
Personal Data Management
in the

Internet of Things

by

Rayman Preet Singh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

© 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Due to a sharp decrease in hardware costs and shrinking form factors, networked sen-
sors have become ubiquitous. Today, a variety of sensors are embedded into smart-
phones, tablets, and personal wearable devices, and are commonly installed in homes
and buildings. Sensors are used to collect data about people in their proximity, referred
to as users. The collection of such networked sensors is commonly referred to as the
Internet of Things. Although sensor data enables a wide range of applications from se-
curity, to efficiency, to healthcare, this data can be used to reveal unwarranted private
information about users. Thus it is imperative to preserve data privacy while providing
users with a wide variety of applications to process their personal data.

Unfortunately, most existing systems do not meet these goals. Users are either forced
to release their data to third parties, such as application developers, thus giving up data
privacy in exchange for using data-driven applications, or are limited to using a fixed set
of applications, such as those provided by the sensor manufacturer. To avoid this trade-
off, users may chose to host their data and applications on their personal devices, but
this requires them to maintain data backups and ensure application performance. What
is needed, therefore, is a system that gives users flexibility in their choice of data-driven
applications while preserving their data privacy, without burdening users with the need
to backup their data and providing computational resources for their applications.

We propose a software architecture that leverages a user’s personal virtual execu-
tion environment (VEE) to host data-driven applications. This dissertation describes
key software techniques and mechanisms that are necessary to enable this architecture.
First, we provide a proof-of-concept implementation of our proposed architecture and
demonstrate a privacy-preserving ecosystem of applications that process users’ energy
data as a case study. Second, we present a data management system (called Bolt) that
provides applications with efficient storage and retrieval of time-series data, and guar-
antees the confidentiality and integrity of stored data. We then present a methodology
to provision large numbers of personal VEEs on a single physical machine, and demon-
strate its use with LinuX Containers (LXC). We conclude by outlining the design of an
abstract framework to allow users to balance data privacy and application utility.

iii

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Introduction . 1

1.2 Goals . 3

1.3 Our Vision . 5

1.3.1 Technical Challenges . 7

1.4 Contributions . 7

1.5 Chapter Summary . 8

2 Related Work 10

2.1 Providing Data-Driven Applications . 11

2.1.1 Service-provider Approach . 11

2.1.2 Home PC-based Approach . 12

2.1.3 Personal Data Storage . 14

2.1.4 Personal Data Storage With Limited Computation 16

2.1.5 Personal VEE . 18

2.2 Providing Data Storage and Integrity . 19

2.2.1 Leveraging Untrusted Remote Storage 20

iv

2.2.2 Storing Data Across Devices . 21

2.2.3 Other Systems . 21

2.3 Hosting Large Numbers of Personal VEEs 22

2.3.1 Virtualization Approaches . 22

2.3.2 High Density Hosting . 24

2.3.3 Just-in-time Provisioning of VEEs 25

2.4 Chapter Summary . 28

3 Leveraging Personal VEEs for Energy Data Analytics 29

3.1 Introduction . 29

3.2 System Architecture . 31

3.2.1 Gateway . 32

3.2.2 VHome . 32

3.2.3 Applications . 33

3.2.4 User Interfaces . 35

3.3 Implementation Details . 35

3.3.1 Gateway . 35

3.3.2 VHome . 37

3.3.3 Sample Applications . 41

3.4 Evaluation . 44

3.5 Discussion . 46

3.6 Chapter Summary . 49

4 A Storage System for Sensor Data 51

4.1 Introduction . 51

4.2 Design Requirements . 53

4.2.1 Example Applications . 53

4.2.2 Data Management Requirements . 56

v

4.3 Design Overview . 58

4.3.1 Security Assumptions and Guarantees 58

4.3.2 Key Techniques . 58

4.4 Bolt Design . 61

4.4.1 APIs . 61

4.4.2 Writing Stream Data . 63

4.4.3 Uploading Stream Data . 64

4.4.4 Granting and Revoking Read Access 66

4.4.5 Reading Stream Data . 67

4.5 Implementation . 68

4.6 Evaluation . 68

4.6.1 Microbenchmarks . 69

4.6.2 Applications . 76

4.7 Discussion . 82

4.8 Chapter Summary . 83

5 Provisioning Large Numbers of Personal VEEs 84

5.1 Introduction . 84

5.2 Problem and Model Formulation . 87

5.2.1 Reactive Policies . 88

5.2.2 Proactive Policies . 93

5.3 Obtaining Model Parameters . 94

5.3.1 LXC as a Case Study . 94

5.3.2 Experimental Setup . 95

5.3.3 Quantifying Density . 96

5.3.4 Impact of Density on Transition Time 98

5.3.5 Deriving the Model Parameters . 100

5.4 Policy Comparison Setup . 101

vi

5.4.1 Simulator Design and Implementation 102

5.4.2 Policy Implementations . 103

5.4.3 Workload Analysis . 104

5.4.4 Metric . 105

5.5 Simulation Results . 106

5.5.1 Fixed Inter-arrival Time, Fixed Duration Workload 107

5.5.2 Stochastic Inter-arrival Time, Fixed Duration Workload 109

5.5.3 Stochastic Inter-arrival Time, Stochastic Duration Workload 111

5.5.4 Summary of Simulation Results . 112

5.6 Characterizing the Policy Space . 113

5.7 Discussion . 115

5.8 Chapter Summary . 116

6 Towards Tussle Based Operating Systems 118

6.1 Introduction . 118

6.2 Design Goals . 120

6.3 Architecture Outline . 121

6.4 Design Challenges . 122

6.4.1 Applications’ Sensor Data Requirements 122

6.4.2 Users’ Data Privacy Requirements 125

6.4.3 Tussle Resolution . 126

6.4.4 Resolution Enforcement . 128

6.5 Discussion . 129

6.5.1 Prior Work . 129

6.5.2 Open Problems . 130

6.6 Chapter Summary . 133

vii

7 Conclusion and Future Work 134

7.1 Summary and Contributions . 134

7.2 Future Work . 137

7.2.1 Tussle Framework for IoT . 137

7.2.2 Virtualization for High Density Hosting 137

7.2.3 Storage Cost Optimization for Time Series Data 138

7.2.4 Control Architecture for IoT . 138

7.2.5 Semantic Isolation of Applications 139

7.3 Concluding Remarks . 139

References 141

viii

List of Tables

2.1 Comparison of existing solutions for providing data-driven applications
based on the design goals. 18

2.2 Examples of existing virtualization solutions. 24

2.3 Proposed and natively supported (denoted “stock”) inactive states for a
few virtualization solutions. 26

3.1 VHome API used by applications to access data. 41

3.2 Comparison of existing solutions for home energy data applications, * de-
notes a partial solution. 45

4.1 Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for
small data values (e.g., temperature readings) and (ii) FileStreams for large
values (e.g., images, videos). 62

4.2 Properties specified by applications when performing a stream create or
open operation. 63

4.3 Glossary. 66

4.4 Summary of Bolt’s evaluation. 69

4.5 Percentage of total experiment time spent in various tasks in a sample ex-
periment of 10,000 append operations (of 10 byte values) to a ValueStream. 71

4.6 Storage overhead of local ValueStreams as compared to DiskRaw. 72

4.7 Storage space required for a 1000-day deployment of PreHeat. 78

4.8 Storage space used for 10 homes in DNW for 1000 minutes, and 100 homes
in EDA for 545 days. 80

ix

5.1 Transition matrix (T3×3) and state capacity (Bi) values for LXC. 101

5.2 Variation of request inter-arrival times and durations across the three test
cases. 107

6.1 Glossary. 128

6.2 System resources. 130

x

List of Figures

1.1 Overview of the personal VEE ecosystem. 6

2.1 Taxonomy of existing systems for providing data-driven applications. . . 12

2.2 Overview of the HomeOS [74, 75] platform. 13

2.3 Overview of the Personal Container approach [137]. 15

3.1 Overview of the proposed system architecture. 31

3.2 Gateway and Envi device. 37

3.3 API access for a cloud-based application. 40

3.4 Screenshots of our Android smartphone application. 43

4.1 Data layout of a ValueStream. Data layout of a FileStream layout differs
only in that the values in the DataLog are pointers to files that contain the
data records. 64

4.2 Data layout of a sealed segment in Bolt. 65

4.3 Steps followed during a read operation in Bolt. 67

4.4 Write throughput for ValueStreams shown using a linear scale in (a) and
a logarithmic scale in (b). 70

4.5 Write throughput for FileStreams shown using a linear scale in (a) and a
logarithmic scale in (b). 72

4.6 Read throughput with randomly selected tags for ValueStreams shown
using a linear scale in (a) and a logarithmic scale in (b). 73

4.7 Read throughput for remote ValueStreams with varying chunk size for
two sample Get(tag,tstart,tend) queries with locality of reference. 74

xi

4.8 Open, index look-up, and DataLog record retrieval latencies (on the loga-
rithmic scale) with increasing number of segments of a local ValueStream,
measured by issuing 10, 000 Get(tag) requests for randomly selected keys.

. 75

4.9 Read throughput with randomly selected tags for FileStreams shown us-
ing a linear scale in (a) and a logarithmic scale in (b). 75

4.10 Time to retrieve past occupancy data with increasing duration of a Pre-
Heat deployment. 78

4.11 Retrieving object summaries in DNW from 10 homes for time windows
of 1 hour and 10 hours using Bolt and OpenTSDB. Retrieval times for
OpenTSDB are independent of chunk size. 80

4.12 Time taken to retrieve smart meter data for multiple homes for time win-
dows of 1 month and 1 year. 81

5.1 Hierarchy of booted, shutdown, and n inactive states. 88

5.2 Proactive idle VEE management using the SlidingWindow policy. 94

5.3 CPU utilization versus the number of booted VMs. 97

5.4 Transition times with increasing number of booted VMs. 99

5.5 Transition times with increasing number of frozen VMs. 100

5.6 Average miss penalty with increasing VM density for fixed inter-arrival
time and duration. 107

5.7 Average miss penalty with increasing VM density for stochastic inter-
arrival time and fixed duration. 110

5.8 Normalized root mean square error (NMRSE) for the ARMA predictor
used by SlidingWindow+ARMA. 111

5.9 Average miss penalty with increasing VM density for stochastic inter-
arrival time and stochastic duration. 112

6.1 Design overview of a tussle-resolving framework. 122

6.2 Data sampling parameters. 125

6.3 Example resolver request. 128

xii

Chapter 1

Introduction

1.1 Introduction

In recent years, networked sensors have shown unprecedented growth in adoption,
primarily driven by their decreasing cost and form factor. For instance, homes and
buildings are increasingly outfitted with sensors that measure and report temperature,
water and energy consumption, or detect motion, water leaks, open doors and win-
dows [3, 120]. It is estimated that 90 million homes in the US will be equipped with
sensors by 2017 [1, 40]. Similarly, smart meters that measure energy consumption have
also been widely deployed. Approximately 36 million homes in the US [42] (and 4 mil-
lion homes in Ontario, Canada [41]) have smart meters installed. Wearable sensors such
as Fitbit [14], that monitor users’ health are also being increasingly adopted [99]. Smart-
phones and tablets have evolved into multi-sensor devices and have various embedded
sensors, such as, GPS, accelerometers, gyroscopes, and heart-rate monitors. Analysts
predict that by 2020, 50 billion networked sensors will be deployed across our living
environments [34], collectively dubbed as the Internet of Things (IoT).

The rapid growth of networked sensors has enabled a wide variety of applications.
For instance, energy data analytics applications use data from smart meters and other
in-home energy sensors to provide users with meaningful insight into their consump-
tion [7,21,65,113,115,159,169,180,186,192]. Other applications process data from smart-
phones and wearable sensors to provide healthcare analytics [13, 66, 122]. Data from
smartphone-embedded sensors is also used for many different applications that span a
wide variety of user functionality [48, 72, 121]. Moreover, many applications use data
from in-home sensors to perform intelligent control of actuators and appliances such as

1

home heating, ventilating, and air conditioning (HVAC) control [76, 79, 116, 161], and
others [55,56,145,169]. We refer to all such applications that make use of sensor data as
data-driven applications.

Although applications use sensor data to provide useful functionality, they can also
misuse the data to reveal private information about the users to application developers.
For instance, data from motion sensors can be used to infer users’ home occupancy [96].
Smart meter data can be processed to infer users’ appliance usage [136] and TV view-
ing habits [91], socio-economic status [51], and many other types of private informa-
tion [129]. Similarly, data from sensors embedded in smartphones can be used to infer a
user’s physical activity [101,102], driving habits [104,111,147], and sleep patterns [66,98].
Therefore, it is imperative that, while enabling such applications, data privacy be pre-
served. We define data privacy as the ability of the user to control the extent of any
sharing of her sensor data with any third party [177].

Most data-driven applications today adopt a service provider-centric approach. In
this approach the user is required to provide her data to the service provider in exchange
for using data-driven applications. Typically, data from sensors is uploaded to the ser-
vice providers’ servers that host applications including their data processing, inference
algorithms, and other application-specific components. Users are provided with inter-
faces, such as web portals, to interact with the different applications. Examples include
Nest [25], Dropcam [10], and If This Then That (IFTTT) [20]. However, this approach
leads to the service providers obtaining a copy of the user’s sensor data, often along
with the rights to share the data, and hence can share it with unauthorized third parties,
such as advertisers. This threat has already come to pass in the form of unauthorized
sharing of users’ smart meter data [15, 24].

An alternative approach is to provide users with application executables that they
host in their own compute environments such as PCs, smartphones, and tablets, which
also house their sensor data. This gives the users the ability to prevent applications from
relaying data to unauthorized third parties, for example, by preventing applications’
access to the Internet. This approach provides better data privacy as compared to the
approach discussed above because data is not transferred out of the user-controlled com-
pute environment. However, the task of data warehousing, provisioning computational
resources for applications, and enabling remote access to applications from Internet-
enabled user devices, are delegated to users. These tasks put an overwhelming burden
on them. Examples of such application frameworks are HomeOS [74], Beam [170], and
Energy Lens [7].

In this dissertation, we propose a new software architecture that does not suffer from

2

the drawbacks of the existing approaches. We posit that users should be provided with
personal compute environments hosted in the cloud that provide (i) persistent storage
to warehouse their personal sensor data, and (ii) computational resources to run appli-
cations such as those discussed above. Applications can be downloaded from an “ap-
plication store”, and run within the confines of the user’s personal virtual execution
environment (VEE). Hosting applications on users’ personal VEEs ensures that, given
suitable mechanisms, no data leaves the confines of the user without her explicit per-
mission. We describe our vision in greater detail in Section 1.3.

The remainder of this chapter is structured as follows. In Section 1.2, we identify
the goals that an ideal system for personal sensor data management should achieve. In
Section 1.3, we lay out the vision of our personal-VEE based architecture and outline the
technical challenges in realizing this architecture. In Section 1.4, we describe the contri-
butions of this dissertation, and conclude with a summary of the chapter in Section 1.5.

1.2 Goals

An ideal system for personal sensor data management should meet two conflicting pri-
mary goals. First, it should enable data use, that is, it should allow applications to access
sensor data since applications provide users with valuable data-driven functionalities.
Second, it should preserve data privacy, that is, it should afford users with complete con-
trol over the data that they share with each application. These two primary goals trans-
late to the following sub-goals.

Data Consolidation

The system should provide users and applications with a single view into multiple data
streams collected using different sensors. For instance, in the case of sensor data con-
cerning users’ energy consumption, the system should allow consolidation of data col-
lected using in-home sensors and data available from utility-owned web-portals (col-
lected by smart meters [16]). Data consolidation not only broadens the scope of possible
applications by enabling cross-correlation of data, such as, correlating smart meter data
with in-home sensor data, but also eliminates the need for the user to access and manage
a separate data corpus for each sensor. In contrast, most commodity sensors today, for
example, Fitbit [14], Dropcam [10], and smart meters, provide data access through their
separate proprietary interfaces, preventing consolidation.

3

Data Durability

To allow applications to process historical sensor data, the system should guarantee the
durability of sensor data, regardless of its time of origin. For instance, HVAC control
applications [76, 79, 161] process sensor data from previous days/weeks/months.

Data Integrity

The system should ensure that sensor data is not tampered by an application or a third
party such as a storage provider1. This requires mechanisms to detect data tampering
and provide tamper evidence.

Data Privacy

The system should allow users to control who gets to access their sensor data. Therefore,
the system must ensure that only the user (the data owner) has access to all data (con-
fidentiality), and only the user can determine the scope and granularity of any entity’s
access to data (access control).

Application Flexibility

The system should allow a user to freely choose data-driven applications. For instance,
the system should allow application developers to distribute their applications to users.

Application Performance

The system should ensure acceptable application performance, for example, ensure tol-
erable data retrieval times, data processing times, and application access latencies.

Scalability

The system should maintain application performance, that is, low data retrieval and
processing times, and low access latencies, despite an increasing volume of sensor data,
growing number of sensors, and rising number of applications.

1If the user employs cloud storage providers such as Windows Azure [37] or Amazon S3 [4].

4

We now present our proposed approach for achieving these design goals.

1.3 Our Vision

Today, a wide range of computing and storage services hosted in the cloud are available
as commodity rent-based services. Examples include Virtual Machine (VM) providers
(e.g., Amazon EC2 [4] and Windows Azure [37]), computing platform providers (e.g.,
Google AppEngine), and Blob storage providers (e.g., Amazon S3 [4] and Azure Blob
Store [37]). Application developers rent these services to host their applications and
users’ sensor data. Users’ sensor data is required to be relayed and stored with these
services in order for users to use the provided applications. In doing so, the user hands
over a copy of her sensor data to application developers, and in many cases the right to
process and/or share the data with third parties. Thus data privacy is lost.

Our work is motivated by the following insight: if certain application hosting and
storage services were available to users, it is possible to build an ecosystem of data-
driven applications where data privacy is preserved. Figure 1.1 shows an overview of
the application ecosystem enabled by our approach.

In this approach, each user owns and controls a virtual execution environment (VEE)
hosted in the cloud, for example, a VM. Users’ data is stored reliably and durably using
commercial cloud storage services. Data-driven applications run within the personal
VEE, and the user retains complete control over the applications, that is, controls the
data reads, writes, and transfers. The personal VEE has mechanisms that a) preserve
data privacy by providing users with fine-grained access control, b) prevent applications
from leaking user data, and c) prevent or detect violation of data integrity by the storage
provider or by an application.

Data from different sensors is consolidated in the VEE’s datastore, either directly, or
using a gateway such as an in-home PC. Many in-home sensors, such as passive infrared
(PIR) sensors, currently possess limited communication capabilities or use proprietary
communication protocols such as Z-Wave [39]. Thus an intermediate gateway to collect
and coordinate data uploads, for example, by buffering during intermittent connectivity,
is required. Nevertheless, by providing a unified consolidated view to all sensor data,
our approach streamlines application development because applications can access any
type of sensor data through a uniform API. We believe that, enabling correlation of dif-
ferent types of sensor data can lead to novel applications.

5

API App

Personal
VEE

Host

Cloud
Storage

Application
Store

Sensors Gateway

Figure 1.1: Overview of the personal VEE ecosystem.

Application developers publish their applications to an application store from which
users can download and run them on their personal VEEs. This maximizes flexibility
and application choice.

Users can leverage the elasticity of existing clouds to inflate or deflate their VEEs,
depending on the resource requirements of the applications, thus ensuring application
performance and scalability, without handling the burden of manual resource provi-
sioning. Users may use their personal VEEs to also host private instances of web, mail,
messaging, or other application servers, and exercise greater control over them than
employing commercial providers of such services, such as, Gmail, Dropbox, or Google-
Docs. Similarly personal VEEs can be used to offload computation of privacy-sensitive
applications from resource-constrained mobile devices [90, 109, 135, 182].

Note that, in our approach the personal VEE provider is entrusted with providing
a secure and private execution environment. However, unlike existing approaches, our
approach does not require the user to explicitly hand over the rights to their data in
exchange for using data-driven applications. Recently proposed fiduciary relationships
between cloud providers and users, when legislated, will also prevent personal VEE
providers from eavesdropping on user data and applications [106].

6

1.3.1 Technical Challenges

Many technical challenges need to addressed to realize our proposed vision. For in-
stance, several mechanisms need to be designed and implemented to instantiate the
framework. This includes mechanisms to (i) coordinate sensor data uploads with the
gateway(s), (ii) expose data to third party applications via APIs, (iii) prevent applica-
tions from leaking user data, and (iv) provide fine-grained access control to users. Other
mechanisms may be needed to certify and validate applications’ behaviour, and to pro-
vide users with easy to understand data access controls.

Sensor data is required to be stored durably. Existing commodity cloud storage
providers such as Amazon S3 [4] or Windows Azure [37], may be leveraged to do so.
Although our approach requires users to trust their personal VEE provider (Section 1.3),
users may not trust cloud storage providers with the confidentiality and integrity of the
data. Moreover, users and applications may want to store data across multiple cloud
storage providers, and some applications may also require sharing of data across homes.
At the same time, time taken to retrieve stored historical sensor data should be mini-
mized. Therefore, suitable sub-systems for storage and retrieval of data need to be built
to cater to these requirements.

Our approach requires provisioning one VEE for each user2. Using existing virtual-
ization solutions to provision large numbers of VEEs will require unaffordably extensive
hardware resources due to relatively small VEE hosting densities of these solutions3.
Therefore, alternative systems and methodologies to provision large numbers of per-
sonal VEEs in the cloud need to be developed.

Other challenges include simplifying the development of data-driven applications.
For instance, a programming framework can be built such that it provides applications
with programming abstractions and primitives for commonly used inferences such as
occupancy. Applications can directly request their required inferences, while the frame-
work can bear the onus of running the required data processing; thus greatly simplifying
application development.

1.4 Contributions

This dissertation makes the following key contributions:
2For example, supporting each active Facebook user will require provisioning 1.4 billion VEEs [11].
3Citrix XenServer claims 100-200 VEEs/machine, subject to the VEEs’ workload.

7

• We design and implement a prototype of our proposed architecture, with home
energy data as the use case. We prototype the different design components and
three sample applications. We conduct a qualitative comparison with existing ap-
proaches that provide applications for processing home energy data, and demon-
strate that unlike existing approaches our prototype achieves the design goals de-
scribed in Section 1.2.

This work is described in detail in Chapter 3, and has been published in the pro-
ceedings of ACM e-Energy 2013 [169].

• We design a storage system (named Bolt) for the efficient storage and retrieval of
time-series data. Bolt builds on top of untrusted cloud storage services such as
Windows Azure [37] and Amazon S3 [4] to provide durability, confidentiality and
integrity guarantees for sensor data. We show that, in our test scenarios, Bolt has
up to 40 times lower retrieval time than OpenTSDB [27] (a popular time-series
database system), and requires 3-5 times less storage space.

This work is described in detail in Chapter 4, and has been published in the pro-
ceedings of USENIX NSDI 2014 [93].

• We propose a new methodology to multiplex large numbers of personal VEEs on
a single machine at the cost of a small increase in client request latency (called
miss penalty). We present a formal model for the problem and establish a theo-
retical lower bound on the miss penalty. We demonstrate the application of our
methodology using LXC [22] and explore the trade-off between VEE density and
miss penalty in this context.

This work is described in detail in Chapter 5, and has been published in the pro-
ceedings of ACM VEE 2015 [167].

As we describe in the remainder of this dissertation, these contributions address differ-
ent facets of our proposed personal VEE architecture (Figure 1.1), and combine to form
a solution that achieves the conflicting goals of providing data privacy and data use.

