628

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 4, AUGUST 2016

ScriptloT: A Script Framework for and
Internet-of-Things Applications

Han-Chuan Hsieh, Kai-Di Chang, Member, IEEE, Ling-Feng Wang,
Jiann-Liang Chen, Senior Member, IEEE, and Han-Chieh Chao, Senior Member, IEEE

Abstract—Following recent advances in sensing and wire-
less technologies, Internet-of-Things (IoT) applications are being
exploited in various fields. The scale of IoT systems and the
number of devices that they include has become huge, and the
construction of IoT applications is, therefore, becoming increas-
ingly challenging. This work proposes a script framework as a
convenient development interface for service-oriented architecture
(SOA) scheduling of web-based information of IoT applications,
called ScriptloT, which is composed of the IoT fundamental in case
of all type of devices integration and a scriptable agent. Based on
the IoT fundamental class, various IoT devices may be developed
and the scriptable agent enables IoT applications to be configured
using scripts. The proposed ScriptloT framework, which offers
both polling an event-driven mechanism for delegating IoT appli-
cations to the agent and reporting event of the specified device,
contributes to large-scale applications. Experiments herein reveal
that in the proposed ScriptloT framework, the access time and
CPU loading are slightly greater than those achieved using tra-
ditional C programming by 3% and 13%, respectively, but the
proposed framework exhibits improved flexibility and scalability.

Index Terms—Event-driven mechanism, Internet of Things
(IoT), script framework.

I. INTRODUCTION

N RECENT years, substantial progress has been made

in sensing and wireless technologies, and smart mobile
devices have become increasingly popular; these trends driven
the flourishing of the Internet of Things (IoT) industry [1].
Research concept of 10T in providing ubiquitous framework in
sensing the environment basically has to be integrated seam-
lessly into human daily life. Therefore, the IoT R&D cannot be
distinguished from the perspective of space and spatial area of
living environment. City becomes a major target for IoT R&D
implementation; the smart city projects have been initiated spo-
radically and involved many sectors including the industry.
IBM smarter planet [2] is the one prominent effort by indus-
try to enable comprehensive framework for IoT technologies.
Since IoT has to deal for object identification, unique identity
(UID) management becomes an important role for guaranteeing

Manuscript received April 15, 2015; revised July 12, 2015; accepted
September 10, 2015. Date of publication September 28, 2015; date of current
version July 27, 2016.

H.-C. Hsieh, K.-D. Chang, L.-F. Wang, and J.-L. Chen are with the
Department of Electrical Engineering, National Taiwan University of Science
and Technology, Taipei 106, Taiwan (e-mail: lchen @mail.ntust.edu.tw).

H.-C. Chao is with the Department of Computer Science and Information
Engineering, National Ilan University, I-Lan 260, Taiwan (e-mail:
hcc@niu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JI0T.2015.2483023

the efficiency of IoT system. A proposed scheme uses dis-
tributed hash table (DHT) to improve the lookup scheme for
improving UID management system [3]. This paper deals the
problem with incorporating wireless sensor and actuator net-
work on the IoT web-based architecture. The basic solution for
this architecture enables UPnP protocol at the gateway; how-
ever, the method will cause a bottleneck due to the protocol
translation between ZigBee and UPnP. Therefore, a solution
using constrained application protocol (CoAP) is proposed,
which reduces the congestion at the gateway with satisfactory
performance [4]. A challenge of IoT service composition is
the difficulty in extending SOA. A special approach has to be
addressed for huge number of services including user-centric
and situation-aware process. Dealing with such problem, this
paper proposes a new methodology to enable web service in
very large-scale (VLS) IoT system. The VLS system elaborates
the design of the proposed composition that separately defines
the choreography and orchestration modules (COMs) [5].

A large number of sensors in the IoT field are used exclu-
sively for a special function network. Regardless of the applica-
tions, the challenge that must be met by an IoT system concerns
the diversity of physical objects/devices on which the develop-
ment and maintenance of the system depend, and it is difficult
to unify context of the things. Moreover, implementing a smart
web interface for that case is also not a trivial problem [6].
Hence, an IoT must satisfy the following requirements: 1) it
must have a unified API that must be used in the development
of applications; 2) it must be easily ported among platforms;
and 3) IoT systems must be easy to configure [7]. Recently, a
growing research topic on mobile agent-based for data collec-
tion in IoT networks [8], based on the above requirements, this
work designs a script-based framework, called ScriptloT, which
is referred to herein as a form of IoT middleware. This mid-
dleware allows users with little or no programming expertise
to develop IoT applications with minimum effort. Following
improvements in hardware performance over the last few years,
the scripting language that is utilized herein enables com-
plex tasks to be carried out in relatively few steps. Herein,
the framework that is based on script leads to a 13% greater
CPU loading, consumes 3% more time, and consumes 17%
more memory than that which uses the C code program, and
it could simplify the development and maintenance process.
This framework proposes the [oT application and contributes
to large-scale logistic network applications.

This paper is organized as follows. Section I introduces
to brief the proposed framework, the previous solutions, the
highlighted problems, and a summary of the contributions.

