
Automatic Device Driver Synthesis with Termite

Leonid Ryzhyk∗† Peter Chubb∗† Ihor Kuz∗† Etienne Le Sueur∗† Gernot Heiser∗†‡
∗NICTA∗ †The University of New South Wales ‡Open Kernel Labs

Sydney, Australia
leonid.ryzhyk@nicta.com.au

Abstract
Faulty device drivers cause significant damage through
down time and data loss. The problem can be mitigated
by an improved driver development process that guar-
antees correctness by construction. We achieve this by
synthesising drivers automatically from formal specifi-
cations of device interfaces, thus reducing the impact of
human error on driver reliability and potentially cutting
down on development costs.

We present a concrete driver synthesis approach and
tool called Termite. We discuss the methodology, the
technical and practical limitations of driver synthesis,
and provide an evaluation of non-trivial drivers for
Linux, generated using our tool. We show that the per-
formance of the generated drivers is on par with the
equivalent manually developed drivers. Furthermore,
we demonstrate that device specifications can be reused
across different operating systems by generating a driver
for FreeBSD from the same specification as used for
Linux.

1 Introduction

Faulty device drivers are a major source of operating sys-
tem failures, causing significant damage through down-
time and data loss [10, 24]. A number of static [1, 3, 8]
and runtime [9, 12, 15, 16, 24, 28] techniques have been
proposed to detect and isolate driver faults. These tech-
niques, however, suffer from serious limitations. Exist-
ing static analysis tools are capable of detecting a lim-
ited subset of errors, such as common OS API rule vio-
lations [1] and certain memory allocation and synchroni-
sation errors [8]. Stronger correctness properties, such as
memory safety, race-freedom, and correct use of device
interfaces, are currently beyond the reach of these tools.
Runtime isolation architectures are capable of detecting

∗NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excellence program.

broader classes of errors, but do so at the cost of intro-
ducing a CPU overhead in the order of 100% [4,9,24].

An alternative to fault detection and isolation is an im-
proved driver development process that guarantees cor-
rectness by construction. One way to achieve this is
to synthesise device drivers automatically from a device
specification, thus reducing the impact of human error
on driver reliability and potentially cutting down on de-
velopment costs. We have implemented a tool called Ter-
mite that does exactly that. Termite combines two formal
specifications: one describing the device’s registers and
behaviour, and one describing the interface between the
driver and the OS, to synthesise a complete driver imple-
mentation in C. With Termite, the problem of writing a
correct driver is reduced to one of obtaining or develop-
ing correct specifications.

Separating device description from OS-related details
is a key aspect of our approach. It allows the people
with the most appropriate skills and knowledge to de-
velop specifications: device interface specifications can
be developed by device manufacturers, and OS interface
specifications by the OS developers who have intimate
knowledge of the OS and the driver support it provides.

In a hand-written device driver, interactions with the
device and with the OS are intermingled, leading to
drivers that are harder to write and harder to maintain.
Termite specifications each deal with a single concern,
and thus can be simpler to understand and debug than a
full-blown driver.

Device interface specifications are independent of any
OS, so drivers for different OSes can be synthesised from
a single specification developed by a device manufac-
turer, thus avoiding penalizing less popular OSes with
poor-quality drivers. A further benefit of device and OS
separation is that any change in the OS need only be ex-
pressed in the OS-interface specification in order to re-
generate all drivers for that OS. This is particularly in-
teresting for Linux, which frequently changes its device
driver interfaces from release to release.

1

mailto:leonid.ryzhyk@nicta.com.au

Generating code from formal specifications reduces
the incidence of programming errors in drivers. Assum-
ing that the synthesis tool is correct, synthesised code
will be free of many types of programming errors, in-
cluding memory management and synchronisation bugs,
missing return value checks, etc. A bug in a driver can
occur only as a result of an error in the specification. The
likelihood of errors due to incorrect OS interface specifi-
cations is reduced because these specifications are shared
by many drivers and are therefore subject to extensive
testing. Errors in device specifications can be reduced
by using model checking techniques to establish formal
correspondence between the actual device behaviour, as
defined in its register-transfer-level description, and the
Termite specification. However, this capability is not yet
supported in Termite.

While the above discussion is concerned with the tech-
nical implications of automatic driver synthesis, the real-
world success of this approach depends on device manu-
facturers and OS developers adopting it.

For device manufacturers, our approach has the po-
tential to reduce driver development effort while increas-
ing driver quality. Furthermore, once developed, a driver
specification will allow drivers to be synthesised for any
supported OS, thus increasing the OS support for the de-
vice.

For OS developers, the quality and reputation of their
OS depends greatly on the quality of its device drivers:
major OS vendors suffer serious financial and image
damage because of faulty drivers [10]. Driver quality
can be improved by providing and encouraging the use
of tools for automatic driver synthesis as part of driver
development toolkits. Since Termite drivers can co-
exist with conventional hand-written drivers, migration
to automatically-generated drivers can be implemented
gradually.

Another concern for OS developers is that acceptance
and success of their OS depends largely on compatibil-
ity with a wide range of devices. Since device interface
specifications are OS independent, providing support for
driver synthesis allows the reuse of all existing Termite
device interface specifications, leading to potential in-
creases in an operating system’s base of compatible de-
vices.

In this paper we make the following contributions.
First, we present an approach to driver synthesis based on
separate specifications of device and OS interfaces. Sec-
ond, we define a formal language for specifying such in-
terfaces. Third, we describe an algorithm based on game
theory to generate drivers from the specifications. Fi-
nally, we evaluate the proposed approach based on our
experience synthesising Linux and FreeBSD drivers for
two real devices: a Secure Digital (SD) card host con-
troller, and a USB-to-Ethernet adapter.

The rest of this paper is structured as follows. We start
with a high-level overview of the synthesis methodol-
ogy in Section 2. Section 3 describes the specification
language of Termite, while Section 4 presents a sample
driver specification illustrating how real device and OS
interfaces are defined in this language. Section 5 outlines
our driver synthesis algorithm, followed by a qualitative
and quantitative evaluation of the Termite approach and
the resulting drivers in Section 6. Section 7 discusses the
limitations of the current Termite implementation. Fi-
nally, we survey related work in Section 8 and draw con-
clusions in Section 9.

2 Overview of driver synthesis

Termite generates an implementation of a driver based
on a formal specification of its device and OS interfaces.
The device interface specification describes the program-
ming model of the device, including its software-visible
states and behaviours. The OS interface specification de-
fines services that the driver must provide to the rest of
the system, as well as OS services available to the driver.
Given these specifications, Termite produces a driver im-
plementation that translates any valid sequence of OS re-
quests into a sequence of device commands.

This is similar to the task accomplished by a driver
developer when writing the driver by hand. In contrast
to automatic driver synthesis, however, manual develop-
ment relies on informal device and OS documentation
rather than on formal specifications: The device interface
description is found in the device data sheet, whereas
the OS interface is documented in the driver developer’s
manual and in the form of comments in the OS source
code.

In Termite, the device and the OS interfaces are spec-
ified independently and are comprised of different kinds
of objects: the device interface consists of hardware reg-
isters and interrupt lines, whereas the OS interface is a
collection of software entrypoints and callbacks. How
can Termite establish a mapping between the two inter-
faces, while keeping them independent?

Our solution is inspired by conventional driver de-
velopment practices. Consider, for example, the task
of writing a Linux driver for the RTL8139D Ethernet
controller. Linux requires all Ethernet drivers to imple-
ment thehard start xmit entrypoint described in
the Linux driver developer’s manual [6]:

int (*hard start xmit) (...);
Method that initiates thetransmission of a

packet.

In order to implement this function, the driver devel-
oper consults with the RTL8139D device data sheet [19],

2

Device−class

Device

OS

Termite

Device driver

.c

specification

specification

specification

Figure 1: Driver synthesis with Termite. Solid arrows
indicate inputs and outputs of the synthesis tool; dashed
arrows indicate references from the device and OS spec-
ifications to the device-class specification.

which describes the transmit operation of the controller
as follows:

Setting bit 13 of the TSD register triggers the
transmission of a packet, whose address is con-
tained in the TSAD register and whose size is
given by bits 0-12 of the TSD register.

While the two documents were written independently
by different authors, both of them refer to the act of
packet transmission, which is the common behaviour of
all Ethernet controller devices and is independent of the
specific device architecture and OS personality. It allows
the driver developer to relate the two specifications and to
correctly implement thehard start xmit function
by setting the appropriate device registers.

To generalise this example, both the device and the
OS specifications refer to actions performed by the de-
vice in the external physical world, e.g., transmission of
a network packet, writing a block of data to the disk, or
drawing a pixel on the screen. The device specification
uses these actions to describe how the device reacts to
various software commands. Likewise, the OS specifi-
cation mentions external device actions when describing
the semantics of OS requests.

