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Abstract
Recently, flash-based solid-state drives (SSDs) have become
standard options for laptop and desktop storage, but their
impact on enterprises has not been studied. Provisioning
enterprise storage is challenging. It requires optimizingfor
the performance, capacity, power and reliability needs of the
expected workload, all while minimizing financial costs.

This paper, through analysis of a number of enterprise
workloads, provides insights as to when, and how, SSDs
should be incorporated into the enterprise storage hierarchy.
We describe an automated tool that, given device models and
a block-level trace of a workload, determines the least-cost
storage configuration. It analyzes the factors that drive the
configuration choice, and computes the price points at which
different SSD-based solutions will become cost-effective.

Our optimization framework is flexible and can be used to
design a range of storage hierarchies. When applied to cur-
rent workloads and prices we find the following in a nutshell:
for many enterprise workloads capacity dominates provi-
sioning costs and the current per-gigabyte price of SSDs is
between a factor of 3 and 3000 times higher than needed
to be cost-effective for full replacement. We find that SSDs
can provide some benefit as an intermediate tier for caching
and write-ahead logging in a hybrid disk-SSD configuration.
Surprisingly, the power savings achieved by SSDs are com-
parable to power savings from using low-power SATA disks.

1. Introduction
Solid-state drives (SSDs) are rapidly making inroads into the
laptop market and are likely to encroach on the desktop stor-
age market as well. How should this technology be incorpo-
rated into enterprise storage? Enterprise storage is complex
and different, both in scale and requirements, from laptop
and desktop storage. It must meet workload requirements —
which vary widely — in terms of capacity, performance, and
reliability while minimizing cost.

While solid-state storage has advantages such as fast
random-access reads and low power consumption, it also has
disadvantages such as high cost per gigabyte. Recently there
have been many proposals on exploiting these characteristics
of solid-state storage to redesign storage systems, eitherre-
placing disks entirely (Prabhakaran et al. 2008; Woodhouse

2001) or using solid-state storage to augment disk storage,
e.g., to store file system metadata (Miller et al. 2001). How-
ever, there has been no analysis of the costs and benefits of
these architectures for real enterprise workloads.

Intuitively, SSDs are favored by workloads with a high
demand for random-access I/Os, especially reads, and a rel-
atively low capacity requirement. However, this observation
by itself ignores two considerations. First, for any given
workload we need to quantify the “IOPS requirement” as
well as the capacity, bandwidth, and fault-tolerance require-
ments and then evaluate the tradeoffs between device types.
Second, “performance at any cost” is a luxury that enter-
prises can rarely afford to pursue. Hence, in general, perfor-
mance must be scaled appropriately by the dollar cost.

In this paper we take the point of view of a storage ad-
ministrator who wishes to re-provision or upgrade a set of
storage volumes. This administrator must answer two ques-
tions. First, what are the capacity, performance, and fault-
tolerance requirements of the workload? Second, what is the
least-cost configuration that will satisfy the requirements?
Since this paper is focused on the tradeoffs between SSDs
and mechanical disks, we consider three types of configura-
tion for each volume: disk-only, SSD-only, and hybrid.

1.1 Goals, non-goals and contributions

The main contribution of this paper is an analysis of the
SSD/disk tradeoff for real enterprise workload traces. We
show that the benefits of SSDs are workload-dependent,
and give an understanding of the parameter space for the
tradeoffs involved.

An additional contribution is our use of a modeling and
optimization approach to answer questions about SSDs. Op-
timization and solvers combined with performance models
have been used previously to automate storage provision-
ing (Anderson et al. 2005; Strunk et al. 2008), but to our
knowledge this is the first work to use them specifically to
examine the use of SSDs. Our contribution lies in the novelty
and the importance of this new application domain, rather
than on our optimization techniques or performance models,
which are simple first-order models.

It is important to note that our analysis does not attempt
to forecast price trends, which are driven by both economic
and technological forces. Instead we evaluate different SSD-
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based configurations for several real enterprise workloads
at today’s prices; and we also compute the price points at
which SSD-based configurations that are currently too ex-
pensive will become cost-competitive in the future. We also
note that disks and SSDs are only part of the cost of sup-
porting enterprise storage; other costs include networking,
enclosures, cooling, etc. and are not addressed in this paper.

Broadly we found that SSDs will fully replace disks once
the SSDs’ cost per GB drops by 1–3 orders of magnitude.
Waiting for full replacement is not necessary, however. Us-
ing the solid-state storage as a caching tier is more promis-
ing in the short to medium-term: a small amount of solid-
state storage used as a read cache benefits up to 25% of our
traced workloads, and for 10% of them this can be done cost-
effectively already at today’s SSD prices. Solid-state storage
is very effective as a write-ahead log, potentially reducing
write response times and requiring only modest capacity and
bandwidth. However, current flash-based devices wear out
after a certain number of writes per block, and we found this
to be a concern when absorbing an entire volume’s writes on
a small solid-state device.

Surprisingly, we also found that although SSD-based so-
lutions consume less power than enterprise disk based so-
lutions, the resulting savings are 1–3 orders of magnitude
lower than the initial investment required. Hence, power sav-
ings are unlikely to be the main motivation in moving from
disks to SSDs. We found low-speed SATA disks to be com-
petitive with SSDs in terms of performance and capacity per
watt. Interestingly these disks also offer much higher capac-
ity and performance per dollar than either enterprise disks
or SSDs. However, they are generally believed to have lower
reliability and the tradeoff between cost and reliability re-
quires further retrospective studies.

