performance-
related advantages, and better reflects 
existing compiler implementations.

In addition to the issues raised 
in the “Lessons Learned” section, it 
should be noted that this really only 

pushes Java’s issues with causality into 
a much smaller and darker corner of 
the specification; exactly the same is-
sues arise if we rewrite Figure 4(b) with 
C++ atomic variables and use low-
level memory_order_relaxed op-
erations. Our current solution to this 
problem is simpler, but as inelegant 
as the Java one. Unlike Java, it affects a 
small number of fairly esoteric library 
calls, not all memory accesses.

As with the Java model, we feel that 
although this solution involves compro-
mises, it is an important step forward. It 
clearly establishes data-race-free as the 
core guarantee that every programmer 
should understand. It defines precisely 
what constitutes a data race. It finally 
resolves simple questions such as: If x.a 
and x.b are assigned simultaneously, 
is that a data race? (No, unless they are 
part of the same contiguous sequence 
of bit-fields.) By doing so, it clearly iden-
tifies shortcomings of existing compil-
ers that we can now begin to remedy.

Reconciling language and hard-
ware models. Throughout this process, 
it repeatedly became clear that cur-
rent hardware models and supporting 
fence instructions are often at best a 
marginal match for programming lan-
guage memory models, particularly in 
the presence of Java volatile fields 
or C++ atomic objects. It is always pos-
sible to implement such synchroniza-
tion variables by mapping each one to 
a lock, and acquiring and releasing the 
corresponding lock around all accesses. 
However, this typically adds an over-
head of hundreds of cycles to each ac-
cess, particularly since the lock accesses 
are likely to result in coherence cache 
misses, even when only read accesses 
are involved.

Volatile and atomic variables are 
typically used to avoid locks for exactly 
these reasons. A typical use is a flag that 
indicates a read-only data structure has 
been lazily initialized. Since the initial-
ization has to happen only once, nearly 
all accesses simply read the atomic/
volatile flag and avoid lock acquisi-
tions. Acquiring a lock to access the flag 
defeats the purpose.

On hardware that relaxes write ato-
micity (see Figure 3), however, it is often 
unclear that more efficient mappings 
(than the use of locks) are possible; even 
the fully fenced implementation may 
not be sequentially consistent. Even 
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on other hardware, there are apparent 
mismatches, most probably caused by 
the lack of a well-understood program-
ming language model when the hard-
ware was designed. On x86, it is almost 
sufficient to map synchronization loads 
and stores directly to ordinary load and 
store instructions. The hardware pro-
vides sufficient guarantees to ensure 
that ordinary memory operations are 
not visibly reordered with synchroniza-
tion operations. However it fails to pre-
vent reordering of a synchronization 
store followed by a synchronization 
load; thus this implementation does 
not prevent the incorrect outcome for 
Figure 1.

This may be addressed by translat-
ing a synchronization store to an ordi-
nary store instruction followed by an ex-
pensive fence. The sole purpose of this 
fence is to prevent reordering of the syn-
chronization store with a subsequent 
synchronization load. In practice, such 
a synchronization load is unlikely to fol-
low closely enough (Dekker’s algorithm 
is not commonly used) to really con-
strain the hardware. But the only avail-
able fence instruction constrains all 
memory reordering around it, includ-
ing that involving ordinary data access-
es, and thus overly constrains the hard-
ware. A better solution would involve 
distinguishing between two flavors of 
loads and stores (ordinary and synchro-
nization), roughly along the lines of 
Itanium’s ld.acq and st.rel.23 This, 
however, requires a change to the in-
struction set architecture, usually a dif-
ficult proposition.

We suspect the current situation 
makes the fence instruction more ex-
pensive than necessary, in turn moti-
vating additional language-level com-
plexity such as C++ low-level atomics or 
lazySet() in Java.

Lessons Learned
Data-race-free provides a simple and 
consistent model for threads and 
shared variables. We are convinced it 
is the best model today to target during 
initial software development. Unfortu-
nately, its lack of any guarantees in the 
presence of data races and mismatch 
with current hardware implies three 
significant weaknesses:

Debugging. Accidental introduction 
of a data race results in “undefined be-
havior,” which often takes the form of 

nating the debugging issues associated 
with data races.

Unfortunately, these both take us to 
active research areas, with no clear off-
the-shelf solutions. We discuss some 
possible approaches here.