1.5 Chapter Summary

Sensors have become ubiquitous. Data collected from sensors is of immense practical
value. At the same time, sensor data can be processed to reveal unwarranted private in-
formation about the user. Therefore, a system architecture that enables applications of

8

sensor data while preserving user data privacy is required. We propose an architecture
that provides users with a personal virtual execution environment (VEE) hosted in the
cloud, and enables an ecosystem of third party applications of sensor data while pre-
serving data privacy (shown in Figure 1.1). However, there are a number of challenges
faced in realizing this proposed approach. Examples include building mechanisms for
data collection and consolidation from sensors, preventing violation of data privacy by
applications, ensuring data integrity and confidentiality when using untrusted storage
services, providing efficient storage and retrieval of time-series sensor data, and feasi-
bly provisioning personal VEEs for a large number of users. Designing systems and
methodologies to address these technical challenges is the focus of this dissertation.

9

Chapter 2

Related Work

In this chapter we first describe an overview of existing systems that provide users with
applications to process their privacy-sensitive data (in Section 2.1). We briefly describe
their architecture and design, and classify them based on their architectural approach.
This classification enables us to evaluate them based on the design goals described in
Chapter 1. We also survey existing work that has adopted the personal VEE approach
for particular applications such as online social networks, and find that this approach,
when augmented with suitable mechanisms and subsystems, can achieve our desired
design goals. This is the basis for the system architecture outlined in Chapter 1 and
presented in greater detail in Chapter 3. In Chapter 3, we choose home energy data as
an example use case, and design and implement different components of the personal
VEE architecture such as an in-home gateway, a personal VEE framework, and a few
sample applications.

In Section 2.2, we survey prior work on designing storage systems for user data. We
find that existing systems either do not address storage and retrieval of time-series sen-
sor data, or do not ensure data privacy and integrity when storing data using untrusted
storage services. In Chapter 4 we design a storage system to meet these requirements.

In Section 2.3, we categorize different virtualization approaches and survey exist-
ing work on increasing VEE hosting density. We identify shortcomings of existing ap-
proaches which prevent them from maximizing personal VEE hosting density. In Chap-
ter 5, we design a new methodology to alleviate these shortcomings.

10

2.1 Providing Data-Driven Applications

Figure 2.1 shows a taxonomy of existing systems for providing data-driven applications
and Table 2.1 compares them on the basis of the design goals described in Section 1.2.

2.1.1 Service-provider Approach

In this approach, each user’s data is stored on a logically centralized server, owned and
controlled by a service-provider, where it is processed for analytics or for controlling
actuators, or is shared with third-party applications. Most commercial data application
providers today adopt this approach.

For instance, energy companies such as Waterloo North Hydro [36] and San Diego
Gas and Electric [32] allow users to download their energy consumption data that is
collected by utility-owned smart meters, and provide some web-based data analytics
services. However, most energy companies chose to delete the data after a few months
of the billing cycle.

In other systems, users have the option of uploading and optionally linking their data
to other web applications. Examples include the Google Powermeter [15], Microsoft
Hohm [24], and GreenButton1 [16] applications such as Home Energy Yardstick [19],
Snugg Pro Energy Audit [33], and Home Energy Saver [18]. Similarly, health-tracking
services such as Fitbit [14] and Withthings [38] warehouse data from the wearable sen-
sors on their cloud-hosted servers. Users can enable other web-hosted applications to
access this data [13].

These systems do not provide any mechanisms for consolidating data from different
data sources. Secondly, the user is responsible for downloading ephemeral data from
the central provider and permanently storing it if they want data durability. Since data
is processed on the service-providers’ servers, it is vulnerable to intentional or unin-
tentional sharing with unauthorized third parties; thus endangering data privacy. This
was evident from the Google Powermeter [15] and Microsoft Hohm [24] projects, where
energy companies shared users’ smart meter data with third parties (Google and Mi-
crosoft respectively), without explicit user consent. Lastly, no mechanisms for ensuring
data integrity are provided to the user. However, the user can chose whether to link their
data to other web-applications, thus providing a limited degree of application flexibility.

1An initiative to standardize smart meter data formats.

11

Service-providers are responsible for provisioning their systems to ensure application
performance and scalability.

Powermeter [15],

Service-provider

Hohm [24],
Utility web-portals [32, 36],
GreenButton Apps [16, 18, 19, 33],
FitBit Apps [13, 14],
& Withthings [38]

& Hue [30]
Nest [25]

Home PC-based

HomeOS [74]

Cloud-based

Personal Data
Storage

Personal
Data Storage
with Limited
Computation

Personal
Virtual

Execution
Environment

Personal Container [77, 137]
& Personal Data Vault [138]

Data Capsule [107],
Data Preserver [108],

& Energy Lens [7]

& Transmute [92]

Virtual Individual Server
[58, 163, 164]

Figure 2.1: Taxonomy of existing systems for providing data-driven applications.

Sensor-oriented Services

Off-the-shelf devices such as Nest [25] upload sensor data to the service-provider’s server.
The server stores the data and processes it to predict home occupancy, which is used to
dynamically adjusts the thermostat’s set point. Similarly, the Philips Hue [30] lighting
system uploads data about user preferences and usage to its server, which is processed
to generate user feedback and product advertisements.

These solutions cater only to their respective sensors, and do not guarantee long-term
data storage, thus providing little data consolidation and durability. Since data remains
under direct control of the service-provider and not the user, data privacy is lost. Lastly,
a user is limited to using the applications provided by the hardware provider; users
cannot freely choose applications and thus have little flexibility.

2.1.2 Home PC-based Approach

In this approach, a user-owned computer, such as a home PC, is used to store sensor
data, run data analytics, and monitoring and actuation applications. This approach is
adopted by HomeOS [74], a platform for applications that use in-home sensors, and
Energy Lens [7], a desktop application that analyzes users’ energy consumption data.

12

We now provide an overview of these solutions and evaluate them based on the design
goals described in Section 1.2.

HomeOS

HomeOS [74, 75] is a .NET based platform designed to provide centralized monitoring
and control of sensors and actuators in a home such as switches, thermostats, and cam-
eras. It provides application developers with homogeneous abstractions to communi-
cate and control such devices. Figure 2.2 shows an overview of HomeOS. It is comprised
of software modules called “drivers” that communicate with the sensors and actuators.
A set of higher level modules called “application modules” use the driver modules to
collect data from the sensors, and encapsulate algorithms to perform monitoring, actu-
ation, or data analytics. The platform is responsible for providing (i) resource isolation
between modules, (ii) sensor access control, and (iii) communication between modules.

HomeOS Platform

Driver 1

Application 1

Sensors

Driver 2

Application 2

Figure 2.2: Overview of the HomeOS [74, 75] platform.

HomeOS provides data consolidation by enabling applications’ to access various sen-
sors (and other data sources such as web-portals). Since the data is processed on a user-
owned PC, the user can chose which applications to install and control applications’
access to sensors. Thus this solution provides data privacy and integrity, and applica-
tion flexibility and extensibility. However the user is required to maintain the durability
of the data, for example, using RAID arrays and off-site backups. Applications’ perfor-
mance in HomeOS is limited by the computational resources of the host computer, and

13

the user must provide additional computational and storage resources as application
demands and data volumes increase.

Energy Lens

Energy Lens [7] is a desktop application for homeowners and energy auditors that pro-
cesses energy data and generates feedback in the form of interactive visualizations. It
helps users in keeping track of when, where, and how much energy is wasted, and
progress made in reducing energy consumption. Similar to HomeOS, it allows users to
consolidate and process energy data from different sources (in-home sensors and smart
meters), preserve data integrity, privacy, and allows extensibility and flexibility. How-
ever, this approach provides no mechanisms for maintaining data durability, application
performance, or scalability.

2.1.3 Personal Data Storage

In this approach, each user is provided with a cloud-hosted storage system instance
controlled by the user herself. Users can use their individual storage environment to
consolidate and archive their data, and can chose to share it with third party applications
(hosted elsewhere in the cloud). We now describe existing work that has proposed this
approach.

Personal Container

The Personal Container [137] is a user’s personal data storage system instance in the
cloud, a logical single intermediating entity, where data is consolidated from disparate
sources such as various user-owned sensors, and re-exposed to data-consumers such as
applications, subject to the user’s consent. Figure 2.3 outlines the Personal Container
ecosystem of users, data sources, and applications.

Elsmore et al. [77] demonstrate the use of Personal Containers for collecting a user’s
smartphone GPS data. They system is deployed in an organization that wishes to mea-
sure its employees’ travel-to-work carbon footprint, for planning future infrastructure.
The Locker project [35] is an open-source platform that allows users to store information
and create applications that can run inside lockers. Each Personal Container is initialized
as a locker instance running on a Linux Container (LXC) [22], where each user’s GPS

14

Personal Container

User-owned devices

Third-party data sources

Third party
Applications

Data Request

Response

Permission

Figure 2.3: Overview of the Personal Container approach [137].

data is stored. The organization is then able to access some parts of users’ data with
their explicit permission, and offers data-driven applications. Example applications in-
clude one that calculates how much money a user spends using a car, train, or bus during
their commute and computes the payback time of using the bike-to-work scheme to buy
a bicycle.

Personal Containers allow users to consolidate data from different sources and durably
store it. Users have a free choice over applications, and application providers are re-
sponsible for maintaining application performance and scalability. Users are required
to trust the Personal Container with maintaining the integrity of the data. However,
data is transferred out of the Personal Container to application servers, albeit with ex-
plicit user permission, thus giving up data privacy. Moreover, existing work [77, 137]
does not address efficient storage and retrieval of sensor data and provisioning of Per-
sonal Containers for large numbers of users.

Personal Data Vault

Similar to Personal Containers [77, 137], Mun et al. [138] propose Personal Data Vault,
a system to allow users to retain ownership of their data. The proposed solution is to
use secure user-owned data containers to enable user-controlled sharing of data with
applications. This approach uses three mechanisms to facilitate this selective sharing

15

of data with applications. First, granular access control lists, allow users to define data
sharing policies that include the type and granularity of data a given application can
access. Second, trace-audit logs record transactions and transformations of users’ data
performed by applications. Lastly, a rule recommender pre-calculates constraint values
for a set of pre-defined data sharing policies, and facilitates policy re-configuration. The
system is instrumented to collect data from users’ smartphones for two health monitor-
ing applications: Ambulation (which logs a user’s physical activities) and Walking-survey
(which records a user’s sleep cycle information).

Similar to the Personal Container system, this solution achieves all of our design
goals except providing data privacy, since data is shared with the service-provider, albeit
in a controlled fashion. Moreover, this work does not address provisioning of Personal
Data Vaults for large numbers of users.

2.1.4 Personal Data Storage With Limited Computation

This approach enhances the personal data storage approach by supporting some trans-
formations of data before sharing with third parties; thus requiring a limited amount of
computation to perform such transformations.

Transmute

Griffis et al. [92] propose Transmute, a novel scripting language for writing data parsing
scripts that can be run inside a Personal Data Vault [138]. Transmute scripts or filters
receive raw sensor data streams as input, and output privacy-preserving data streams,
which can be shared with untrusted applications. This reduces the amount of private
user information revealed to the application. For instance, a filter can convert smart-
phone GPS data to a more coarse grained data stream such as a ZIP code stream. The
authors also provide tools that can be used to analyze the filters, and provide guaran-
tees about the transformations they perform on a given input stream. Users are also
provided with access control lists which can be used to grant stream read/write privi-
leges to filters and applications. Filters are sandboxed to prevent malicious filters from
leaking data.

This solution retains the data consolidation, integrity, and durability benefits of the
Personal Data Vault approach. In addition, it addresses data privacy using its filter-
based data transformations. However, it precludes applications from using raw data

16

streams. This presents serious limitations for application developers because they need
to design and implement appropriate methods for using transformed data streams, thus
limitting application extensibility and flexibility. Moreover, filters need to be developed
and maintained for every sensor type, for example by a trusted filter provider. Filters
need to be continually updated (by a trusted entity) as new algorithms that reveal un-
sanctioned private information from transformed data evolve.

Data Capsule

Kannan et al. [107] propose Data Capsule, an encapsulation of a specific kind of user
data such as credit card numbers or web-browsing patterns, along with code that imple-
ments a well-defined and open interface for accessing the data, for example, an interface
that debits money from a given credit card. Applications hosted on service-providers’
servers can use these interfaces to perform operations using the data, without transfer-
ring data out of the user-owned capsule. The framework includes a policy layer that
allows a user to exercise fine-grained and flexible control over how the interface to her
data is used. It also allows users to transform data before it is shared to limit loss of
data privacy. The solution demonstrates a shopping application in which the capsule
provides an interface to charge a credit card without revealing the credit card number
to the application. Similarly, in a second application the capsule stores a user’s web-
browsing data, and applications query the capsule interfaces to generate user-targeted
advertisements, and the application does not access the raw data.

Similar to the previous solution, this solution provides data consolidation, integrity,
and durability, and preserves data privacy by regulating applications’ access to data us-
ing capsule interfaces. However, it requires development and maintenance of capsule
interfaces for different data types, and for different data processing operations that ap-
plications may require. This presents a serious limitation to application flexibility and
extensibility. Lastly, existing work [107] has not addressed the design of capsule inter-
faces for sensor data and its processing.

Data Preserver

Extending the Data Capsule framework [107], Kannan et al. [108] propose Data Preserver,
an entity that encapsulates the user’s data with code and policies chosen by the user.
The framework proposes a combination of different mechanisms such as administrative
isolation, software-based isolation using virtual machines, and hardware based trusted

17

Service-provider Sensor-oriented Home PC-based Personal data storage Personal data storage Personal VEE

services with limited compute

Powermeter [15], Nest [25], HomeOS [74, 75], Personal Container [77, 137], Data Capsule [107], VIS [58, 163, 164],
Hohm [24], Hue [30] Energy Lens [7] Personal Data Vault [138] Data Preserver [108], πbox [124]
Utility web-portals [32, 36], Transmute [92]
GreenButton apps [16, 18, 19, 33],
FitBit Apps [13, 14],
Withthings [38]

Consolidation ✓ ✓ ✓ ✓
Durability ✓ ✓ ✓
Integrity ✓ ✓ ✓ ✓
Data privacy ✓ ✓ ✓
Flexibility ✓ ✓ ✓ ✓
Scalability ✓ ✓ ✓ ✓ ✓
Application
Performance

✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison of existing solutions for providing data-driven applications based
on the design goals.

platform modules to guarantee that applications interact with the preserver only via
the user-configured interfaces. The solution is similar in nature to the Data Capsule
framework, achieves the same design goals, and suffers from similar drawbacks.

2.1.5 Personal VEE

We now describe an approach where each user owns and controls a personal execution
environment hosted in the cloud, such as a virtual machine. As shown in Table 2.1, this
approach meets all our design goals. We now describe existing work that has adopted
this approach, and its shortcomings.

Virtual Individual Server

Cáceres et al. [58, 163, 164] identify various problems in using a centralized service-
provider approach for applications that process data collected from sensors on users’
smartphones such as GPS data. First, concentrating data from multiple users under one
administrative domain leads to the possibility of large-scale data privacy breaches. Sec-
ond, users are required to grant service providers with the rights to display and freely
distribute their personal data. The authors posit that a user’s interests are best served
if her data is uploaded to a Virtual Individual Server (VIS) for two reasons: (i) VISs are
resistant to large-scale privacy breaches because each VIS runs in its own administrative
domain, and (ii) VISs provide users with control over software and policies that direct

18

all data sharing. They use this approach to design a location-based online social network
application that uses virtual machines hosted on Amazon EC2 [3] as VISs. Further, they
show that the application’s latencies are comparable to that when using a centralized
service-provider approach.

Unlike previous approaches, VISs do not require any additional interfaces or filters
to be developed and maintained, promoting application extensibility. Users can com-
pletely control applications’ data access. By leveraging an elastic utility computing in-
frastructure, VISs ensure that applications have sufficient compute resources, thus pro-
viding application performance and scalability. This approach is the foundation that we
build upon in our work.

Note that existing work [58, 163, 164] uses the VIS approach for a single application,
and does not address extending this approach to other possible data-driven applications.
Moreover, it instantiates VISs as virtual machines, uses virtual machines’ local disk to
store data, and does not address durable storage of data and ensuring data integrity.
Our work in Chapters 3 and 4 addresses these shortcomings.

πbox

πBox [124] extends the VIS approach by proposing a runtime for smartphone applica-
tions that spans a cloud-hosted execution environment and user devices. However, this
work does not address data consolidation from other user-owned sensors, durable stor-
age of data, and ensuring data integrity. Nevertheless, it provides mathematical bounds
on the amount of information an application that reports usage statistics to developers’
servers can reveal. This work is complementary to our vision (outlined in Section 1.3),
because it enables data-driven applications running on users’ personal VEEs to report
usage statistics to developers.

2.2 Providing Data Storage and Integrity

We first discuss systems that leverage untrusted remote storage services that provide
data storage with data integrity guarantees (in Section 2.2.1). In Section 2.2.2, we de-
scribe existing systems aimed at personal data storage across user devices. Lastly, in
Section 2.2.3 we discuss other storage systems such as OpenTSDB [27] (which we use in
Chapter 4 as a point of comparison).

19

2.2.1 Leveraging Untrusted Remote Storage

Li et al. [126] build SUNDR, a network file system that uses untrusted remote storage
services to store files and provides integrity and consistency guarantees for stored files.
It employs cryptographic mechanisms such as digital signatures and fork consistency
to protect file system contents and enables clients to detect any unauthorized modifica-
tions. The authors show that a malicious user with complete administrative control of
a SUNDR server cannot cause the clients to read altered contents of stored files. Using
example workloads such as the Concurrent Versions System (CVS), they demonstrate
that the latency overhead of SUNDR is minimal as compared to NFS [155].

Extending the approach in SUNDR [126], SPORC [80] provides a “generic collabo-
ration service” using a cloud-hosted server running on a VM. The service is used to in-
stantiate different applications such as a key-value store and a collaborative text editor.
The design of the service ensures that the cloud-hosted server only receives encrypted
data. It uses “fork* consistency” and “operational transformation” mechanisms to en-
able clients to detect unauthorized operations such as additions, modifications, dele-
tions, or re-orderings. The authors use the example workloads to demonstrate that client
latency overheads are negligible.

Venus [166] provides key-value storage using commodity cloud storage services such
as Amazon S3 [4]. It does not require users to rent cloud based virtual machines for
server hosting (as in SPORC [80]). More importantly, it does not require users to trust
storage service providers, provides data integrity and consistency guarantees, and de-
tects any data tampering by a service provider. Similar to Venus, Depot [132] provides a
key-value store which although using untrusted storage services, provides consistency,
staleness, durability, and recovery properties.

Farsite [45] proposes using a collection of insecure and unreliable desktop comput-
ers to instantiate a reliable virtual file server with limited data integrity guarantees.
Chefs [85] demonstrates content distribution by replication of an entire file system on
untrusted storage servers.

Although this body of work demonstrates the use of different techniques to leverage
untrusted storage services (including commodity cloud storage services), it does not
address efficient storage and low-latency retrieval of time-series data.

20

2.2.2 Storing Data Across Devices

Salmon et al. [154] propose Perspective, a semantic file system to help users in managing
their data spread across their personal devices, such as laptops and smartphones. It
provides a uniform abstraction called a view, which is a semantic description of a set of
files. It is specified as a query on file attributes and the IDs of devices on which the files
are stored. Multiple devices interface with each other in a peer-to-peer (P2P) fashion, to
provide the unified view abstraction.

Similar to Perspective [154], HomeViews [87] provides users with a view abstraction,
and also allows secure sharing of views across user devices. It works in a P2P fashion and
does not require users to manage a centralized account or data protection mechanisms.
Both Perspective [154] and HomeViews [87] target user data such as photos, music, and
documents, stored across user devices.

Goh et al. [89] propose SiRiUS, a system that supplements local device file system
storage with untrusted remote storage. It forms an overlay over local file systems and
other network and P2P file systems such as NFS [155] and OceanStore. It provides some
data integrity and confidentiality guarantees, however, it does not guarantee the fresh-
ness of data a reader receives. Similarly, VStore++ [109, 110] provides a “virtual store”
abstraction, which is dynamically mapped to suitable user devices or cloud storage.

This body of work addresses many challenges associated with managing data pro-
duced and consumed by applications across user devices. However, it does not specif-
ically address storage and retrieval of time-series data. Moreover, it does not focus on
data confidentiality and integrity guarantees for such data.

2.2.3 Other Systems

sMAP [73] explores the design of a RESTful service that mediates data transfers between
sensors (the data sources), and data consumers such as applications. It provides inter-
pretability of data streams, manages the consolidation and propagation of data from sen-
sors to a given consumer, and focuses on supporting a wide variety of sensors. However
it does not focus on efficient storage and low-latency retrieval of sensor data.

Stream processing systems also present alternative solutions for housing sensor data.
They enable data to be pushed through a data-processing subsystem, offer straight-through
processing, that is, no modification to incoming data messages, which are then stored.
Examples of such systems include Aurora [61] and Borealis [43]. However, these sys-
tem assume that entities such as the data writer, data reader, and storage servers, are

21

in a single administrative domain. Scenarios where users want to leverage commodity
storage services such as Amazon S3 [4] or Windows Azure [37] are therefore not sup-
ported. Specialized time-series databases such as OpenTSDB [27] (described next) also
suffer from this drawback.

OpenTSDB [27] is a popular time-series data storage system. It builds on top of
HBase [6] (a column oriented database management system), and exposes a data stream
abstraction for reading and writing sensor data. Applications using OpenTSDB can store
and retrieve data streams by using its HTTP-based web APIs. However, OpenTSDB
does not provide any data integrity guarantees. This leaves data vulnerable to modifica-
tions by malicious third parties such as a service provider hosting OpenTSDB instances.

Ming et al. [127] propose a framework for storage and retrieval of patient health
records (PHR). The framework divides users into subsets, and provides each subset with
a separate set of cryptographic keys for encrypting data before uploading to a cloud
server. Using attribute based encryption techniques, the authors demonstrate reduction
in key distribution complexity with support for revocation of user access rights. How-
ever, this work relies on cooperation from the cloud hosted server (while assuming it to
be non-malicious), and does not focus on time-series data.

Popa et al. [144] design a cloud storage system which provides users with data in-
tegrity and freshness guarantees. However, they do not address storage of time-series
data, and do not focus on leveraging existing commodity cloud storage services.

2.3 Hosting Large Numbers of Personal VEEs

We first provide an overview of different approaches used to create virtual execution
environments (VEEs) in Section 2.3.1. In Section 2.3.2, we discuss existing work that has
focussed on increasing VEE hosting density, and examine its applicability for creating
large numbers of personal VEEs. Lastly in Section 2.3.3, we identify just-in-time provi-
sioning of VEEs as a potential approach to increase hosting density, and discuss existing
work and open problems pertaining to this approach.

2.3.1 Virtualization Approaches

Virtualization refers to the combination of indirection and multiplexing to present appli-
cations with the illusion of running on a dedicated physical machine despite sharing the

22

physical machine’s resources with other applications. Many virtualization approaches
have been studied since the mid-1960s and can be broadly classified into three cate-
gories: Full, Para-, and OS-level virtualization. Table 2.2 shows example virtualization
solutions for these categories.

Full Virtualization

In this approach, a single physical machine simultaneously hosts multiple unmodified
operating systems by trapping and redirecting requests to the underlying hardware re-
sources, including the CPU, interrupts, and the memory subsystem. Well known ex-
amples include IBM’s zServer, and VMWare Server. This approach places the most
demands on the physical machine, and therefore has the least potential VEE hosting
density, but provides the best fault and performance isolation.