2. Background and related work
This section provides a brief overview of solid-state drives.
It then describes the enterprise workload traces that driveour
analysis. It concludes with related work.

2.1 Solid-state drives

Solid-state drives (SSDs) provides durable storage through
a standard block I/O interface such as SCSI or SATA. They
have no mechanical moving parts and hence no position-
ing delays. Access latencies are sub-millisecond, compared
to many milliseconds for disks. Commercially available
SSDs today are based on NAND flash memory (hence-
forth referred to as “flash”). While other solid-state tech-
nologies have been proposed, such as magnetic RAM (M-
RAM) or phase change memory (PCM) (Intel News Release
2008), these are not commercially available yet and their
cost/performance tradeoffs are unknown. The analysis in
this paper uses device models extracted from flash-based
SSDs; our optimization framework would apply equally to
other solid-state technologies.

Server Function Vols GB
usr User home dirs 3 1367
proj Project dirs 5 2094
print Print server 2 452
hwm Hardware monitoring 2 39
resproj Research projects 3 277
proxy Firewall/web proxy 2 89
src1 Source control 3 555
src2 Source control 3 355
webstg Web staging 2 113
term Terminal server 1 22
websql Web/SQL server 4 441
media Media server 2 509
webdev Test web server 4 136
exchange Corporate mail 9 6706

Table 1. Enterprise servers traced.

NAND flash memory has two unusual limitations, al-
though both of these can be mitigated by using layout remap-
ping techniques at the controller or file system level. The
first limitation is that small, in-place updates are inefficient,
due to the need to erase the flash in large (64–128 KB)
units before it can be rewritten. This property results in
poor random-access write performance at the block inter-
face level, for the current generation of SSDs. However, with
appropriate remapping techniques (Agrawal et al. 2008; Bir-
rell et al. 2007; Woodhouse 2001), random-access writes
can be converted to sequential writes, which have good per-
formance on SSDs. The second limitation of NAND flash
is wear: the reliability of the flash degrades after many
repeated write-erase cycles. Most commercially available
flash products are rated to withstand 10,000–100,000 write-
erase cycles. Using one of a variety of wear-leveling algo-
rithms (Gal and Toledo 2005), the wear can be spread evenly
across the flash memory to maximize the lifetime of the de-
vice as a whole. These algorithms impose a small overhead
in the form of additional writes for compaction and defrag-
mentation; however, to a first order, we can assume that a
flash device does not wear out until the amount of data writ-
ten to it equals the size of the flash memory multiplied by
the number of rated cycles.

2.2 Enterprise workload traces

Our analysis is explained in the context of real enterprise
workload traces. These traces were collected at the block
level, below the file system buffer cache but above the stor-
age tier. The traces covered 45 volumes across 14 servers.
Table 1 shows the servers traced, and the number of volumes
and total storage capacity for each.

The traces were collected from two different data centers.
The first 13 servers shown in Table 1 are in a small data
center servicing about 100 on-site users (Narayanan et al.
2008a), and covering a range of services typical of small
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to medium enterprise data centers: file servers, database
servers, caching web proxies, etc. Each server was config-
ured with a RAID-1 system volume and one or more RAID-
5 data volumes: in all, the 36 volumes traced contained 179
disks. These traces cover every block-level I/O request ser-
viced by each volume on each server for a period of one
week, starting from 5pm GMT on the 22nd February 2007.
The number of requests traced was 434 million, of which
70% were reads.

The second set of traces are from the last server listed
in Table 1: a production Exchange e-mail server serving
around 5000 users (Worthington and Kavalanekar 2008).
They cover 9 volumes over a period of 1 day (starting from
10:39pm GMT on the 12th December 2007). Each volume
on this server is configured as a RAID-10 array, except for
the system volume which is configured as a RAID-1 array.
In total there were 102 disks in the Exchange volumes. The
traces contain 61 million requests, of which 43% are reads.

We note that there are other kinds of enterprise workloads
(e.g., OLTP) not captured by our traces. Our optimization
framework can be applied to block-level traces of any work-
load and our tool can automatically perform the analysis.

2.3 Related work

There has been considerable research both in optimizing
solid-state storage systems and into hybrid systems with
both solid-state and disk storage. For example, there have
been proposals for optimizing B-trees (Nath and Kansal
2007; Wu et al. 2004) and hash-based indexes (Zeinalipour-
Yazti et al. 2005) for flash-based storage in embedded sys-
tems; to partition databases between flash and disks (Koltsi-
das and Viglas 2008); to optimize database layout for flash
storage (Lee et al. 2008); to use flash to replace some of the
main memory buffer cache (Kgil and Mudge 2006); to use
M-RAM to store file system metadata (Miller et al. 2001);
and to build persistent byte-addressable memory (Wu and
Zwaenepoel 1994). These studies tend to emphasis “better
performance at all cost”; ours is a tradeoff analysis of mul-
tiple metrics normalized by dollar and power cost. Further-
more, we move beyond benchmarks and use real enterprise
workloads in our evaluation.

In the laptop storage space, vendors are also manufactur-
ing hybrid disks (Samsung 2006) that incorporate a small
amount of flash storage within the disk. Windows Vista’s
ReadyDrive technology (Panabaker 2006) makes use of
these hybrid drives to speed up boot and application launch,
as well as to save energy by spinning the disk down.