Together, the set of such external actions characterises
a class of similar devices, such as Ethernet controllers
or SCSI disks, and is both device and OS-independent.
In Termite, these actions are formalised in a separate
device-class specification, which is provided to the syn-
thesis tool along with the device and OS specifications.

Figure 1 shows a high-level view of the synthesis pro-
cess. The following subsections elaborate on each of the
three specifications involved in driver synthesis.

2.1 Device-class specifications

An informal description of a device class can usually
be found in the relevant I/O protocol standard. For ex-

ample, the Ethernet LAN standard, maintained by the
IEEE 802.3 working group [13], describes common be-
haviours of Ethernet controller devices, including packet
transmission and reception, link status detection, speed
autonegotiation, etc. Other I/O protocol standards in-
clude SCSI, USB, AC’97, IEEE 1394, SD, etc.

In Termite, device-class functionality is formalised as
a set of events. The Ethernet controller device class, for
example, includes such events as packet transmission,
completion of autonegotiation, and link status change.

Since device-class specifications must be agreed upon
by all device vendors, we envisage that it can be main-
tained by the appropriate regulatory body as part of the
corresponding I/O protocol standard.

In practice, many I/O devices are not 100% standards
compliant. For example, some devices support non-
standard configuration parameters accessible to applica-
tions viaioctl() or similar mechanisms. If such a
configuration parameter is shared by several devices, it
can be included in the standard device-class specification
as an optional feature that need not be supported by all
implementations. In case this feature is unique to the de-
vice, the device manufacturer has to develop an extended
version of the device-class specification describing the
given feature. The extension must be strictly incremen-
tal, so that it can be combined with an existing OS inter-
face specification that is not aware of the new function.
The device manufacturer must also develop an extended
OS interface specification in order to enable access to
this function in a specific OS.

2.2 Device specifications

The device specification models the software view of the
device behaviour. It describes device registers accessi-
ble to the driver and device reactions to writing or read-
ing of the registers. A device’s reaction depends on its
current register values and state, e.g., whether the device
has been initialised, is busy handling another request, etc.
The device reaction may include actions such as updat-
ing register values, generating interrupts, and performing
one or more external actions defined in the device-class
specification.

A device specification can be constructed in several
ways. First, it can be derived from informal device docu-
mentation. Hardware vendors often release detailed data
sheets, describing the interface and operation of the de-
vice. Such a data sheet is intended to provide sufficient
information to enable a third party to develop a driver for
the device.

Figure 2 shows a specification of the transmit com-
mand of the RTL8139D device derived from its data
sheet (for now, we write the specification in English,
rather than in the formal Termite language, which will be

3

1. The TSD register is updated by the software.

2. If bit 13 of the TSD register changed from 0 to 1, the
device performs a packet transfer. The physical ad-
dress and size of the packet are determined by TSD
and TSAD registers.

3. The device sets a flag in the interrupt status register to
signal successful completion of the transfer.

4. An interrupt signal is generated.

Figure 2: Specification of the transmit operation of the
RTL8139D controller derived from its data sheet.

introduced in Section 3). Here, steps 1, 3, and 4 represent
actions of the device interface, whereas the packet trans-
fer performed in step 2 is a device-class event. The latter
cannot be observed directly by the software, but can be
controlled indirectly. Specifically, the driver can initiate
packet transfer by setting bit 13 of the TSD register and
is notified of the transfer completion by an interrupt and
a flag in the status register.

The problem with this approach to obtaining device
specifications is that informal device documentation sel-
dom undergoes adequate quality assurance. As a result,
it tends to be incomplete and inaccurate. A specifica-
tion derived from such a data sheet is likely to reproduce
these defects, in addition to extra ones introduced in the
process of formalisation.

Another approach to the construction of a device spec-
ification is to distil it from an existing driver implemen-
tation provided by the device vendor or a third party. The
source code of the driver defines sequences of commands
that must be issued to the driver in order to perform a
specific operation. A Termite specification of the device
is obtained by separating these device control sequences
from OS-specific details.

Figure 3 shows a specification of the RTL8139D trans-
mit operation extracted from the source code of the Linux
driver for this device. While this specification is equiv-
alent to the one in Figure 2, it is substantially different
in style. The specification obtained from the data sheet
describes how the device reacts to software commands
in different states, but does not explicitly define the order
in which these commands should be issued to achieve a
particular goal. This order is established automatically
by the synthesis algorithm. In contrast, the specification
derived from the existing driver source code specifies an
explicit command sequence. The Termite synthesis tool,
described in this paper, can handle both types of specifi-
cations.

The main drawback of this approach to constructing
device specifications is that it relies on someone to de-
velop at least one driver for the device manually and thus

To transmit a network packet:

1. Write the packet address to the TSAD register;

2. Write the TSD register, storing the packet size in bits
0 to 12 to and setting bit 13 to 1;

3. Wait for an interrupt from the controller;

4. Read the interrupt status register to make sure that the
transfer was successful;

5. Packet transfer complete.

Figure 3: Specification of the transmit operation of the
RTL8139D controller derived from a reference driver im-
plementation.

contradicts our vision of eventually replacing manual
driver development with automatic synthesis. Besides,
similarly to informal documentation, a device driver may
contain errors, which are carried over to the resulting
specification. However, the likelihood of such errors in a
well-tested driver is much lower.

The third way to construct a device specification is to
derive it from the register-transfer-level (RTL) descrip-
tion of the device written in a hardware description lan-
guage (HDL). This requires abstracting away most of
the internal logic and modelling only interface modules,
responsible for interaction with the host CPU. In prin-
ciple, such abstraction can be computed automatically,
thus further reducing the effort required to create a de-
vice driver. At the moment, however, support for auto-
matic abstraction has not been implemented, therefore it
must be performed manually.

Since the RTL description is used as the source for
generating the actual device circuit, it constitutes an
accurate and complete model of the device operation.
Therefore, this method of obtaining device specifications
is the preferred one. Furthermore, since the RTL descrip-
tion has well-defined formal semantics, one could poten-
tially use model checking techniques to verify that the
resulting Termite specification constitutes a faithful ab-
straction of the device behaviour, thus eliminating errors
introduced during manual abstraction. We have not im-
plemented support for such model checking yet.

The main limitation of this approach to obtaining de-
vice specifications is that it requires access to the RTL
description of the device, which is usually part of the de-
vice manufacturer’s intellectual property. Therefore, the
device manufacturer is in the best position to produce de-
vice specifications.

2.3 OS specifications

The OS interface specification defines OS requests that
must be handled by the driver, the ordering in which
these request can occur and how the driver should re-

4

1. The OS sends ahard start xmit request to the
driver;

2. Eventually, the device completes the trans-
fer of the packet, passed as an argument to
hard start xmit;

3. The driver calls thedev kfree skb any function
to notify the OS of the packet completion.

Figure 4: A fragment of the Ethernet controller driver
interface specification.

spond to each type of request. To this end, it defines
a state machine, where each transition corresponds to a
driver invocation by the OS, an OS callback made by the
driver, or a device-class event. Any of these operations
is only allowed to happen if it triggers a valid state tran-
sition in the state machine.

The OS interface state machine describes the seman-
tics of OS requests in terms of their external effect,
i.e. in terms of device-class events that must be gen-
erated in response to the request. Consider, for exam-
ple, the fragment of the interface between the Linux ker-
nel and an Ethernet driver specified in Figure 4. This
specification states that the driver must respond to the
hard start xmit request by completing the transfer
of the network packet specified in the request. The trans-
fer of a packet is a device-class event. The exact mech-
anism of generating this event is described in the device
specification; the OS specification simply states that the
event must occur for thehard start xmit request to
be satisfied.

The specification in Figure 4 imposes both safety and
liveness constraints on the driver. Safety ensures that the
driver does not violate the prescribed ordering of oper-
ations, e.g., it is only allowed to send a packet after re-
ceiving an appropriate request. Liveness forces certain
events to eventually happen, thus guaranteeing forward
progress. In this example, after receiving the transmit
request, the driver must eventually transfer the packet.

A typical driver interacts with the OS through sev-
eral interfaces—one for each service provided or used
by the driver. In particular, every driver implements at
least one interface, through which the OS accesses the
device functionality. Most devices are connected to the
host CPU via an I/O bus, such as PCI or USB. Drivers
for such devices use the bus transport service provided
by the OS to access the device. In addition, the driver
may use generic OS services, such as timers and mem-
ory allocators.

Termite allows each OS interface to be defined inde-
pendently, in a separate specification. Multiple interfaces
can then be combined in a driver declaration given to Ter-
mite.

2.4 The synthesis process

The goal of the Termite synthesis algorithm is to generate
a driver implementation that complies with all relevant
interface specifications. Such an implementation must
satisfy the following requirements:

1. Safety. The driver must not violate the specified or-
dering of operations. If the driver issues a device
command which raises a device-class event, this
event must be enabled in the OS interface specifica-
tion in the current state, i.e. the driver should only
perform external actions when allowed by the OS
interface. Likewise, every OS callback performed
by the driver must trigger a transition in the OS in-
terface state machine.