Implications for Languages
In spite of the dramatic convergence 
in the debate on memory models, 
the state of the art imposes a difficult 
choice: a language that supposedly has 
strong safety and security properties, 
but no clear definition of what value a 
shared-memory read may return (the 
Java case), versus a language with clear 
semantics, but that requires abandon-
ing security properties promised by lan-
guages such as Java (the C++ case). Un-
fortunately, modern software needs to 
be both parallel and secure, and requir-
ing a choice between the two should 
not be acceptable.

A pessimistic view would be to 
abandon shared-memory altogether. 
However, the intrinsic advantages of a 
global address space are, at least anec-
dotally, supported by the widespread 
use of threads despite the inherent 
challenges. We believe the fault lies not 
in the global address space paradigm, 
but in the use of undisciplined or “wild 
shared-memory,” permitted by current 
systems. 

Data-race-free was a first attempt to 
formalize a shared-memory discipline 
via a memory model. It proved inad-
equate because the responsibility for 
following this discipline was left to the 
programmer. Further, data-race-free 
by itself is, arguably, insufficient as a 
discipline for writing correct, easily 
debuggable, and maintainable shared-
memory code; for example, it does not 
completely eliminate atomicity viola-
tions or non-deterministic behavior.

Moving forward, we believe a critical 
research agenda to enable “parallelism 
for the masses” is to develop and pro-
mote disciplined shared-memory models 
that:

˲˲ are simple enough to be easily teach-
able to undergraduates; that is, mini-
mally provide sequential consistency to 
programs that obey the required disci-
pline;

˲˲ enable the enforcement of the disci-
pline; that is, violations of the discipline 
should not have undefined or horren-
dously complex semantics, but should 

surprising results later during program 
execution, possibly long after the data 
race has resulted in corrupted data. Al-
though the usual immediate result of 
a data race is that an unexpected, and 
perhaps incomplete value is read, or 
that an inconsistent value is written, 
we point out in prior work12 that other 
results, such as wild branches, are also 
possible as a result of compiler opti-
mizations that mistakenly assume the 
absence of data races. Since such races 
are difficult to reproduce, the root cause 
of such misbehavior is often difficult to 
identify, and such bugs may easily take 
weeks to track down. Many tools to aid 
such debugging (for example, CHESS30 
and RaceFuzzer35) also assume sequen-
tial consistency, somewhat limiting 
their utility.

Synchronization variable perfor-
mance on current hardware. As dis-
cussed, ensuring sequential consis-
tency in the presence of Java volatile 
or C++ atomic on current hardware 
can be expensive. As a result, both C++, 
and to a lesser extent Java, have had to 
provide less expensive alternatives that 
greatly complicate the model for ex-
perts trying to use them.

Untrusted code. There is no way to 
ensure data-race-freedom in untrusted 
code. Thus, this model is insufficient 
for languages like Java.

An unequivocal lesson from our ex-
periences is that for programs with data 
races, it is very difficult to define seman-
tics that are easy to understand and yet 
retain desired system flexibility. While 
the Java memory model came a long 
way, its complexity, and subsequent 
discoveries of its surprising behaviors, 
are far from satisfying. Unfortunately, 
we know of no alternative specification 
that is sufficiently simple to be consid-
ered practical. Second, rules to weaken 
the data-race-free guarantee to better 
match current hardware, as through 
C++ low-level atomics, are also more 
complex than we would like.

The only clear path to improvement 
here seems to be to eliminate the need 
for going beyond the data-race-free 
guarantee by:

˲˲ Eliminating the performance moti-
vations for going beyond it, and

˲˲ Ensuring that data races are never 
actually executed at runtime, thus both 
avoiding the need to specify their be-
havior and greatly simplifying or elimi-
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be caught and returned back to the pro-
grammer as illegal;

˲˲ are general-purpose enough to ex-
press important parallel algorithms and 
patterns; and

˲˲ enable high and scalable perfor-
mance.