Para-Virtualization

This approach presents the same interface to applications as full virtualization, but makes
small modifications to the hosted operating systems to reduce their resource demands.
This technique was first introduced in the Xen [50] virtualization solution. This approach
provides the same fault and performance isolation as full virtualization and achieves a
greater potential density, but at the cost of requiring OS modifications.

OS-level Virtualization

This approach virtualizes the API between an application and the OS, and makes a single
instance of an OS appear like multiple OS instances. The key idea is to tag a set of
processes with an identifier and to mutually hide processes with differing tags from each
other at every level of the operating system. By running a single instance of the OS, this
approach greatly reduces resource demands and increases hosting density. However,
this density improvement is at the cost of requiring OS modifications, and reduced fault
isolation, in that a kernel failure may simultaneously crash all virtual OS instances. A
widely used solution that has adopted this approach is Linux Containers (LXC) [22].

The VEE hosting density of a given virtualization solution directly depends on its
resource overhead. Therefore, to maximize VEE hosting density, it is imperative to un-
derstand and compare the resource overheads of the different virtualization approaches.

23

Type Solutions

Full Virtualization VirtualBox, VMWare Player, VMWare ESX, LPAR, QEMU, MoL
Para-Virtualization Xen, KVM, Lguest, rhype, UML, L4Linux, z/VM, PHYP, lv1, BEAT
OS-level Virtualization OpenVZ, Linux-VServer, LXC

Table 2.2: Examples of existing virtualization solutions.

Resource Overhead Comparison of Virtualization Approaches

Para-virtualized approaches have been shown to incur lower resource overhead than
fully virtualized approaches [50], thus they can be hosted with greater density. OS-level
virtualization incurs even lower overhead than para-virtualization and therefore allows
even higher VEE density. Soltesz et al. [171, 172] use benchmarks such as lmbench, Op-
erf, DBench, Postmark, OSDB, IPerf, and SPECWeb99, to demonstrate that the OS-level
virtualized VServer approach incurs lower resource overhead than the Xen paravirtu-
alized approach. Other researchers comparing OS-level virtualization solutions with
para-virtualized approaches report similar findings [63, 64, 143, 175]. Therefore, for a
given workload, OS-level virtualization solutions can potentially yield higher VEE den-
sity.

Moreover, the resource overheads of competing OS-level virtualization solutions is
similar. For example, VServer and OpenVZ show similar resource overheads, and hence
similar VEE hosting densities [60].

2.3.2 High Density Hosting

An ideal virtualization solution for provisioning personal VEEs should meet the follow-
ing goals.

• It should allow users to freely run multiple applications on their personal VEEs.

• It should minimize any impact on the performance of applications hosted on per-
sonal VEEs, for example, minimize any increase in latency of clients accessing ap-
plication servers hosted on a VEE.

• It should maximize VEE density, that is, the number of personal VEEs co-hosted
on a single machine.

24

In light of these goals, we now discuss existing work on increasing VEE hosting density.

The Denali isolation kernel [181] was one of the first attempts to create a high density
VEE hosting solution. It achieved an astonishing 10,000 VEEs per machine. However,
each VEE may only host a single application run on behalf of a single user. Moreover, it
requires both the guest OS and applications to be modified, thus requiring modifications
with the release of each application update. Therefore, this approach is not suitable for
mass hosting of personal VEEs.

The Honeyfarm approach [178] modifies Xen so that a VEE is dynamically spawned
whenever a client request (for a server hosted on the VEE) arrives, and is terminated
when the request is fulfilled. This work proposes two key improvements to Xen: (i) flash
cloning, which is a mechanism to quickly instantiate new VMs by copying and modify-
ing a reference VM image, and (ii) delta virtualization, which is a copy-on-write scheme
for VM main memory. This approach demonstrates VEE density of 10,000 VEEs per
machine. However, it does not allow data persistence across client invocations: all VEE
state is lost on the termination of the client request, making it unsuitable for hosting per-
sonal applications, such as data analytics. Consequently, this approach is unsuitable for
hosting personal VEEs. Nevertheless, as we see next in Section 2.3.3, the idea of just-
in-time provisioning of VEEs (used in this approach) greatly helps in improving VEE
hosting density.

2.3.3 Just-in-time Provisioning of VEEs

Traditionally, VEEs provisioned on a machine are thought of as always being in a booted
state, and thus utilizing the host’s CPU, memory, and disks [71, 103, 123, 190]. How-
ever, many VM workloads exhibit frequent, often long, and uncorrelated idle periods.
Examples include personal VEE workloads, some web-hosting [118] and cyber-foraging
workloads [158]. When multiple VEEs with such workloads are co-hosted on a machine,
decreasing the resource footprint of idle VEEs allows for a much denser VM packing,
thus reducing hosting costs for both VEE renters and VEE providers.

It is possible to reclaim resources from an idle VEE by transitioning it to an inactive
state(s), where its resource footprint is reduced, and activating it at the end of its idle
period, for example, on the arrival of a client request for a server hosted on the VEE. The
increase in VEE density comes at the cost of an increase in client request latency, called
the miss penalty.

25

Inactive States

Table 2.3 shows inactive states proposed or supported in a few virtualization solutions.
Recent work has introduced inactive states for VEEs to reduce their resource footprint,
albeit for different reasons, such as, for reducing VEE activation time. Wang et al. [179]
propose stateful in-memory substrates which are less resource-intensive than a running
VEE, and have small activation times. Knauth et al. [117] propose a fast-resume state
which leverages lazy disk reads to lower VEE activation time. Likewise, Twinkle [191]
demonstrates the use of different optimizations to lower VEE resume (from suspended)
times, such as, working set estimation, demand prediction, and free page avoidance .

Virtualization solution Inactive states

LXC [22] Frozen(stock) [133], Shutdown (stock)
Xen Suspended, Shutdown (stock), Substrates [179]
VMWare ESXi Suspended, Shutdown (stock), Fast-resume [187, 188]
KVM Suspended, Shutdown (stock)

Table 2.3: Proposed and natively supported (denoted “stock”) inactive states for a few
virtualization solutions.

Increasing VEE Density

Existing work has explored the use of a single inactive state for hosting idle VEEs, and
increasing VEE hosting density. DreamServer [118] demonstrates the use of a suspended
state [117,187,188] for just-in-time provisioning of VEEs for web-hosting workloads ex-
hibiting idle periods. The authors demonstrate that hosting density can be increased by
up to 50% by transitioning idle VEEs to the suspended state, and activating them on the
arrival of client requests. Similarly, Ha et al. [94] explore just-in-time provisioning for
VEEs that run computations offloaded from resource-constrained mobile devices. This
body of work suffers from two main drawbacks.

First, existing work uses an on-demand policy for managing idle VEEs. That is, a
VEE is transitioned to the booted state only when a client request for it is received, thus
incurring the maximum miss penalty. However, miss penalties can potentially be mini-
mized by leveraging better policies for managing idle VEEs, for example, by proactively

26

activating a VEE in anticipation of client requests. Unfortunately, existing work has
overlooked the design of such policies, and their impact on miss penalties.

Second, existing work leverages only a single inactive state. This limits VM den-
sity to the maximum number of inactive VEEs that can co-exist in that particular state.
However, since inactive states differ in their resource requirements, VEE density can be
further improved by multiplexing idle VEEs across multiple inactive states. Unfortu-
nately, existing work has overlooked this potential avenue for increasing VEE density,
which presents significant density improvements for workloads with high idle periods
such as personal VEEs. We address these two drawbacks of existing work in Chapter 5.

In using such a just-in-time provisioning approach, two key mechanisms are re-
quired:

• Determining when a VEE has become idle, so that it may be transitioned to an
inactive state.

• Detecting when a VEE needs to become active, so that it can be transitioned into
the booted state, for example, on the arrival of a client request.

We now describe prior work in these two areas.

Determining VEE Idleness and Activeness

The amount of time a VEE is idle depends entirely on its workload. For instance, if a
VEE hosts application servers, it may be classified as idle once it has no outstanding
client requests. Existing work has shown how such rules to determine VEE idle time
can be created. For instance, in case of client-server workloads such rules can use the
number of connected TCP clients [168], or the VEE’s CPU and memory utilization [184].
Example mechanisms to implement such rules include VEE introspection [100, 184] or a
reverse-proxy server running on the host machine [118].

Some of these mechanisms can also be used to trap client requests and activate re-
spective VEEs on request arrival. Existing work has demonstrated that this can be ac-
complished using a reverse-proxy server [118]. Other possible mechanisms (overlooked
in existing work) include deploying a kernel module on the host machine which uses
the destination IP address in a request to identify and activate the target VEE.

An alternate solution is to use a customized DNS server. Most client requests are
likely to use TCP along with using the target VEE’s domain name to address it. Therefore

27

a DNS server running on the host machine can be used to trap client requests and activate
the target VEE. VEE introspection can then be used to monitor a VEE’s active client
connections and detect when a VEE becomes idle, that is, it has no established client
connections. Moreover, this mechanism can also be used to multiplex a small pool of IP
address among a comparatively larger number of VEEs [168].

2.4 Chapter Summary

Upon comparing different approaches for enabling data-driven applications, we find
that existing approaches do not meet our desired design goals. However, a careful anal-
ysis of prior work suggests that an approach that provides each users with her own
personal VEE in the cloud can potentially meet all the desired design goals. To real-
ize this approach for a large number of users, it needs to be supplemented with several
subsystems. This includes an in-home gateway for collecting sensor data, building a
framework for hosting data-driven applications on personal VEEs, and providing data
access control. Our work in Chapter 3 addresses the design and implementation of such
mechanisms.

A suitable data storage system for efficient storage and retrieval of time-series data
also needs to be designed. Commodity storage services may be leveraged to do so. How-
ever, they may not be trusted with maintaining the confidentiality and integrity of the
data. Existing approaches to build storage systems for user data either do not focus
on time-series data, or do not provide the required data confidentiality and integrity
guarantees. Nevertheless, many techniques used for interfacing with untrusted storage
services can potentially be leveraged to build a storage system for time-series sensor
data. We address this problem in Chapter 4.

Similarly, provisioning personal VEEs for a large number of users requires suitable
virtualization solutions and methodologies to be developed. Existing work has pro-
posed a just-in-time VEE provisioning approach for increasing VEE density. In this ap-
proach the resource footprint of idle VEEs is reduced by transitioning them to an inactive
state. VEEs are activated on-demand, for example, upon the arrival of a client request.
The VEE density improvement thus is at the cost of an increase in client latency. How-
ever, existing work has overlooked venues for further improving VEE density by mul-
tiplexing VEEs across multiple inactive states. Also, the increase in client latency can
potentially be lowered by using different policies for managing idle VEEs across inac-
tive states. Our work in Chapter 5 addresses these drawbacks.

28

Chapter 3

Leveraging Personal VEEs for Energy
Data Analytics

3.1 Introduction

As discussed in Chapter 2, existing approaches for enabling data-driven applications
do not meet the design goals described in Chapter 1. We also observe that the personal
VEE approach, when supplemented with appropriate mechanisms, can potentially meet
the design goals. In this chapter, we design and implement the required mechanisms to
instantiate the personal VEE architecture, determine if our proposed system meets the
design goals, and thus examine the feasibility of our approach for enabling privacy-
preserving data-driven applications.

The variety of areas in which data-driven applications are employed today is ex-
tremely wide, ranging from healthcare, safety, convenience, to energy efficiency. To
avoid being overwhelmed by domain-specific details, we choose home energy as an ex-
ample use case, and build a prototype implementation of the personal VEE architecture
that hosts users’ home energy consumption data. We choose home energy data as our
example use case because of the following observations.

• Smart meters are being increasingly deployed in homes across the world [41, 42],
thus providing users with whole-house energy consumption data.

• The availability and adoption of commodity home energy sensors and actuators
have grown tremendously in recent years [3], thus enabling easy instrumentation
of home appliances for monitoring and control.

29

• Home energy data can be used to provide users with meaningful and actionable
insight into their consumption habits [7, 21, 65, 113, 115, 159, 169, 180, 186, 192].

• Suitable processing of home energy data can reveal private information about the
users, such as their appliance usage habits [136], TV channel being viewed [91],
socio-economic status [51], and other private details [129].

We believe that these recent trends speak to the applicability, value, and potential impact
of our work.

We note that a large body of recent work has focused on designing theoretical schemes
for analyzing smart meter data in a privacy-preserving fashion. Example approaches
include obfuscation [44, 114], aggregation [152, 153, 165], homomorphic encryption [86,
125], and other schemes [136, 148]. Other work has quantified the utility and privacy
of smart meter data, and has modelled the trade-off between them [146]. This body of
work further motivates us to focus on the domain of home energy data.

In this chapter we present the design and implementation of the different compo-
nents of the personal VEE architecture outlined in Chapter 1 (illustrated in Figure 1.1).
These include a) an in-home gateway for relaying sensor data and control commands,
b) a personal VEE framework, called VHome, which warehouses home energy data, ex-
poses it to third-party applications via APIs, and provides data access control, and c)
sample home energy applications that run within an instance of VHome. Our VHome
implementation also enables applications to securely and privately control home appli-
ances, when permitted by the user.

Our key contributions in this chapter are:

• The architecture of a system that allows users to own and control access to their
home energy consumption data, and freely use data-driven applications of their
choice.

• A prototype implementation of the proposed architecture on modern commodity
cloud computing platforms, along with four sample home energy applications.

• A qualitative evaluation of the prototype implementation with respect to data pri-
vacy and data use.

This work has been published in the proceedings of ACM e-Energy 2013 [169].

The remainder of the chapter is structured as follows. We describe the system archi-
tecture, prototype implementation details, and a qualitative evaluation in Sections 3.2, 3.3,

30

and 3.4 respectively. We present a discussion of this work in Section 3.5 and conclude
with a summary of the chapter in Section 3.6.

3.2 System Architecture

Figure 3.1 shows an overview of our system architecture. It has four main components
(a) in-home gateway (labelled Gateway), (b) the VHome framework running on a personal
VEE in the cloud, (c) native applications running within a VHome instance, and cloud-based
applications (CBAs) hosted in the cloud by respective providers, and (d) User interfaces
(labelled Remote UIs) that enable accessing VHome services from a connected device.

We now describe each component in greater detail.

App
Runtime

APIs
Datastore

PPMs

ACMs

Native
App

Cloud-Based
App

Remote
UIs

Smart Meter
Data

Energy Company
Server

Sensors Gateway

WS

VHome

Personal VEE

WS : Web Services
ACM : Access Control Mechanism
PPM : Privacy Protection Mechanism
 Secure communication

Figure 3.1: Overview of the proposed system architecture.

31

3.2.1 Gateway

The gateway is an in-home and user-controlled service that serves two main purposes.
First, it collects data from in-home sensors and relays it over a secure connection to the
cloud-based VHome instance. Second, it provides an interface that applications (and
hence users) can use to control devices in the home.

The gateway interacts with appliances, either directly (in case of smart appliances),
or using add-on sensors such as network-enabled power strips. This communication
typically uses one or more types of channels such as USB, Zigbee, Ethernet, WiFi, or
Z-Wave [39]. Usage data is uploaded from the gateway to the VHome over a secure
communication channel, where it is warehoused to be accessed and processed by appli-
cations. The gateway also authenticates remote users and accepts control commands.
These control commands either configure the gateway, request data uploads, or request
actions to be taken by appliances and devices such as turning an appliance off. A gate-
way may be a dedicated, networked hardware device, or integrated into other in-home
hardware such as a cable modem or set-top box, or may be software deployed on a
household computer.

3.2.2 VHome

VHome is a software framework that is hosted on a personal VEE and is comprised of
a set of services, described next. A VHome instance (a) receives data relayed from the
gateway and stores it (either using a local datastore, or using commodity cloud storage
services), (b) implements a set of APIs to access the data, (c) hosts a runtime for executing
third-party applications that process sensor data, (d) implements a set of trusted web
services for interaction with the gateway, and user devices, and (e) implements access
control and data transformation mechanisms (explained below). A VHome instance is
controlled and configured by the user who is the owner of the personal VEE.1 A personal
VEE could be a virtual machine [50] or a virtual container [171,172], provisioned by cloud
providers. In Figure 3.1, the VHome is shown as a dashed outline of a home.

We classify data-driven applications into two categories: Native applications, and
Cloud-based applications (CBA). Native applications run on the VHome-provided run-
time, and are certified to be “safe” using an approach described in more detail in Section
3.2.3. In contrast, cloud-based applications transfer sensor data out of the VHome. Since

1We discuss the participation incentives for the user and the personal VEE providers in Section 3.5.

32

this may violate user data privacy, data accesses by a CBA are mediated by privacy protec-
tion mechanisms (PPMs) that pre-process data before it is transferred out of the personal
VEE.

PPMs can implement privacy models such as obfuscation [44, 114], noise addition,
aggregation [152, 153, 165], and homomorphic encryption [86, 125]. An example PPM is
one that adds random noise values to smart meter readings, with the amplitude of the
noise decreasing with reading granularity, so that monthly readings may have little or
no added noise, but per-second readings have relatively larger amounts of added noise.
In addition, access control mechanisms (ACMs) allow users to restrict and revoke CBA
access to the APIs by scope and duration. For example, an ACM may allow a CBA to
access only hourly smart meter readings for a specified day of the year. Moreover, this
access may expire after one day.

In addition to native applications, a VHome also hosts special-purpose trusted Web
Services (WS). Being a trusted component, these services have free access to the APIs and
hence to the sensor data. They periodically accept data batches uploaded from the gate-
way and store it in the VHome datastore. They also fetch real-time data from the gateway
when requested by the user. This allows data to be uploaded in a single batch (e.g., once
a day), while providing real-time data access when required. Moreover, they provide a
control interface to the user for various administrative tasks, such as downloading and
running native VHome applications, configuring ACMs and PPMs, requesting VHome
software updates, migrating or deleting data, and configuring gateway actions.

3.2.3 Applications

We now discuss native and cloud-based applications in greater detail. Note that, the
main difference between native and cloud-based applications is that native applications
execute on a tightly-controlled runtime. Moreover, if applications are written in a man-
aged language such as Java or C#, their bytecode is available for analysis. This allows
the system to limit the privacy leakage that is possible due to these applications. In con-
trast, cloud-based applications cannot be tightly controlled. Therefore, the only way to
preserve privacy when transferring data to these applications is to modify the data itself,
which is accomplished using the PPMs.

We envision that both classes of applications would be developed by third-party de-
velopers, much like those who participate in the Apple App Store or Google Play Store.
Developers would use the VHome APIs (described in the next section), to access sensor
data. Users can either download native applications to the VHome which run on the

33

VHome runtime, or can use ACMs to give cloud-based applications access to their data
(after processing by PPMs). Applications can provide user interfaces (UIs) to enable
their invocation from PCs, smart phones, or other connected devices.

Native Applications (NAs)

The leakage of sensor data from native applications can be restricted using one of the
following approaches. In the first approach, a native application’s bytecode is scanned
to ensure that the application is incapable of network communication. Therefore an
application cannot leak data out of the personal VEE, thus guaranteeing data privacy.
In our prototype implementation, native applications must be written in Java and are
not allowed to invoke native APIs. Our thinking is that, an application can be certified
as safe if its bytecode does not use the Java.Net API (and does not use any native APIs).
This can be easily checked either at application installation time or when it is submitted
for publication to the application store.

The second approach is used for native applications that need to use network APIs
to access remote hosts, such as to scrape user’s smart meter data from an energy com-
pany’s website. To handle such applications, network communications from a native
application are restricted to a specific IP address (or host name). For instance, a native
application could be restricted to communicate only with the host name corresponding
to the energy company’s server. Moreover, read or write access from a native application
to the database can also be restricted. In the case of the energy data scraping application,
it can be restricted to only write the scraped data, with no privileges to read other types
of sensor data. As we show in Section 3.3, these restrictions on data access are easy to
accomplish in our prototype implementation. Similarly, we can also restrict the set of
web services that a native application can access.

Certified native applications are suitable for data mining, analytics, visualization, ap-
pliance control and home automation. Native applications can also obtain users’ smart
meter data from energy companies and store it in the datastore, making them ideal for
data consolidation.

Cloud-Based Applications (CBAs)

Unlike native applications, cloud-based applications are hosted using third parties’ host-
ing services. The main purpose of a cloud-based application is to allow sharing and com-
parison of sensor data between different VHome instances. ACMs provide fine-grained

34

access control over time-series sensor data, thus allowing users to choose which part(s)
of her data are shared with a CBA, and the time instant(s) at which it is shared, for ex-
ample, periodically. The challenge lies in preserving privacy while allowing meaningful
computations and comparisons. While certified native applications can be given access
to raw data, data given to a CBA must be pre-processed using techniques that ensure
that privacy is preserved. These actions are implemented by and configured using the
PPMs (as explained above). Similar to native applications, CBAs can be published on
the application store, and VHome owners can provide CBAs with their VHome URL
and explicit authorization to read required parts of their data.

3.2.4 User Interfaces

The gateway, the VHome’s web services (WS), and cloud-based applications all allow
user interaction. These interactions are mediated using user interfaces implemented on
a user device, such as a web browser, a smartphone application, or other mediums like e-
mail or SMS. User interfaces serve to simplify the management and control of a VHome
instance. Examples include user interfaces that are used to install native applications, to
configure the permissions granted to a CBA, and to control appliances in the home.

3.3 Implementation Details

This section presents details of different components of our prototype implementation
of the proposed architecture.

3.3.1 Gateway

We implement a software-based gateway using the Microsoft HomeOS [74,75] platform.
As described in Section 2.1.2, HomeOS is a .NET based platform designed to provide
centralized control of devices in the home such as light switches, thermostats, cameras,
and televisions. HomeOS provides developers with homogeneous programming ab-
stractions to orchestrate such devices. We use these features for monitoring and con-
trolling appliances and to enable the uploading of data to the VHome. Figure 2.2 shows
an overview of HomeOS. HomeOS is comprised of software modules called drivers that
communicate with devices to allow higher level application modules to actuate the de-
vices. In addition, a platform module manages and coordinates all other modules. To

35

instantiate our gateway, we extend HomeOS by enriching it with a few additional mod-
ules, described next.

Driver Modules

Each driver module monitors and controls an individual appliance using a sensor. We
implement driver modules for the Aeon appliance sensor [2] and the CC Envi [8] power
and temperature sensor. The Aeon sensor is installed in-series with an appliance and
communicates to the gateway over Z-Wave [39]. The module is invoked by the coordina-
tor module (described next) for polling data or controlling the sensor, and transmits the
respective Z-Wave frames to the desired sensor. The Envi sensor measures the active
power from a home every 6 seconds using a Hall-effect transducer. The transducer can
be clipped around the split-phase wires of an appliance, or to those at a home’s main
electricity supply. Measurements are transmitted wirelessly to the Envi console which
is connected via a USB cable to the gateway machine (an inexpensive netbook in our
prototype). The netbook caches data on local disk and transmits it periodically (e.g.,
daily) to a VHome. Figure 3.2 shows the netbook running the gateway software, and
the Envi device.

Communication Module

This module provides communication between the VHome and the gateway. We use
XMPP [174], the protocol underlying the Jabber chat client, as our transport protocol be-
cause it uses a simple RPC mechanism that is secure, extensible, and provides real-time
communication. Most importantly, XMPP ensures seamless communication from the
VHome to the gateway despite the presence of NAT devices, firewalls, and intermittent
disconnections at the home gateway.