2327-4662 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HSIEH et al.: SCRIPT FRAMEWORK FOR AND IoT APPLICATIONS

Section II then describes the background of IoT and script lan-
guage for the proposed framework. Section III presents the
proposed script framework that copes with the elements of
IoT architecture. Section IV presents a simulation of the pro-
posed ScriptloT and verifies the feasibility and performance.
Moreover, Section V proposes the framework for performance
analysis in processing time and the C code program. Conclusion
is finally drawn in Section VI, along with recommendations for
future research.

II. BACKGROUND

The industry initiative in IoT research would expect a real-
ization of commercial product that instantly impact human life.
As a commercialized product, IoT is expected to deliver a new
paradigm for consumer electronic. IoT applications definition
can be assumed as unique objects that connected through inter-
net to perform information exchanging, object identification,
location updating, and security monitoring.

A. IoT

IoT technology is being implemented broadly for informa-
tion technology and industry applications. Recently, top 10 IoT
commercial products are announced to give an insight on how
the consumer electronics trend is now approached into the new
era. Some of the featured IoT products are as follows.

Pachube: A platform that bridges the application and data to
be worked together to convey useful information to the users.
User can use real-time sensing data provided by Pachube to
create a connection to a particular application through web
service [9].

Mirror: Tt is a commercial product from Violet, a French
company, providing a smart detection of a particular object.
The technology is merely developed from radio frequency
identification (RFID) tag that collaborated with smart web
application [10].

Those functions are enabled by the integration of manage-
ment systems that essentially comprised RFID, wireless sensor
networks, and global positioning systems (GPSs). IoT architec-
ture is broadly divided into three categories: 1) sensor networks
architecture; 2) middleware architecture; and 3) application-
based service-oriented architecture (SOA) [11]. These cate-
gories are described below with reference to corresponding
script language.

1) Sensor Networks Architecture: This category of archi-
tecture is focused on the integration of perception and network
layers. For example, electronic product code (EPC) is based on
RFID as an integrated ZigBee network architecture [12]. The
proposed All-IP world (SNAIL) sensor networks in combina-
tion of the heterogeneous networks approach has been realized
for IoT architecture [13].

2) Middleware Architecture: Much research concerning
middleware architecture is based on widely popular technology
[14]-[16], such as the VIRTUS, which is based on XMPP tech-
nology [17], whose applications can be expanded using Google-
developed tools and API. SOA, established by OSGI, is based

629

on Java VM [18]. IoT cloud architecture, based on the combina-
tion of Java and some frequently used open source software, has
also been proposed for running cloud applications [19]. A web
application framework for IoT that relies on the Google Web
Toolkit is proposed [20]. This plug-in-based framework is visu-
alized and controlled using an extensible user interface, but has
a high development threshold, and its performance, including
code size, has not been analyzed. The interesting perspective on
the management of method for managing resource-constrained
IoT devices management is proposed [21]; it involves the use
of SNMP and NETCONF to manage a specific hardware plat-
form, saving RAM and ROM but at the cost of lost flexibility
and scalability.

3) Application-Based SOA: Web architecture is based
mainly on passive requests and cannot handle responses from
logistic networks in real time. Service-oriented research focuses
on optimizing message scheduling or the realization of an
event-driven mechanism [22]. The IoT network system can be
divided into various subsystems, forming a hierarchical system
structure. The concept of SOA can be applied to the scheduling
of web-based information to calculate the shortest processing
time and provide effective and stable real-time responses. Some
investigations based on event-driven SOA (e-SOA) mechanism
have involved dynamic sensing and the event response times of
various connections proposed in framework monitoring [23].

B. Script Language

Script language is a computer language whose main purpose
is to shorten the check of composition, compilation, connec-
tion, and execution. Command codes are generally directly
executed instead of compiled. The programming languages
are used to compose programs for computers. The important
purpose of a descriptive language is to accomplish certain com-
plicated tasks simply and rapidly. Accordingly, a description
language is usually simpler than a conventional programming
language, such as C, C++, and Java language. For example,
the Bash Shell, which is the most frequent among Unix-like
systems, has been widely implemented in various platforms
such as GNU/Linux, Mac OS, MS-DOS, and Windows, most
of which are downward-compatible with the older Bourne
Shell.

III. PROPOSED SCRIPT FRAMEWORK

Fig. 1 presents the proposed IoT service architecture, which
is composed of four parts: 1) devices; 2) agent servers; 3) agent
clients; and 4) hosts as applications. The hosts can use the agent
clients to directly access the agent servers or use the script to
completely define all interactive behaviors of the entire group
for smart applications. The hosts can communicate with the
agent servers through the agent clients to receive feedback from
devices or to drive devices to take predetermined actions and
responses. The agent server also provides another interface that
is connected to the agent client, and can be regarded as an API
that can be accessed by the host.

Refers to various IoT devices, such as environmental sensors,
GPS receivers, RFID readers, and others, which are connected

630

Smart city

Hosts
(agents clients)

Smart
applications

_ Smart living

Fig. 1. IoT service architecture.