2. Liveness. The driver must be able to meet all its
goals: whenever the OS interface state machine is
in a state where an event or one of a group of events
is required to eventually happen, the driver must
guarantee the occurrence of this event within a fi-
nite number of steps.

This can be formalised as a two-player game between
the driver and its environment comprised of the device
and the OS. The players participate in the game by ex-
changing commands and responses across driver inter-
faces. Each player directly controls a subset of inter-
actions: the OS controls requests sent to the driver, the
driver controls commands sent to the device and OS
callbacks, and the device controls responses to software
commands. Rules of the game define legal sequences
of interactions between the players and are given by
the device and OS interface specifications (safety). The
driver’s game objective is to complete any OS request in
a finite number of steps (liveness).

The Termite synthesis algorithm computes a winning
strategy on behalf of the driver. A winning strategy must
guarantee that the driver will achieve its objectives, re-
gardless of how the device and the OS behave, as long
as their behaviour remains within rules. The formulation
of the problem as a game enables us to employ existing
game-theoretic techniques in computing the driver strat-
egy. Details of the Termite synthesis algorithm are pre-
sented in Section 5.

The resulting strategy constitutes a state machine,
where in every state the driver either performs an action,
e.g., writes a device register or invokes an OS callback,
or waits for an input from the environment, e.g., a com-
pletion interrupt from the device, or a call from the OS.
This state machine is translated into C code, which can
be compiled and loaded in the OS kernel just like a con-
ventional, manually developed driver.

5

Name Syntax Semantics Description

Termination exit
exit

Successful termination

Message prefixing a; P P
a A process that performs action a and then behaves as

process P

Choice a1; P1 [] a2; P2
a1 a2

P1 P2

A process that performs either a1 or a2 and then be-
haves as P1 or P2 respectively

Conditional if[cond]P1[]else P2
cond

P1 P2

true false
A process that behaves as P1 if cond holds or as P2
otherwise

Sequencing P1 >> P2
exit

P1 P2 Start process P2 after P1 terminates

Preemption P1 [> P2 P1 P2
a Execution of P1 is interrupted when the first action

of P2 occurs

Parallel composition P1[|a1...an|]P2 P1 P2

a1

an

P1&P2 run concurrently, synchronising on actions
a1..an, i.e., one of these actions can only occur when
it triggers a state transition in both processes

Interleaving P1|||P2 P1 P2
P1&P2 run concurrently; actions can arbitrarily in-
terleave

Table 1: Termite control structures. Circles denote individual states. Squares denote entire state machines, aka
processes. A circle with a dot denotes a final state.

3 The Termite specification language

This section presents the Termite specification language
used to develop driver interface specifications that can be
processed by the Termite synthesis tools. An example of
a driver specification written in this language is presented
in Section 4.

3.1 Requirements

The Termite specification language must be suitable for
modelling the behaviour of complex I/O devices, con-
taining multiple functional units. Such systems can-
not be feasibly described by explicitly enumerating its
states. A high-level language, providing constructs to
express hierarchical composition of communicating state
machines, is required.

The language should also provide flexible data def-
inition and manipulation facilities. Examples of data
in Termite specifications include device registers, DMA
buffers, and operating system I/O request descriptors.

Some existing languages satisfy these requirements.
In particular, hardware description languages are well-
suited for describing device behaviour, and are suffi-
ciently general to model arbitrary state-machine-based
systems. At the moment, however, Termite does not
provide an HDL frontend. The present version only ac-
cepts specifications written in our own domain-specific
language, presented below.

The design of the Termite specification language was
inspired by the LOTOS process calculus [14] and our
earlier work on the Tingu software protocol specification
language [20].

3.2 Messages, interfaces, and components

In the Termite language, all interactions between the
driver, the device, and the OS, including reading and
writing device registers, interrupt notifications, OS re-
quests and callbacks, are modelled as messages. There
are three types of messages: inbound messages sent by
the device or the OS to the driver, outbound messages
sent by the driver, and internal messages that model
device-class events and do not represent any directly ob-
servable interactions. A message can carry data defined
by its arguments.

Messages are grouped into interfaces. A Termite in-
terface corresponds to the informal notion of an interface
used in the previous sections. Device and OS vendors
define an interface for every device and for every OS
service used or implemented by the driver. In addition,
device-class events are grouped in a separate interface.

Data associated with the interface is modelled using
variables, for example, to represent device register val-
ues.

The behaviour associated with the device or OS inter-
face is modelled as a state machine whose transitions are
triggered by occurrences of interface messages or device-
class events. The latter possibility allows the specifica-
tion of relative orderings of device or OS messages and
device-class events. When a transition is taken, it may
update the values of interface variables.

An interface declaration consists of several sections.
Thetypes section declares data types used by the in-
terface. The Termite type system currently supports
booleans, arbitrarily sized integers, enumerations, and
structures. Themessages section declares inbound,

6

outbound, and internal messages associated with the in-
terface. Thevariables section declares variables as-
sociated with the interface. Thetransitions section
describes the state machine of the interface.

The top-level entity in the Termite language is the
component, which describes a device driver to be synthe-
sised by listing its interfaces. It is provided as the main
input to the Termite synthesis tool.

3.3 Interface state machines

An interface state machine consists of messages com-
bined into processes. A simple process is a sequence of
messages named after its initial state. For example, the
following process allows messagesm1 andm2 to occur
before returning to the initial state.

process FOO
m1; m2; FOO

endproc

More complex processes are composed out of simple
ones using sequential and parallel composition operators
listed in Table 1.

An individual message occurrence in a process has the
following syntax:

<message_name>[<guard>]/<action>:timed

with optional<guard>, <action> andtimed com-
ponents. Here,guard is a boolean expression over in-
terface variables and message arguments, which defines
conditions under which the transition is enabled. The
action specifies how interface variables are updated
when the transition is taken. Thetimed keyword is used
to specify liveness requirements of the interface: when
the state machine is in a state with one or more enabled
timed transitions, one of these transitions must eventu-
ally be taken. If the timed transition corresponds to an
outbound or internal message, then it is the responsibil-
ity of the driver to generate this message; otherwise, the
other side of the interface (the device or the OS) guaran-
tees that it will deliver the message to the driver.

The following specification fragment illustrates the
use of the above syntax:

bar[$arg==m_var]/m_var=0

It describes an occurrence of thebar message with the
arg argument equal to the value of them var interface
variable (“$” denotes a message argument in the Termite
language). When the transition is taken, the value of the
variable is changed to 0.

The Termite specification language supports two spe-
cial types of transition. Anawait transition is trig-
gered when its guard expression evaluates to truth. A
timeout transition is triggered after the amount of time

specified by its argument. It can be used to model time-
dependent device and OS behaviours.

4 Example

In this section, we illustrate the various concepts intro-
duced in the previous sections using a complete Termite
specification of a driver for a Secure Digital (SD) host
controller device. This device was chosen since it is sim-
ple enough to explain in the limited space available, yet
represents a real device allowing us to show what Termite
specifications for real hardware look like.

4.1 Overview

An SD host controller acts as a bridge between the host
CPU and an SD card device connected to the SD bus
(Figure 5). The SD bus architecture is host-centric with
the host controller issuing commands on the bus and the
SD card executing the commands and sending responses
back to the host controller.

For this example we have targeted an open-source SD
host controller implementation published by the Open-
Cores project [7]. The device interface specification pre-
sented here has been manually derived from the register-
transfer level Verilog HDL design of the controller.

The top-level driver declaration is shown in Figure 6.
It describes the driver by listing the interface specifica-
tions that the driver must implement. These include the
SD host controller device class specification, the SD host
controller driver OS interface specification, and the spec-
ification of the OpenCores SD host controller device in-
terface. The following subsections consider each of these
interfaces in detail.

In order to keep the example concise, we have chosen
not to model all of the device and OS features. In partic-
ular, in modelling the device and the SD bus behaviour
we specify simplified SD command and response for-
mats and abstract away the SD error recovery, power
management, and hot plugging protocols. Likewise, we
define a simplified OS interface, which is loosely based
on the analogous interface in Linux, but does not support
advanced configuration options and multiple-block data
transfers. Furthermore, we assume that the host CPU can
read and write device registers directly, so the driver does

CPU
controller

SD bus

SD host SD
card

Local bus

Figure 5: SD host controller device.

7

1 component sdhc_opencores
2 {
3 SDHostClass class;
4 SDHostOS os;
5 SDHostOpenCores dev;
6 };

Figure 6: The SD host controller driver component spec-
ification.