Many previous programmer-produc-
tivity-driven efforts have sought to raise 
the level of abstraction with threads; for 
example, Cilk,19 TBB,25 OpenMP,39 the 
recent HPCS languages,28 other high-
level libraries, frameworks, and APIs 
such as java.util.concurrent and the C++ 
boost libraries, as well as more domain-
specific ones. While these solutions go 
a long way toward easing the pain of 
orchestrating parallelism, our memory-
models driven argument is deeper—we 
argue that, at least so far, it is not pos-
sible to provide reasonable semantics 
for a language that allows data races, 
an arguably more fundamental prob-
lem. In fact, all of these examples either 
provide unclear models or suffer from 
the same limitations as C++/Java. These 
approaches, therefore, do not meet our 
enforcement requirement. Similarly, 
transactional memory provides a high-
level mechanism for atomicity, but the 
memory model in the presence of non-
transactional code faces the same is-
sues as described here.38

At the heart of our agenda of disci-
plined models are the questions: What 
is the appropriate discipline? How to 
enforce it?

A near-term transition path is to 
continue with data-race-free and focus 
research on its enforcement. The ideal 
solution is for the language to elimi-
nate data races by design (for example, 
Boyapati13); however, our semantics dif-
ficulties are avoided even with dynamic 
techniques (for example, Elmas et al.,17  
Flanagan and Freund,18 or Lucia et al.27) 
that replace all data races with excep-
tions. (There are other dynamic data 
race detection techniques, primarily for 
debugging, but they do not guarantee 
complete accuracy, as required here.)

A longer-term direction concerns 
both the appropriate discipline and its 
enforcement. A fundamental challenge 
in debugging, testing, and reasoning 
about threaded programs arises from 
their inherent non-determinism—an 
execution may exhibit one of many pos-
sible interleavings of its memory ac-
cesses. In contrast, many applications 

written for performance have determin-
istic outcomes and can be expressed 
with deterministic algorithms. Writing 
such programs using a deterministic 
environment allows reasoning with se-
quential semantics (a memory model 
much simpler than sequential consis-
tency with threads).

A valuable discipline, therefore, is to 
provide a guarantee of determinism by 
default; when non-determinism is in-
herently required, it should be request-
ed explicitly and should not interfere 
with the deterministic guarantees for 
the remaining program.7 There is much 
prior work in deterministic data paral-
lel, functional, and actor languages. Our 
focus is on general-purpose efforts that 
continue use of widespread program-
ming practices; for example, global 
address space, imperative languages, 
object-oriented programming, and 
complex, pointer-based data structures.

Language-based approaches with 
such goals include Jade34 and the recent 
Deterministic Parallel Java (DPJ).8 In 
particular, DPJ proposes a region-based 
type and effect system for determinis-
tic-by-default semantics—“regions” 
name disjoint partitions of the heap 
and per-method effect annotations 
summarize which regions are read and 
written by each method. Coupled with 
a disciplined parallel control structure, 
the compiler can easily use the effect 
summaries to ensure that there are no 
unordered conflicting accesses and 
the program is deterministic. Recent 
results show that DPJ is applicable to a 
range of applications and complex data 
structures and provides performance 
comparable to threads code.8

There has also been much recent 
progress in runtime methods for deter-
minism.4,5,16,31

Both language and runtime ap-
proaches have pros and cons and still 
require research before mainstream 
adoption. A language-based approach 
must establish that it is expressive 
enough and does not incur undue pro-
grammer burden. For the former, the 
new techniques are promising, but the 
jury is still out. For the latter, DPJ is at-
tempting to alleviate the burden by us-
ing a familiar base language (currently 
Java) and providing semiautomatic 
tools to infer the required programmer 
annotations.41 Further, language anno-
tations such as DPJ’s read/write effect 

Data-race-free 
provides a simple 
and consistent 
model for threads 
and shared 
variables. We 
are convinced 
that it is the best 
model today to 
target during 
initial software 
development.
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summaries are valuable documenta-
tion in their own right—they promote 
lifetime benefits for modularity and 
maintainability, arguably compensat-
ing for upfront programmer effort. Fi-
nally, a static approach benefits from no 
overhead or surprises at runtime.

In contrast, the purely runtime ap-
proaches impose less burden on the 
programmer, but a disadvantage is 
that the overheads in some cases may 
still be too high. Further, inherently, a 
runtime approach does not provide the 
guarantees of a static approach before 
shipping and is susceptible to surpris-
es in the field.

We are optimistic that the recent 
approaches have opened up many 
promising new avenues for disciplined 
shared-memory that can overcome the 
problems described here. It is likely 
that a final solution will consist of a ju-
dicious combination of language and 
runtime features, and will derive from a 
rich line of future research.