Application — Scripts (o h
pplication
[Polling Script] [Event-Driven Script] Layer
_____________________________________ —
Agent Client — Executable API ()
[Fetch Data] [Event-Driven Script Register] [Device Action]
[Agent Server Interface]
Agent Server — Service Daemon
[Agent Client Interface]
Proposed
[Data Pool] [Event-Driven Script Process] [Device Action] Framework
[Device Interface]
IoT Fundamental Class — Device
[Agent Server Interface]
[Common Property] [Report] [Action]
\)

Fig. 2. IoT system architecture.

to Agent Server through the network, the proxy Agent Server
of Host group, managing all data feedback from devices and
controls mutual correlation behaviors. The script can be eas-
ily used to describe the check behaviors of the devices in the
entire group. For example, when the RFID reader recognizes a
TAG ID, it will send out the command to open a door, or when
a particular device moves to a particular position, a particular
action will be triggered. Fig. 2 presents the proposed system
architecture, whose four parts are as follows.

A. Device

To integrate all IoT devices, the so-called IoT fundamental
class is presented in Fig. 3. This class specifies the minimum
necessary support function. Any IoT device can be expanded
for requirement. All IoT devices that are supported by the archi-
tecture in this work will be implemented in compliance with
this IoT fundamental class, such that they can be registered and
report to the agent server.

This class can be divided into two major parts: 1) common
and 2) override/virtual. The common part defines the proper-
ties and configuration of the corresponding IoT devices, and
these basic properties must be set for all IoT device categories.
The override part defines the active and passive types, which

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 4, AUGUST 2016

loT Fundamental Class
Common properties

Device ID/service type

Server IP/port

Last update time

| |
| |
| Report enable/period ‘
| |
| |

Description

Override/virtual

‘ Report < Key, Value > ‘

‘ Action < Key, Value > ‘

Fig. 3. IoT fundamental class.

must be implemented by various IoT devices. In this work,
the simplest <Key, Value> pair is utilized to process all feed-
back and saved data. Therefore, data processing with the <Key,
Value> pair is implemented using the report and the action
function. The consistent use of <Key, Value> pair significantly
simplifies the processing mechanism during actual implementa-
tion, maximizing the expansion flexibility. Access of the <Key,
Value> pair by hash mapping during the implementation of
data pool also leads to rather high efficiency.

Definition of data structure: Two active and passive types
function pointers are defined for the override of the two device
categories. A unique function pointer is assigned to each device
category, and devices are extended based on the principle of
objective orientation for IoT device fundamental class/function
override.

B. Agent Server and Agent Client

As the proxy of host in the group, the agent server must
implement two interfaces: 1) the IoT device interface and 2) the
agent client interface, which are the communication interfaces
for device and host, respectively. A sufficiently large data pool
in the agent server to save the report <Key, Value> pair
constantly feedback from the group is required. The imple-
mentation of this data pool is based on asynchronous access to
distinguish between the device report write-in and agent client
fetch read-out, resulting in more efficient agent client applica-
tion without the need to wait for the report write-in. Since the
report data are <Key, Value> pairs, the hash table method can
be used to accelerate the access. The following functions are
completed by coordination between the agent server and the
agent client.

1) Register Event-Driven Script: The purpose of event-
driven script registration module is to enable the host to activate
a specified script by agent client registration once the desig-
nated <Key, Value> has been sent out by the specific device
with agent client registration. Fig. 4 presents the saving of the
event-driven script by the agent server and its execution when
the conditions associated with the report command are met, and

HSIEH et al.: SCRIPT FRAMEWORK FOR AND IoT APPLICATIONS

: - VHOSI \

Fetch data

<Key,Value > pair 4
data pool

Std output

P
8
42
=
%
o
o
S
P
S
&
=
e
&l
I
=
S
3
@

Socket interface of agent client
Socket interface of agent server

Device action z
s 5z
s> Event-driven & -2
process
((= Report key
Event-driven
Save event-driven script file to \ ecript file /
local \ /

Fig. 4. Event-driven script register flowchart.

Host

Trigger by device

Device ID, Report key,
event-driven script file

Agent client Agent server

Event-driven
script register

I

Event-driven
script process

Save event driven
script to local

Fig. 5. Signaling flow for event-driven script register.

signaling flow for event-driven script register are presented in
Fig. 5.

2) Fetch Data: Fig. 6 presents the arrival at the agent server
of the <Key, Value> pair that is reported by the device and
signaling flow for fetching data (Fig. 7). The pair is saved to
the data pool, and whether the <Key, Value> of this device
matches the registered report command, as indicated by arrow
(D in the figure, will be determined. If it is registered on agent
server, it will call upon and execute the designated script, as
indicated by arrow Q) in the figure. The executed script, just
like the host, is composed of the API of the agent client. It dif-
fers from the host only in that the host IP address, introduced by
the agent client of the script, generally refers to the IP address
of its agent server. Hence, the agent server must support the
API of the agent client in addition to its own software function.
The agent server IP address that is designated in the event-
driven script is not necessarily its actual IP address: it may
be the IP address of another agent server. Various groups can
be crossed by coordinating several agent servers by exploiting
such flexibility.