1 interface SDHostClass
2 {
3 types:
4 /*SD error conditions*/
5 enum sdh_status_t {
6 SDH_SUCCESS = 0, /* success */
7 SDH_ECRC = 1, /* CRC error */
8 SDH_ETIMEOUT = 2 /* timeout */
9 };

10 /*SD command attributes*/
11 struct sdh_cmd_t {
12 unsigned<6> index; /*cmd index*/
13 unsigned<32> arg; /*argument*/
14 bool data; /*command with data?*/
15 bool response; /*response expected?*/
16 };
17 messages:
18 /*Device initialized*/
19 internal on();
20 /*Device inactive*/
21 internal off();
22 /*Successful completion of a command stage*/
23 internal commandOK(
24 sdh_cmd_t command,
25 unsigned<32> response);
26 /*Command stage failed*/
27 internal commandError(
28 sdh_cmd_t command,
29 sdh_status_t status);
30 /*Successful completion of a data stage*/
31 internal blockTransferOK(
32 paddr_t mem_addr, //host address of the block
33 unsigned<32> card_addr); //card address
34 /*Data transfer failed*/
35 internal blockTransferError(
36 paddr_t mem_addr,
37 unsigned<32> card_addr,
38 sdh_status_t status);
39 /*Bus frequency changed*/
40 internal busClockChange(u32 divisor);
41 };

Figure 7: The SD host controller device-class specifica-
tion.

not need to use a bus transport service to access the de-
vice.

Note that results for synthesising drivers from
unabridged device specifications are presented in
Section 6.

4.2 The device-class specification

As mentioned in Section 2, a device-class specification
must capture common external behaviour of a family
of similar devices. For SD host controller devices, the
common behaviour is defined in the SD bus specifica-
tion [21], maintained by the SD Association.

According to this specification, the controller operates
by issuing SD commands, consisting of a 6-bit com-
mand index and a 32-bit argument, on the bus. Upon
completion of the command, the card sends back a 32-
bit response. Two commands involve an additional data
transfer stage that follows the response: the block read
command is followed by the transfer of a 512-byte block
from the card; the block write command is followed by
the transfer of a 512-byte block to the card. The argu-
ment of both commands is the block address in the card
memory.

The controller also manages several bus configuration
parameters, of which we model just one—the bus clock
frequency. The frequency can be modified by applying a
divisor to the basic clock.

Figure 7 shows the specification of the SD host con-
troller device class. It is defined as an interface with only
internal messages (corresponding to device-class events).
The first two events (lines 19 and 21) are generated when
the device is turned on and ready for use and when it
is inactive respectively. The remaining events describe
command and data transfers and bus frequency change
operations outlined above.

Since the device class only defines the set of events
shared between the OS and the device specifications and
does not impose constraints on the ordering of these
events, a device-class specification does not define a state
machine.

4.3 The OS interface specification

The OS interface specification (Figure 8) describes the
service that an SD host controller driver must provide to
the OS. OS requests are modelled as inbound messages;
driver responses are modelled as outbound messages, as
defined in lines 17–33.

The main part of the specification is the interface
state machine, which defines the driver’s required re-
actions to requests in terms of device-class events that
must occur before the driver sends a completion notifi-
cation to the OS. This pattern is illustrated, for instance,
in lines 41–43, which specify how the driver must han-
dle aprobe request from the OS. Before replying to
this request in line 43, the driver must ensure that the
class.on message in line 42 occurs. This message
refers to theon event defined in the device-class specifi-
cation (Section 4.2). In other words, the precondition for
sending theprobeCompletemessage to the OS is that
the device is successfully initialised. Note that the state
machine does not describe how this precondition is satis-
fied. This information is part of the device specification,
considered below.

After completing the initialisation, the interface state
machine executes theREQUESTS process (line 48). In

8

1 interface SDHostOS
2 {
3 types:
4 struct sdhc_request_t {
5 unsigned<32> opcode; /*cmd index*/
6 unsigned<32> arg; /*cmd argument*/
7 bool response; /*response present*/
8 bool data_present; /*data stage present*/
9 paddr_t block; /*block address*/

10 };
11 struct sdhc_response_t{
12 int<32> cmd_status; /*cmd stage status*/
13 unsigned<32> response;/*response from card*/
14 int<32> data_status; /*data stage status*/
15 };
16

17 messages:
18 /*Probe and initialise the controller*/
19 in probe ();
20 out probeComplete (int<32> status);
21

22 /*Shut down the device and terminate the driver*/
23 in remove ();
24 out removeComplete ();
25

26 /*Issue a command on the bus, followed by a data
27 transfer stage (if the command involves one)*/
28 in request (sdhc_request_t request);
29 out requestComplete (sdhc_response_t response);
30

31 /*Change the bus clock frequency*/
32 in setClock (unsigned<32> divisor);
33 out setClockComplete ();
34

35 variables:
36 unsigned<32> m_reqDiv;/*requested divisor*/
37 sdhc_request_t m_request;
38 sdhc_response_t m_response;
39

40 transitions:
41 probe;
42 class.on:timed;
43 probeComplete[$status==0]:timed;
44 REQUESTS
45

46 where
47

48 process REQUESTS
49 /*A remove request*/
50 remove;
51 /*The driver must switch the device off
52 before sending the completion message*/
53 class.off:timed;
54 removeComplete:timed;
55 /*The interface state machine terminates*/
56 exit
57 []
58 /*A setClock request*/
59 setClock/m_reqDiv=$divisor;
60 /*The driver must change the bus clock divisor
61 to the requested value before sending the
62 completion message*/
63 class.busClockChange[$divisor==m_reqDiv]:timed;
64 setClockComplete:timed;
65 REQUESTS
66 []

67 /*Command without a data transfer stage*/
68 request[$request.data_present==false]
69 /m_request=$request;
70 (
71 class.commandOK
72 [($command.index==m_request.opcode)&&
73 ($command.arg==m_request.arg)&&
74 ($command.response==m_request.response)&&
75 ($command.data==false)]
76 /{m_response.cmd_status=0;
77 m_response.response=$response;}:timed;
78 requestComplete[$response==m_response]:timed;
79 REQUESTS
80 []
81 class.commandError
82 /{m_response.cmd_status=$status;
83 m_response.response=0;}:timed;
84 requestComplete[$response==m_response]:timed;
85 REQUESTS
86)

87 []
88 /*Command 17 (block read request) and command 24
89 (block write request) are handled similarly*/
90 request[($request.data_present==true)&&
91 (($request.opcode==17)||
92 ($request.opcode==24))]
93 /m_request=$request;
94 (
95 /*Command stage completes successfully*/
96 class.commandOK
97 [($command.index==m_request.opcode)&&
98 ($command.arg==m_request.arg)&&
99 ($command.response==m_request.response)&&

100 ($command.data==true)]
101 /{m_response.cmd_status=0;
102 m_response.response=$response;}:timed;
103 (
104 /*Data transfer stage completes successfully*/
105 class.blockTransferOK
106 [$mem_addr==m_request.block]
107 /m_response.data_status=0 : timed;
108 requestComplete[$response==m_response]:timed;
109 REQUESTS
110 []
111 /*Data transfer fails*/
112 class.blockTransferError
113 /m_response.data_status=$status;
114 requestComplete[$response==m_response]:timed;
115 REQUESTS
116)
117 []
118 /*Command stage fails*/
119 class.commandError
120 /{m_response.cmd_status=$status;
121 m_response.response=0;
122 m_response.data_status=0;};
123 requestComplete[$response==m_response]:timed;
124 REQUESTS
125)
126 endproc
127};

Figure 8: The SD host controller driver OS interface specification.

its initial state, this process performs a choice between
incoming requests defined in lines 50, 59, 68, and 90 us-
ing the[] operator (lines 57, 66, and 87). This means
that the driver must wait for one of these messages from
the OS.

We consider one of the four requests in detail in or-
der to illustrate the use of interface variables and tran-
sition guards in OS specifications. Line 67 describes a
request to issue an SD command without a data transfer
stage. The request structure is copied to them request

9

RESET

DIVISOR

Registers

ARGUMENT

STATUS

ISR
EISR

COMMAND

RESPONSE

BDRX
BDTX

BD

Host
iface SD bus

S
D

 b
us

 in
te

rf
ac

e
lo

gi
c

Clock Divider

Data Master
DISR
BDSTATUS

Command Master

Figure 9: The OpenCores SD host controller device ar-
chitecture.

variable. The state machine defines two possible out-
comes of this request: either the device successfully
completes the command (line 71) or the command com-
pletes with an error (line 81). The guard in lines 72–75
states that the command transferred on the bus must cor-
respond to the one requested by the OS. In case of suc-
cess, the response received from the SD card is saved
in the m response variable (line 77) and sent to the
OS in arequestComplete message (line 78). If the
command fails, the driver stores the error code in the
m response variable (line 82) and reports the failure
to the OS via arequestComplete message (line 84).

Handling of the other requests is explained using com-
ments in Figure 8. Note that for a command with a data
stage the driver must also wait for the data transfer to
complete before signalling success.

4.4 The device interface specification

While the OS interface specification determines the
structure of the driver by defining requests that it must
handle in every state, the device interface specification
reflects the structure and operation of the device hard-
ware.