Coordinator Module

This module records and processes energy data generated by the sensors’ driver mod-
ules and caches it temporarily on the gateway. Periodic data uploads are received by the
VHome’s web services and are robust to intermittent losses of connectivity. To facilitate
coordination of sensor data and control between the gateway and the VHome, each sen-
sor is assigned a class ID and an object ID. Sensors of the same type are assigned the same
class ID, but distinct object IDs. This allows a VHome instance to identify each sensor

36

Figure 3.2: Gateway and Envi device.

using the {class ID, object ID} tuple. The coordinator module uses the communication
module to listen for commands from the VHome (to control sensors). For example, if
Aeon sensors have the class ID 1, and the one interfaced with the electric heater has an
object ID 2, then the VHome issues the following command in XML to order the gateway
to turn it off.

<setStatus classID=1 objectID=2>
<power>0.0</power>

</setStatus>

The gateway performs the required action and responds with the sensor’s new status
as an acknowledgement. Other actions, for example, dimming lights and managing AC
temperature setpoints, are performed in a similar fashion.

3.3.2 VHome

In our prototype, all VHome sub-components – the APIs, Web Services (WS), Access
Control Mechanisms (ACMs), Privacy Protection Mechanisms (PPMs), and Native Ap-
plications, are implemented as separate Java Web Applications (or webapps) using the

37

Java API for Representational State Transfer (REST) [149] Web Services (JAX-RS frame-
work) [57]. As a result, they can be deployed in a Java Web Container. We use Apache
Tomcat as the web container, which is deployed on a virtual machine using the Ama-
zon EC2 cloud [4]. For data storage, we use MySQL as the relational datastore running
on the virtual machine’s local disk. Our choice of Java was motivated by our desire to
ensure VHome portability across virtual machine OSes.

Similar to the data format used for sensors (described in Section 3.3.1), sensor data is
organized into classes where each class describes a type of data stream and has a unique
class ID, a class name (e.g., heating), a descriptor (e.g., space heaters in the home), and
a rating (e.g., 500 W). Data streams can either originate from the sensors at home or can
be external (e.g., smart meter readings from an energy company’s website). Particular
streams of a class are identified as objects using a unique object ID within their class,
and have an object name (e.g., master bedroom heater), a descriptor (e.g., installed on
01/01/2011) and a granularity (e.g., 60, indicating data is produced every 60 seconds).

Privacy Protection Mechanisms (PPMs) are also implemented as webapps and ac-
cess a data stream or streams via APIs. They can create new privacy-preserving streams,
which can then be shared with cloud-based applications (CBAs). For instance, we im-
plement aggregation as an example PPM where energy consumption time-series data,
such as that produced every few seconds, is aggregated to compute daily or weekly
consumption values which are less revealing in nature.

The webapp backend for the VHome APIs implements them as a set of TLS-Secure
REST [149] URIs, which are used by native and cloud-based applications to access data,
control sensors and actators. Table 3.1 provides a brief overview of the API that native
and cloud-based applications invoke using HTTP GET or POST requests. Results are
returned using JavaScript Object Notation (JSON). Applications can add or modify data
streams subject to the Access Control Mechanisms (ACMs). Applications can potentially
compute a hash of a data stream (e.g., MD5) and sign it (e.g., using user’s private key)
to ensure data integrity.

The ACM webapp regulates applications’ access to all or a subset of APIs, configured
using the VHome Web Services (WS). By default all APIs are regulated and therefore,
require a valid access token to return results. The ACM webapp implements OAuth
2.0 [97], a token based authentication and authorization standard for securing API ac-
cess. It uses the VHome datastore to store data concerning access controls (e.g., tokens,
access lists, and more), and this data is only accessible to the ACM webapp.

Figure 3.3 illustrates this access process for a cloud-based application (CBA) hosted as
a web portal. To access any API, the CBA is first required to obtain a one time authorization

38

grant from the ACM webapp by providing its identity (identifier, name, or host-URL)
and a list of APIs that it requires access to and the parameters to the APIs. For instance,
a CBA requiring access to the bedroom space heater consumption data (e.g., with class
ID 1 and object ID 2) from January to March 2012 would request access to the data stream
API as:

https://<VHome URL>/GetStream/classID/1/objectID/2/TS/1325394000/1333252799

where TS indicates time-series data, and 1325394000 and 1333252799 are the epoch times-
tamps at 01-01-2012 00:00:00 and 31-03-2012 23:59:59, respectively.

This allows restricting the scope of data access to certain data streams and/or cer-
tain segments of a stream’s time-series defined using timestamp and/or data values.
The ACM webapp then redirects the user to the Web Services (WS) webapp so as to au-
thenticate the user as the VHome owner. After authentication, the scope and nature of
the requested access is described to the user, and her authorization for the access is re-
quested. The WS implements this as a simple notification in a web-browser, which can
be relayed to other remote UIs such as email, SMS, or mobile application notification.
An example of such a notification from an application named “EXAMPLE” is:

The application named EXAMPLE is requesting
access to bedroom space heater data

for Jan 1 to Mar 31, 2012.
Allow or Deny ?

The CBA is then required to exchange the one time authorization grant (before it ex-
pires) to obtain an access token and an (optional) refresh token. The access token permits
a CBA to use the corresponding APIs until the token expires, after which a new access
token must be obtained using the refresh token. All tokens are valid for periods con-
figured by the user. By matching the CBA’s credentials (e.g., URL) to those registered
while issuing the authorization grant, the ACM validates each API access and prevents
use of stolen access tokens. Further, if at any point the user decides to revoke (or pause)
a CBA’s access to data, she can simply revoke the access token and the refresh token for
that CBA.

Our prototype implements the authorization grant, access token and refresh tokens
in the form of randomized 128-bit MD5 codes, where the webapp maintains a lookup
table that stores their scope and expiry times. Avoiding the encapsulation of scope and

39

duration within the token circumvents token processing overhead for each API access.
The authorization grant and access token issuing endpoints are published as GET/POST
URIs by the VHome, and use JSON for token and error-message exchanges with CBAs.
Our prototype implementation assumes one user per VHome. We defer the manage-
ment of multiple users per VHome instance to future work.

CBA ACM WS

Authorization Request Prompt
AllowOne Time Authorization Grant

One Time Authorization Grant
Access Token + Refresh Token

APIs

Access Token

Access Token
Invalid Token Error

Refresh Token
Access Token + Optional Refresh Token

API Return Values..

Pr
og

re
ss

Figure 3.3: API access for a cloud-based application.

The Web Services (WS) webapp implements a number of backend components and
allows users to configure them. First, it coordinates periodic data uploads from the gate-
way over XMPP and symmetrically transmits control commands to the gateway’s coor-
dinator module. Second, it provides the user with a control portal to install native ap-
plications on the VHome. Native Applications, being JAVA web applications, are then
profiled by the WS webapp for use of the JAVA.net interface and for the VHome APIs
they require. The user can restrict the applications’ ability to read from and write to the
database by disallowing or restricting the scope of the APIs. Likewise, users can con-
figure ACM settings such as token formats and expiry periods, and chose which APIs it
permits. In a fashion similar to native applications, certified PPMs can be added to the
VHome through this portal which can be run to create additional data streams. Lastly,
the WS webapp allows users to purge native applications or data, and revoke access
tokens of any CBA.

Our prototype VHome implementation is open source and can be found at https:

40

https://vhome.codeplex.com
https://vhome.codeplex.com

//vhome.codeplex.com while the gateway implementation using HomeOS is hosted at
http://homeos.codeplex.com.

Function (regulated by default) Description

ListAllClasses Returns all attributes of all classes of data in the VHome DB

ListClass/param/value Returns all attributes of classes that match the specified pa-
rameter values

param: class ID, class name or rating

ListObject/param1/value1/param2/value2 Returns all attributes of objects that match the specified pa-
rameter values

param1: class ID, class name or rating

param2: object ID, object name or granularity

AddClass/className/x/descriptor/y/rating/z Adds class with name x, descriptor y, and rating z

AddObject/classID/w/objectName/x/descriptor/y/granularity/x Adds object with given class ID w, object name x, descriptor
y, and granularity z

AddStream/classID/x/objectID/y/ Adds time-series data to the given data stream with class ID
x and object ID y

GetStream/classID/x/objectID/y/ Returns the complete time-series data stream with class ID
x and object ID y

GetStream/classID/x/objectID/y/TS/t1/t2 Returns the time-series with class ID x and object ID y be-
tween timestamps t1 and t2

GetStream/classID/x/objectID/y/Val/v1/v2 Returns the time-series with class ID x and object ID y be-
tween data values (or Val) v1 and v2

GetStatus/classID/x/objectID/y Returns the current power consumption of device with class
ID x and object ID y

SetStatus/classID/x/objectID/y/status/p Sets the power consumption of device with class ID x and
object ID y to p

Table 3.1: VHome API used by applications to access data.

3.3.3 Sample Applications

We have created a sample application store as a web portal where users can browse for
native applications. It transfers the selected applications’ executables to the VHome’s
web services (WS) which installs them on the VHome, and can then be accessed using
remote UIs. We now describe four applications that we have built using our system
which, without our architecture, cannot be implemented in a privacy-preserving form.

Data Scraper

This application obtains users’ smart meter data from the energy company. It is imple-
mented using the JAVA DOM interface as a VHome native application. Our prototype

41

https://vhome.codeplex.com
http://homeos.codeplex.com

application runs on the VHome, scrapes data from an energy company’s web portal and
stores it in the datastore. At installation time, the application requests users to provide it
with their access credentials to access the energy company’s portal (Waterloo North Hy-
dro [36] in our prototype). The application also allows users to set automated periodic
data scraping actions to ensure that data is obtained before it is discarded by the utility
company’s portal (e.g, after three months) and the user is relieved of manually retriev-
ing the data. The application allows the data to be retained by the user even after it is
no longer available on the energy company’s portal. The data is stored as a data stream
in the Smart Meter class which can then be accessed by other applications through APIs.
Access to historical smart meter data provides opportunities for data analytics. For in-
stance, it allows applications to account for seasonal climate changes when examining
the consumption history.

Interactive Monitoring and Control

This native application interfaces with the VHome web services to monitor and con-
trol home appliances in real-time from an Internet-enabled device. Note that native
applications have no network access and can only be viewed by invoking the trusted
VHome webapp container. We implement an Android smartphone application that in-
vokes a VHome native application and provides a smartphone application GUI. This
means users can use VHome native applications via web-browsers or with applications
installed on their mobile devices such as smartphones and tablets.

Figure 3.4 shows snapshots of different panels in our Android smartphone applica-
tion. Screenshot-1 (on the left) shows the home monitor, which allows users to view
current conditions of the home as reported by the Envi sensor. In addition, the con-
sumption data stored at the VHome is used to compute and display the day’s and week’s
consumption. Screenshot-2 (in the center) shows the control panel which allows users
to turn on or turn off different appliances connected to Aeon Z-Wave sensors and dis-
plays their current consumption. Further, it allows users to share the amount of energy
they conserve by turning off appliances, on social networks such as Facebook and Twit-
ter and to compete with their friends. Screenshot-3 (on the right) shows a past trend
of aggregate energy consumption measured using the Envi sensor. This trend data can
be used by users to better understand abnormal consumption notifications (described
below). Our prototype implements SMS, E-Mail and mobile application notifications.
Since the VHome runs on a cloud virtual machine, energy data can be processed and
accessed using any connected device with relatively low latency.

42

Figure 3.4: Screenshots of our Android smartphone application.

Abnormal Energy Consumption Detection

This VHome native application informs users about abnormalities in their energy con-
sumption. For instance, consider a scenario where users forget to turn off an high-risk
appliance such as an oven while they are away. Using the VHome APIs, this applica-
tion periodically obtains the energy consumption values from the gateway, measured
by the Envi sensor. It then compares the values to a predicted value computed using
an Auto-Regressive Moving Average model. If the measured value is higher than the
predicted value by a threshold (e.g., 1 kW), then the application sends the user a notifi-
cation message via e-mail, SMS, or the Android smartphone application. The user can
then either use the Android application (described above) or reply to the email or SMS,
to take appropriate action.

Energy Data Analytics

In many parts of the world the price of electricity depends on the time of the consump-
tion. In Ontario, a day is divided into peak, mid-peak, and off-peak hours, each with
different rates [26]. We implement a VHome native application that processes a home’s
electricity consumption measured using the Envi sensor to determine how much energy
is consumed during different hours of the day, its corresponding cost under the pricing
scheme, and the total cost. It uses smart meter data obtained and stored by the data

43

scraper application to verify a user’s monthly energy bill. Such simple analytics also
provides the user with meaningful insight into her hourly and daily consumption pat-
terns, warns her of potential errors in their energy bills, and can help her to time shift
non-critical consumption.

3.4 Evaluation

We compared our architectural approach to other approaches in Section 2.1 (Chapter 2).
In this section, we compare our prototype to different existing widely deployed (i.e.,
non-research) systems for home energy applications. Table 3.2 compares the different
systems based on our design goals (Section 1.2).

Commercial software solutions such as Google Powermeter [15] and Microsoft Hohm [24],
being centralized web services are scalable but provide a fixed set of analytics with no
data consolidation and little data privacy. Both services are now defunct, thus leav-
ing users deprived of their energy data. Energy companies’ web portals act similarly
and share/discard the smart meter data at their discretion but ensure integrity of that
data. The Greenbutton [17] initiative has standardized energy data formats, so that users
can access their data and analyze it themselves (denoted “Greenbutton (Self)”) by using
desktop tools such as Energy Lens [7]. This allows users to choose analytics tools, en-
sure data integrity, and provides data privacy, but it burdens them with data hosting.
Alternatively, users can delegate the data retrieval and maintenance to third parties (de-
noted “Greenbutton (Third Party)”). Third parties can manage, analyze and host users’
energy data, but such unconditional access to raw data provides little data privacy.

Our prototype implementation of the proposed architecture meets the design goals
for a user-centric, privacy preserving system for energy data analysis as explained below.

• Data Consolidation: VHome native applications, such as the data scraper applica-
tion (Section 3.3.3), can read data from any data source and store it in the VHome
database. This allows users to easily consolidate data from multiple sources by
using one native application per data source. User-owned sensors can be directly
interfaced with the gateway, in a fashion similar to that described in Section 3.3.1.

• Data Durability: Instead of relying on a single computer in the user’s home to
store data, and relying on the user to back up that data, for example, by making

44

Hohm [24], Energy companies Greenbutton [17] (self) Greenbutton [17] VHome

Powermeter [15] web portals [32, 36] Energy Lens [7] (third party) prototype

Data Consolidation ✓ ✓ ✓

Data Durability *

Data Integrity * ✓ *

Data Privacy ✓ ✓

Application Extensibility ✓ ✓ ✓

Application Performance ✓ ✓ ✓ ✓

Scalability ✓ ✓ ✓ ✓

Table 3.2: Comparison of existing solutions for home energy data applications, * denotes
a partial solution.

off-site backups, data is stored in the VHome datastore. The VHome prototype
is hosted on a user-owned virtual machine (VM), and uses its local disk to ware-
house the data. However, different cloud providers provide varied guarantees
on the durability of data stored on VMs’ local disks [4, 37]. For instance, VMs on
Amazon Elastic Compute Cloud (EC2) may lose local disk data in case of hard
drive failures. Therefore, our current prototype provides only a partial solution
to data durability. In Chapter 4, we address this problem by leveraging commod-
ity cloud storage services for storing sensor data, since they provide stronger data
durability guarantees with lower storage cost than VM local disks.

• Data Integrity: Native applications can implement mechanisms to ensure the in-
tegrity of data stored directly into the VHome datastore, such as sensor data up-
loaded from the gateway. Example mechanisms include storing signed hashes of
data streams. However, our current prototype does not include such native appli-
cations. We address this problem in detail in Chapter 4.

Moreover, in cases of data procured from external sources, such as smart meter
data from energy companies’ servers, applications have to rely on the respective
sources such as energy companies, for preserving integrity of the data. Similarly,
our prototype assumes that the VEE and VHome-software providers do not tamper
with data in the VHome datastore.

• Data Privacy: The current prototype uses several mechanisms to ensure data pri-
vacy. First, data within a VHome instance is not accessible by entities outside the
VHome, eliminating many types of privacy violations. Privacy leakage from na-

45

tive applications is prevented by certifying native applications, by checking Java
byte code submitted to the application store to ensure that they are either not using
network APIs, or when they need to, are only communicating with the specified
hosts. The details of this process are described in Section 3.2.3. Privacy leakage
from cloud-based applications is mitigated, to some extent, by aggregation or ob-
fuscation and other privacy preserving mechanisms (PPMs). Note that, these pro-
tections of data privacy assume that the VEE and VHome-software providers are
trusted.

• Application Extensibility: Users can freely choose to extend their set of VHome
native applications by installing them from the application store. Users can also
chose to transfer their data to other cloud-based applications for analytics and
other services.

• Application Performance: Personal VEEs in the cloud provide VHome applica-
tions with more computational resources such as memory, CPU time, than are
available on a typical user’s home machine. Moreover, hosting data and applica-
tions in the cloud minimizes remote access latencies as compared to typical home
access links which have lower bandwidths.

• Scalability: In contrast with home-based computers, cloud-based personal VEEs
allow for easy scaling of both data set sizes and computation, by suitable provi-
sioning and re-sizing of the VEEs.

Thus, our prototype addresses all of our design goals, and demonstrates the feasibility
of our proposed personal VEE architecture using existing hardware, software, and cloud
infrastructure.

3.5 Discussion

Smart Meter Data

In some sense, ensuring that smart meter data remains private is moot, because energy
companies today collect this data and share it arbitrarily with third parties of their choice
(e.g., Google PowerMeter and Microsoft Hohm), without seeking users’ explicit permis-
sion. However, this situation is likely to change in the future due to two reasons. First,
we anticipate that many jurisdictions, following the lead set by the province of Ontario

46

(in Canada), will place severe restrictions on the sharing of smart meter data with third
parties, thereby freezing innovation in data analytics and customized recommendation
applications. Although this is being countered by proposals such as the Green Button
initiative [17], which release smart meter data back to users, users are not capable of per-
forming their own data analytics, and are loathe to share this data with third parties due
to privacy concerns. Second, besides smart meter data, users are likely to generate many
other equally private data streams including health-monitoring data, especially with the
widespread adoption of health-tracking devices such as Fitbit [14]. Our prototype im-
plementation can be extended to applications that analyze and process other such data
streams, thus balancing data privacy and application innovation in those domains.

An alternative approach for handling smart meter data is one where a home’s data is
transferred directly from the smart meter to a homeowner’s personal VEE. A VHome na-
tive application can then use the data to compute the monthly or yearly bill which is re-
layed to the energy company. Existing work on zero-knowledge proofs [136] and trusted
computing platforms [130], may be leveraged to guarantee the authenticity and validity
of the bill to the energy company, which has no access to the raw privacy-sensitive data.

Incentives

Our current prototype caters to home energy data, and involves five stakeholders– en-
ergy companies (that collect smart meter data), users, personal VEE providers, VHome
software providers, and application developers. We now explain the incentives for each
stakeholder to participate in the system.

• Energy Companies: Energy companies are under great pressure from legislatures
to release smart meter data to the users, as evidenced by the Green Button initia-
tive [17]. They also benefit from users’ adoption of energy conservation applica-
tions, in that it reduces their need for costly generation capacity upgrades. For in-
stance, energy companies often have to provision additional power plants to serve
their peak electricity demands, even though such demand levels occur rarely.

• Users: Users are increasingly becoming aware of the costs of the world’s rampant
energy consumption. In some cases users are motivated to better understand and
reduce their consumption to limit their carbon emissions, and its disastrous con-
sequences such as global warming and climate change. In other cases, users are
motivated to reduce their energy bills. Users currently lack the infrastructure and
tools to understand how they can achieve these reductions without giving up their
data privacy.

47

• Personal VEE providers: VEE providers are paid by users for hosting and main-
taining their services, and thus have a monetary incentive for participation.

• VHome software providers: We believe that VHome software providers can be
compensated for their development and maintenance efforts in two ways. First,
some user may wish to pay for purchasing VHome software, so that they can re-
ceive intelligent recommendations for their electricity use. This is akin to those
users who pay a monthly fee for services such as DropBox. Second, vendors of
energy-efficient appliances could subsidize the cost of VHome software, because
applications’ recommendations for the use of their products, such as energy-efficient
air conditioners, washing machines and LED lights, will lead to increased product
sales.

• Application developers: Application developers receive a mass audience for their
applications, and can choose to either sell them directly, or use builtin advertise-
ments; similar to applications on application stores such as the Apple App Store,
and Google Play. Some applications may also be commissioned by equipment
vendors, as discussed above.

Key Aspects

Our proposed architectural approach may appear to be obvious, merging cloud-hosted
data and execution environments with sensor data streams, an approach already imple-
mented by data management systems such as Pachube [29]. However, there are three
aspects of our work that are not obvious. First, we show how to use virtualized execu-
tion environments, in conjunction with an object-level framework, to provide a practical
solution for the seemingly conflicting requirements of ensuring data privacy while fos-
tering application development. Second, our approach enables the development of an
ecosystem of energy management applications in much the same way as Google Play
and the Apple App Store provide an ecosystem for the development of smartphone,
tablet, and desktop applications. Third, our approach is diametrically opposed to the
service-provider centric view that is widely prevalent in the Smart Grid community, and
commonly used by energy companies. Instead of designing an architecture that caters
to the needs of energy companies, our approach places control firmly in the hands of the
users.

48

Limitations

Our prototype is limited to dealing with sensor generated time-series data and does not
support other potential forms of user data, such as photos, videos, or document files.

Secondly, since our approach provides users with greater control over their data than
existing approaches, hence the user is faced with an increased number of decisions.
However, such cognitive overload may be eased by learning users’ preferences from
user studies to help make decision-making simple and intuitive for the user.

Our prototype does not include mechanisms for ensuring integrity of data streams.
Although, as explained in Section 3.4, these mechanisms as fully realizable in our ar-
chitecture. Moreover, such mechanisms are particularly important if commodity cloud
storage services are used for long-term data storage. Similarly, our prototype uses an ex-
isting relational database system (MySQL) to store the sensor data. This means that some
applications’ latencies may be impacted by the database’s retrieval latencies. However,
it may be possible to improve retrieval latencies by leveraging the nature of data queries
that are typically issued by applications. We explore these possibilities in Chapter 4.

Lastly, our approach also requires a trusted certification mechanism to certify appli-
cations and requires VHome software and personal VEE providers to be non malicious.

3.6 Chapter Summary

The work in this chapter investigates the feasibility of the personal VEE approach for
enabling an ecosystem of privacy-preserving data-driven applications. To do so, we
choose home energy data as an example use case because of its widespread potential
impact. We build a prototype implementation of our proposed architecture that helps
users manage home energy data and its applications. We identify, design, and imple-
ment the different components of the architecture. We also demonstrate how existing
work, both in energy data privacy and home device management can be leveraged to en-
rich some architectural components, such as an in-home gateway and privacy protection
mechanisms that transform sensor data to be less revealing. Our prototype consolidates
and stores users’ home energy data, while exposing it to third party applications while
ensuring that users have complete control over their data. It addresses all of our design
goals, and demonstrates the feasibility of our personal VEE architecture using existing
hardware, software, and cloud infrastructure. We conclude the chapter by presenting
a discussion of smart meter data with regards to our architecture. We also outline the

49

incentives for different stakeholders in our prototype, and discuss the key insights that
underlie our work, its current limitations and possible improvements.