The host of Agent Server IP, communication port, and a
device ID in the group using its Agent Client API can be set
to obtain the <Key, Value> that is reported by that devices,
and obtaining the reported value that corresponds to the <Key,
Value> using the Fetch Command. In Fig. 6, arrows 3) and @)
indicate the data path.

631

Host

<Key, Value > pair Fetch data
> I DATIEEDY
) Event-driven script
process

&

Local host to run
event-driven script

Agent client

Fig. 6. Fetch data flowchart.

v

Data output

Report key

Std output

Device action
Event-driven
script register

Socket interface of devices
Socket interface of agent client

Socket interface of agent server

input

Host Agent server
|
Check register &

<K, V> pool

Agent client

Execute event-driven
script

Process device ID
and report key

Check <K,V>
data pool

Data output

Fig. 7. Signaling flow for fetching data.

Host Agent client Agent server
|
Device ID &
action <K, V>
Check
device action

Execute
device action

Fig. 8. Signaling flow for device action.

3) Device Action: The host can use the agent client to
drive directly the agent server to perform the designated action
<Key, Value>, and signaling flow for device action presented
in Fig. 8. Table I presents the API of agent client. The host
can communicate and cooperate with the agent server using the
parameters.

C. Host

The application program on the host is in the form of script
and the agent client must be used as an API to access the

632
TABLE I
AGENT CLIENT API
Agent client Parameter Note
Argument 1 Agent IP address of the agent server.
Server IP
Argument 2 Port Port number of the agent server;
default is 5001.
Argument 3 Command FETCH: Get specific data from

agent server.
REGISTER: Register the
event-driven script.
ACTION: Directly drive the device
by specified action.
ID = IDValue: Define ID for the
device.

REPORT =KEY:

Command = FETCH: Return the
value that corresponds to the key.

Command = REGISTER: Trigger
the corresponding script when the
agent server receives the <Key,
Value> from device.

ACTION = deviceAction:

Command = Action: This
parameter specifies the contents of
the drive.

SCRIPT = ScriptFilePath:

Command = REGISTER: This
parameter specifies the path of the
event-driven script.

CLEAR =[True | False]:

Command = FETCH: This
parameter indicates whether the
<Key, Value> record in the agent
server should be cleaned when
received.

Argument4 ID

Argument5 REPORT

Argument6 ACTION

)

]

Agent Server 1

N
o

——1
Groupl | 2. Fetch endless

Agent Server 2

Fig. 9. Polling script block diagram flowchart.

agent server to compose the script. Scripts of the host may be
polling scripts or event-driven scripts on immediacy and initia-
tive. When the host is not directly connected to the device, it
relies on polling of the agent client to determine all statuses
in the group, as presented in Fig. 9, and the signaling flow
for fetching data is presented in Fig. 10. This characteristic
greatly reduces the immediacy and initiative of the device in
the group. This work proposes another approach, called “event-
driven script register.”” The host can register with the agent
service to cause it to execute particular scripts upon receiv-
ing particular <Key, Value> that are reported by devices. The
agent client must also be installed in the agent server hardware
to operate as the API to execute scripts on the agent server.

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 4, AUGUST 2016

Group 1 Host 1 Agent server 2

1. Report

Agent server 1 Group 2

2. Fetch endless
Execute polling script

4. Action

Fig. 10. Flow for polling script.

‘® Gl Agent server 1

Group1

Local host

1.Register

Group2 ——

F Agent server 2

Fig. 11. Event script block diagram.

[
1
1
1

3 1

= 1

>

=

[}

s 1
1
1
1
1

Group 1 Agent server 1 Host 1 Agent server 2

Execute register script

1. Register

Group 2

Check report

2. Report

‘ 3.Execute event-driven script |

4. Action

Check action

5. Action

Execute action

Fig. 12. Flow for event script.

A simple change to the agent server IP easily supports cross-
group control, as presented in Fig. 11, and flow for Event Script
is presented in Fig. 12.

IV. SYSTEM APPLICATIONS

The infrastructure and scripts for proposed simulations will
complete in this section. The registration on Host is the script
that runs pooling, and assigns two ports on Agent server to ver-
ify the RFID TAG values and then trigger Event-Driven script
to issue door events. It is difficult for RFID TAG access control
to simulate the proposed ScriptloT and verify the feasibility.

A. Infrastructure

Two laptops are used for simulation, as presented in Fig. 13.
Laptop A on the left is used to simulate the RFID reader and

HSIEH et al.: SCRIPT FRAMEWORK FOR AND IoT APPLICATIONS

(©)
N 7 AN
Devices Host

Host runs the
pooling script fetch
the data, and unlock
the door.

RFID readers and a door
lock connect to Agent
Server.

Agent Server

Fig. 13. Event script block diagram.

#1/bin/bash

AGENT_SERVER _IP=192.168.0.100
AGENT_PORT=5001

while [REG_RESULT = "true"]
do
TAG="/AgentClient SAGENT SERVER_IP SAGENT_PORT FETCH ID=RFID1
REPORT=TAG CLEAR=TRUE"

if [STAG == FFFF8888CCCC0000 | || [STAG == FFFF8888CCCC0005 |; then
OPEN_RESULT="/AgentClient SAGENT_SERVER_IP SAGENT_PORT ACTION
ID=DOOR1 ACTION=OPEN"
fi
sleep 1
echo "polling"
done

Fig. 14. Example of host polling script.