The closest work to ours in its aims is that by Baker et
al. (Baker et al. 1992) exploring the use of battery-backed
non-volatile RAM (NVRAM) in the Sprite distributed file
system to reduce write traffic to disks. NVRAM is widely
adopted in enterprise storage, especially in high-end diskar-
ray controllers, but due to high costs is usually deployed in
small sizes. The analysis was based on traces collected in
1991 on four file servers running a log-structured file sys-

Workload 

requirements

Device models

Solver

Workload 

traces

Benchmarks

Recommended 

config

Business 

objectives

Vendor 

specs

Figure 1. Tool steps

tem serving 40 disk-less clients in a university research en-
vironment. Enterprise storage workloads in 2007, such as
those used in this paper, are substantially different: theyin-
clude web servers, web caches, and database back ends for
web services, with orders of magnitude more storage than in
1991. Furthermore, flash memory today is an order of mag-
nitude cheaper than NVRAM and raises the possibility of
replacing disks entirely. This paper explores the new space
of workloads and technologies.

3. Modeling the solution space
This section outlines the modeling and solver framework
that is used to analyze the solution space of having SSDs
in a storage architecture. Figure 1 illustrates the basic steps
taken in coming up with a solution. First,workload require-
ments are collected. Some of them may be easily expressed
in terms of business objectives, e.g., nines for availability.
Others, such as performance expectations, can be automati-
cally extracted by our tool from workload I/O traces. Next,
device models are created for the hardware under consider-
ation. Such models capture device characteristics like dollar
cost, power consumption, device reliability (usually reported
by the vendor, and then refined over time as more empirical
data is available (Schroeder and Gibson 2007)), and perfor-
mance, which our tool automatically extracts using synthetic
micro-benchmarks. Finally, a solver component finds a con-
figuration that minimizes cost while meeting the other objec-
tives. The configuration is either a single-tier configuration
— an array of devices of some type — or a two-tier con-
figuration where the top and bottom tiers could use different
device types (e.g., SSDs and disks).

3.1 Extracting workload requirements

Workload requirements make up the first set of inputs to the
solver. Table 2 lists the requirements used in this paper. Sev-
eral of them, such as capacity, availability and reliability can
be straightforward to specify in a service level objective.Per-
formance, however, can be more difficult. Our tool helps an
administrator understand a workload’s inherent performance
requirements by extracting historical performance metrics.

A workload could be characterized in terms of its mean
and peak request rates; its read/write ratio; and its ratio
of sequential to non-sequential requests. However, just us-
ing these aggregate measures can hide correlations between
these workload attributes, e.g., a workload might have many
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Metric Unit
Capacity GB
Random-access reads IOPS
Random-access writesIOPS
Random-access I/Os IOPS
Sequential reads MB/s
Sequential writes MB/s
Availability Number of nines
Reliability Number of nines

Table 2. Workload requirements.

random-access reads and streaming writes but few streaming
reads and random-access writes. Hence, we prefer to con-
sider random-access reads, random-access writes, sequen-
tial reads, and sequential writes each as a separate work-
load requirement. In addition we consider the total random-
access I/O rate: for mixed read/write workloads, this could
be higher than the individual read or write I/O rates.

Many workloads, including the ones analyzed in this pa-
per, have time-varying load, e.g., due to diurnal patterns.
Hence, provisioning storage for the mean request rates will
be inadequate. Our models primarily consider percentiles of
offered load rather than means. By default we use the peak
request rate, i.e. the100th percentile, but other percentiles,
such as the95th can also be used. All the analyses in this pa-
per use peak sequential transfer and non-sequential I/O rates
on a time scale of 1 min.

Computing the peak read (or write) transfer bandwidth
from a trace is straightforward: it is the maximum read (or
write) rate in MB/s observed over any minute in the trace.
Usually, this corresponds to a period of sequential transfer. If
the workload has no sequential runs this will reflect a lower
rate of transfer, indicating that sequential transfer is not a
limiting factor for this workload.

When computing the “IOPS requirement” of a work-
load, we must take care to filter out sequential or near-
sequential runs. Since mechanical disks in particular can
sustain a much higher rate of sequential I/Os than random-
access ones, sequential runs could cause an overestimate of
the true random-access IOPS requirement of the workload.
In general, the locality pattern of a sequence of I/Os could
fall anywhere between completely random and completely
sequential: however, to keep the models simple we choose to
classify each I/O in the workload trace as either sequentialor
non-sequential. We use LBN distance between successively
completed I/Os to classify the I/Os: any I/O that is within
512 KB of the preceding I/O is classified as sequential. This
threshold is small compared to the typical disk track size, but
large enough to correctly detect sequential readahead, which
in Windows could have a small amount of reordering. The
read, write, and total IOPS requirements of the workloads
are then based on the non-sequential I/O rates averaged over
a 1 min time scale.

Metric Unit
Capacity GB
Performance IOPS (read, write)

MB/s (read, write)
Reliability MTBF
Wear rate(SSDs) GB/day
Power consumption W (idle and active)
Purchase cost $

Table 3. Device model attributes.

3.2 Device models

Device models make up the second set of inputs to the solver.
Table 3 shows the metrics our tool uses to characterize a
device. The models are empirical rather than analytical. Our
tool runs a sequence of synthetic tests to extract all the
performance attributes. Sequential performance is measured
using sequential transfers (for disks, requests are issuedon
the outermost tracks and innermost tracks — the difference
in bandwidth can be as high as 50%. However, we only
report on bandwidth on the outermost tracks in this paper).
Random-access performance is based on issuing concurrent
4 KB requests uniformly distributed over the device, with a
concurrency level of 256. The aim is to measure the number
of IOPS that the device can sustain under high load. All
synthetic tests are short in duration, around 20 seconds. We
found this sufficient to verify what vendors were reporting.