Figure 9 shows the internal architecture of the de-
vice in question, as defined in its HDL specification and
Table 2 describes its registers. The device supports the
bus mastering capability and uses DMA to transfer data
blocks to and from the host memory. It is connected to
an interrupt line, which is used to signal the completion
of command and data stages to the driver.

The interface logic of the controller consists of the reg-
ister file, the Command Master module responsible for
issuing commands without a data stage, the Data Master
module, which handles block transfer commands, the BD
module, which buffers block descriptors before passing
them to the Data Master, and the Clock Divider module,
which controls the SD bus clock.

The Termite specification of the device is shown in

Register: ARGUMENT (Cmd arg) Size: 32 Access: RW
[31:0] CMDA Command argument value

Register: COMMAND (Command) Size: 16 Access: RW
[15:10] CMDI Command index
[9:2] RESERVED Reserved
[1:0] RTS Response type

00: No response
01: Response

Register: STATUS (Card status) Size: 16 Access: R
[15:1] RESERVED Reserved
0 CICMD Command inhibit

Register: RESPONSE (Response)Size: 32 Access: R
[31:0] CRSP Response from the card

Register: RESET (Software reset) Size: 8 Access: RW
[31:0] RESERVED Reserved
0 SRST Software reset

Register: ISR (Normal intr status) Size: 16 Access: RW
15 EI Error interrupt
[14:1] RESERVED Reserved
0 CC Command complete

Register: EISR (Error intr status) Size: 16 Access: RW
[31:2] RESERVED Reserved
1 CCRC CRC error
0 CTE Command timeout

Register: DIVISOR (Clock divisor) Size: 8 Access: RW
[7:0] CLKD Clock divisor
Register: BDSTATUS (Buffer descr
status) Size: 16 Access: R

[15:8] FBRX Free RX descriptors
[7:0] FBTX Free TX descriptors

Register: DISR (Data intr status) Size: 16 Access: RW
[15:2] RESERVED Reserved
1 TRE Transmission error
0 TRS Transmission successful

Register: BDRX (RX buf descriptor)Size: 32 Access: W
[31:0] BDRX

Register: BDTX (TX buf descriptor)Size: 32 Access: W
[31:0] BDTX

Table 2: SD host controller registers.

Figure 10. Ellipses are used throughout the specifica-
tion to indicate omission of code fragments; the complete
specification consists of 468 lines of code.

The types section describes the structure of device
registers (only the command register is shown) and the
data structure used to represent block descriptors inside
the device (line 11). The messages section declares
messages exchanged between the driver and the device.
These include register read and write messages (lines 18–
20) and the interrupt message (line 21). Theout speci-
fier of the message argument in line 19 indicates that the
value of this argument is returned by the message.

Interface variables (lines 23–30) describe internal de-

10

1 interface SDHostOpenCores
2 {
3 types:
4 /* device registers */
5 struct command_reg {
6 unsigned<2> RTS;
7 unsigned<8> RESERVED;
8 unsigned<6> CMDI;
9 };

10 ...
11 struct block_descr {
12 unsigned<32> mem_addr; /*memory address*/
13 unsigned<32> card_addr; /*card address*/
14 };
15

16 messages:
17 /*register read/write messages */
18 out write_command_reg (command_reg v);
19 out read_command_reg (out command_reg v);
20 ...
21 in irq ();
22

23 variables:
24 command_reg m_command_reg;
25 ...
26 unsigned<1> m_new_command;
27 unsigned<1> m_data_command;
28 sdhost_command_t m_command;
29 block_descr m_tx_descr;
30 block_descr m_rx_descr;
31

32 transitions:
33 write_reset_reg[$v.SRST==1]
34 /{m_comand_reg=0;
35 m_status_reg=0; ...};
36 write_reset_reg[$v.SRST==0];
37 class.on;
38 SDHOST
39

40 where
41

42 process SDHOST
43 (
44 REGISTERS
45 |||
46 (COMMAND_MASTER |[class.off]| DATA_MASTER)
47 |||
48 CLOCK_DIVIDER
49)
50 [>
51 write_reset_reg[$v.SRST == 1]
52 /{m_comand_reg=0;
53 m_status_reg=0; ...};
54 write_reset_reg[$v.SRST==0];
55 SDHOST
56 endproc
57

58 process CLOCK_DIVIDER
59 write_clock_div_reg/m_clock_div_reg=$v;
60 class.busClockChange

61 [$divisor==m_clock_div_reg.CLKD];
62 CLOCK_DIVIDER
63 endproc
64

65 process REGISTERS
66 read_argument_reg[$v==m_argument_reg];
67 REGISTERS
68 []
69 write_argument_reg[m_status_reg.CICMD==1]
70 /m_argument_reg=$v;
71 REGISTERS
72 []
73 write_argument_reg[m_status_reg.CICMD==0]
74 /{m_argument_reg=$v;
75 m_new_command=1;
76 m_data_command=0;
77 m_status_reg.CICMD=1;};
78 REGISTERS
79 []
80 ...
81 endproc
82

83 process COMMAND_MASTER
84 await[m_new_command==1]
85 /{m_command.index=m_command_reg.CMDI;
86 m_command.arg=m_argument_reg.CMDA;
87 m_command.response=m_command_reg.RTS;
88 m_command.data=m_data_command;
89 m_new_command=0;};
90 irq : timed;
91 read_isr_reg/m_isr_reg=$v : timed;
92 read_eisr_reg/m_eisr_reg=$v : timed;
93 read_response_reg/m_response_reg=$v : timed;
94 write_isr_reg[$v==0] : timed;
95 write_eisr_reg[$v==0] : timed;
96 (
97 if[m_isr_reg.CC == 1]
98 class.commandOK
99 [($command==m_command) &&

100 ($response==m_response_reg.CRSP)]
101 /m_status_reg.CICMD=0 : timed;
102 COMMAND_MASTER
103 []
104 else
105 class.commandError
106 [($command==m_command) &&
107 ($status==(m_eisr_reg.CCRC ?
108 SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]
109 /m_status_reg.CICMD=0 : timed;
110 COMMAND_MASTER
111)
112 []
113 class.off;
114 exit
115 endproc
116

117 process DATA_MASTER
118 ...
119 endproc

Figure 10: The OpenCores SD host controller device specification.

vice registers and signals that influence the device’s
software-observable behavior. TheXXX reg variables
model device register content. Them new command
variable models the internal signal that notifies the Com-
mand Master about a new command issued through the
argument register, while them data command variable
indicates whether the new command will be followed by
a data transfer stage. Them command variable describes
the command currently being handled by the Command
Master. Finally,m tx descr andm rx descr repre-

sent block descriptors stored inside theBD module.

The device interface state machine has been manually
derived from the register-transfer-level (RTL) design of
the device in the Verilog HDL which is used to synthe-
size the device hardware. The structure of the state ma-
chine reflects the device architecture shown in Figure 9
and its behaviour models the device’s reactions to soft-
ware commands. The order in which these software com-
mands are issued by the driver is determined automati-
cally by the synthesis algorithm. In some cases, how-

11

ever, the device interface state machine specifies an ex-
plicit sequence of commands that must be issued to the
device in a certain state. For example, the state transi-
tions in lines 33–36 force the driver to reset the device,
by writing a 1 followed by a 0 to the reset register, before
issuing any other commands.

This is necessary due to a limitation of the current Ter-
mite synthesis algorithm, namely, it requires the values
of all interface variables to be known in any state. This
white-box assumption does not hold in the initial state of
the device interface, since at this point the device regis-
ters may have arbitrary values. The problem is overcome
by issuing a sequence of commands that bring the de-
vice to a known state. In this example, writing 1 to the
software reset register resets all device registers to their
known default values (lines 34–35).

Once the reset is complete, the device is ready to
handle commands, as indicated by theon device-class
event in line 37. Line 38 invokes theSDHOST pro-
cess (line 42), which describes normal operation of
the device. This process consists of four concur-
rent subprocesses, corresponding to four device mod-
ules in Figure 9: REGISTERS, COMMAND MASTER,
DATA MASTER, andCLOCK DIVIDER (lines 43–49).
These subprocesses communicate via variables, which
can be read and updated by any process. In addition,
COMMAND MASTER andDATA MASTER synchronise on
the off device-class event. This means that the event
can only occur when it is enabled in both processes, i.e.,
the device becomes inactive when both the Command
and the Data Master are inactive.

The preemption operator in line 50 specifies that writ-
ing 1 to the reset register (line 51) interrupts normal de-
vice operation and resets all registers to their default val-
ues. A subsequent writing of 0 to this register (line 54)
resumes device operation from the clean state.

We illustrate how device registers are modelled using
the argument register as an example. Reading the register
(line 66) returns its current value. The effect of writing to
this register depends on the state of the command inhibit
flag (theCICMD field of the status register). If the flag is
set, meaning that the Command Master is currently busy
handling a command (line 69), a write to this register up-
dates the register value (line 73), but does not trigger any
signals. A write to the argument register when the flag
is not set (line 73) triggers them new command signal
(line 75) and sets the command inhibit flag (line 77).