50

Chapter 4

A Storage System for Sensor Data

4.1 Introduction

In our prototype implementation of the personal VEE architecture (described in Chap-
ter 3) we provided native and cloud-based VHome applications with RESTful APIs to
read and write sensor data. We implemented a few example applications to demonstrate
the use of these APIs. However, our prototype suffers from two main drawbacks.

First, many applications require richer data manipulation capabilities than those sup-
ported by our prototype data storage system. For instance, PreHeat [161] is an applica-
tion that infers home occupancy by processing in-home motion sensor readings, and
uses historical inferred occupancy values from specific time windows to predict future
occupancy which is used to control home heating to reduce home energy consumption.
Similarly, Digital Neighbourhood Watch (DNW) [56, 68] is an application that stores in-
formation about physical objects seen by in-home cameras, and shares this information
with neighbouring homes when requested, allowing users to gather image and video
evidence of criminal activities in the neighbourhood. We describe these applications in
detail in Section 4.2.1. Building these applications as native or cloud-based VHome ap-
plications will require developers to design and implement suitable data retrieval and
sharing mechanisms, thus increasing development effort.

The second drawback of our prototype storage system is that it only uses local VEE
storage. However, users and applications may also want to use commodity cloud stor-
age services such as Windows Azure [37] or Amazon S3 [4] to lower storage costs or
obtain better reliability. This requires application developers to not only design mecha-

51

nisms to store sensor data using these services but also to provision additional mecha-
nisms to prevent storage providers from accessing users’ private data.

We aim to simplify the management of data from in-home sensors by designing a
suitable data management system that replaces our prototype storage system. To do
so, we survey existing and proposed home applications and determine the key require-
ments for such a system. We now briefly summarize these requirements and describe
how they are derived in detail in Section 4.2.

• The system should support time series sensor data and should allow arbitrary tags
to be assigned to values. This is because tags provide applications with a flexible
way to assign application-specific semantics to time series values. For instance,
the DNW application may use “car” as a tag for a given data record.

• The system should enable sharing of data across VHome instances because many
applications need to access data from multiple homes. For instance, an application
that correlates energy data across homes to provide users with a comparison of
their energy consumption with other similar homes in the neighbourhood.

• The system should support cloud storage providers and should allow applications
to freely specify storage providers. This is because applications are in the best
position to prioritize storage metrics such as cost, reliability, location, and latency.

• When using cloud storage, the system should protect data against eavesdroppers
in the cloud or in the network because of the privacy-sensitive nature of sensor
data.

Unfortunately, existing systems (described in detail in Section 2.2) do not meet all of
these requirements.

Therefore, we design and implement Bolt, a data management system that meets
these requirements to provide storage, retrieval, and sharing of sensor data with low
resource overheads. Bolt abstracts data as a stream of (timestamp, tag, value) tuples,
and builds indices on these tuples to enable applications to issue data queries based
on timestamp and tag values. It uses cloud storage as a seamless extension of local
storage, and allows applications to prioritize storage across providers. Cloud storage is
also used to facilitate the sharing of data across VHome instances. Bolt encrypts sensor
data before uploading it to cloud storage services, and maintains metadata on a trusted
server (a native VHome application) to manage data sharing and provide data integrity
guarantees.

Our key contributions in this chapter are:

52

• A formulation of data management requirements of in-home data-driven applica-
tions.

• The design and implementation of Bolt, a system for the storage, retrieval, and
sharing of in-home sensor data that meets the design requirements.

• A performance evaluation of Bolt using three sample applications showing that
Bolt has up to 40 times lower data retrieval time and incurs 3–5 times less storage
space than OpenTSDB [27].1

This work has been published in the proceedings of USENIX NSDI 2014 [93].

The remainder of the chapter is structured as follows. We survey existing applica-
tions and formulate the design requirements in Section 4.2. Section 4.3 describes the data
guarantees Bolt provides and gives an overview of the key elements of Bolt’s design. We
describe the design in detail in Section 4.4 and our current Bolt implementation in Sec-
tion 4.5. We evaluate Bolt in Section 4.6 and present a discussion of potential extensions
of Bolt in Section 4.7. We conclude with a summary of the chapter in Section 4.8.

4.2 Design Requirements

To determine the design requirements for our storage system, we surveyed several ap-
plications that process in-home sensor data, including example applications described
in Chapter 3. We first briefly describe three such applications chosen because of their
diversity in the type of data they manipulate, their data access patterns, and their poten-
tial implementations as native and cloud-based VHome applications. We then formulate
the design requirements in Section 4.2.2.

4.2.1 Example Applications

PreHeat

PreHeat [161] correlates readings from motion sensors in a home to infer users’ home
occupancy. It records the occupancy values, and uses past occupancy patterns to predict
future occupancy, which it uses to turn a home’s heating system on or off to reduce the

1A popular time series data management system, discussed in Section 2.2.3.

53

amount of energy consumed for heating the home. PreHeat divides a day into 15-minute
time slots (i.e., 96 slots/day), and records the occupancy value at the end of a slot: 1 if
the home was occupied during the preceding slot, and 0 otherwise. At the start of each
slot, PreHeat predicts the slot’s occupancy value, using the slot occupancy values for
past slots on the same day and corresponding slots on previous days. For instance, for
predicting the occupancy of the nth slot on the dth day, PreHeat first retrieves occupancy
values for slots 1 · · · (n− 1) on the dth day. This is called the partial occupancy vector (de-
noted as POV n

d). In addition, PreHeat also uses POV n
d−1, POV n

d−2, . . . , POV n
1 . From this

set of past POVs, PreHeat selects K POVs which have the least Hamming distance to
POV n

d . An average of these top K POVs is computed, then it is compared with a thresh-
old value to obtain the predicted occupancy value and the heating system is turned on
or off accordingly. Since PreHeat only requires sensor data from a single home, it can be
implemented as a native VHome application in our personal VEE architecture.

Energy Data Analytics (EDA)

Recall that the sample EDA application we considered in Chapter 3 processed energy
sensor data values to determine how much energy is consumed during different hours of
a day and the energy costs under a time-of-day based pricing scheme. However, recent
work has proposed improved data analysis techniques for energy data. For instance,
techniques that identify the energy consumption of different appliances, user activities,
and energy wastage [54, 83, 119, 140].

A specific EDA application that we consider is a cloud-based application, for exam-
ple, hosted by an energy company, that presents an analysis of the monthly energy con-
sumption to users [54]. It disaggregates hourly home energy consumption values, such
as smart meter readings, into different categories which include: baseline consump-
tion, user activity driven consumption, consumption of heating or cooling systems, and
others. For each home, the variation in consumption level is analyzed as a function of
ambient temperature by computing the median, 10th, and 90th-percentile home energy
consumption levels for each temperature value. These values are then compared with
other homes in a neighbourhood or city, and are reported to the user with appropriate
graphics.

Digital Neighbourhood Watch (DNW)

DNW helps neighbors jointly detect suspicious activities, for example, an unknown car
cruising the neighbourhood, by sharing security camera images [56, 68]. It can imple-

54

mented as a combination of a native and cloud-based VHome applications. A DNW
instance in each VHome monitors the footage from security cameras in the home. When
it detects a moving object, it stores the object’s video clip and generates its summary
information, such as:

Time: 15:00 PDT, 23rd September, 2014
ID: 001
Type: human
Entry Area: 2
Exit Area: 1
Feature Vector :{114, 117, ... , 22}.

This summary includes the inferred object type, its location, and its feature vector, which
is a compact representation of its visual information. The example above shows the
feature vector for a sample human subject.

When a user deems a current or past object suspicious, the DNW instance in her
VHome queries neighbouring homes’ instances to query if they have also seen the object
around the same time. A DNW “coordinating endpoint”, implemented as a cloud-based
application, could be used to perform such queries. In response to such a query, each
neighbour home instance extracts all objects that it saw in a time window (e.g., an hour)
around the time specified in the query. If the feature vector of an object is similar to the
one in the query, it responds positively and optionally shares the video clip of the match-
ing object. Responses from all the neighbours allow the original instance to determine
how the object moved around in the neighborhood and if its activity is suspicious.

Other Applications

Other applications we surveyed include Digiswitch [59], which allows elders and their
distant caregivers to share real time home activity information. We also surveyed com-
mercial systems such as Kevo (which interface with in-home connected door locks) and
other home energy applications that we implemented in Chapter 3 including: abnor-
mal consumption detection, interactive monitoring and control, and smart meter data
scraper. The requirements, which we describe next, also cover those placed by these
applications.

55

4.2.2 Data Management Requirements

We formulate the requirements of the applications (described above) into four cate-
gories.

1. Support Time-series, Tagged Data

Most in-home sensor applications generate time-series data and retrieve it based on time
windows. For instance, as described above in Section 4.2.1, PreHeat stores continuous
home occupancy values, and retrieves them based on multiple time windows (called
POVs). Similarly, EDA accesses hourly energy consumption values, and object sum-
maries in DNW are also time-series data. Moreover, applications also sometimes tag
the data, so that it can be queried at a later time using application-specific tags. For in-
stance, object type “car” is a possible tag in DNW and “home heating consumption” is a
possible tag in EDA. Applications can specify such tags to retrieve the required values.

We also observe other commonalities in the data manipulation patterns of applica-
tions. First, time-series data in these scenarios has a single writer. Second, writers al-
ways generate new data and do not perform random-access updates or random record
deletions. Third, readers typically fetch multiple proximate records by issuing tempo-
ral range queries for sliding or growing time windows. Note, however, that traditional
databases incorporate transactions, concurrency control, and recovery protocols that in-
cur unwanted resource and latency overheads [162]. Unfortunately, filesystem storage
offers inadequate query interfaces for such applications.

2. Support Policy-Driven Storage

Different types of time series data have different storage requirements for location, ac-
cess latency, cost, and reliability. A DNW application may record in-home images lo-
cally (e.g., on a personal VEE’s local disk) and can delete them once it has extracted and
stored the summaries of objects in them. The application may want to store these on a
remote server to enable correlation with images captured by neighbouring homes, for
example, to detect a suspicious car moving in the neighbourhood. Alternatively, the
raw images may be stored on cheaper archival cloud storage. We believe that applica-
tions are in the best position to prioritize storage metrics and should be able to specify
the policies that govern the storage of data (that they generate) across providers.

56

3. Ensure Data Confidentiality and Integrity

Applications may also use remote storage infrastructure to simplify data management
and sharing, improve reliability or lower cost, but may not trust the storage services with
maintaining the confidentiality or integrity of data. Data processed by applications may
reveal immensely private information about the user: occupancy and energy data in Pre-
Heat and EDA respectively, can reveal when residents are away, which can be exploited
by attackers. Therefore, a data management system for in-home sensor data should
guarantee the confidentiality and integrity of stored data. The system should also sup-
port efficient changes in access policies, without requiring, for instance, re-encryption
of large amounts of data.

4. Efficiently Share Data Across Homes

Many applications require access to data from multiple homes. In our personal VEE
architecture, these are either VHome native applications that need to share data with
other VHome instances or are cloud-based applications which correlate data from mul-
tiple VHome instances. Both DNW and EDA are examples of such applications, which
share object summaries and energy consumption values across homes respectively. Ex-
isting data storage and sharing services, such as Dropbox or OneDrive, can simplify
cross-home sharing but they will unnecessarily synchronize large quantities of data.
Applications may want to access only part of the data produced by a sensor. For in-
stance, in DNW, it would be wasteful to access an entire day’s video data if the search
for suspicious objects needs to be conducted only over a time window of few minutes.

Designing a storage system such that it meets all the requirements described above,
presents many design choices. For instance, storing all data locally facilitates confiden-
tiality but inhibits efficient sharing and reliable storage in the cloud. Similarly, storing
data in the cloud provides reliable storage and sharing but untrusted storage servers
can compromise confidentiality. Sharing data by synchronizing large amounts of data
is inefficient, whereas naïvely storing encrypted data on untrusted cloud storage servers
inhibits efficient sharing.

As described in detail in Section 2.2, existing systems either provide inefficient shar-
ing and query abstractions for time-series data [80, 85, 126], assume partial or complete
trust on the storage servers [127], or store data locally while ignoring application storage
policies [87]. In the following sections we describe the design of Bolt, which meets the
requirements discussed above.

57

4.3 Design Overview

Bolt provides applications with a stream abstraction, where each stream is a collection
of records, and each record has a timestamp and one or more tag-value pairs, that is,
<timestamp, <tag1,value1>, [<tag2, value2>, ...]>. Streams are uniquely identified by the
three-tuple: <VHomeID, AppID, StreamID>. Bolt allows retrieval and filtering of streams’
records using time ranges and tags. We first explain our design assumptions and Bolt’s
data guarantees followed by a description of key design elements in Section 4.3.2. High-
lighting the key design elements enables us to describe the design in detail in Section 4.4.

4.3.1 Security Assumptions and Guarantees

Bolt does not trust the cloud storage servers to maintain data confidentiality or integrity.
It assumes that the storage infrastructure is capable of performing unauthorized reads
or modifications to stream records and can return old data when queried. By building
on top of this untrusted storage infrastructure Bolt provides the following three data
security guarantees:

1. Confidentiality: Data in a stream can be read only by an application to which the
owner, that is, the writer, grants access. Once the owner revokes access, the reader
cannot access data stored after revocation.

2. Tamper Evidence: Readers can detect if data has been tampered with by anyone
other than the owner. However, Bolt does not defend against denial-of-service
attacks, for example, where a storage server deletes all data or rejects all read re-
quests.

3. Freshness: Readers can detect if the storage server returns stale data, that is, data
is older than a given owner-configurable time window.

4.3.2 Key Techniques

We describe the four main techniques that allow Bolt to meet these design requirements.

58

Chunking

Bolt stores data records in a log per stream called the DataLog, which enables low-latency
append-only writes. Streams have an index into the DataLog to support efficient lookups,
filtering on tags, and temporal range and sampling queries. A contiguous sequence of
records within a log constitutes a chunk. A chunk is the basic unit of transfer for stor-
age and retrieval. Data writers upload chunks instead of individual records. Bolt com-
presses chunks before uploading them, which lowers transfer time and storage space
required. Readers also fetch data at the granularity of chunks. Although, this may
fetch more records than are needed for answering a given query, the resulting ineffi-
ciency is partially mitigated by the fact that applications, such as the ones surveyed
in Section 4.2.1, are often interested in multiple successive queries rather than a single
query. Delay incurred for common queries with temporal locality is improved by fetch-
ing chunks instead of individual records because it avoids additional round trip delays.

Note that typical sensor data, when packed into chunks, has high compression ra-
tios that lowers the fraction of bytes transferred when fetching chunks for serving data
reads. Chunks can be compressed using existing compression techniques such as GZip
and delta encoding of timestamps and values of records within a chunk, which will fur-
ther improve storage and transfer efficiency. These techniques do not have a significant
impact on retrieval time because chunks can be uncompressed and decoded, in parallel,
using a pipeline.

Separation of Index and Data

Bolt maintains an index for each stream. The index stores information about the location
of different records stored in the stream’s log. When answering queries for data stored
remotely, Bolt first fetches and stores the stream index on local disk. This separation of
the index and DataLog, enables two key properties.

First, when answering read queries for data stored remotely, the index (fetched and
stored locally) can be used to determine the chunks that should be fetched from remote
servers. A dedicated computation endpoint, such as a query processing engine hosted
in the cloud, is therefore not required, thus reducing storage and retrieval costs. This
allows Bolt to use existing storage servers that only provide get and put APIs.

Second, this separation allows Bolt to relax its trust assumptions for storage servers,
supporting untrusted cloud providers without compromising data confidentiality by en-
crypting data. The data can be encrypted before storing and decrypted after retrievals,

59

while the storage provider does not need to support any data semantics. Using un-
trusted cloud providers is challenging if the provider is expected to perform index lookups
on the data.

Segmentation

Since applications only append new data and do not perform random writes, stream
DataLogs can grow very large over time. Bolt allows archiving of contiguous portions
of a stream, that we call segments, while still allowing efficient querying. The stor-
age location of each segment can be configured independently, enabling streams to be
stored across multiple storage providers. Hence, streams may be stored either locally,
remotely on untrusted servers, replicated for reliability, or striped across multiple stor-
age providers for cost effectiveness. This configurability allows applications to prioritize
their storage requirements of space, latency, cost, and reliability. Bolt currently supports
local disk, Windows Azure storage, and Amazon S3 as storage providers.

Decentralized Access Control and Signed Hashes

To maintain confidentiality when using untrusted storage servers, Bolt encrypts the
stream with a secret key generated by the owner, that is, the writer. Our design sup-
ports encryption of both the index and data, but by default we do not encrypt indices
for efficiency2, though in this configuration some information may be leaked through
data stored in indices.

We use lazy revocation [105] for reducing computation overhead of cryptographic
operations. Lazy revocation prevents evicted readers from accessing content stored af-
ter revocation, because any content stored before revocation may have already been ac-
cessed and cached by such readers. From the different well-known key management
schemes that support lazy revocation, we use hash-based key regression [84] for its sim-
plicity and efficiency. It enables the owner to share only the most recent key with autho-
rized readers, based on which the readers can derive all previous keys to decrypt any
content encrypted using those keys.

We use a trusted metadata server to store and distribute keys. It runs on a user’s per-
sonal VEE. Once an application has opened a stream, all its subsequent reads and writes

2Index decryption and encryption is a one time cost paid at the start and end of a session of queries
respectively (called stream open and close), and is proportional to the size of the index.

60

occur directly between the storage server and the application. This prevents the meta-
data server from bottlenecking read or write operations. In addition to keys for en-
crypted data streams, the metadata server also stores additional per-stream metadata,
which we describe in detail in Section 4.4.4.

Encryption provides confidentiality of data. However, a remote untrusted server
storing part of a stream may modify data records or could return old copies of the data.
Therefore, we incorporate data integrity and freshness checks into each stream. To fa-
cilitate integrity checks on data, the writer generates a hash of stream contents, which
is verified by the readers. To enable freshness checks, similar to SFSRO [85] and SiR-
iUS [89], we include a freshness time window as a part of a stream’s integrity metadata
(denoted MDint). This time window denotes the time up to which a stream’s data can be
deemed fresh; it is based on the periodicity with which writers expect to generate new
data, since typical writers periodically append new values to streams. Writers update
and sign this time window periodically, which is used by readers to verify records when
they open a stream for reading.

4.4 Bolt Design

This section describes the design of Bolt in greater detail.

4.4.1 APIs

Table 4.1 shows the different stream APIs offered by Bolt. Applications, identified by the
tuple (VHomeID, AppID), are the principals that read and write data. Table 4.2 shows the
stream properties that applications specify when performing a stream create or a stream
open operation. These properties define the stream’s type, storage location, encryption,
and sharing requirements. The stream type can be a ValueStream, which can be used to
store relatively small data values such as temperature readings, or a FileStream, which is
used for relatively large data values such as images or videos. As we detail below, the
two types of streams organize data in different ways on disk.

Each stream has one writer (owner) and one or more readers. Writers add time-tag-
value records to the stream using the append operation. A single record in a stream can
have multiple tag-value pairs. Similarly, a record can also have multiple correspond-
ing to a single value. Tags and values are application-defined types that are required to

61

Function Description

createStream(name, R/W, policy) Create a data stream with specified policy properties (see Table 4.2)

openStream(name, R/W) Open an existing data stream

deleteStream(name) Delete an existing data stream

append([tag, value]) Append the list of values with corresponding tags. All values get the same timestamp

append([tag], value) Append data labelled with potentially multiple tags

getLatest() Retrieve latest tuple < time, tag, value > inserted across all tags

get(tag) Retrieve latest tuple < time, tag, value > for the specified tag

getAll(tag) Retrieve all time-sorted tuples < time, tag, value > for the specified tag

getAll(tag, tstart, tend) Range query: get all tuples for tag in the specified time range

getAll(tag, tstart, tend, tskip) Sampling range query

getKeys(tagstart, tagend) Retrieve all tags in the specified tag range

sealStream() Seal the current stream segment and create a new one for future appends

getAllSegmentIDs() Retrieve the list of all segments in the stream

deleteSegment(segmentID) Delete the specified segment in the current stream

grant(appId) Grant appId read access

revoke(appId) Revoke appId’s read access

Table 4.1: Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for small
data values (e.g., temperature readings) and (ii) FileStreams for large values (e.g., im-
ages, videos).

62

implement specific contracts, which allows Bolt to hash, compare, and serialize them.
Lastly, writers can grant and revoke the read access of other applications. Readers can
filter and query data using tags and time, using the different get operations. Our proto-
type implementation supports querying for the latest record, the latest record for a tag,
temporal range and sampling queries, and range queries on tags. Range queries return
an iterator, which fetches data on demand.

Property Description

Type ValueStream or FileStream
Location Local, remote, or remote replicated
Protection Plain or encrypted
Sharing Unlisted (private) or listed (shared)

Table 4.2: Properties specified by applications when performing a stream create or open
operation.

4.4.2 Writing Stream Data

To write data to a stream, an owner first creates a new Bolt stream and appends data
records to it. Figure 4.1 shows the data layout for a stream. A stream consists of two
parts: a log of data records (called DataLog) and an index that maps a tag to a list of data
item identifiers. Item identifiers are fixed-size entries and each list of item identifiers in
the index is sorted by time, enabling efficient binary searches for range and sampling
queries. The index resides in memory and is backed by a file; records in the DataLog are
on disk and retrieved when referenced by the application. The DataLog is divided into
fixed-size chunks of contiguous data records.

As large numbers of values are appended to a stream, the index can consume con-
siderable amounts of memory. To reduce the memory footprint of the index, streams
in Bolt can be archived. As described in Section 4.3, each stream is divided into seg-
ments, where each segment has its own DataLog and corresponding index. Hence, each
stream is a time ordered list of segments. If the size of the stream’s index in memory
exceeds a configurable threshold (indexthresh), the latest segment is sealed, its index is
flushed to disk, and a new segment with a memory resident index is created. Writes to
the stream always go to the latest segment and all other segments of the stream are read-
only entities. The index for the latest segment is memory-resident and is backed by a file

63

DataLog

(on disk)

occupancy

Tags

car

energy

Chunk #1,

Hash(Chunk #1)

ts1,

offset1

ts6,

offset6

ts2,

offset2

Val

1

Val

2

Val

3

Val

4

Val

5

Val

6

Val

7

Val

8

Index
(in memory,

disk backed)

Item identifiers
ts5,

offset6

ts7,

offset7

ts8,

offset8

ts8,

offset8

ts3,

offset3

ts4,

offset4

ts6,

offset6

Chunk #2,

Hash(Chunk #2)

Chunk #3,

Hash(Chunk #3)
ChunkList

Figure 4.1: Data layout of a ValueStream. Data layout of a FileStream layout differs only
in that the values in the DataLog are pointers to files that contain the data records.

(Figure 4.1). As shown in Figure 4.2, all other segments are sealed and store their indices
on disk with a compact in-memory index header. The index header consists of the tags,
the timestamp for the first and last identifier in their corresponding item identifier list,
and the location of this list in the index file.

4.4.3 Uploading Stream Data

In Bolt, each reader or writer (identified by the <VHomeID, AppID> pair) is associ-
ated with a private-public key pair. Each stream in Bolt is encrypted with a secret key
(denoted Kcon) generated by the owner. When a stream is closed, Bolt flushes its in-
dex to disk, partitions the segment DataLog into chunks, compresses and encrypts these
chunks, and generates the ChunkList (CL). The per-segment ChunkList is an ordered list
of all chunks in the segment’s DataLog and their corresponding hashes. This operation
is repeated for all mutated segments, that is, new segments generated since the last close,
and the latest segment, since it may have been modified due to data appends. All other
segments in a stream are sealed and are immutable.