#!/bin/bash
AGENT_SERVER_IP="127.0.0.1"
AGENT_PORT="5000"

./Device SAGENT_SERVER_IP SAGENT_PORT RFID1 RFID 2 'Front Door RFID' &
./Device SAGENT_SERVER_IP SAGENT_PORT DOOR1 DOOR 0 'Front Door' &

Fig. 15. Device simulation script.

the lock on a door, which is connecting to the agent service on
that laptop. Laptop B on the right is used to simulate the host.

B. Polling Script

This case is an actual access simulation system. The host
continuously polls the TAG values that are scanned by the RFID
reader and makes judgments. If the received expected, then the
code unlock the door through the agent client.

1) Host-Side: Host-side refers to the script template on the
host, presented in Fig. 14.

2) Device-Side:

1) The RFID is used to simulate as report function, allow-
ing the reader continuously to report TAG values between
“FFFF8888CCCC0000” and “FFFF8888CCCC0007.”

2) Simulate unlocking of the door. The action “OPEN” is
supported, and a beep sound indicates that the door has
been unlocked.

#!/bin/bash

AGENT_SERVER_IP=127.0.0.1
AGENT_PORT=5001

TAG=$2

echo "key=$1 keyvalue=$TAG"

f [STAG == FFFF8888CCCC0000] | | [STAG == FFFF8888CCCCO005 J; then
OPEN_RESULT="./AgentClient SAGENT_SERVER_IP SAGENT_PORT ACTION
ID=DOOR1 ACTION=OPEN"

fi

Fig. 16. Example of event-driven script.

Report Handle=1, Key=TAG, Keyvalue=FFFF8888CCCCO004
RUN ././RFID1.TAG.sh TAG FFFF8888CCCCO004 &

key=TAG keyvalue=FFFF8888CCCC0004

Report Handle=1, Key=TAG, Keyvalue=FFFF8888CCCC0005 |

RUN ././RFID1.TAG.sh TAG FFFF8888CCCCO005 &
key=TAG keyvalue=FFFF8888CCCCO005

len=34

lcmd@=st,cmd1=ACTION
CTION,ID=DOOR1,ACTION=0PEN

Send AgentClient Action feedback 1d=DOOR1,seq=0
Report Handle=1, Key=TAG, Keyvalue=FFFF8888CCCC0006
RUN ././RFID1.TAG.sh TAG FFFF8888CCCCOO06 &
key=TAG keyvalue=FFFF8888CCCCOO06

Report Handle=1, Key=TAG, Keyvalue=FFFF8888CCCC0007
RUN ././RFID1.TAG.sh TAG FFFF8888CCCCO007 &
key=TAG keyvalue=FFFF8888CCCCO007

Report Handle=1, Key=TAG, Keyvalue=FFFF8888CCCC0O000
RUN ././RFID1.TAG.sh TAG FFFF8888CCCCO000 &
key=TAG keyvalue=FFFF8888CCCCOO00

len=34

cmd@=st,cmd1=ACTION

IACTION,ID=DOOR1,ACTION=0OPEN

Send AgentClient Action feedback 1d=DOOR1,seq=1

Fig. 17. Event-driven script—agent server running screen capture.

20

Cost

—&—(1) Registration cost

—-(2) Fetch cost

(3) Action cost

0 0.1 02 03 0.4 0.5 0.6 0.7 08 09 1

Ratio of client / server processing time

Fig. 18. Cost analysis result of ScriptloT.

TABLE 11
CoOST PARAMETERS

Parameter Note
Ps Agent server/local processing time
Pc Agent client/host processing time
a Transmission delay

3)

Simulate the script of device, as presented in Fig. 15.
RFID reader and door device are simulated, and the
devices and some literal descriptions can be set according
to the parameters below.

3) Agent Server-Side: The agent server can be activated by

simply assigning to two ports of the interface: 1) Port-5000 for
all devices and 2) Port-5001 to serve the agent client. The agent

634

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 4, AUGUST 2016

TABLE III
CASE 1 SUMMARY TABLE

50 RFID readers
Host fetch 5000 times -1

Ccode /Script C Code Script C Code
Time elapse -1 (s) 50 52 49
Time elapse -2 (s) 49 51 50
Time elapse -3 (s) 418 49 49

CPU loading -1 * 1.31% 1.47% 1.39%
CPU loading -2 * 1.39% 1.60% 1.24%
CPU loading -3 * 1.50% 1.69% 1.43%
Memory usage -1 ** 576 000 1460 000 572 000
Memory usage -2 ** 568 000 1542000 576 000
Memory usage -3 ** 572 000 1460000 576 000
Average time elapse(s) 49.00 50.67 49.33
Avearge CPU loading 1.40% 1.59% 1.35%
Average memory usage 572000 1487333 574 667

server indicates that two devices are connected and that it has
begun receiving TAG values.