Them new command signal wakes up the Command
Master waiting for this signal in line 84. It uses values
in the COMMAND andARGUMENT registers to form an
SD command (lines 85–87) and sends it over the bus.
Upon completion of the command, it raises an interrupt
(line 90). The outcome of the command is reflected in
the interrupt status registers (ISR and EISR) and the

response register. This is another situation where the
white-box assumption is violated, since the exact device
state is not known to the software until it reads the val-
ues of these registers. Therefore, the device interface
state machine specifies a sequence of register reads re-
quired to restore the white-box invariant (lines 91–93).
Lines 94–95 acknowledge the interrupt by setting the
interrupt status registers to zero. Lines 96–111 gener-
ate thecommandOK or commandError device-class
event, depending on whether the command was success-
ful or not; they also reset the command inhibit flag, indi-
cating that the Command Master is ready to handle an-
other command.

4.5 The driver state machine

The Termite synthesis algorithm combines the device
and the OS interface specifications and produces a driver
state machine which defines the driver’s reactions to
OS requests and device interrupts. The algorithm for
constructing such a state machine will be presented in
Section 5. Figure 11 shows a fragment of the resulting
state machine responsible for handling SD commands
without a data stage.

In the initial state (state 1), the driver waits for
a request from the OS. If this request satisfies the
guard of the transition from state 1 to state 2
([$request.data present==false]), then this
transition is taken.

According to the OS interface specification, either
the commandOK or thecommandError device-class
event must occur before the driver can send a comple-
tion message to the OS (Figure 8, lines 71 and 81). To
achieve this goal, the driver state machine performs the
following sequence of device interactions: it issues the
command specified in the request to the device through
the command and argument registers (transitions2 → 3

and3→ 4), waits for an interrupt from the device (tran-
sition4→ 5), reads the interrupt status registers and the
response register (transitions5→ 6, 6→ 7, and7→ 8),
and acknowledges the interrupt (transitions8 → 9 and
9 → 10). If the command completed without an er-
ror (transition8 → 9), the commandOK device-class
event occurs (transition11 → 13); otherwise (transition
10 → 12), thecommandError event occurs. In either
case, the fields of them response variable of the OS
interface are set to reflect the status of the command. Fi-
nally, the driver sends a completion message to the OS
(transition13→ 1).

5 The synthesis algorithm

In this section we outline the Termite algorithm, which,
given a specification of driver interfaces, generates an

12

Figure 11: A fragment of the SD host controller driver
state machine generated by Termite. Exclamation marks
denote messages sent by the driver; question marks de-
note incoming messages from the device or the OS. OS
interface messages are shown in bold font; device inter-
face messages are in normal font; device-class events are
in italics.

implementation of the driver in C, satisfying safety and
liveness criteria introduced in Section 2.4.

Conceptually, the algorithm proceeds in three steps
(the actual implementation involves performance optimi-
sations, discussed below, that make the algorithm itera-
tive). The first step combines individual driver interface
specifications into a single specification. The second step
produces a driver state machine that has both safety and
liveness properties. The third step translates this state
machine into a driver implementation in C.

5.1 Computing an aggregate specification

During the first step, the synthesis algorithm computes a
state machine that combines constraints imposed by both
driver interface state machines. This aggregate state ma-
chine is computed as the product of constituent interface
state machines, synchronised on device-class events. The
state space of the product is a subset of the Cartesian

product of the multiplier state spaces. The product is
constructed according to the following rules: wheres1

ands2 are states of the device and the OS interfaces state
machine respectively,m1 andm2 are interface messages,
e is a device class event,g1 andg2 are transition guards,
anda1 anda2 are actions associated with transitions.

Rule 1 states that if a device interface message triggers
a transition from states1 to states

′

1
in the device state

machine (expression above the horizontal line), then a
corresponding transition must be added to the product
state machine (expression below the line). Rule 2 is anal-
ogous for the OS interface message. Rule 3 states that if
a device-class event triggers state transitions in both de-
vice and OS interfaces, then it also triggers a transition in
the product state machine; the guard of the new transition
is the conjunction of the original guards and its action is
the concatenation of the original actions.

The resulting state machine describes all legal driver
behaviours. It only contains transitions permitted by the
original interface state machines and hence satisfies the
safety requirement. It does not, however, guarantee live-
ness. In particular, it may enter a state where some event
is required to happen eventually, but not all execution
traces starting in this state contain this event. A non-
conforming trace either deadlocks after a finite number
of transitions or has an infinite loop, which does not in-
clude the required event.

5.2 Computing the strategy

The second step of the synthesis algorithm restricts the
product state machine, eliminating such invalid traces
and enforcing liveness. To this end, it solves the fol-
lowing problem in each reachable state of the product
state machine: given a target subset of states, determine
the action that the driver should take in the current state
in order to reach the target in a finite number of steps,
assuming that the device and the OS comply with their
interface specifications. The target set of states is com-
puted based on the goals defined in the OS interface spec-
ification usingtimed transitions. Note that the product
state machine may have more than one goal in a state,
e.g., when handling multiple concurrent requests from
the OS. To ensure that the resulting driver implementa-
tion correctly handles arbitrary request interleavings, the
target set includes states where all of these goals are sat-
isfied.

This problem can be formalised as a two-player reach-
ability game problem. A basic algorithm for solving such
games is described by Thomas [25]. Given an origin state
and a set of goal states, the algorithm recursively com-
putes all states from which the goal can be reached in
one step. This includes states where there exists at least
one send transition leading to the goal (i.e., the driver

13

can perform an action that will take it to the goal) as well
as states where all enabled receive transitions lead to the
goal (i.e., any message from the environment takes the
driver to the goal). This results in a reachability graph
containing all states and transitions of the product state
machine from which there exists a strategy leading to the
goal. The algorithm terminates when the origin state is
added to the graph or when a fix point is reached.

The reachability graph determines the action that the
driver must take in every state on its way to the goal. This
action can be either sending of a specific message to the
device or the OS or waiting for an incoming message. In
the former case, exactly one send transition is selected in
the corresponding state of the product state machine; the
remaining send and receive transitions are eliminated. In
the latter case the driver must be prepared to handle any
of the possible inputs; therefore the algorithm eliminates
all send transitions, but keeps all receive transitions in
the state.

The state machine constructed using the above pro-
cedure satisfies both safety and liveness requirements.
Moreover, it specifies exactly how the driver should be-
have in every state, i.e., whether it should send a specific
message or wait for a message from the device or the OS.

5.3 Generating code

The last step of the synthesis process is translating the
driver state machine computed in the previous step into
C. The resulting driver implementation consists of a C
structure that describes the state of the driver, a construc-
tor function that creates and initialises an instance of this
structure, and a number of entry points, one for each in-
coming interface message. The state structure contains a
field that represents the state of the driver state machine
and an extra field for every variable of the device and the
OS interface.

The implementation of a driver entrypoint is generated
as follows. It first checks the values of state variables to
determine the driver state and identify the state transition
that corresponds to the given incoming message. It then
updates state variables as defined by the transition. If
the target state of the transition is a send state, the driver
performs the send operation by invoking the appropriate
OS entry point. Otherwise, the driver returns from the
entry point to wait for the next incoming message.

The resulting implementation is single threaded: ev-
ery operation performed by the driver corresponds to a
transition in the state machine and must occur atomi-
cally to preserve the state machine semantics. In most
operating systems, however, drivers must handle invo-
cations from multiple concurrent threads, which violates
the atomicity assumption. The two models can be rec-
onciled by either adding support for synchronisation in

the synthesised code or changing the OS interface to in-
voke the driver atomically. We have implemented the
latter approach by providing a thin wrapper that performs
the translation between the multi-threaded interface sup-
ported by the OS and the message-based interface imple-
mented by the driver. Our architecture is similar to the
one described in our previous work [20].

5.4 Performance optimisations

This basic algorithm requires some enhancements to
achieve satisfactory performance when synthesising real
drivers. First, computing a product of interface state ma-
chines can lead to a state explosion, since the size of the
product is approximately equal to the product of the mul-
tiplier sizes. We observe that, while the product state
space can be enormous, the state space of the computed
driver state machine is always much smaller. We exploit
this fact using a lazy state-space exploration technique.
The synthesis algorithm computes states of the product
on demand, as they are encountered during the strategy
construction. This way only a small subset of the com-
plete product state space needs to be explored.

Second, it is computationally infeasible to represent
values of variables explicitly during synthesis. For ex-
ample, modelling all possible values of a single 32-bit
pointer would increase the state space by a factor of2

32.
Fortunately, in most cases only relations among variables
are important, as opposed to their actual values. As an
example, when passing a data pointer to a device, the
specific value of the pointer is less important than the
fact that it is the same as one obtained earlier from the
OS.