Bolt then generates the stream’s integrity metadata (MDint). For a stream with n seg-
ments, its MDint is computed as follows:

64

Chunk #1,

Hash(Chunk #1)

ts1,

offset1

ts6,

offset6

ts2,

offset2

Val

1

Val

2

Val

3

Val

4

Val

5

Val

6

Val

7

Val

8

Index

(on disk)

Item identifiers
ts5,

offset6

ts7,

offset7

ts8,

offset8

ts8,

offset8

ts3,

offset3

ts4,

offset4

ts6,

offset6

Chunk #2,

Hash(Chunk #2)

Chunk #3,

Hash(Chunk

#3)

occupancy,

ts1, ts8

car,

ts6, ts8

energy,

ts2, ts6
Compact Index

(in memory,

disk backed)

DataLog

(on disk)

ChunkList

(on disk)

Figure 4.2: Data layout of a sealed segment in Bolt.

MDint =SigKowner
priv

[H[TTL||H[Ii]||...||H[In]||H[CLi]||...||H[CLn]].

The TTL is a writer-specified consistency period which is used by readers to ensure that
any data fetched from a storage server is no older the specified period, thus guaran-
teeing freshness of the data. For instance, when closing a given stream at 2013-09-23
10:10:00, a writer may specify TTL=(2013-09-23 10:10:00, 2013-09-23 10:20:00), implying
that any stream data retrieved from the storage server is considered fresh until 2013-09-
23 10:20:00, that is, the writer expects to write at least one value every 10 minutes. Other
writers may similarly choose suitable TTL values while incorporating their expected
write rate and maximum durations of any disconnections they expect.

As described in Table 4.3, MDint is a signed hash of the TTL and the per-segment
index and ChunkList hashes. For all mutated segments, Bolt uploads the chunks, the
updated ChunkList, and the modified index to the storage server. Chunks are uploaded
in parallel and applications can configure the maximum number of parallel uploads. The
integrity metadata MDint is also uploaded to (and resides on) a remote storage server.

Bolt uploads the stream metadata (described in the next section) to the metadata
server. In our prototype implementation, the trusted metadata server (running on a

65

TTL: tstartfresh, tendfresh

H[x]: Cryptographic hash of x
SigK [x]: Digital signature of x with the key K

Kpub
owner, Kpriv

owner: A public-private key pair of the stream owner
CLi: ChunkList of the ith segment
Ii: Index of the ith segment
||: Concatenation

Table 4.3: Glossary.

personal VEE) stores the stream metadata so as to prevent unauthorized updates. We
discuss potential solutions to relax this assumption in Section 4.7 .

4.4.4 Granting and Revoking Read Access

In addition to maintaining the mapping of readers and writers to their public-keys, the
metadata server also maintains the following metadata for each stream: (i) a symmetric
content key to encrypt and decrypt data (Kcon), (ii) readers that have access to the data
(including the owner) represented using their public keys, (iii) the storage location of the
stream’s integrity metadata MDint, for example, Windows Azure, and (iv) per-segment
location and key version. Kcon values are stored in an encrypted form, one entry for each
reader that has access to the stream, encrypted using the respective readers’ public keys.

To grant read access to applications, the owner updates stream metadata with Kcon

encrypted with the reader’s public key. To revoke read access the owner removes the
appropriate reader from the accessor list, removes the encrypted content keys, and rolls
forward the content key and key version for all valid principals by following the key re-
gression protocol [84]. The key regression protocol allows readers with version V of the
key to generate keys for all older versions 0 to V –1. As described in detail by Fu et al. [84],
the protocol uses a chain of hash function computations to generate keys for older key
versions from a given key. Therefore, each additional version only incurs the latency
penalty of performing one fixed-size hash computation on the readers.

Upon a read revocation, Bolt seals the current segment of the stream and creates a
new segment. All chunks in a segment are encrypted using the same version of the
content key.

66

4.4.5 Reading Stream Data

Figure 4.3 illustrates the steps3 for reading a stream with StreamID S1, by an application
with AppID A1, running in VHome with VHomeID V 1. Each stream is identified by the
tuple <V1,A1,S1>. In step 1, Bolt opens a stream and fetches the stream metadata. It
then uses the MDint’s location information in the stream metadata to fetch MDint from
the remote untrusted storage server. After verifying MDint’s integrity using the owner’s
public key, and data freshness using the TTL in MDint, the reader fetches the index and
ChunkList for every segment of the stream (step 2), and verifies their integrity using the
respective hash values in MDint (step 3).

Owners can append data records to a stream after they have verified the integrity of
index data. In case of reads by non-owners, once the index and ChunkList integrity veri-
fications for all segments are complete (step 3), Bolt uses the index to identify chunks that
need to be fetched from one or more remote storage locations to satisfy an application’s
get requests.

Chunk level integrity is checked “lazily”, that is, when the respective chunk gets
downloaded for handling a query. Their integrity is verified by using the segment’s
ChunkList. Bolt decrypts and decompresses the verified chunk and caches these chunks
in a local disk-based cache for subsequent reads.

Remote Storage

Server

Step 4:

Read: Fetch chunks, decrypt locally

App: A1

VHome: V1

Bolt Storage

Library

Step 1: Request content key for

Data Stream

V1/A1/S1

Index Datalog
Step 3 (local):

Verify integrity

& freshness

Stream: V1/A1/S1

Metadata Server

Enc-V1/A1(Kcon),

Enc-V2/B1(Kcon),

Segment Info List,

Location of MDint

Metadata for V1/A1/S1Step 2: Fetch index

Write: Encrypt chunks locally, store

index and data

Windows Azure, Amazon S3

Personal VEE

Figure 4.3: Steps followed during a read operation in Bolt.

3Stream owners also follow these steps when they re-open their streams.

67

4.5 Implementation

We have implemented Bolt using C# over the .NET Framework v4.5. Our implementa-
tion is integrated into the HomeOS [74] platform and can also be used as an independent
library. In addition to the applications we evaluate in the next section, several other
HomeOS applications have been ported by others to use Bolt. The client-side code is
6077 lines of code, and the metadata server is 473 lines. The current implementation is
publicly available at http://labofthings.codeplex.com.

Our client library uses Protocol Buffers [12] for data serialization and can currently
use Windows Azure and Amazon S3 for remote storage. It uses their respective libraries
for reading and writing data remotely. On Windows Azure, each segment maps to an
“Azure container”, the index and DataLog each map to an “Azure blob”, and individual
chunks map to parts of the DataLog blob (called “blocks”). On Amazon S3, each segment
maps to an “S3 bucket”, the index maps to an “S3 object”, and chunks of the DataLog
map to individual objects. The communication between the clients and the metadata
server uses the Windows Communication Foundation (WCF) framework.

4.6 Evaluation

We evaluate Bolt in two ways: (i) using microbenchmarks, which compare the perfor-
mance of different Bolt stream configurations to the underlying operating system’s per-
formance (Section 4.6.1), and (ii) using applications, which demonstrate the feasibility
and performance of Bolt in real-world use cases (Section 4.6.2). Table 4.4 summarizes
the main results of the evaluation.

All Bolt microbenchmark experiments (in Section 4.6.1) are conducted on a virtual
machine on Windows Azure, with a 4-core AMD Opteron Processor, 7 GB of RAM, one
SATA hard disk with the NTFS filesystem, which is running the Windows Server 2008
R2 operating system. Similarly, all application workload experiments (in Section 4.6.2)
are conducted on a physical machine with an AMD-FX-6100 6-core processor, 16 GB of
RAM, one SATA hard disk with the NTFS filesystem, which is running the Windows 7
operating system. The metadata server also runs on the respective machines in the two
cases.

68

http://labofthings.codeplex.com

Finding Section

Bolt’s encryption overhead is negligible, making its secure streams
a viable default option.

Section 4.6.1

By using chunking, Bolt improves read throughput by up to 3 times
for temporal range queries.

Section 4.6.1

Bolt segments are scalable: querying across 16 segments incurs only
a 3.6% overhead over a single segment stream.

Section 4.6.1

Three applications (PreHeat, DNW, EDA) implemented using Bolt
abstractions.
Bolt performs 40 times faster than OpenTSDB for PreHeat while
analysing 100 days of data.

Section 4.6.2

Bolt is 3 times more space efficient than OpenTSDB in storing 1000
days of PreHeat data.

Table 4.4: Summary of Bolt’s evaluation.

4.6.1 Microbenchmarks

Setup

In each microbenchmark experiment a dummy application issues 1,000 or 10,000 write
or read requests for each of the three Bolt stream configurations: (i) using local disk as the
storage location (denoted “Local”), (ii) using a remote storage provider (denoted “Re-
mote”) but with no data encryption, and (iii) using a remote storage provider with data
encryption enabled (denoted “RemoteEnc”). We use Windows Azure as our example
remote storage provider for all experiments.

The dummy application writes or reads data values of size 10 B, 1 KB, 10 KB or 100
KB. The chunk size for these experiments is fixed at 4 MB (unless otherwise specified).
We also study the impact of varying chunk size later in this section. We measure Bolt’s
throughput in operations per second for different value sizes. For write operations, we
also measure Bolt’s storage overhead for different value sizes.

As a point of comparison for Bolt’s local write performance, we conduct a separate
set of experiments where data is written directly to the disk. We refer to this experiment
as DiskRaw. For comparisons with Bolt’s ValueStream, the DiskRaw write operations
are to a single local file, and for comparisons with Bolt’s FileStream, the DiskRaw write
operations are to multiple files, one for each data value.

69

For data read operations, that is, Get(tag) and GetAll(tag, timestart, timeend)
queries, we compare Bolt’s read performance to data read directly from a single local
file (in the case of ValueStream), data-values read from separate files (in the case of
FileStream), and data read by downloading an Azure blob (in the case of remote Val-
ueStream). All throughput values are reported as the mean of 20 repetitions with 95%
confidence intervals.

Write Performance

We first present the microbenchmark results for ValueStreams (local and remote) fol-
lowed by those for FileStreams (local and remote).

I. ValueStreams: Figure 4.4 compares the throughput of append operations (measured
by the dummy application) for three different data-value sizes: 10 B, 1 KB, and 10 KB.
We observe that the throughput of Bolt ValueStreams (marked Local, Remote, and Re-
moteEnc) is less than that of DiskRaw because the overhead of additional sub-tasks that
Bolt has to perform: (i) index update/lookup, (ii) data serialization, (iii) writing index
and DataLog to disk, (iv) uploading chunks and index (in the case of Remote and Re-
moteEnc), and (v) encrypting chunks (in the case of RemoteEnc).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

10 B 1 KB 10 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 B 1 KB 10 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.4: Write throughput for ValueStreams shown using a linear scale in (a) and a
logarithmic scale in (b).

Table 4.5 shows the percentage of time taken to perform these sub-tasks in a sample
experiment of 10,000 append operations of 10 byte values. We find that the time taken to
perform the additional sub-tasks (i), (ii), and (iii) described above, in the case of Remote
and RemoteEnc is similar to that in case of local ValueStreams. However, in the case of

70

Remote and RemoteEnc, a high percentage of the total time is spent uploading the Data-
Log and index to the cloud. For instance, approximately 72% of the total time is taken to
perform uploading of the DataLog while uploading the index consumes approximately
3% of the total time. Uploading data chunks involves six main components: (i) read-
ing chunks from the DataLog and computing the hash of their contents, (ii) checking the
chunk’s existence on the remote storage server (as an Azure Blob) and creating one if not
present, (iii) compressing and encrypting chunks (if enabled), (iv) uploading individual
chunks to blocks in an Azure Blob, (v) committing the new block list reflecting the new
changes to Azure’s storage servers, and (vi) uploading the new chunk list containing
chunk IDs and their hashes. Also note that, in the case of RemoteEnc, the time taken to
encrypt the data chunks is less than 1% of the total time.

Component Local Remote RemoteEnc
Lookup, update Index 6.8 % 2.7% 0.9%
Data serialization 15.2 % 2.6% 1.9%
Flush index 42.5 % 11.3% 11.5%
Flush DataLog 35.4 % 8.3% 11.8%
Uploading chunks - 72.0% 70.2%
Encrypting chunks - - 0.7%
Uploading index - 3.1% 3.0%

Table 4.5: Percentage of total experiment time spent in various tasks in a sample exper-
iment of 10,000 append operations (of 10 byte values) to a ValueStream.

In Figure 4.4, we also observe that the measured throughput for both Bolt and DiskRaw
decreases with increasing data value sizes. This is because the increasing data value size
increases the amount of data written to the local disk per second which saturates the lo-
cal disk write throughput and decreases the throughput of append operations.

Table 4.6 shows the storage overhead of ValueStreams as compared to DiskRaw for
data value sizes of 10 B, 1 KB, and 10 KB. We define storage overhead as the amount of
additional disk space used by a ValueStream as compared to DiskRaw, expressed as a
percentage. Note that, in the case of DiskRaw, tag-value pairs and timestamps are ap-
pended to a file on local disk. Bolt incurs storage overhead due to its storage of offsets in
the index, and additional data for serializing and de-serializing the index. As described
in Section 4.4.2 (Figure 4.1), Bolt stores each unique tag only once in the index, thus
benefiting streams with relatively large tags. Bolt’s storage overhead decreases with in-
creasing value sizes but remains constant with increasing number of data records for a
given value size.

71

Value size Percentage overhead
10 B 30.6 ± 0.0
1 KB 0.86 ± 0.0
10 KB 0.09 ± 0.0

Table 4.6: Storage overhead of local ValueStreams as compared to DiskRaw.

II. FileStreams: Figure 4.5 compares the write throughput for 1000 appends for three
different data-value sizes (1 KB, 10 KB, and 100 KB). The time taken for an append oper-
ation in a FileStream is dominated by two main sub-tasks: (i) writing each data value to
a separate file on disk, and (ii) uploading each file to a separate Azure blob (in the case
of remote FileStreams).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 KB 10 KB 100 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

1 KB 10 KB 100 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.5: Write throughput for FileStreams shown using a linear scale in (a) and a
logarithmic scale in (b).

We observe that in the case of a local FileStream the write throughput is comparable
to that of DiskRaw. In the case of remote streams, time taken to create a new Azure
blob for every data value dominates the time taken for a write operation and in our
experiments accounts for 80% of the total time for an append operation.

We also observe that, similar to ValueStreams, encryption overhead in the case of
remote-encrypted FileStreams is approximately 1% of total time. Lastly, the storage
overhead in the case of FileStreams is approximately the same as that of ValueStreams
with a value size of 10 bytes. This is because FileStreams store pointers (each 8 bytes) to
data files instead of offsets into the DataLog (as in ValueStreams).

72

Read Performance

We first present the microbenchmark results for ValueStreams (local and remote) fol-
lowed by those for FileStreams (local and remote).

I. ValueStream: Figure 4.6 compares the read throughput for three different data-value
sizes (10 B, 1 KB, and 10 KB) for the different ValueStream configurations. The dummy
application issues 10, 000 Get(tag) requests with a uniform randomly selected tag for
each request. In the case of DiskRaw, the values are read from random parts of the Dat-
aLog. Despite random disk read operations issued both in DiskRaw and ValueStreams,
we believe that the file system cache affects throughput measurements in both cases.

We observe that local ValueStreams have a lower read throughput than DiskRaw.
This is because each read operation in a ValueStream incurs a latency overhead due to
index lookup and data deserialization. For instance, for 1 KB sized data values, we find
that local ValueStreams use 5% of the total time for index lookup, 60% of the total time
for reading records from the DataLog (which matches DiskRaw), and 30% of the total
time for deserializing data. In case of remote ValueStreams, remote reads’ latency (and
hence throughput) are dominated by the time taken for downloading DataLog chunks
from Azure and storing them in the local chunk cache (approximately 90% of the total
time for Get(tag)).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

10 B 1 KB 10 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10 B 1 KB 10 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.6: Read throughput with randomly selected tags for ValueStreams shown using
a linear scale in (a) and a logarithmic scale in (b).

Effect of Chunk Size on Temporal Range Queries: To demonstrate the effect of chunk-
ing on query latency and throughput of remote ValueStreams we present two example
range queries. The first query retrieves a window of 10 records whereas the second

73

query has a window of 100 records. The start and end times of the windows are picked
randomly from the time range of data stored. We choose an example stream with 10,000
data values of 10 KB each.

Figure 4.7 shows the read throughput with increasing chunk size. We observe that
chunking reduces latency of reads and hence improves read throughput because it batches
transfers and prefetches data for range queries with locality of reference. We observe
higher read throughput at relatively large chunk sizes because of the reduction in the
number of chunk downloads because chunks are cached locally. For a given chunk size
the 100-record query has slightly higher throughput than the 10-record query. This is
because the queries’ start times are uniform randomly selected and hence wider queries
benefit more from the local chunk cache when answering queries, thus causing relatively
few chunk downloads. On the other hand, narrow queries are comparatively dispersed
across the DataLog, hence causing relatively more chunk downloads, which increases
query latency and decreases throughput.

 100

 200

 300

 400

 500

 600

128 KB 256 KB 512 KB 1 MB 2 MB 4 MB

#
 G

et
 O

p
s

/
s

Chunk Size

10-record window
100-record window

Figure 4.7: Read throughput for remote ValueStreams with varying chunk size for two
sample Get(tag,tstart,tend) queries with locality of reference.

Effect of increasing number of ValueStream Segments: Figure 4.8 shows the effect of
increasing the number of segments for a local ValueStream on the time taken to open the
stream (one time cost), index lookup, and reading data records. Each segment has 10, 000
keys, and 10, 000 Get(tag) requests are issued for uniform randomly selected keys. The
time taken for opening a stream is dominated by the time to build the segment index in
memory and it increases significantly with the increasing number of segments. The time
taken for index lookup and reading the data records also increases with the number of
segments because all segments except the last have a compact memory-resident index
header, and as explained in Section 4.4.2, require additional disk reads for index lookups.

74

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 128

T
im

e
(m

s)

Number of Segments

Open stream
Lookup offset

Read records from disk

Figure 4.8: Open, index look-up, and DataLog record retrieval latencies (on the loga-
rithmic scale) with increasing number of segments of a local ValueStream, measured by
issuing 10, 000 Get(tag) requests for randomly selected keys.

II. FileStreams: Figure 4.9 compares the read throughput for three different data-value
sizes (10 B, 1 KB, and 10 KB) for the different FileStream configurations. Recall that, in
the case of FileStreams, individual data values are stored in separate files on disk and
are uploaded to separate blobs on remote storage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1KB 10KB 100KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1KB 10KB 100KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.9: Read throughput with randomly selected tags for FileStreams shown using
a linear scale in (a) and a logarithmic scale in (b).

As compared to DiskRaw, FileStreams incur the additional latency overhead of in-
dex lookup, downloading individual blobs from remote storage, and reading each data
record from its individual blob. These additional operations significantly impact the

75

read throughput of FileStreams. In the case of remote FileStreams, a large fraction of the
read time (approximately 99%), is spent downloading the individual blobs from remote
storage. It may be possible to improve the read throughput of FileStreams by storing
multiple data values (which are stored in separate files on local disk) using a single blob
on the remote storage server (as in the case of ValueStreams). Lastly, we also find that,
similar to ValueStreams, in the case of remote-encrypted FileStreams, the time taken to
decrypt data is less than 1% of the total get-operation time.

4.6.2 Applications

We instrument the three real-world applications described in Section 4.2.1 using Bolt,
and measure their query latencies. For comparison we also evaluate the query latencies
of these applications using OpenTSDB [27], which is a popular time-series data storage
and analytics system. It is written in Java and uses HBase to store data. Unlike Bolt’s
library that is loaded into the client application program, OpenTSDB only allows query-
ing only over HTTP endpoints. Moreover, unlike Bolt, OpenTSDB provides neither the
data security guarantees nor the flexibility of policy-driven storage across providers.

We now present detailed results for each application. All latency values are reported
as the mean of 20 repetitions with 95% confidence intervals, using Windows Azure as
the remote storage provider.

PreHeat

Recall that PreHeat [161] is a system that enables efficient home heating by recording and
predicting occupancy information. We describe PreHeat’s algorithm in Section 4.2.1. To
implement PreHeat’s data storage and retrieval using Bolt we identify each slot by its
starting timestamp. A single local unencrypted ValueStream thus stores the (timestamp,
tag, value) tuples where the tag is a string (e.g., “occupancy”). We built two different
PreHeat implementations that either seek to minimize the amount of data stored on disk
or data-retrieval time and hence store different data values:

Naïve + ValueStream: In this implementation, the value stored for each 15-minute
slot is simply the slot’s measured occupancy (0 or 1). Therefore, for computing predicted
occupancy for the nth slot on day d, POVs are obtained by issuing d temporal range
queries (using getAll(k, ts, te)).

76

Smart + ValueStream: In this implementation, the value stored for each 15-minute
slot is its POV concatenated with the measured occupancy value in that slot. As de-
scribed in Section 4.2.1, computing the predicted occupancy for the nth slot on day d
requires obtaining POV n

d , POV n
d−1, . . . , POV n

1 . Thus, under this scheme, these required
POVs can be obtained by issuing: (i) one get(tag) query for the (n− 1)th slot on day d
to obtain POV n

d , and (ii) (d− 1) temporal range queries that obtain the values stored for
the nth slot on days (d−1), (d−2), . . . , 1, thus obtaining the values of POV n

d−1, POV n
d−2,

. . . , POV n
1 respectively. Therefore, in this implementation, the range queries present in

the naïve implementation are replaced with simple get queries that obtain values stored
for particular slots. However, the storage overhead incurred with this approach is larger
than the naïve approach but the retrieval latency is reduced due to the reduced number
of disk reads.

Naïve+OpenTSDB: We implement the naïve PreHeat approach to store and retrieve
data locally from OpenTSDB. It groups occupancy values spanning an hour into one row
of HBase (OpenTSDB’s underlying datastore). That is, four PreHeat slots are grouped
into a single HBase row. OpenTSDB’s usability is limited by values being restricted to
real numbers. Bolt allows byte arrays of arbitrary length to be stored as values. Con-
sequently, an analogous implementation of the smart PreHeat approach is not feasible
using OpenTSDB.

Of all the 96 slots in a day, the 96th (last slot) has the maximum retrieval, compu-
tation, and append time since POV d

96 is longest POV d
i , ∀i ∈ [1, 96]. Therefore, to com-

pare the Naïve+ValueStream, Smart+ValueStream, and Naïve+OpenTSDB approaches,
we use the retrieval times for the 96th slot of each day. Figure 4.10 shows the time
taken to retrieve data for the 96th slot for Naïve+ValueStream, Smart+ValueStream, and
Naïve+OpenTSDB.

We observe that as the number of days increases the retrieval latency for both the
naïve and smart approaches grows due to the increasing number of range and get queries.
However, the smart implementation incurs lower latency than the naïve implementa-
tion because it issues fewer random disk reads.

When comparing the Naïve+ValueStream and Naïve+OpenTSDB implementations
for retrieving 100 days of data, we observe that Bolt performs approximately 40 times
faster. As expected, the time taken to perform the occupancy prediction computation
after retrieving the required data is unchanged across the three implementations. Ta-
ble 4.7 shows the storage space required by the different implementations for 1000 days
of operation. We observe that the smart approach uses approximately 8 times the stor-
age space compared to naïve because it also stores the slots’ POVs in addition to their

77

10
0

10
1

10
2

10
3

10
4

 1 2 4 8 16 32 64 128T
im

e
ta

k
en

 t
o

 r
et

ri
ev

e
d

at
a

(m
s)

Number of days

Naive+OpenTSDB
Naive+ValueStream
Smart+ValueStream

Figure 4.10: Time to retrieve past occupancy data with increasing duration of a PreHeat
deployment.

occupancy values. Using Bolt’s compressed streams, we observe that the naïve scheme
reduces the storage overhead by a factor of 1.6 and the smart scheme reduces the storage
overhead by a factor of 8, when compared to their uncompressed stream counterparts.
OpenTSDB requires a 3 times larger disk footprint than its corresponding implemen-
tation using Bolt with compression turned off. We believe that row key duplication in
HBase is the potential source of this storage inefficiency.