C. Event-Driven Script

This case is identical to except that the polling script of the
host is replaced with the event-driven script. The task of the
host is just completed following the registration of the script,
such that it does not consume anymore operating resources
of the host. When the received TAG is one of the preset val-
ues “FFFF8888CCCC0000” and “FFFF8888CCCCO0005,” the
event-driven script is triggered to lock the door. As presented in
Fig. 16, the <Key, Value> are proposed by the agent server to
trigger the event. In Fig. 17, once the devices have alarmed TAG
preset value is FFFF8888CCCCO0000 or FFFF8888CCCC0005,
the agent server will trigger the event-driven script, which will
send commands to the agent server through the agent clients to
unlock the door.

V. PERFORMANCE ANALYSIS

The architecture that is proposed in this work makes some
sacrifices to preserve considerable flexibility and expandability.
This section assesses the performance in processing time as cost
of the ScriptloT Framework and the C code program that are
herein.

A. Cost Analysis

The cost analysis of the proposed ScriptloT framework is
composed of each event-driven script register, fetch data, and
the device action. For detailed signaling flow has been shown
in the previous section. The parameters used in cost analysis
are the following equations:

2(Ps + Pc) + 2a. (D
The cost of fetch data is

3(Ps+ Pc) + 4a. ()

50 RFID readers
Host fetch 5000 times -2

50 RFID readers
Host fetch 5000 times -3

50 RFID readers
Host Fetch 5000 times -4

Script C Code Script C Code Script

a1 23 54 49 50

51 48 49 50 52

51 52 53 49 50

1.59% 1.48% 1.69% 1.50% 1.68%
1.50% 1.49% 1.65% 1.48% 1.66%
1.62% 1.38% 1.54% 1.46% 1.65%
1460 000 576 000 1460000 560000 1460000
1460 000 564 000 1460000 576000 1460000
1460 000 576 000 1460000 568 000 1460 000
51.00 51.00 52.00 49.33 50.67
1.57% 1.45% 1.63% 1.48% 1.66%
1460 000 572 000 1460000 568 000 1460000

The cost of device action is
(2Pc+ Ps) + 2a. 3)

The computing power or resource of agent server and agent
client are different from the cost analysis in Fig. 18, which
shows different ratios of computing power of client and server.
Table II presents the cost parameters. The Ps is assumed with
value 1, which means maximum computing power. The param-
eter «v is neglected in this analysis due to very little time. Also,
the range of Pc is changing from 1 to 10, which means the com-
puting power are from the 100% same with Ps to lowest 10% Ps.

The results show that the higher Ps and Pc ratio that implies
the agent clients computing power is the same as the agent
server, which would lower the cost and vice versa. Moreover,
the cost overhead exists when the computing power of client is
almost the same with server. The impact of overhead presents
in the implementation section by comparing different codes.

B. Code Performance Analysis

To be assessed, the program code must meet at least the

following three criteria.

1) Bulk access to the agent server is required to determine
the difference between access by script through the agent
client and direct access by the C code program.

2) The script and the C code must be used to simulate
overhead associated with the same functions, other than
accessing the agent server. In this case, the overhead of
calculating the time difference is considered, and C code
and script are used to implement this function.

3) The C code program is obtained by slightly modifying the
source code of the Agent Client to reduce the difference
between both sides in implementation.

Then, an experiment with the following steps is performed:

1) the agent server is activated to simulate 50 RFID readers,
each reporting one set of TAG values per second;

2) the C code program and script fetch agent server are
activated simultaneously 5000 times;

HSIEH et al.: SCRIPT FRAMEWORK FOR AND IoT APPLICATIONS

CPU loading comparision

%
o

5 === Host: Event-driven
0 ~fi—Agent: Event-driven /.
P —a—Host: Polling
X 35 /
~ == Agent: Polling /
S
5 /
S 25
o /
- 20 A
2 M
OB
10
5
0 - = >
0 50 100 150 200

Host daemons
Fig. 19. CPU loading comparison.

Memory usage comparison
120000

=4 Host: Event-driven

100000 - ==Agent: Event-driven

==he=Host: Polling

80000 -+

=>é=Agent: Polling

60000

40000

Memory size (kB)

20000

0 < < < <
0 50 100 150 200
Host daemons

Fig. 20. Memory usage comparison.

3) the performance and resources of the systems are moni-
tored ten times, once every 1 s;

4) when the number of activations have reached 5000 times,
the time difference between the C code program and
script is calculated.

The performance statistics are obtained as described in
Table III with mean time consumption, average CPU loading,
and memory consumption, and the comparison with host and
agent server, as presented in Figs. 19 and 20. The agent client
uses approximately 388 kB, while the environment of the Bash
shell will require approximately 1184 kB.

The average research statistics have indicated the following.

1) The memory consumption by ScriptloT, which is the
memory used for the total capacity of its calling upon
agent client, is 1 854 833.

2) The memory capacity used by ScriptloT can be obtained
from the basic overhead of the Bash shell, as 670 833.

3) Memory usage rate is 670 833/571 667 = 1.17.