Implications for Hardware
As discussed earlier, current hard-
ware memory models are an imperfect 
match for even current software (data-
race-free) memory models. ISA changes 
to identify individual loads and stores 
as synchronization can alleviate some 
short-term problems. An established 
ISA, however, is difficult to change, es-
pecially when existing code works most-
ly adequately and there is not enough 
experience to document the benefits of 
the change.

Academic researchers have taken 
an alternate path that uses complex 
mechanisms (for example, Blundell et 
al.6) to speculatively remove the con-
straints imposed by fences, rolling 
back the speculation when it is detect-
ed that the constraints were actually 
needed. While these techniques have 
been shown to work well, they come 
at an implementation cost and do not 
directly confront the root of the prob-
lem of mismatched hardware/software 
views of concurrency semantics.

Taking a longer-term perspective, 
we believe a more fundamental solu-
tion to the problem will emerge with 
a co-designed approach, where future 
multicore hardware research evolves 
in concert with the software models re-
search discussed in “Implications for 
Languages.” The current state of hard-

ware technology makes this a particu-
larly opportune time to embark on such 
an agenda. Power and complexity con-
straints have led industry to bet that fu-
ture single-chip performance increases 
will largely come from increasing num-
bers of cores. Today’s hardware cache-
coherent multicore designs, however, 
are optimized for few cores—power-ef-
ficient, performance scaling to several 
hundreds or a thousand cores without 
consideration of software requirements 
will be difficult.

We view this challenge as an op-
portunity to not only resolve the prob-
lems discussed in this article, but in 
doing so, we expect to build more ef-
fective hardware and software. First, 
we believe that hardware that takes 
advantage of the emerging disciplined 
software programming models is likely 
to be more efficient than a software-
oblivious approach. This observation 
already underlies the work on relaxed 
hardware consistency models—we 
hope the difference this time around 
will be that the software and hardware 
models will evolve together rather than 
as retrofits for each other, providing 
more effective solutions. Second, hard-
ware research to support the emerging 
disciplined software models is also 
likely to be critical. Hardware support 
can be used for efficient enforcement 
of the required discipline when static 
approaches fall short; for example, 
through directly detecting violations of 
the discipline and/or through effective 
strategies to sandbox untrusted code.

Along these lines, we have recently 
begun the DeNovo hardware project at 
Illinois15 in concert with DPJ. We are 
exploiting DPJ-like region and effect 
annotations to design more power-  
and complexity-efficient, software-
driven communication and coher-
ence protocols and task scheduling 
mechanisms. We also plan to provide 
hardware and runtime support to deal 
with cases where DPJ’s static informa-
tion and analysis might fall short. As 
such co-designed models emerge, 
ultimately, we expect them to drive the 
future hardware-software interface in-
cluding the ISA.

Conclusion
This article gives a perspective based 
on work collectively spanning approxi-
mately 30 years. We have been repeat-

We believe that 
hardware that 
takes advantage 
of the emerging 
disciplined software 
programming 
models is likely to 
be more efficient 
than a software 
oblivious approach.
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edly surprised at how difficult it is to 
formalize the seemingly simple and 
fundamental property of “what value a 
read should return in a multithreaded 
program.” Sequential consistency for 
data-race-free programs appears to 
be the best we can do at present, but it 
is insufficient. The inability to define 
reasonable semantics for programs 
with data races is not just a theoretical 
shortcoming, but a fundamental hole 
in the foundation of our languages 
and systems. It is well accepted that 
most shipped software has bugs and it 
is likely that much commercial multi-
threaded software has data races. De-
bugging tools and safe languages that 
seek to sandbox untrusted code must 
deal with such races, and must be given 
semantics that reasonable computer 
science graduates and developers can 
understand.

We believe it is time to rethink how 
we design our languages and systems. 
Minimally, the system, and preferably 
the language, must enforce the absence 
of data races. A longer term, potentially 
more rewarding strategy is to rethink 
higher-level disciplines that make it 
much easier to write parallel programs 
and that can be enforced by our languag-
es and systems. We also believe some 
of the messiness of memory models to-
day could have been averted with closer 
cooperation between hardware and 
software. As we move toward more dis-
ciplined programming models, there is 
also a new opportunity for a hardware/
software co-designed approach that re-
thinks the hardware/software interface 
and the hardware implementations of 
all concurrency mechanisms. These 
views embody a rich research agenda 
that will need the involvement of many 
computer science sub-disciplines, in-
cluding languages, compilers, formal 
methods, software engineering, algo-
rithms, runtime systems, and hardware.
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