Configuration Naive Smart
ValueStream 2.38 MB 19.10 MB
ValueStream using GZip 1.51 MB 3.71 MB
ValueStream using BZip2 1.48 MB 2.37 MB
OpenTSDB 8.22 MB Not feasible

Table 4.7: Storage space required for a 1000-day deployment of PreHeat.

Digital Neighborhood Watch (DNW)

As described in Section 4.2.1, DNW helps neighbors detect suspicious activities (e.g.,
an unknown car cruising the neighborhood) by sharing security camera images [56].
We implement DNW’s data storage, retrieval and sharing mechanisms using Bolt and

78

OpenTSDB. Due to Bolt’s (timestamp, tag, value) abstraction, objects can be stored (and
retrieved) in a single remote ValueStream (per home), with each object attribute in a sep-
arate tag, such as, type, ID, and feature-vector, all bearing the same timestamp. Queries
proceed by first performing a getAll(feature-vector, ts, te) where the time win-
dow (w)=[ts,te], and then finding a match amongst the retrieved objects. In contrast,
with OpenTSDB, each home’s objects need to be recorded using specialized OpenTSDB
tags (called “OpenTSDB metrics”), which also store the object attributes. As described
in Section 4.2.1, we simulate DNW as a cloud-based VHome application. Therefore, in
our DNW experiments, we run OpenTSDB remotely on a virtual machine on Windows
Azure and the DNW client applications run on a physical machine (described above).
Similarly, in case of Bolt, the DNW client applications run on the physical machine and
use remote ValueStreams (with Windows Azure as the storage provider).

To evaluate DNW, we instrument a scenario where each home (i.e., a client applica-
tion) records an object every minute. After 1000 minutes, one randomly selected client
application queries all other homes for a matching object within a recent time window
w. We measure the total time for retrieving all object summaries from ten homes for
window sizes of 1 hour and 10 hours.

Figure 4.11(left) shows the retrieval time for DNW with increasing chunk sizes (for
Bolt) for time windows of 1 hour and 10 hours. We observe that, in the case of Bolt, larger
chunk sizes reduce retrieval time by batching transfers for the windows size of 10 hours.
For queries that span multiple chunks, Bolt downloads data chunks on demand since
range queries return an iterator to the application (Section 4.4.1). When applications
use this iterator to access a data record, Bolt checks if the corresponding chunk for the
data record is present in the cache and if not it is downloaded. Hence, queries that span
multiple chunks require multiple round trups as chunks are downloaded on-demand,
thus increasing the overall retrieval time. Example queries include one where DNW runs
for 10 hours with a 100 KB chunk size. This can be improved by pre-fetching chunks in
parallel, in the background, without blocking the application’s range query. In the case
of large chunk sizes, fewer chunks need to be downloaded (shown in Figure 4.11(center))
resulting in fewer round trips which reduces the overall retrieval time for the 10-hour
query. Note that OpenTSDB does not implement chunking. Hence OpenTSDB retrieval
times in Figure 4.11(left) are independent of chunk size.

In the case of Bolt, we also observe that when chunk size becomes large enough, a
large amount of additional data fetched in the chunk does not match the query. Con-
sequently, the decrease in retrieval time that is obtained by batched transfers becomes
relatively low at large chunk sizes. Moreover, since chunk boundaries do not necessar-
ily line up with the time window specified in queries, data records that do not match the

79

 0

 2

 4

 6

 8

 10

 12

 14

100 KB 1 MB 4 MB

R
et

ri
ev

al
 T

im
e

(s
)

Chunk Size (in KB)

OpenTSDB: 1 hour

Bolt: 1 hour

OpenTSDB: 10 hours

Bolt: 10 hours

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 KB 1 MB 4 MB#
C

h
u

n
k
s

D
o

w
n

lo
a
d

e
d

Chunk Size (in KB)

Time Window
1 hour

10 hours

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

100 KB 1 MB 4 MB

%
R

e
tr

ie
v
e
d
 C

h
u
n
k
 D

a
ta

 U
n
u
se

d
		
		

Chunk Size (in KB)

Time Window
1 hour

10 hours

Figure 4.11: Retrieving object summaries in DNW from 10 homes for time windows
of 1 hour and 10 hours using Bolt and OpenTSDB. Retrieval times for OpenTSDB are
independent of chunk size.

Storage system DNW EDA
Bolt 4.64 MB 37.89 MB
OpenTSDB 14.42 MB 212.41 MB

Table 4.8: Storage space used for 10 homes in DNW for 1000 minutes, and 100 homes in
EDA for 545 days.

query may be fetched even for small chunk sizes. Figure 4.11(right) shows that as chunk
size increases, the percentage of data records in chunks downloaded that do not match
the query’s time windoww also increases. Bolt allows applications to choose chunk sizes
to match their workloads by trading this overhead for retrieval time. Lastly, Table 4.8
compares the storage footprint of DNW using Bolt with OpenTSDB. As is the case with
PreHeat, we observe that Bolt incurs a 3 times smaller disk footprint than OpenTSDB.

Energy Data Analytics (EDA)

As explained in Section 4.2.1, we study a scenario where a cloud-based application
presents consumers with an analysis of their energy consumption by comparing their
consumption with other homes in the neighborhood, or city, within a given time win-
dow such as one month.

In the implementation using Bolt, we use a single remote ValueStream per home
which stores the smart meter data. For each hour, the energy consumption value is
appended to the ValueStream with the mean ambient temperature value of the hour
(rounded to the nearest whole number) as the tag. This allows us to easily retrieve all
energy consumption values for a given temperature using a single get(tag,tstart,tend)
query. In the OpenTSDB-based implementation, we need to create one tag (called “OpenTSDB

80

metric”) for each temperature value, for each home; that is, a record home-n-T stores val-
ues recorded at temperature T for home n. For each home we retrieve data in the time
interval [ts, te] for each temperature T between -30◦ C and 40◦ C (the range of observed
ambient temperatures in the dataset). The retrieved data is used by the application to
compute the median, 10th, and 90th percentile energy consumption values for a home
which is then compared with all the other homes being considered. Data for multiple
homes is retrieved sequentially.

Figure 4.12 shows the time taken to retrieve data as we increase the number of homes,
for two time windows of 1 month, and 1 year. We use an actual home energy consump-
tion dataset from a utility company in Ontario, Canada. Retrieval time for Bolt and
OpenTSDB increases proportionally at approximately 1.4 seconds per home and 11.4 sec-
onds per home respectively, for a one month window. In the case of a one year window
the retrieval time for Bolt and OpenTSDB increases at approximately 2.5 seconds per
home and 12 seconds per home respectively. This is because of more data being fetched
in case of a 1 year window query than that in a 1 month window query. Bolt’s retrieval
time outperforms OpenTSDB by an order of magnitude, primarily due to prefetching
data in chunks, which is explained as follows.

 0

 200

 400

 600

 800

 1000

 1200

1 10 100

T
im

e
ta

k
en

 t
o

 r
et

ri
ev

e
d

at
a

(s
)

Number of homes

OpenTSDB: 1 Year
OpenTSDB: 1 Month
Bolt: 1 Year
Bolt: 1 Month

Figure 4.12: Time taken to retrieve smart meter data for multiple homes for time win-
dows of 1 month and 1 year.

As explained in Section 4.4, Bolt stores data records in a time-sorted DataLog and the
index maps each tag (in this case, each temperature value) to offsets into the DataLog.
The DataLog is then partitioned into chunks and all data transfers to and from remote
storage servers happen on a chunk basis. Therefore, the set of data chunks downloaded

81

for answering a range query for a given tag such as 10◦C in the case of EDA, will often
overlap with that required for handling a range query for an adjacent temperature value
tag such as 11◦C. This is because hourly ambient temperature values typically do not
vary significantly over time, for example, never more than ±2◦C in our dataset. There-
fore, Bolt is able to effectively leverage its local chunk cache when answering successive
range queries for a set of tags such as {-30◦C, -31◦C, …, 40◦C}, and thus incurs a lower re-
trieval time than OpenTSDB. However, it may be possible to improve the retrieval time
for OpenTSDB by extending it with a caching mechanism on the client-side.

Finally, as shown in Table 4.8, we observe that OpenTSDB incurs a 5 times larger disk
footprint than its corresponding implementation using Bolt.

4.7 Discussion

We discuss two ways to extend Bolt to reduce its reliance on the trusted metadata server
assumptions and improving Bolt’s sharing flexibility.

Relaxing the assumption of the trusted key server

Bolt’s current design includes a trusted metadata server to: (i) prevent unauthorized
changes to the mapping of readers and writers to their public-keys, and (ii) prevent
unauthorized updates (rollback) of the key version for each segment of a stream. Unau-
thorized changes to the public-key mappings may trick the owner of a stream to grant
access to a malicious reader. Similarly, unauthorized updates of the key versions may
cause the owner to use an invalid content key to encrypt data, potentially exposing the
newly written content to readers whose access has been already revoked.

Bolt also relies on the metadata server to distribute the keys and the stream metadata.
However, a few extensions can be built to minimize this trust dependency. One approach
is to replicate the information stored at the metadata server at 2f + 1 servers and use a
majority to tolerate up to f malicious servers. An alternate solution would be to employ
a Byzantine quorum system, to tolerate up to a third of the servers being compromised
at any given time.

82

Supporting finer-grained sharing

In our current prototype, readers are granted access to the entire stream. Once their read
access has been revoked they cannot access any new segments of the stream created
since the revocation, although they could still access all the previous segments. Bolt
can potentially support finer-grained read access by creating a different key for each
segment. This approach trades off metadata storage space for segment-level sharing.

4.8 Chapter Summary

Our prototype storage system in Chapter 3 suffers from two main shortcomings. First,
many applications require richer data manipulation capabilities than those supported
by our prototype data storage system. Second, our prototype storage system only uses
local VEE storage, while users and applications may also want to use commodity cloud
storage services, for example, to lower storage costs or obtain better reliability. There-
fore, our goal is to simplify the management of data from in-home sensors and build
a suitable data management system that replaces our prototype storage system. To do
so, we survey a range of home applications and formulate the requirements they place
on the storage system. We find that existing systems do not meet all of these require-
ments. Therefore, we design Bolt, a data management system for such applications. It
provides applications with a timestamp-tag-value stream abstraction for storing and re-
trieving data, allows application instances to easily share data, allows applications to
control storage of data across commodity storage providers such as Windows Azure
and Amazon S3. At the same time, Bolt provides data confidentiality guarantees and
data integrity by providing evidence of data tampering and freshness guarantees. We
evaluate our current Bolt implementation using microbenchmarks and three example
applications. We observe that in our sample applications Bolt has up to 40 times lower
data retrieval latency and incurs up to 3-5 times lower storage space when compared to
OpenTSDB [27].

83

Chapter 5

Provisioning Large Numbers of
Personal VEEs

5.1 Introduction

Our personal VEE architecture (introduced in Chapter 1) requires provisioning one VEE
for each user, thus requiring large numbers of VEEs to be provisioned. For instance, if
every home with a smart meter was to be provided with an instantiation of this archi-
tecture, 36 million VEEs in the US [42] (4 million in Ontario, Canada [41]) would have
to be provisioned. Similarly, providing every active Facebook user with data-driven
applications using this architecture will require 1.4 billion [11] VEEs.

In our prototype instantiations in Chapters 3 and 4, we used virtual machines (VMs)
from cloud providers, such as Windows Azure to realize personal VEEs. Most cloud
providers use commodity virtualization solutions (described in Section 2.3.1; Table 2.2)
to provision such VMs. Moreover, they employ VM consolidation methods [71,103,123,
190] that allow them to pack multiple VM instances running on underutilized physical
machines into fewer machines, enabling some machines to be turned off to obtain energy
savings.

Typical VM consolidation methods use VM migration and simply re-pack VMs into
fewer physical machines based on the pre-configured resource capacities of the VMs.
Therefore, the VM density (average number of VMs/machine) such methods yield is
bounded by the maximum number of VMs that can be co-hosted on a single machine.

84

For instance, Citrix XenServer claims to provision 100-200 VMs/machine1. Provisioning
large numbers of VMs (e.g., 1 billion) using this approach will require un-affordably
large amounts of hardware resources (e.g., 5 million machines for 1 billion VMs).

However, many VM workloads exhibit frequent, often long, and uncorrelated idle
periods. Personal VEE workloads are an example of this type of workload. This is
because applications hosted on personal VEEs typically cater to a small set of users,
VEE-hosted jobs are either user-initiated, such as data analytics and sharing applica-
tions [77,137], or are periodic with relatively large periods (of the order of seconds), such
as periodic data batch uploads and data pre-processing. Other such example workloads
include some web-hosting [118] and cyber-foraging workloads [158].

When multiple VMs with such workloads are co-hosted on a machine, decreasing
the resource footprint of idle VMs allows for a much denser VM packing, thus reducing
the required hardware resources and hosting costs for both users and cloud-providers.
For such workloads, it is possible to reclaim resources from idle VMs by transitioning
them to inactive state(s) and activating them on the arrival of client requests. This leads
to increased VM density at the cost of an increase in client request latency (called the
miss penalty). Such a consolidation effort is compatible with existing migration-based
consolidation methods since it incurs little network overhead. Moreover, this type of
consolidation is able to leverage transient idle periods to reclaim resources whereas con-
ventional VM migration-based consolidation methods rely solely on long idle periods.

As described in Section 2.3.3, many inactive states have been proposed or are sup-
ported in existing virtualization solutions (shown in Table 2.3). Recent work [94,118] has
explored the use of one inactive state for managing idle VMs. In doing so, VM density
is limited by the maximum number of VMs (per machine) that can be simultaneously
hosted in that inactive state (e.g., substrate [179], fast-resume [187, 188]) on a machine.
If more than one such inactive states were used to host the idle VMs, VM density can
be further increased. Unfortunately, due to differences in their design and resource re-
quirements, different inactive states have varying VM activation and deactivation times
and VM capacities. Consequently, miss penalties for idle VMs in different inactive states
vary significantly. This leads to the following questions.

1. How should idle VMs be transitioned across different inactive states? In other
words, when a VM becomes idle which inactive state should it be transitioned to?

2. Subsequently, when should an idle VM be transitioned to other state(s) in antici-
pation of client requests?

1 Using a particular hardware configuration, and subject to VM sizes and workloads.

85

It is clear that a policy that governs the transitions of idle VMs across inactive states is
needed. Ideally, such a policy should minimize the miss penalties and maximize VM
density. We refer to these policies as idle VM management policies. Existing mechanisms
(such as those discussed in Section 2.3.3) can then be used to implement such policies, by
determining VM idleness and activeness and dynamically transitioning VMs between
the active and various inactive states.

In this chapter we study the effect of different idle VM management policies on VM
density and miss penalties. To do so, we formally model the problem of multiplexing
idle VMs across multiple inactive states. We divide the policy space into two parts, (i)
demand-based (or reactive) policies, and (ii) proactive policies. Using our model formula-
tion, we provide a lower-bound on the miss penalty incurred by demand-based policies.
Then, by finding similarities between this problem and the problems of page replace-
ment and multi-level cache management, we propose SlidingWindow, a proactive policy
which leverages inter-arrival time prediction to reduce miss penalties. We measure the
model parameters for Linux Containers (LXC) [22], a widely used OS-level virtualization
solution. We then use the measured parameters for LXC to evaluate different reactive
and proactive policies using some example personal VEE workloads.

Our key contributions in this chapter are:

• A formal model for idle VM management policies and a lower bound on the miss
penalty of reactive policies.

• A measurement of model parameters using microbenchmarks with LXC [22] as
our example virtualization solution.

• A study of a few representative VM management policies quantifying their miss
penalties using a simulation-based evaluation and providing insight into their be-
haviour.

This work has been published in the proceedings of ACM VEE 2015 [167].

The remainder of the chapter is structured as follows. We formally model the prob-
lem in Section 5.2 and derive a lower bound on miss penalties of reactive policies. We
present the measurement of model parameters for LXC [22] using microbenchmarks in
Section 5.3. We describe our setup for comparing different policies and our example
workloads in Section 5.4. We evaluate different policies using simulations in Section 5.5
and present a discussion of our work in Section 5.7. We conclude with a summary of the
chapter in Section 5.7.

86

5.2 Problem and Model Formulation

Typical cloud environments today exhibit a great deal of VM heterogeneity. That is, VMs
have varying resource capacities, serve disparate workloads, and provide varying ser-
vice level agreements (SLAs) to their tenants. In this work, as a starting point, we study
scenarios where VMs have relatively homogeneous resource capacities, workloads, and
SLAs, such as VMs used as personal VEEs. We defer the study of heterogeneous scenar-
ios to future work.

Consider a VM that is provisioned on a given physical machine and is initially in the
booted state. Once such a VM becomes idle it can either be left in the booted state, or it
can be transitioned (either immediately or at a suitable later time) to one of the inactive
states, depending on the VM management policy in place. Since different inactive states,
due to differences in their design and resource intensity, have different transition-to-
booted times, the policy’s actions can significantly affect miss penalties for subsequent
requests for this VM. Similarly, because the maximum number of VMs possible in each
state is limited (typically by a specific system resource), the policy’s actions may also
affect miss penalties for other VMs depending on which state it chooses to place them in.
Due to such implications on miss penalties, it is important to choose a VM management
policy that minimizes miss penalties across all VMs while maximizing VM density.

To better understand and reason about different possible policies, we formulate a
simple mathematical model of the problem. Such a formulation provides a sound the-
oretical foundation for the problem, and as we show, can be used to provide a lower
bound on the miss penalty incurred by any demand-based policy.

Let S1, S2 . . . Sn (as shown in Figure 5.1) be the n inactive states. In addition let S0

be the booted state, and Sn+1 be the shutdown state. Similarly, let V1, V2 . . . Vv be v VMs
provisioned on a machine. Let the maximum number of VMs feasible in state Si be
Bi. Let matrix T(n+2)×(n+2) be the time to transition VMs between two states, that is,
ti,j is the time to transition from state Si to state Sj where i, j ∈ {0, 1, . . . n, n + 1}. We
realize that in practice, the transition times may be stochastic variables (associated with
some distribution), for example, depending on the number of VMs in different states at
any point. Our model can be viewed as a mean value analysis and can be extended to
conduct a stochastic value analysis. We view Bi as a soft bound, that is, if the number
of VMs in Si exceeds Bi, transition times (∀j, ti,j and tj,i) may degrade. To simplify the
notation in a later proof, let t′i be the time to transition from Si to S0 (booted), that is,
t′i = ti,0 for i ∈ {0, 1, . . . n, n+ 1}.

Let VM requests received over any fixed period of time be denoted as a string ω

87

comprised of tuples:
ω = r1, r2 . . . r|ω|

where ri = (Vj, ti, di), ti denotes the time at which the request ri arrives for the target
VM Vj , and di denotes the duration for which VM Vj remains active to service ri. We
refer to ω as the request string. For a given ω, let Pπ(ω) denote the total miss penalty
incurred by VM management policy π. Thus for an optimal VM management policy θ,
∀ω∀π, Pθ(ω) ≤ Pπ(ω).

Policies can be divided into two classes: (i) reactive (or demand-based) policies, and
(ii) proactive policies. We now address each class separately and describe how VM man-
agement policies relate to other types of resource management policies.

t0 = 0

t1

t2

tn

tn+1

Booted

B0

Bn+1

S0 S0 S0 S0

Inactive 1

B1
S1 S1 S1 S1 S1 S1

Inactive 2
B2

S2 S2 S2 S2 S2 S2 S2

Inactive n
Bn

Sn Sn Sn Sn Sn Sn Sn Sn

Shutdown Sn+1 Sn+1 Sn+1 Sn+1 Sn+1

Figure 5.1: Hierarchy of booted, shutdown, and n inactive states.

5.2.1 Reactive Policies

Reactive policies configure, transition, or provision a system resource, such as a mem-
ory page, only when a demand for that resource is received, and are also referred to as
demand-based policies. Examples include the widely used demand-based page replace-
ment policies such as LRU, FIFO, Clock, and others [70]. Another prominent exam-
ple is multi-level cache management policies such as DEMOTE [183]. Belady’s OPT

88

algorithm [52], which simply evicts the page referenced furthest in the future, is prov-
ably the optimal demand-based policy for single-level caches [47,88] (e.g., page replace-
ment). However the optimal demand-based policy for multi-level caches remains un-
known [88]. We believe that finding the optimal demand-based policy for exclusive
multi-level caches [88] can help uncover the optimal demand-based policy for idle VM
management2.

Note however that idle VM management differs from page replacement and cache
management in a few ways. For example, page replacement policies are able to leverage
locality-of-reference; in contrast, each VM has a separate tenant with little locality-of-
reference across VMs. Each VM request must guarantee that the target VM remains in
the booted state at least for the duration of the request; page references require no such
guarantees.

Nevertheless, we build upon existing results from page replacement and caching
policies and formulate a lower bound on the miss penaltyPπ(ω) incurred by any demand-
based VM management policy π. Policies can be either online, which only use informa-
tion about the past, or offline, which also use information about the future. Our lower
bound assumes knowledge of future arrivals and cannot be implemented in an online
fashion. It serves as a theoretical lower bound to benchmark the miss penalties of other
demand-based policies. In the same way that Belady’s OPT algorithm [52] is of interest
for studying page replacement policies.

For any given ω, a VM management policy π is a demand-based policy if π transitions
a VM Vk to the booted state at time t (if not already booted) only when

∃rj ∈ ω,

where rj = (Vk, tj, dj), for a given VM Vj , some time instant tj , and some duration dj .
For any given ω and π, we define hi, i ∈ {0, 1, . . . n, n+ 1}, to be the number of requests
rj ∈ ω, such that the target VM (i.e., Vk) was in state Si on arrival of the requests. Note
that,

∑n+1
i=0 hi = |ω|.

As an example, consider a scenario where three VMs – V1, V2, and V3 – are provisioned
on a machine with three VM states S0, S1, and S2. Let all three VMs be initially in state
S2 (shutdown), and let ω = r1, r2, r3, where r1 = (V1, 0, 100), r2 = (V2, 100, 100), and
r3 = (V3, 200, 100). In this case, h2 = 3 and h0 = h1 = 0, since the target VMs for requests
r1, r2, and r3 are in the state S2 upon arrival of the requests, and

∑i=2
i=0 hi = |ω| = 3.

2Section 5.6 presents an alternate mathematical formulation of the problem, and quantifies the space
of possible idle VM management policies.

89

Upon the arrival of the request rj = (Vk, tj, dj), its target VM Vk is transitioned to the
booted state from its current state. Since the maximum number of VMs in each state is
limited (by Bi), this transition may require additional transitions to transition other VMs
that are idle from: (a) the booted state into inactive states and (b) from one inactive state
to another. Even if all transitions are conducted in parallel, these additional transitions,
depending upon their duration, may contribute towards increasing the miss penalty.
For instance, an additional transition may take more time than the time to transition the
target VM to the booted state. Thus, for any demand-based VM management policy π,

Pπ(ω) ≥ Minπ(ω),

where Minπ(ω) =
∑n+1

i=0 hi.t
′
i.