Herein, the framework that is based on script leads to a 13%

greater CPU loading, consumes 3% more time, and consumes
17% more memory than that which uses the C code program.

VI. CONCLUSION

This paper has proposed an agent that can use descriptive
language to establish logistic network application architecture
for diverse logistic network devices on a huge scale. The uni-
versal definition of IoT fundamental class has been used to
achieve the group-based delegation of IoT devices to the agent
server. The host side can use the well-known shell script to

access the event-driven agent client of the agent server to con-
trol the configuration settings for collaboration within the entire
logistic network. The script mechanism has been proposed to
resolve the issue of host polling. The script that corresponds
to the event of a certain device will be registered, such that
the agent can process the event with immediate response. The
host is not involved following the registration, so that it does
not use host operating resources. This work has proven that,
even though the use of script results in the consumption of 3%
more time, 13% more CPU resources, and 17% more mem-
ory than C code program, it simplifies the development and
maintenance process while maintaining its expandability and
functionality. This framework contributes to large-scale logistic
network applications.

REFERENCES

[1] J. Gubbia, R. Buyyab, S. Marusica, and M. Palaniswamia, “Internet
of Things (IoT): A vision, architectural elements, and future direc-
tions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645-1660, Sep.
2013.

[2] “The Internet of Things,” [Online]. Available: http://www.ibm.com/
smarterplanet/us/en/overview/article/iot_video.html

[3] Q. Shen, Y. Liu, Z. Zhao, S. Ci, and H. Tang, “Distributed hash table based

ID management optimization for Internet of Things,” in Proc. 6th Int.

Wireless Commun. Mobile Comput. Conf. (IWCMC ‘10), Caen, France,

Jul. 2010, pp. 686—690.

J. Mitsugi, S. Yonemura, H. Hada, and T. Inaba, “Bridging UPnP and

ZigBee with CoAP,” in Proc. Conf. Emerg. Netw. Exp. Technol., Tokyo,

Japan, Dec. 2011, pp. 1-8.

K. Dar, A. Taherkordi, R. Rouvoy, and F. Eliassen, “Adaptable service

composition for very-large-scale Internet of Things systems,” in Proc.

8th Middleware Doctoral Symp. (MDS ‘11), Lisbon, Portugal, Dec. 2011,

pp. 1-2.

[6] J.He,Y.Zhang, G. Huang, and J. Cao, “A smart web service based on the
Context of Things,” ACM Trans. Internet Technol., vol. 11, no. 3, pp. 13—
22,2012.

[71 S. Bendel, T. Springer, D. Schuste, A. Schill, R. Ackermann, and
M. Ameling, “A service infrastructure for the Internet of Things based
on XMPP,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops, San Diego, CA, USA, Mar. 2013, pp. 385-388.

[8] M. X. Dong, K. Ota, L. T. Yang, S. Chang, H. Zhu, and Z. Y. Zhou,
“Mobile agent-based energy-aware and user-centric data collection
in wireless sensor networks,” Comput. Netw., vol. 74, pp. 58-70,
2014.

[9] “Pachube opens the Internet of Things to end users,” [Online]. Available:
http://www.information-age.com/industry/start-ups/1678543/pachube-
opens-the-internet-of-things-to-end-users

[10] “Violet’s Mirr:or: Internet of Things via RFID,” [Online]. Available:
http://radar.oreilly.com/2008/09/violets-mirror-internet-of-thi.html

[11] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, pp. 2787-2805, 2010.

[12] H. Hada and J. Mitsugi, “EPC-based Internet of Things architecture,”
in Proc. IEEE Int. Conf. RFID-Technol. Appl., Sitges, Spain, Sep. 2011,
pp. 527-532.

[13] S. M. Hong et al., “SNAIL: An IP-based wireless sensor network
approach to the Internet of Things,” IEEE Wireless Commun., vol. 17,
no. 6, pp. 34-42, Dec. 2010.

[14] P. Mahalle, S. Babar, N. R. Prasad, and R. Prasad, “Identity management
framework towards Internet of Things (IoT): Roadmap and key chal-
lenges,” in Proc. Recent Trends Netw. Secur. Appl., Chennai, India, Jul.
2010, vol. 89, pp. 430-439.

[15] T.Liand C. Liping, “Internet of Things: Principle, framework and appli-
cation,” in Proc. Future Wireless Netw. Inform. Syst., 2012, vol. 144,
pp. 477-482.

[16] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Role of mid-
dleware for Internet of Things: A study,” Int. J. Comput. Sci. Eng., vol. 2,
no. 3, pp. 94-105, Aug. 2011.

[17] D. Conzon et al., “The VIRTUS middleware: An XMPP based architec-
ture for secure IoT communications,” in Proc. IEEE Int. Conf. Comput.
Commun. Netw., Munich, Germany, Jul. 2012, pp. 1-6.

[4

—

[5

—_

[18] M. Bazzani, D. Conzon, A. Scalera, M. A. Spirito, and C. I. Trainito,
“Enabling the IoT paradigm in E-health solutions through the VIRTUS
middleware,” in Proc. IEEE Int. Conf. Trust Secur. Privacy Comput.
Commun., Liverpool, U.K., Jun. 2012, pp. 1954-1959.