SSD random-access writes Our tool considers read and
write performance as separate metrics. In general, mechani-
cal disks have equivalent read and write performance. How-
ever, current SSDs perform much worse on random-access
writes than random-access reads or sequential I/O. This
problem can be solved by making these writes sequential
through block-level remapping (Agrawal et al. 2008) or a
log-structured file system (Rosenblum and Ousterhout 1991;
Woodhouse 2001). We have also implemented a block-level
remapping scheme (Narayanan et al. 2008b). Since SSDs do
not have any positioning delays, read performance is not af-
fected by these layout changes. Some overhead is added
for garbage-collection or log cleaning: enterprise work-
loads in general have sufficient idle time due to diurnal
patterns to perform these maintenance tasks without impact-
ing foreground workloads (Golding et al. 1995; Narayanan
et al. 2008b). For completeness we included a simple “log-
structured SSD” model in our tool, which assumes all writes
are made sequential and that log cleaning is a free back-
ground activity.

Scaling Enterprise storage volumes usually consist of
multiple homogeneous devices in a RAID configuration.
This gives fault-tolerance for a configurable number of disk
failures (usually one) as well as additional capacity and per-
formance. Our device models are based on the assumption
that both capacity and performance will scale linearly with
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Figure 2. Two-tier architecture using SSDs and disks.
Writes go to a log-structured partition on flash and even-
tually are flushed to disk. Non-streaming, frequently read
“hot” blocks are serviced from flash, whereas other reads
are serviced from the disk layer. Updates to “hot” blocks are
first written to the log, then reflected on the read cache.

the number of devices added. This assumption can be vali-
dated in practice using the same synthetic tests above. The
level of fault-tolerance is a separately configurable parame-
ter, and the model automatically adds in the one additional
device which does not contribute additional performance or
capacity but does add to the fault-tolerance.

Reliability and fault-tolerance In general, storage device
reliability is hard to predict. Recent work in this area has
shown that traditional reliability metrics need to be extracted
through empirical observation after a number of years in
operation (Jiang et al. 2008; Schroeder and Gibson 2007).
Such empirical numbers are still lacking for SSDs.

It is known that NAND flash memories suffer fromwear:
the reliability of the memory decreases as it is repeatedly
erased and overwritten. Typical enterprise SSDs specify a
wear tolerance of 10,000–100,000 write cycles. We convert
this vendor metric into awear rate: the average number of
GB/day that can be written to the device without exceeding
the wear tolerance limit over the device lifetime (we use a
default lifetime of 5 years).

Since this paper is focused on solid-state storage, and
wear is a novel, SSD-specific phenomenon, we include it in
our device models. Currently we do not model other failures,
such as mechanical failures in disks. Given the widespread
use of RAID for fault-tolerance, we do not believe that reli-
ability differences are an important factor for provisioning,
however verifying this remains future work.

3.3 Tiered models

The cost and performance characteristics of solid-state mem-
ory are in between those of main memory (DRAM) and tra-
ditional storage (disks). Hence, it also makes sense to con-
sider solid-state devices not just as a replacement for disks,
but also as an intermediate storage tier between main mem-
ory and disks. This tier could cache more data than DRAM,
since it is cheaper per gigabyte than DRAM, and hence im-
prove read performance. Unlike DRAM, solid-state memo-

ries also offer persistence. Hence, this tier could also be used
to improve write performance, by using it as a write-ahead
log which is lazily flushed to the lower tier. Several storage
and file system architectures (Miller et al. 2001; Panabaker
2006) have been proposed to use solid-state memory as a
cache and/or a write-ahead log. This paper quantifies the
benefits of these approaches for enterprise workloads.

Our tool supports hybrid configurations where solid-state
devices are used as a transparent block-level intermediate
tier. Caching and write-ahead logging could also be done at a
higher level, e.g., at the file system, which would allow poli-
cies based on semantic knowledge, such as putting meta-data
in the cache. Such policies however would require changes
to the file system, and our block-level workload traces do not
include such semantic information. We compute the benefits
of transparent block-level caching and logging without as-
suming any changes in the file system or application layer.

Figure 2 shows the flexible architecture we assume. The
solid-state tier is divided into a write-ahead log and a larger
read cache area. In practice, the write-ahead log is smaller
than the read cache; also, the location of the write log would
be periodically moved to level the wear across the NAND
storage device. The write-ahead log could also be replicated
over multiple SSDs depending on workload fault-tolerance
requirements. However, the read cache has only clean blocks
and does not need such fault tolerance. Our models assume
the caching and write-ahead logging policies described be-
low, which are based on our experiences with the traced
workloads as well as key first-order properties of SSDs and
disks. They can easily be extended to cover other policies.

3.3.1 Read caching

Our workloads are server I/O workloads and hence have
already been filtered through large main-memory buffer
caches. Hence, there is little short-term temporal locality
in the access patterns. However, there could be benefit in
caching blocks based on long-term access frequency. Also,
the benefit of caching is highest for random-access reads:
disk subsystems are very effective at servicing streaming
runs. Based on these observations, we use the following
caching policy. We rank the logical blocks in each trace ac-
cording to the number of random accesses to each; accesses
are classified as random or sequential as described previ-
ously in Section 3.1. The total number of reads (random and
sequential) is used as a secondary ranking metric. This pol-
icy acts like an “oracle” by computing the most frequently
accessed blocks before they are accessed: hence it gives a
reasonable upper bound on achievable hit rates.