Therefore, Termite manipulates variables and relations
among them symbolically. Internally, the synthesis al-
gorithm represents states of the interface state machines
and the product state machine in terms of arithmetic con-
straints on state variables. These constraints are derived
from transition guards and actions. Such a symbolic state
describes a set of concrete states, permitting compact
representation and efficient manipulation of the state ma-
chine.

Our symbolic engine currently handles constraints of
the form(v==C) and(v1==v2) (wherev, v1, and
v2 are variables, andC is a constant) and their arbitrary
boolean combinations. When Termite encounters a state-
ment that is not expressible via such constraints, e.g.,
(v1=v2+v3), it assumes that nothing is known about
the value ofv1 after execution of the statement. This
assumption is conservative: if a winning strategy can be
found under this assumption, this strategy is correct. It
may, however, prevent Termite from finding a strategy
if one exists. For example, if a transition leading to the
goal has a guard that depends on the value of variable

14

v1, this transition can never be added to the strategy,
which may lead to a failure to find a winning strategy.
In practice, this problem is overcome by structuring Ter-
mite specifications to avoid the use of such variables in
transition guards, which requires extra effort on the part
of the specification developer. This limitation is not in-
trinsic to the Termite approach and will be addressed in
the future.

6 Evaluation

In this section we report on our experience in applying
Termite to synthesise drivers for real, non-trivial devices,
measure the performance of the synthesised drivers, and
evaluate the reusability of Termite device specifications
across different OSes.

6.1 Synthesising drivers for real devices

We have used Termite to synthesise two device drivers
for Linux: a driver for the Ricoh R5C822 SD host con-
troller (a full-featured analogue of the SD host con-
troller described in Section 4) and a driver for the ASIX
AX88772 100Mb/s USB-to-Ethernet adapter. These
drivers occupy the middle range of the driver complexity
spectrum. In particular, they support most features found
in modern devices, including power management, re-
quest queueing, and DMA (with the AX88772 driver us-
ing DMA indirectly via the USB host controller). Since
the two devices belong to different device classes and at-
tach to different buses (PCI and USB), these examples
cover a broad spectrum of issues involved in driver syn-
thesis.

Both devices are based on proprietary designs, so we
did not have access to their RTL descriptions. The
R5C822 controller implements a standardised SD host
controller architecture whose detailed informal descrip-
tion is publicly available [22]. This description provided
sufficient information to derive a Termite model of the
controller interface.

The AX88772 data sheet did not contain sufficient in-
formation to derive a Termite model of the device from
it. In particular, it did not provide a complete descrip-
tion of device initialisation and configuration. Therefore,
we used the Linux driver for this device as the primary
source of information.

As a result, the two specifications are substantially
different in style. As explained in Section 2.2, specifi-
cations derived from device documentation tend to be
declarative in nature: they describe how the device re-
sponds to various software commands, but do not enforce
a particular ordering of these commands, which must be
computed during driver synthesis based on the goals that
the driver must achieve in different states. In contrast,

R5C822 AX88772

Native Linux driver 1174 1200
Device interface 653 463
OS interface (SD/Ethernet) 378 213
Bus interface (PCI/USB) 263 96
Synthesised driver 4667 2620

Table 3: Size in lines of code, excluding comments,
of the R5C822 and AX88772 driver implementations in
Linux, their Termite specifications, and the synthesised
drivers.

specifications based on existing driver code are more
constructive: they define sequences of commands and
device reactions that must be issued to generate a specific
device-class event (e.g., to complete and SD command or
transfer a network packet).

Table 3 compares the size of Termite specifications to
the manual implementation of equivalent drivers in the
Linux kernel tree. Although line counts are not a re-
liable complexity measure, especially when comparing
code written in different languages, we note that for both
drivers the device specification, which is the only part
that needs to be developed per device, is significantly
smaller than the native Linux driver. The last line of the
table shows that the synthesised drivers are several times
larger than the manual implementations. This is one area
for future improvement.

In one case we were unable to completely specify the
device in Termite: the AX88772 driver must implement
pre- and post-processing of network buffers exchanged
with the device in order to append and remove an ex-
tra header that the device expects in each packet. Ter-
mite currently does not provide facilities to specify con-
straints on the content of memory buffers. DMA buffers
are currently represented using their virtual and physi-
cal addresses and size, which allows passing unmodified
buffers between the device and the OS, but not perform-
ing any transformations on them. We therefore imple-
mented this functionality in C and made it available to
the device protocol via two messages:rxFixup and
txFixup. The total size of these functions is 110 lines
of C code, or less than 10% of the size of the native Linux
implementation of this driver.

Synthesis took 2 minutes for the AX88772 driver and
2 hours 26 minutes for the R5C822 driver on a 2GHz
AMD Opteron machine with 8GB of RAM. This differ-
ence is due to the different styles of the two device spec-
ifications. The AX88772 specification, derived from an
existing driver, only contains useful execution paths that
lead to the occurrence of device-class events. In con-
trast, the more declarative R5C822 specification allows a
large number of possible command sequences, which the
synthesis algorithm must explore to find the meaningful

15

 20

 40

 60

 80

 100

 1 16 256 4096 65536
 0
 20
 40
 60
 80
 100
 120
 140

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

M
iB

/s
)

Packet Size (bytes)

Synthesized Driver
Native Driver

Figure 12: AX88772 TCP throughput benchmark re-
sults. The ascending line shows achieved throughput; the
descending line shows CPU utilisation.

ones that lead to the goal.

6.2 Performance

We compared the performance of the synthesised drivers
against that of equivalent native Linux drivers. Bench-
marks described in this section were run on a 2GHz Cen-
trino Duo machine. We disabled one of the cores in or-
der to allow precise CPU accounting. For the SD bus
controller driver we ran a benchmark that performs a se-
quence of raw (unbuffered) reads from an SD card con-
nected to the controller. We measured CPU usage and
achieved bandwidth for different block sizes. In all cases,
the throughput and CPU usage of the synthesised driver
differed from that of the native Linux driver by less than
1%.

The USB-to-Ethernet controller is more interesting
from the performance perspective, as it is capable of gen-
erating high CPU loads, especially when handling small
transfers. Figure 12 compares throughput and CPU utili-
sation achieved by the synthesised and native drivers un-
der the Netperf TCPSTREAM benchmark. Both drivers
showed virtually identical performance even under the
heaviest loads induced by a large number of small pack-
ets.

These results are reassuring, as they indicate that au-
tomatically synthesized drivers can achieve performance
comparable to manually developed ones.

6.3 Reusing device specifications

In order to validate the claim that device specifications
can be reused across different OSes, we synthesised a
FreeBSD R5C822 driver from the same device specifica-
tion that was used to generate the Linux version of the
driver. To this end we developed specifications for the
FreeBSD versions of the SD host control driver interface
and the PCI bus transport interface. These interfaces dif-
fer from their Linux counterparts in a number of aspects,
including SD command format, driver initialisation, PCI

resource allocation, bus power management, and DMA
descriptor allocation. Once these interfaces were spec-
ified (this took approximately 6 person-hours, an effort
that only needs to be undertaken once for the given OS),
a driver for FreeBSD was generated automatically using
the unmodified device specification.

7 Limitations and future work

Our experience with Termite has demonstrated the fea-
sibility of driver synthesis for real devices. This section
summaries limitations of the current implementation and
improvements required to turn it into a practical solution
capable of generating a broad class of drivers.

The front-end Termite currently relies on the device
manufacturer or the driver developer to write a formal
specification of the device interface. While offering
substantial advantages over conventional driver develop-
ment in terms of code structure, size, reuse, and quality
assurance, this approach still requires substantial man-
ual effort. This effort can be avoided by automatically
distilling a Termite model of the device from its RTL de-
scription. Implementing support for this is the key area
of our ongoing research.

The synthesis algorithm Several limitations of the cur-
rent synthesis algorithm complicate modelling. These in-
clude the white-box assumption described in Section 4.4,
and the lack of support for complex constraints on vari-
ables in the symbolic execution engine (Section 5.4).

In addition, Termite currently only allows the ma-
nipulation of memory buffers via calls to C functions
(Section 6.1). In order to reduce the reliance on manually
written code, we are working on adding support for the
specification and synthesis of constraints on the memory
buffer layout (fragmentation, alignment, etc.) and con-
tent (headers, paddings, etc.). This way, one will only
have to use C to implement more complex data transfor-
mations, such as hashing or encryption.

Termite does not support drivers that require dynamic
resource allocation. In some cases, resource allocation
is performed by the Termite runtime framework. For
example, when a USB device driver sends a request to
the device, the framework allocates a new USB request
structure. Most of the remaining allocation operations
performed by drivers are related to the management of
DMA buffers. Support for these operations will be added
as part of the buffer management extension described in
the previous paragraph.