[19] G. C. Fox, S. Kamburugamuve, and R. D. Hartman, “Architecture and
measured characteristics of a cloud based Internet of Things,” in Proc.
Int. Conf. Collab. Technol. Syst., Denver, CO, USA, May 2012, pp. 6-12.

[20] P. Castellani, M. Dissegna, N. Bui, and M. Zorzi, “WebloT: A web
application framework for the Internet of Things,” in Proc. Wireless
Commun. Netw. Conf. Workshops (WCNCW), Paris, French, Apr. 2012,
pp. 202-207.

[21] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management of
resource constrained devices in the Internet of Things,” IEEE Commun.
Mag., vol. 50, no. 12, pp. 144—149, Dec. 2012.

[22] S. Alam, M. M. R. Chowdhury, and J. Noll, “SenaaS: An event-driven
sensor virtualization approach for Internet of Things cloud,” in Proc.
IEEE Int. Conf. Netw. Embedded Syst. Enterp. Appl., Suzhou, China, Nov.
2010, pp. 1-6.

[23] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Proposed embed-
ded security framework for Internet of Things (IoT),” in Proc. Int. Conf.
Wireless Commun. Veh. Technol. Inf. Theory Aerosp. Electron. Syst.
Technol., Chennai, India, Feb. 2011, pp. 1-5.

Han-Chuan Hsieh received the B.S. degree in elec-
trical engineering from National Taipei University
of Technology (NTUT), Taipei, Taiwan, in 1998,
the M.S. degree in communication engineering from
Tatung Institute of Technology, Taipei, Taiwan, in
2008, and is currently working toward the Ph.D.
degree in electrical engineering at the National
Taiwan University of Science and Technology
(NTUST), Taipei, Taiwan.

His research interests include long-term evolution-
advanced, Internet of Things, software-defined net-
working, and network functions virtualization in 5G.

Kai-Di Chang (S’11-GSM’14-M’15) received the
B.S. degree in electrical engineering from National
Dong Hwa University, Hualien, Taiwan, in 2007,
the Master’s degree from the Institute of Computer
Science and Information Engineering, National I-Lan
University, I-Lan, Taiwan, and is currently work-
ing toward the Ph.D. degree in electrical engineering
g at the National Taiwan University of Science and
4 N Technology, Taipei, Taiwan.
' He is a Researcher with United Daily News
Group Co., Ltd, Taipei, Taiwan. His research interests
include mobile communications, cloud computing, IP multimedia subsystem,
Internet of Things, and network security.

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 4, AUGUST 2016

Ling-Feng Wang received the B.S. degree in electri-
cal engineer from the National Yunlin University of
Science and Technology (NYUST), Douliu, Taiwan,
in 1997, and the M.S. degree in electrical engi-
neering and computer science from the National
Taiwan University of Science and Technology, Taipei,
Taiwan, in 2013.

His research interests include IoT and embedded
system applications.

Jiann-Liang Chen (SM’10) received the Ph.D.
degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 1989.

Since August 1997, he has been with the
Department of Computer Science and Information
Engineering, National Dong Hwa University,
Hualien, Taiwan, where he is a Professor and Vice
Dean of Science and Engineering College. He is
currently a Full Professor of electrical engineering
with the National Taiwan University of Science and
Technology. He has authored more than 150 papers
in journals and conferences. He holds several patents. His research interests
include cellular mobility management, digital home network, telematics
applications, cloud computing, and RFID middleware design.

Prof. Chen is a U.K. BCS Fellow.

Han-Chieh Chao (S’88-M’92-SM’04) received the
M.S. and Ph.D. degrees in electrical engineering from
Purdue University, West Lafayette, IN, USA, in 1989
and 1993, respectively.

He is a joint appointed Full Professor of computer
science and information engineering and electronic
engineering with National Ilan University, I-Lan,
Taiwan (NIU). He has been serving as the President
since August 2010 for NIU as well. He was the
Director of the Computer Center for Ministry of
Education Taiwan, Taipei, Taiwan, from September
2008 to July 2010. He has authored or coauthored 4 books and has authored
about 400 refereed professional research papers. His research interests include
high-speed networks, wireless networks, IPv6-based networks, digital cre-
ative arts, e-government, and digital divide. He has completed more than 100
M.S.E.E. thesis students and 4 Ph.D. students.

Dr. Chao is a Fellow of the IET (IEE). He has been invited frequently
to give talks at national and international conferences and research organi-
zations. He is the Editor-in-Chief for IET Networks, the Journal of Internet
Technology, the International Journal of Internet Protocol Technology, and the
International Journal of Ad Hoc and Ubiquitous Computing. He has served as
the Guest Editor for Mobile Networking and Applications (ACM MONET),
the IEEE JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, the
IEEE Communications Magazine, the IEEE SYSTEMS JOURNAL, Computer
Communications, IEE Proceedings Communication, the Computer Journal,
Telecommunication Systems, Wireless Personal Communications, and Wireless
Communications and Mobile Computing.