For a given cache size ofH blocks, the tool splits the
workload trace into two, such that accesses to the hottestH

blocks go to the top tier, and the remainder to the bottom
tier. It then computes the best configuration independently
for each tier. In theory, each tier could be provisioned with
any device type; in practice, the only solutions generated are
those with a solid-state tier on top of a disk tier. By iterating
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over values ofH, the solver finds the single- or two-tiered
configuration that satisfies workload requirements and has
the lowest total cost.

3.3.2 Write-ahead log

It is straightforward to absorb writes to a storage volume
on a much smaller solid-state device; the written data can
then be flushed in the background to the underlying volume.
For low response times and high throughput, the solid-state
device should be laid out using a log structure, for example
by using a versioned circular log which we implemented
transparently at the block level (Narayanan et al. 2008b).
Writes can be acknowledged as soon as they are persistent in
the log. The log space can be reused when the writes become
persistent on the underlying volume.

Write-ahead logging can be combined with read caching
as shown in Figure 2. In this case all writes, and all reads
of hot blocks, are redirected to the solid-state tier. To guar-
antee sequential performance for the writes however, writes
are sent to a separately allocated log area on the solid-state
device. These are then lazily flushed to the disk tier, and
if appropriate to the read cache. In theory, this could cause
double-buffering of blocks in the log and in the cache; how-
ever, as we will see in Section 4, the size of the write-ahead
log required for our workloads is very small and hence this
is not a concern.

Background flushes can take advantage of batching, coa-
lescing, overwriting of blocks, and low-priority I/O to reduce
the I/O load on the lower tier. The efficacy of these optimiza-
tions depends on the workload, the flushing policy, and the
log size. Hence, we evaluate both extremes of this spectrum:
a “write-through log” where writes are sent simultaneously
to the disk tier and to the log, and a “write-back” log where
the lazy flushes to the disk tier are assumed to be free.

To find the cost of adding a write-ahead log (with or with-
out read caching) the tool must estimate both the capacity
as well as the performance required from the caching tier.
The log capacity is measured as the size of the largest write
burst observed in the workload trace: the maximum amount
of write data that was ever in flight one time. The perfor-
mance requirements are derived by splitting the workload
traces according to the caching/logging policy: writes are
sent to both tiers whereas reads are split between the tiers
according to the blocks that they access.

3.4 Solver

Given workload requirements, and per-device capabilitiesas
well as costs, the solver finds the least-cost configuration that
will satisfy the requirements. Any cost metric can be used:
in this paper we use purchase cost in dollars and power con-
sumption in watts. These could be combined into a single
dollar value based on the anticipated device lifetime and en-
ergy costs; in our analyses we show the two costs separately.
The number of devices requiredN(d,w) of any particular
device typed to satisfy the requirements of workloadw is:

N(d,w) = max
m

⌈

rm(w)

sm(d)

⌉

+ F (w) (1)

wherem ranges over the different metrics of the workload
requirement: capacity, random-access read rate, etc.rm(w)
is the workload’s requirement for the metricm (measured
in GB, MB/s, IOPS, etc.) andsm(d) is the device’s score
on that metric measured in the same units asrm(w). In
other words, the number of devices is determined by the
most costly metric to satisfy. The workload’s fault-tolerance
requirementF (w) is specified separately as the number of
redundant devices required.

The best devicedopt(w) for a given workloadw is then

dopt(w) = argmin
d

N(d,w) · C(d) (2)

whereC(d) is the cost metric being minimized, e.g., dollar
cost. The cost of this configuration is then

Copt(w) = N(dopt(w), w) · C(dopt(w)) (3)

To allow for tiered solutions, the workload trace is split
into two separate workloadswtop(w,H) and wbot(w,H),
where H is the sizeH of the top tier. The performance
metrics for the two workloads are extracted from the two
derived traces. The lower tier has the same capacity and
fault-tolerance requirements as the original workload. For
the top tier the capacity requirement is simplyH; the fault-
tolerance is set to 0 by default for the read cache. The cost
of such a tiered configuration is then given by:

Ctier(w,H) = Copt(wtop(w,H)) + Copt(wbot(w,H))
(4)

and the minimum-cost tiered configuration has a cost

Copt/tier(w) = min
H

Ctier(w,H) (5)

In theory,H is a continuously varying parameter. How-
ever, in practice, solid-state memories are sold in discrete
sizes, and very large solid-state memories are too expensive
to be part of a least-cost tiered solution. Additionally, each
value ofH requires us to reprocess the input traces: the most
expensive step in the tool chain. Hence, our tool searches a
small number of discrete values forH: powers of 2 ranging
from 4–128 GB.

The solver is currently implemented as 1580 unoptimized
lines of C and Python. The run time is dominated by the
time to split each workload trace for each value ofH, and to
extract the workload requirements: this is linear in the size
of the trace file, which uses a text format. The traces used in
this paper vary in size from 40 KB–10 GB; the median trace
(255 MB) took 712 s to process on a 2 GHz AMD Opteron.