Finally, we are working on further improving the syn-
thesis algorithm to reduce the synthesis time and sup-
port more complex devices with larger state spaces. One
promising approach is to use counterexample-guided ab-
straction refinement, which allows a reduction of the size

16

of the state space to be explored by dynamically identi-
fying relevant state information. This technique has been
successfully applied in model checking and has also been
shown to work for two-player games [11].

Code generation The Termite C code generator re-
quires improvement to reduce the size of the gener-
ated code and make it more human-readable. Besides
this, it currently produces single-threaded driver code,
which requires special run-time support in the OS (see
Section 5.3). Extending the code generator to synthesise
drivers that can handle concurrency and synchronisation
will reduce the complexity of the infrastructure required
by Termite.

Debugging support Debugging automatically gener-
ated code is notoriously difficult. Fortunately, source-
level debugging is rarely necessary for Termite drivers.
Along with the C driver implementation, Termite also
outputs the state machine of the driver, similar to the one
shown in Figure 11, which can be viewed as the imple-
mentation of the driver in a high-level language. By ob-
serving the execution of the driver at the state-machine
level, one can easily spot situations where either the de-
vice or the OS does not behave in the way the driver
expects it to and trace these situations back to errors in
the interface specifications. Future work on Termite in-
cludes developing tools for interactive state-machine de-
bugging.

The overall approach The Termite approach to driver
synthesis relies on the distinctive state-machine-like
structure of device drivers and its relation to the structure
of the I/O device. Some new devices, such as high-end
GPUs and network processors do not fit into this model.
These devices are built around a general-purpose CPU,
often running a separate instance of a general-purpose
OS. They are controlled by uploading programs that exe-
cute on the device’s CPU and communicate with the host
CPU via the I/O bus. Modelling such devices and gener-
ating software for them is beyond the reach of Termite.

8 Related work

Most previous work on driver synthesis has been done in
the context of hardware/software co-design for embed-
ded microcontrollers [18]. These devices are different
than those targeted by Termite as they have a simple in-
ternal structure and a small number of input and output
signals. Furthermore, the synthesised driver runs with-
out an OS or with only a small RTOS. As such, these ap-
proaches do not tackle most of the issues addressed here,
including separation of device and OS specifications and
dealing with large state spaces. On the other hand, driv-
ing an embedded microcontroller often requires ensuring
precise timing behaviour, which has been the focus of

much of the research in the area [26]. Since the devices
that we are concerned with are designed to work with
a time-shared OS, strict real-time guarantees are not re-
quired.

Wang et al. [27] describe a tool for more complex
driver synthesis for embedded devices. This approach
does not separate OS and device interfaces of the driver,
forcing the driver designer to specify the complete driver
behaviour for every device. In addition, data handling is
based on the assumption that driver functionality can be
split into non-overlapping control and data parts. While
this is the case for some simpler drivers, generally speak-
ing, the control and data path of a driver are tightly inter-
leaved.

Device description languages such as Devil [17],
NDL [5], and HAIL [23], allow synthesis of low-level
hardware accessor functions based on a specification of
device register and memory layouts. This work is com-
plementary to ours. While Termite does not currently
support domain-specific data types for describing hard-
ware register layouts, extending the Termite specifica-
tion language with Devil-style constructs would close
this gap.

In recent work, Chipounov and Candea [2] have syn-
thesised device drivers by automatically reverse engi-
neering execution traces of an existing driver for a dif-
ferent OS. The ability of this solution to synthesise a
complete driver, functionally equivalent to the original,
has not yet been demonstrated. So far, the focus of
this research has been on extracting a device specifica-
tion from an existing driver. The resulting specification
could, in principle, be used as input to our synthesis en-
gine, which points to an interesting synergy between the
two approaches.

9 Conclusions

Device driver synthesis is a promising approach to solv-
ing the driver reliability problem. In this paper we have
demonstrated the feasibility of this approach by describ-
ing a driver synthesis methodology and its implementa-
tion. The ultimate goal of our work is to create a viable
alternative to current manual driver development prac-
tices, leading to better quality drivers. The key factor in
achieving this is to make driver synthesis attractive to de-
vice vendors by providing easy-to-use and efficient lan-
guages and tools for it.

10 Acknowledgements

We would like to thank Franck Cassez, Scott Hahn, John
Keys, and Mona Vij for their insightful feedback on
the Termite architecture. We would like to thank An-

17

drew Baumann, Anton Burtsev, Aaron Carroll, Nicholas
FitzRoy-Dale, Timothy Roscoe, Thomas Sewell, our
shepherd Michael Swift, and the anonymous reviewers
for comments on earlier versions of this paper. Finally,
we would like to thank Balachandra Mirla for helping
develop the model of the SD controller described in
Section 4.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough static analysis of device drivers. In1st
EuroSys Conf., pages 73–85, Leuven, Belgium, Apr 2006.

[2] V. Chipounov and G. Candea. Reverse-engineering
drivers for safety and portability. In4th HotDep, San
Diego, CA, USA, Dec 2008.

[3] A. Chou, B. Fulton, and S. Hallem. Linux kernel security
report, 2005.

[4] M. Condict, D. Bolinger, D. Mitchell, and E. McManus.
Microkernel modularity with integrated kernel perfor-
mance. Technical report, OSF Research Institute, Jun
1994.

[5] C. L. Conway and S. A. Edwards. NDL: a domain-
specific language for device drivers. InLCTES’04, pages
30–36, Washington, DC, USA, Jun 2004.

[6] J. Corbet, A. Rubini, and G. Kroah-Hartman.Linux De-
vice Drivers. O’Reilly & Associates, Inc, 3rd edition,
2005.

[7] A. Edvardsson. SD card mass storage controller.
http://www.opencores.org.

[8] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In4th OSDI, pages 1–16, San
Diego, CA, Oct 2000.

[9] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: software guards for system address spaces.
In 7th OSDI, pages 75–88, Seattle, Washington, Nov
2006.

[10] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows
XP kernel crash analysis. In20th LISA, pages 101–111,
Washington, DC, USA, 2006.

[11] T. Henzinger, R. Jhala, and R. Majumdar.
Counterexample-guided control. In30th ICALP,
pages 886–902, Jul 2003.

[12] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. MINIX 3: A highly reliable, self-repairing
operating system.Operat. Syst. Rev., 40(3):80–89, Jul
2006.

[13] IEEE 802.3 Ethernet working group. http://
grouper.ieee.org/groups/802/3/.

[14] LOTOS - a formal description technique based on the
temporal ordering of observational behavior, 1989. ISO
Standard 8807.

[15] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y. R. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved perfor-
mance. Journal of Computer Science and Technology,
20(5):654–664, Sep 2005.

[16] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ru-
land, and G. Szalay. Two years of experience with aµ-
kernel based OS.Operat. Syst. Rev., 25(2):51–62, Apr
1991.

[17] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
4th OSDI, pages 17–30, San Diego, CA, USA, Oct 2000.

[18] M. O’Nils, J. Öberg, and A. Jantsch. Grammar based
modelling and synthesis of device drivers and bus inter-
faces. In24th Euromicro Conf., Washington, DC, USA,
1998.

[19] Realtek Corp. Single-chip multifunction 10/100mbps
Ethernet controller with power management. datasheet.,
2005.

[20] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Tam-
ing device drivers. In4th EuroSys Conf., Nuremberg, Ger-
many, Apr 2009.

[21] SD Card Association. SD specifications part 1: Physical
layer simplified specification, version 2.00, 2006.

[22] SD Card Association. SD specifications part a2: SD host
controller simplified specification, version 2.00, 2007.

[23] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: a
language for easy and correct device access. In5th EM-
SOFT, pages 1–9, Jersey City, NJ, USA, Sep 2005.

[24] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. In19th
SOSP, Bolton Landing (Lake George), New York, USA,
Oct 2003.

[25] W. Thomas. On the synthesis of strategies in infinite
games. In12th STACS, pages 1–13, 1995.

[26] E. Walkup and G. Borriello. Automatic synthesis of de-
vice drivers for hardware/software co-design. Technical
Report 94-06-04, University of Washington, Aug 1994.

[27] S. Wang, S. Malik, and R. A. Bergamaschi. Modeling and
integration of peripheral devices in embedded systems. In
40th DATE, 2003.

[28] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. In7th OSDI, pages 45–60, Seattle, WA, USA,
Nov 2006.

18

http://www.opencores.org
http://grouper.ieee.org/groups/802/3/
http://grouper.ieee.org/groups/802/3/

	Introduction
	Overview of driver synthesis
	Device-class specifications
	Device specifications
	OS specifications
	The synthesis process

	The Termite specification language
	Requirements
	Messages, interfaces, and components
	Interface state machines

	Example
	Overview
	The device-class specification
	The OS interface specification
	The device interface specification
	The driver state machine

	The synthesis algorithm
	Computing an aggregate specification
	Computing the strategy
	Generating code
	Performance optimisations

	Evaluation
	Synthesising drivers for real devices
	Performance
	Reusing device specifications

	Limitations and future work
	Related work
	Conclusions
	Acknowledgements