4. Results
This section has four parts. First, it presents the device char-
acteristics extracted by the tool from a number of representa-
tive enterprise-class storage devices, and compares them in
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Device Price Capacity Power Sequential xfer Random access Wear rate
(US$) (GB) (W) (MB/s) (IOPS) (GB/day)

Read Write Read Write
Memoright MR 25.2 739 32 1.0 121 126 6450 351 500

509 16 1.0
389 8 1.0

Seagate Cheetah 10K 339 300 10.1 85 84 277 256 n/a
123 146 7.8

Seagate Cheetah 15K 172 146 12.5 88 85 384 269 n/a
349 300 12.5

Seagate Momentus7200∗ 150 200 0.8 64 54 102 118 n/a
53 160 0.8

Table 4. Storage device characteristics.∗All devices except the Momentus are enterprise-class.

terms of their capabilities per dollar of purchase cost. Sec-
ond, it analyzes the hypothesis of whether disks can be fully
replaced by SSDs for each workload at a lower dollar cost,
while satisfying workload requirements. The third part is a
similar analysis for SSDs as an intermediate storage tier used
as a cache or write-ahead log. The final part is an analysis
and discussion of power considerations, including a compar-
ison of the enterprise-class SSDs and disks with a low-power
SATA disk.

4.1 Analysis of device characteristics

Table 4 shows the characteristics of four representative de-
vices used in this paper: the Memoright MR 25.2 is a re-
cently released enterprise class SSD; the Seagate Cheetah is
a commonly used high-end enterprise class disk available in
two speeds, 10,000 rpm and 15,000 rpm. The Seagate Mo-
mentus is a low-power, low-speed drive that is not currently
used for enterprise storage. We defer discussion of its poten-
tial merits in enterprise until Section 4.4.

For each device we considered multiple versions with dif-
ferent capacities. The dollar costs are based on US on-line
retail prices as of June 2008 and the power consumptions are
based on vendor documentation. The performance character-
istics were extracted using the micro-benchmarks described
in Section 3 from one version of each device type (the first
one listed in each group).

Thus each device is characterized by multiple dimen-
sions: capacity, sequential read bandwidth, etc. Our tool con-
siders all these dimensions as well as all the variants of
each device (different capacities, log-structured SSDs, etc.).
However, to understand the tradeoffs between the devices
it helps to visualize the most important features. Figure 3
shows the three most important axes for this paper, normal-
ized by dollar cost: capacity (measured in GB/$), sequential
read performance (MB/s/$), and random-access read perfor-
mance (IOPS/$). For each device type, we chose the version
having the highest value along each axis. The figure does not
show write performance: in general read and write perfor-
mance are equivalent for the mechanical disks, and sequen-

GB/$

Memoright MR-25.2

Seagate Cheetah 10K

Seagate Cheetah 15K

MB/s/$IOPS/$

Figure 3. Device capabilities

tial read and write performance are equivalent for the SSD.
Furthermore, the poor random-write performance of SSDs
can be avoided by converting random writes to sequential
writes using log-structured techniques (Birrell et al. 2007;
Rosenblum and Ousterhout 1991; Woodhouse 2001).

Several observations can be made at this stage, even
without considering workload requirements. SSDs pro-
vide higher random-access performance per dollar (IOPS/$)
whereas the enterprise disks win on capacity and sequential
performance per dollar. It seems likely that the main fac-
tor in choosing SSDs versus disks is the trade-off between
the capacity requirement and the “IOPS requirement” of the
workload. Sequential bandwidth also favors disks, but the
difference is smaller than the order-of-magnitude differences
on the other two axes.

Interestingly, the faster-rotating 15K disk has no perfor-
mance advantage over the 10K disk when performance is
normalized by dollar cost. This suggests that there could be
room for even slower-rotating disks in the enterprise market
(this will lead us to consider a slow disk in Section 4.4).

4.2 Replacing disks with SSDs

A natural question this section seeks to answer is “what does
it take to replace disks with SSDs?” Whole-disk replacement
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Figure 4. IOPS/capacity trade-off (log-log scale)

has the appeal of requiring no architectural changes to the
storage subsystem. This section answers the question by
using the provisioning tool to find the least-cost device type
for each workload.

Figure 4 shows a plot of the two key metrics: read IOPS
on they-axis and capacity on thex-axis. Each workload
is represented by a point: we see that none of them fall in
the top-left region, which is the space where replacing disks
with SSDs would be the best choice. The separating line
represents points where the cost for capacity equals the IOPS
cost. Using the device parameters in Table 4, the Cheetah
10K was the best choice for all 45 workloads. In all cases
the provisioning cost was determined by either the capacity
or the read IOPS requirement. In other words, the sequential
transfer and random-access write requirements are never
high enough to dominate the provisioning cost.

At today’s prices SSDs cannot replace enterprise disks for
any of our workloads: the high per-gigabyte price of SSDs
today makes them too expensive even for the smallest, most
IOPS-intensive workloads. At what capacity/cost will SSDs
become competitive with enterprise disks? Figure 5 shows
this price point (expressed in GB/$) for each volume, on a
log scale. For reference, it also shows the current price points
for the Memoright SSD and the Cheetah 10K disk.

The break-even point varies from 3–3000 times the ca-
pacity/cost of today’s SSDs. Some smaller volumes, espe-
cially system volumes (numbered 0 in the figure) require
only a 2–4x reduction in SSD price to consider replacement
of disks by SSDs. However, most volumes will require a re-
duction of 1–3 orders of magnitude. For 21 of 45 volumes,
the break-even point lies beyond the current capacity per
dollar of the Cheetah 10K: this is because capacity domi-
nates the provisioning cost of these volumes even when us-
ing disks. Assuming that the per-gigabyte cost of both disks
and SSDs will decrease in the future with disks continuing
to be cheaper per GB than SSDs, at some point the IOPS
requirement will become the cost-determining factor.
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Figure 5. Price point at which SSDs can replace disks (log
scale). 0 is the system volume, the others contain data.

4.3 Two-tiered configurations

This section answers the question “what are the bene-
fits/costs of augmenting the existing storage hierarchy with
SSDs?” Specifically, we consider the two-tiered configura-
tion described in Section 3.3, where the SSD tier functions
as a write-ahead log as well as a read cache for frequently
read, randomly-accessed blocks. Our analysis shows that the
amount of storage required for the write-ahead log is small
compared to SSD sizes available today. Thus it is reasonable
to allocate a small part of the solid-state memory for use as
a write-ahead log and use the rest as a read cache. We first
present the analysis for the write-ahead log, and then for a
combined write-ahead log/read cache tier.

4.3.1 Write-ahead log

Across all volumes, the maximum write burst size, and hence
the maximum space required for the write-ahead log, was
less than 96 MB. The peak write bandwidth required was
less than 55 MB/s: less than half the sequential write band-
width of the Memoright SSD. Thus, a single SSD can easily
host the write-ahead log for a volume using only a fraction
of its capacity. Even with fault tolerance added, the capacity
and bandwidth requirement is low. We repeated the analy-
sis, but this time sharing a single write-ahead log across all
volumes on the same server. The peak capacity requirement
increased to 230 MB and the peak bandwidth requirement
remained under 55 MB/s. The peak bandwidth requirement
did not increase significantly because across volumes peaks
are not correlated.

This analysis is based on a “write-through” log, which
does not reduce the write traffic to the disk tier. We also re-
analyzed all the workloads assuming a “write-back” log that
absorbs all write traffic, i.e., assuming that the background
flushes are entirely free. We found that this reduction in write
traffic did not reduce the provisioning requirement for the
disk tier for any of the workloads; this was expected since
the limiting factor for the workloads was always capacity or
read performance. Thus, while a larger log with a lazy write-
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Figure 6. SSD price points for caching versus replacement

back flush policy can reduce load on the disk tier, the load
reduction is not enough to reduce the provisioning cost.

Given the small amount of log space required, it seems
clear that if there is any solid-state memory in the system, a
small partition should be set aside as a write-ahead log for
the disk tier. This can improve write response times but will
not reduce the cost of provisioning the disk tier.

4.3.2 Write-ahead log with read cache

Capacity is clearly an obstacle to replacing disks entirely
with SSDs. However, if a small solid-state cache can absorb
a large fraction of a volume’s load, especially the random-
read load, then we could potentially provision fewer spindles
for the volume. This would be cheaper than using (more)
DRAM for caching, since flash is significantly cheaper per
gigabyte than DRAM. It is important to note we are not
advocating replacing main memory buffer caches with solid-
state memory. Our workload traces are taken below the main
memory buffer cache: hence we do not know how effective
these caches are, or the effect of removing them.

The blocks to store in the read cache are selected accord-
ing to random-access read frequency as described in Sec-
tion 3. Reads of these blocks are sent to the top (SSD) tier,
and other reads to the disk tier. All writes are sent simulta-
neously to both tiers, with the top tier serving as the low-
latency write-ahead log in “write-through” mode.

We used the solver to test several tiered configurations for
each workload, with the capacity of the solid-state tier setto
4, 8, 16, 32, 64 and 128 GB. In all cases the performance of
a single SSD was sufficient to handle the I/O load placed on
the solid-state tier. For 16 out of 45 volumes, the caching tier
also reduced the number of spindles required for the disk tier.
However, for the remaining 29 volumes, caching does not
reduce the cost of the disk tier: these volumes are already
provisioned for capacity and/or have little cacheability at the
block level (perhaps due to main-memory buffer caches.)

At the current SSD capacity/cost, only 3 volumes ben-
efited overall. For all the others, the cost of the cache tier

outweighed any savings in the disk tier. For each volume,
we evaluated the lowest SSD capacity/cost at which a two-
tier solution could compete with a single, disk-based tier:the
cache size to achieve this varied across volumes. Figure 6(a)
shows this as a cumulative distribution across volumes; for
comparison we also show the CDF of the price points re-
quired for complete replacement of disks. Figure 6(b) shows
the ratio of the SSD price point required for a tiered configu-
ration to that required for full replacement of disks by SSDs.
If the ratio is close to 1, then caching is of little benefit, since
the price point at which caching becomes cost-effective will
also allow full replacement. However, for at least 13 of the
workloads, the price point ratio is much lower than 1 and
caching will become cost-effective before replacement does.

4.4 Power

The previous sections used purchase cost as the metric to
minimize while satisfying workload requirements. Here we
look at the implications of minimizing power consumption
instead. We made the conscious choice to analyze, in addi-
tion to the enterprise disks and SSDs, a non-enterprise SATA
disk in this section: the Seagate Momentus 7200. We are
aware that SATA and SCSI disks are different, especially in
terms of their reliability (Anderson et al. 2003). However,we
chose not to ignore a SATA-based solution for two reasons.
First, there is much work on storage clusters of commod-
ity cheap hardware, where reliability is handled at a higher
level. Second, recent empirical research on the reliability of
disk drives has shown inconclusive results (Jiang et al. 2008;
Schroeder and Gibson 2007). However, we caution that the
analyses here are based primarily on performance, capacity
and power metrics. More empirical evidence is required to
make any strong claim about reliability.

Figure 7 shows the four devices compared by capacity,
sequential bandwidth, and IOPS, all normalized by the de-
vice’s power consumption (for the performance axes we use
the read performance). We use idle power numbers (device
ready/disks spinning, but no I/O), since our workloads have
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Figure 7. Device capabilities per watt

considerable idleness over their duration. Using active power
does not make much difference in our calculations. The main
takeaway is that, when scaled per watt, SSDs have much bet-
ter performance and comparable capacity to the enterprise
disks. However, the low-power, low-speed Momentus does
far better than the SSD in terms of gigabytes per watt. We
also found that the Momentus significantly outperformed the
Cheetahs on capacity and performance per dollar; however,
the price advantage might just reflect market forces, whereas
power is more a property of the underlying technology.

For our workloads, the tool reports the SSD as the lowest-
power (single-tier) solution for 11 out of 45 workloads, and
chooses the Momentus for the remaining 34. Again, read
IOPS and capacity were the limiting factors for all work-
loads. Figure 8 shows the workloads as points on these two
axes: the graph is divided according to the device providing
the lowest-power solution.

The analysis so far has been independent of energy prices.
In general however, the cost of power consumption must be
balanced against that of provisioning the hardware, by com-
puting the overall cost over the device lifetime or upgrade
period (typically 3–5 years). Figure 9 shows the “5-year
break-even energy price” (in $/kWh), i.e., the energy price
at which the power savings over 5 years of an SSD-based
solution will equal its additional purchase cost. We show the
break-even price for the SSD against the Cheetah for all 45
volumes, and for the SSD against the Momentus for the 11
volumes for which the SSD-based solution was more power-
efficient. For reference we show the commercial US energy
price as of March 2008 (US Department of Energy 2008).

The main takeaway is that the break-even points are 1–3
orders of magnitude above the current energy prices: even if
we allow a 100% overhead in energy costs for cooling and
power supply equipment, we need energy prices to increase
by factor of 5 for the power savings of SSDs to justify the
initial cost for even the smallest volumes. Thus, perhaps sur-
prisingly, power consumption alone is not a compelling ar-
gument for SSDs; however, falling SSD per-gigabyte prices,
and an increase in energy prices motivate replacement of
smaller volumes with SSDs sooner rather than later.
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Figure 8. IOPS/capacity trade-off when optimizing for
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4.5 Reliability and wear

In this paper so far we have considered performance, ca-
pacity, dollar cost and power consumption as the metrics
of interest for provisioning storage. While reliability is also
an important metric, we believe the pervasive use of RAID
for fault-tolerance we believe makes it a less important fac-
tor. Moreover, the factors that determine disk reliabilityare
still not conclusively known, and are largely estimated from
empirical studies (Jiang et al. 2008; Schroeder and Gibson
2007). Such empirical evidence is lacking for SSDs.

However, flash-based SSD vendors do provide a wear-
out metric for their devices, as the number of times any
portion of the flash memory can be erased and rewritten
before the reliability begins to degrade. Based on this and
the long-term write rate seen by each of our workload vol-
umes, we computed the time at which this limit would be
reached, for each volume. Figure 10 shows the CDF of this
wear-out time in years on a log scale. Note that this as-
sumes that in the long term, the wear is evenly distributed
over the flash memory: this can be done through various
wear-leveling techniques (Birrell et al. 2007; Gal and Toledo
2005). These techniques generally avoid in-place updates
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and hence require some additional background writes for de-
fragmentation. However, even if we conservatively assume a
high overhead of 50% (one background write for every two
foreground writes), the wear-out time is well above 5 years
for all volumes, and above 100 years for the majority of vol-
umes. Hence, we do not expect that wear will be a major
contributor to the total cost of SSD-based storage.

Wear can be a concern, however, for flash used as a write-
ahead log. Here a small flash device absorbs a relatively
large number of writes. The dotted line in Figure 10 shows
the CDF of estimated wear-out time for a 1 GB flash used
as a write-ahead log for each of our workloads. 32 out of 45
workloads have a wear-out time under 5 years. Thus, while
flash-based SSDs can easily provide the performance and
capacity required for a write-ahead log, wear is a significant
concern here and will be need to be addressed. If a large
flash memory is being used as a combined read cache and
write log, one potential solution is to periodically rotatethe
location of the (small) write log on the flash.

5. Conclusion
The main contribution of this paper is an analysis of the com-
plex SSD/disk tradeoffs (capacity, performance, power, reli-
ability and dollar cost) guided by an optimization framework
and real enterprise workload traces. From a system’s per-
spective our framework helps in making informed decisions
on how to best configure a storage system.

This work can be extended in several ways. Better relia-
bility models for low-power disks and SSDs would enhance
the analyses in this paper. The device models and solver also
have room for improvement. Currently we use simple first-
order performance models and an exhaustive-search solver,
and we treat performance requirements as hard constraints.
Each of these aspects could be extended, for example by us-
ing more complex device models (Bucy et al. 2008), heuris-
tic solvers (Anderson et al. 2005), and utility functions to
describe tradeoffs (Strunk et al. 2008).
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