Lower bound on demand-based policies

Gill et al. [88] propose a demand-based multi-level cache management policy which
provides the lowest average response time and lowest inter-cache bandwidth. Along
the same lines, we define a VM management policy ϕ such that

∀π, ∀ω,Minϕ(ω) ≤ Minπ(ω),

and hence, ∀π,Minϕ(ω) ≤ Pπ(ω). That is Minϕ(ω) forms a lower bound on the total
miss penalty for any demand-based VM management policy π, for any request string ω
of length |ω|.

We now compute the lower bound Minϕ(ω). First, consider a state hierarchy which
consists only of the booted and shutdown states (S0 and S1 with n = 0). Consider the
application of Belady’s OPT algorithm on this hierarchy for managing VMs, that is, when
a VM needs to be transitioned to the booted state and the number of booted VMs equals
B0, the booted idle VM which will receive a request farthest in the future is transitioned
to the shutdown state. Using this algorithm on a two-state hierarchy, for any given ω,
let the optimal number of hits hOPT (ω,B0) be the number of requests in ω such that the
target VM is in the booted state (S0) on arrival of the request, where B0 is the maximum
number of VMs possible in the booted state.

Let ϕ be a demand-based VM management policy which, for a reference string ω, for
each state Si (i ∈ 0, 1, . . . n), exhibits hi (number of hits to state Si), such that,

hi = hOPT (ω,
i∑

j=0

Bj)− hOPT (ω,
i−1∑
j=0

Bj). (5.1)

90

We show that for all demand-based policies, ϕ minimizes Minπ(ω), and hence Minϕ(ω)
forms the lower bound on the total miss penalty of any demand-based policy.

Lemma I

For all demand-based policies, policy ϕ maximizes
∑k

i=0 hi,∀k ∈ {0, 1 . . . n}.
Proof: Summing (5.1) over the range i = 0, 1 . . . k we get,

k∑
i=0

hi = hOPT (ω,
k∑

j=0

Bj).

This is the same as operating Belady’s OPT algorithm on a hierarchy with just two
states – booted and shutdown, with the maximum possible number of VMs in booted
equal to

∑k
j=0Bj. Since Belady’s algorithm is known to be the optimal demand-based

policy on a two-state hierarchy,
∑k

i=0 hi is maximized.

Lemma II

For any ω, no other demand-based policy π has Minπ(ω) < Minϕ(ω).
Proof: We prove by contradiction. Let π̂ be a demand-based policy (with respective ĥi),
such that Minπ̂(ω) < Minϕ(ω). Therefore,

n+1∑
i=0

ĥi.t
′
i <

n+1∑
i=0

hi.t
′
i

Or,
n∑

i=0

ĥi.(t
′
i − t′n+1) + (

n+1∑
i=0

ĥi).t
′
n+1 <

n∑
i=0

hi.(t
′
i − t′n+1) + (

n+1∑
i=0

hi).t
′
n+1.

Since
∑n+1

i=0 ĥi =
∑n+1

i=0 hi = |ω|,

n∑
i=0

ĥi.(t
′
n+1 − t′i) >

n∑
i=0

hi.(t
′
n+1 − t′i). (5.2)

91

Or,
n∑

i=0

ĥi.(t
′
n − t′i + t′n+1 − t′n) >

n∑
i=0

hi.(t
′
n − t′i + t′n+1 − t′n).

Or,
n∑

i=0

ĥi.(t
′
n − t′i) >

n∑
i=0

hi.(t
′
n − t′i) + (

n∑
i=0

hi −
n∑

i=0

ĥi).(t
′
n+1 − t′n).

The second term on right hand side is non-negative because t′n+1 ≥ t′n, and by Lemma I,∑n
i=0 hi ≥

∑n
i=0 ĥi. This means,

n∑
i=0

ĥi.(t
′
n − t′i) >

n∑
i=0

hi.(t
′
n − t′i).

Since the nth term in the summation on either side is zero, we get,

n−1∑
i=0

ĥi.(t
′
n − t′i) >

n−1∑
i=0

hi.(t
′
n − t′i). (5.3)

In reducing (5.2) to (5.3), the summation reduces from n to (n− 1). Since,

∀j ∈ {1, . . . n}, t′j−1 ≤ t′j.

Therefore, these steps can be repeated until the summation reduces to n = 1. That is,

ĥ0.(t
′
1 − t′0) > h0.(t

′
1 − t′0),

which implies ĥ0 > h0, which contradicts Lemma I (which states that ϕ maximizes∑k
i=0 hi, ∀k ∈ {0, 1, . . . n}).

Note that the lower bound Minϕ(ω) assumes future knowledge and cannot be im-
plemented in an online fashion. Nevertheless, it serves as theoretical lower bound for
comparing with other demand-based policies. In Section 5.5, we compare a few widely
used demand-based policies with the lower bound and compare them with proactive
policies.

92

5.2.2 Proactive Policies

Proactive policies configure, transition, or provision a system resource prior to a de-
mand for it being received. They have previously been explored in the context of page
replacement, with the goal of producing lower page faults than demand-based page re-
placement. Existing work [176] has shown that Belady’s OPT algorithm is the optimal
demand-based policy that minimizes the number of page fetches but does not minimize
the number of page faults, because it does not prefetch pages. Trivedi et al. [176] ex-
plored the use of proactive policies to lower the number of page faults, and proved that
DPMIN [176] is the optimal pre-paging algorithm. DPMIN proceeds as follows: at the
time of a page fault, DPMIN scans the future page reference string and fetches the first
m pages that will be referenced in the future (including the page that caused the page
fault), where m is the number of memory page frames. For the purposes of this work,
we define proactive policy as any policy that is not a demand-based policy (as defined in
Section 5.2.1).

SlidingWindow

We extend the technique used in the DPMIN algorithm to define the SlidingWindow
policy for managing VMs across different states. Our rationale is that, since VMs can be
transitioned in parallel, provisioning VMs in anticipation of requests (e.g., when servic-
ing another VM’s request) should reduce average miss penalties.

SlidingWindow proceeds as follows: whenever a request rt ∈ ω is received such that
the target VM is not in the booted state, it computes a new state configuration for all
VMs. To compute this new configuration, SlidingWindow scans the future reference
string (illustrated in Figure 5.2). All VMs that are currently active are retained in their
booted state in the new configuration. If A is the number of currently active VMs, the
first (B0−A) VMs (that are currently idle) that will be requested in the future are placed
into the booted state (S0) in the new configuration (illustrated as a time window W0).
Similarly, the B1 VMs that will be requested next are placed into S1 (illustrated as time
window W1). This process continues up to state Sn (time window Wn) and the remaining
(v −

∑n
i=0Bi) VMs are placed in the shutdown state. After the new configuration is

computed, VMs are transitioned from their existing to this new configuration.

When VM Vi becomes idle, SlidingWindow re-scans the future reference string to
compute tnext, that is, the time at which Vi will be requested next. If tnext falls in the time
window Wj it transitions Vi into Sj , and one VM from Sk to Sk−1 (the one that is refer-

93

enced the soonest) ∀k ∈ {j, j − 1, . . . 1}. In effect, it slides the windows W0,W1 . . .Wj−1

to the right. If tnext falls in the window W0, Vi remains in the booted state.

Similar to DPMIN, our SlidingWindow policy assumes knowledge of the future ref-
erence string, and cannot be implemented in an online fashion. Therefore, in addition to
the offline implementation of the policy, we provide an online implementation (called
SlidingWindow+ARMA) which uses a predictor to estimate tnext, and uses the predicted
value to perform its proactive VM provisioning. We describe SlidingWindow+ARMA
in detail in Section 5.4.2 and compare it with demand-based policies in Section 5.5.

W0 W1

VM Idle

tnext

t
WN WS

VM Request

Figure 5.2: Proactive idle VEE management using the SlidingWindow policy.

5.3 Obtaining Model Parameters

Our formal model (described in Section 5.2) relies on a few input parameters, namely the
matrix of transition times (T(n+2)×(n+2)) and the maximum number of VMs that can be
simultaneously hosted in each state (Bi). We use LXC [22], a widely used OS-level virtu-
alization solution, as an example virtualization solution, and conduct an experimental
analysis to obtain these model parameters. Note that we continue to refer to execution
environments created using LXC as VMs, since our formal model (Section 5.2) is appli-
cable to any virtualization solution. We now describe our methodology in detail and
justify our choices.

5.3.1 LXC as a Case Study

OS-level virtualization approaches have been shown to incur 40-50% lower virtualiza-
tion overhead than other approaches such as Xen paravirtualization [143, 172], thus

94

promising potentially higher density. Example OS-level virtualization solutions include
LXC [22], OpenVZ [28], and VServer [23]. We choose LXC as our example virtualization
solution for several reasons:

(i) it is open source, allowing easy analysis of its implementation,

(ii) it is in production use and is part of the mainstream Linux kernel,

(iii) it offers a low-latency inactive VM state called “frozen”,

(iv) it is being used in other projects which can benefit from increased VM density, such
as Docker [9] (to provide “frozen in state apps”), and Confidential Commuting [77]
(to provide per-user private VEEs).

As noted, in addition to the booted (S0) and shutdown state (S2), LXC implements a
frozen state (S1) which forms a middle ground between booted and shutdown states.
When an idle VM in the booted state is transitioned to the frozen state, it retains its
memory and disk footprint, while relinquishing CPU cycles. In addition, frozen-to-
booted transition times are significantly smaller than shutdown-to-booted transitions.
Thus, LXC provides us with a three-state hierarchy with the booted, frozen, and shut-
down states. Menage [133] provides a detailed description of the implementation of the
frozen state.

5.3.2 Experimental Setup

We use LXC [22] (v.0.8.0) to create VMs. VMs are hosted on a machine that has four
Intel Xeon processors with six 3.46 GHz cores each and 128 GB of RAM. It contains a
7200 RPM 1 TB SATA hard disk that we use to store VMs’ OS images. All experiments
are repeated 50 times and all results are reported using averages with 95% confidence
intervals.

VMs in an OS-level virtualization solution, such as LXC, share the host kernel’s pro-
cess pool, data structures, and devices. Therefore, when increasing VM density, some
host kernel parameters need to be increased. For instance, since all processes of all LXC
VMs share the host kernel’s pool of open file descriptors (FD) the total number of open
FDs allowed by the host kernel limits the number of VMs. Similarly, the kernel’s max-
imum allowed process identifier (PID) (set to a default of 32,767), and the number of
Unix98 pseudoterminals (set to a default of 4,096), also limit the number of VMs. For
conducting our experiments we increased these values to 14,000,000, 65,535, and 8,000
respectively.

95

5.3.3 Quantifying Density

We first determine the maximum number of booted, frozen, and shutdown VMs that
can be supported in our testbed.

Shutdown VMs

The only system resource consumed by shutdown VMs is disk space. It is required for
storing their OS image, applications, and libraries. In our testbed, each VM consumes
476 MB of disk space. Thus, 2,000 VMs can be created on a 1 TB disk, using the EXT4
filesystem.

Booted VMs

To determine the maximum number of booted VMs (B0) we conduct a simple experi-
ment where the number of booted but idle VMs on the machine is gradually increased,
while all other VMs are shutdown. VMs are transitioned from shutdown to booted se-
quentially, with a delay of 30 seconds between successive VMs to ensure that the system
reaches a steady state; essential for recording system measurements. Measurements are
recorded using vmstat.

We observe that the system memory consumption increases steadily with increasing
number of VMs. This is because each additional VM consumes approximately 42 MB
of memory for initializing its processes (such as its SSH server, and other daemons).
Figure 5.3 shows the CPU system time (time spent running kernel code), and CPU idle
time averaged over all 24 cores on the server machine, as the number of booted idle VMs
is increased. We observe that up to 250 VMs the CPU is largely idle. This is because idle
VMs do not perform any significant computation and only a few VM processes (such as
udevd, and other daemons) are running, this slightly decreases the CPU idle time, while
other processes remain blocked. Note that, all VM processes are in user space. However,
beyond 250 VMs, we observe an increase in CPU system time, eventually reaching 100%
at 450 VMs. At this stage, no additional VMs can be booted as all 24 cores are completely
busy. We believe that this is because of the inability of LXC’s cgroup handler [133] to
scale with the increasing number of processes. LXC uses the cgroup handler for the
bookkeeping of resources used by processes of different VMs and to enforce isolation.
As a result, this limits the number of booted idle VMs to approximately 250.

96

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

%
 C

P
U

 t
im

e

Number of Booted VMs

Idle
System

Figure 5.3: CPU utilization versus the number of booted VMs.

97

Frozen VMs

We determine the maximum number of frozen VMs (B1) by conducting a simple experi-
ment where the number of frozen VMs on the machine is gradually increased. Each VM
is booted, allowed to initialize, and then transitioned to frozen. To determine when a
VM has finished booting, we use netcat to detect if the VM’s SSH server has started.
We measure the time taken to boot-up the VM and start its SSH server. All other VMs
remain in the shutdown state.

We observe a steady increase in the system memory consumption (at approximately
42 MB per VM). This is because processes in a frozen VM retain their memory foot-
print (due to the absence of memory pressure). Moreover, we observe that the time to
transition a VM from shutdown to booted (before transitioning to frozen) increases con-
siderably as the number of frozen VMs on the machine increases. This is because many
system calls used by LXC for booting a VM, such as fork, wait, and open, take more time
to complete, as the number of frozen VMs increases. As described in Section 5.3.4, this
increase in transition time eventually limits the number of frozen VMs (to approximately
300 frozen VMs).

5.3.4 Impact of Density on Transition Time

We study the effect of VM density in each state on the transition times. We vary the
number of booted VMs and measure the different state transition times (while keeping
the number of frozen VMs at zero). Similarly we vary the number of frozen VMs and
measure the transition times (while keeping the number of booted VMs at zero).

Varying the Number of Booted VMs

The number of booted VMs is increased in steps of 50. At each step the different transi-
tion times are measured (for a given VM). All other VMs are in the shutdown state.

Figure 5.4a shows the shutdown-to-booted (denoted t′2) and frozen-to-booted (de-
noted t′1) transition times. We observe that up to 250 VMs, the shutdown-to-booted
transition time remains largely constant. However, beyond 250 booted VMs we see a
considerable increase in boot time. This is due to a surge in CPU system time at 300
VMs and beyond (as explained in Section 5.3.3, Figure 5.3), which reduces available CPU
time to zero. Figure 5.4b shows the frozen-to-booted transition time (denoted t′1 in Fig-
ure 5.4a), with a magnified time axis. We observe that frozen-to-booted transition times

98

 0

 500

 1000

 1500

 2000

 2500

 3000

t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1

T
im

e
 (

m
s)

Number of Booted VMs

Transition to Booted

400350300250200150100500

(a) Transition times for Shutdown-to-Booted (t′2) and
Frozen-to-Booted (t′1).

 0

 10

 20

 30

 40

 50

 60

0 50 100 150 200 250 300 350 400

T
im

e
 (

m
s)

Number of Booted VMs

Frozen-to-booted (t’1)

(b) Transition times for Frozen-to-Booted (t′1).

Figure 5.4: Transition times with increasing number of booted VMs.

increase only slightly with increasing number of booted VMs and is considerably smaller
than shutdown-to-booted transition time. This is because frozen-to-booted is a compar-
atively faster and less resource-intensive transition. The abrupt rise beyond 300 booted
VMs, is attributed to the surge in CPU system time, as explained in Section 5.3.3. Along
the same lines we also measure the booted-to-shutdown (t0,2) and booted-to-frozen (t0,1)
transition times while increasing the number of booted VMs. However, we do not ob-
serve any significant variation in these transition times, remaining constant at averages
of 640 ms and 0.15 ms respectively.

Varying the Number of Frozen VMs

In a similar fashion to the previous experiment, the number of frozen VMs is gradually
increased and the different transition times are measured.

Figure 5.5a shows the shutdown-to-booted (denoted t′2) and frozen-to-booted (de-
noted t′1) transition times. We observe that the time for a shutdown-to-booted transi-
tion increases only slightly up to 300 frozen VMs and is considerably larger beyond that
point. This is because, as discussed in Section 5.3.3, system calls used by LXC for boot-
ing, require more time to complete when the number of frozen VMs increases, leading to
increased transition times. Figure 5.5b shows the frozen-to-booted transition times (de-
noted as t′1 in Figure 5.5a) with a magnified time axis. We observe that below 300 VMs,
the transition time is largely constant. However, beyond 300 frozen VMs, the transition

99

time increases considerably. This is because LXC’s cgroup freezer mechanism [133] be-
gins consuming more time for unfreezing a VM, and hence does not scale. Therefore, the
number of frozen VMs is limited by this increased transition time, to approximately 300.
As in the previous experiment, we find that the booted-to-shutdown (t0,2) and booted-
to-frozen (t0,1) transition times do not change significantly with the number of frozen
VMs. These transitions times are measured at averages 642 ms and 0.17 ms respectively,
which is nearly identical to their values in case of varying number of booted VMs.

 0

 1000

 2000

 3000

 4000

 5000

t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1

T
im

e
 (

m
s)

Number of Frozen VMs

Transition to Booted

6005004003002001000

(a) Transition times for Shutdown-to-Booted (t′2) and
Frozen-to-Booted (t′1).

 0

 500

 1000

 1500

 2000

 2500

0 100 200 300 400 500 600

T
im

e
 (

m
s)

Number of Frozen VMs

Frozen-to-Booted (t’1)

(b) Transition times for Frozen-to-Booted (t′1).

Figure 5.5: Transition times with increasing number of frozen VMs.

5.3.5 Deriving the Model Parameters

We now describe how we derive the parameters for our model (in Section 5.2) using the
experimental analysis (described above).

Due to increase in the transition times as the number of booted VMs is increased (as
explained above, Figures 5.3, 5.4), we define the maximum number of VMs possible in
the booted state (B0) to be 250. Similarly, given the variation in transition times as the
number of frozen VMs is increased (Figure 5.5), the maximum number of VMs possi-
ble in the frozen state (B1) is 300. Note that both B0 and B1 values are derived from
limitations in LXC’s design and implementation (described above). While it may be in-
teresting to explore these limitations in greater detail (and alleviate them), such work
lies outside the scope of our current work.

100

We compare the shutdown-to-booted (t′2) and frozen-to-booted (t′1) transition times
in the two sensitivity analysis experiments (i.e., Figure 5.4a and Figure 5.5a). Inter-
estingly, we find that within the operating range of up to 250 booted VMs, and up to
300 frozen VMs, the respective transition times in either experiments differ insignifi-
cantly. For instance, shutdown-to-booted transition time when varying only the num-
ber of booted VMs (up to 250 booted VMs, Figure 5.4a), is comparable to shutdown-to-
booted transition time when varying only the number of frozen VMs (up to 300 frozen
VMs, Figure 5.5a). Other transitions times (frozen-to-booted t1,0, booted-to-frozen t0,1,
and booted-to-shutdown t0,2) exhibit similar behaviour. Thus, we believe that within
this operating range (up to 250 booted and 300 frozen VMs) all transition times remain
largely constant, regardless of the number of booted and frozen VMs. We therefore represent
the average transition times (within the operating range) using the transition matrix T3×3

shown in Table 5.1, where ti,j=time to transition from state Si to Sj . Note that to tran-
sition a frozen LXC VM to shutdown (and vice versa), it must first be transitioned to
booted.
PPPPPPPPPFrom

To Booted (S0) Frozen (S1) Shutdown (S2) Bi

Booted (S0) 0.00 ms 0.17 ms 641.64 ms 250
Frozen (S1) 4.43 ms 0.00 ms - 300

Shutdown (S2) 802.16 ms - 0.00 ms 2000 (Disk limited)

Table 5.1: Transition matrix (T3×3) and state capacity (Bi) values for LXC.

5.4 Policy Comparison Setup

Using the parameters obtained above we study the effect of different policies using a
simulation-based analysis, which makes exploring a large design space feasible.

In this section, we first discuss the design and implementation of our simulator, fol-
lowed by the description of the policy implementations in Section 5.4.2, the personal
VEE workloads we use for comparing policies in Section 5.4.3, and our evaluation met-
ric in Section 5.4.4.

101

5.4.1 Simulator Design and Implementation

Our simulator consists of a policy module, a cost-model module, and a workload module. The
cost-model module encapsulates the VM hierarchy parameters (Bi and T3×3). The pol-
icy module encapsulates all logic pertaining to a particular policy and maintains any in-
memory state required for implementing that policy such as any per-VM bookkeeping.
The workload module encapsulates all logic required for simulating the VMs’ work-
loads, such as distributions for request inter-arrival times and request durations. Such
modularity allows us to easily extend the simulator to study different workloads, dif-
ferent VM management policies, as well as different VM hierarchies, by simply imple-
menting the respective module. The simulator maintains the current state assignment
for each VM. In addition, it contains a single time-sorted event queue and a single thread
which processes events in this queue. Events are either of type VMrequest or VMidle.

At initialization time, the workload module generates the simulated VMrequest events
for the required number of VMs and populates the event queue. When processing a VM-
request event, the simulator passes the current state assignment, the request event, and
event queue to the policy module, and receives the updated state assignment. It then
compares the updated state assignment with the current one and computes a list of re-
quired VM transitions. It then computes the time required to perform the transitions,
updates the state assignment, and enqueues a VMidle event with a later timestamp (de-
rived using the request duration in the VMrequest event) into the event queue. Note
that all invocations of the policy module are serialized. For instance, if a VMrequest
event occurs while the policy module is computing the updated VM state assignment,
it is processed after the policy module finishes its computation. Lastly, when comput-
ing the time taken to perform a set of transitions, the simulator assumes that different
VMs’ transitions take place in parallel. This assumption is justified because in doing so
we are able to measure the best case behavior of any policy. Any additional overhead
in the system in performing parallel transitions would only serve to increase the transi-
tion times, and the miss penalty so obtained would still be bounded by that in the best
case scenario. VMidle events are processed in the same fashion as VMrequest events.
However, some policies (e.g, demand-based policies) may choose to not take any action
when a VM becomes idle.

Implementation

We have implemented the simulator using C# over the .NET v4.5 framework. We have
implemented policy modules for different reactive and proactive policies, the workloads

102

described in the next section, and a cost-model module for LXC. We validate the simu-
lator using sample deterministic workloads and state hierarchies. The implementation
is publicly available at http://github.com/rayman7718/VMSim.

5.4.2 Policy Implementations

We implement the following idle VEE management policies.

LRU

Least Recently Used (or LRU) [70] is a policy that is widely studied for page replacement.
We apply it to idle VM management in a cascaded fashion. For each VM, it maintains
the timestamp of the last request (tr). All VMs are initially in the shutdown state. As
requests for different VMs arrive, they are transitioned to the booted state. Eventually,
as the number of VMs in the booted state (i.e., including active and idle VMs) reaches
the limit B0, for each VM transitioning into booted thereafter, LRU chooses to transition
the booted VM with the minimum tr into the frozen state. In effect, for each VM it uses
the time since the last request to estimate the likelihood that it will be requested again.
Similarly, as the number of VMs in the frozen state reaches B1, for each VM transitioning
into frozen thereafter, the frozen VM with the minimum tr is shut down. Note that,
unlike traditional implementations of LRU (e.g., in page replacement) where all timing
information of the resource is deleted after its eviction, we maintain tr for each VM after
eviction in order to apply it across multiple states.

Cascaded Belady’s OPT

This policy is simply an extension of Belady’s OPT algorithm to multiple states applied
to idle VM management. That is, when number of VMs in any state Si exceeds Bi, the
VM that is referenced the furthest in the future is transitioned to Si+1. This version of
Belady’s OPT algorithm is known to be suboptimal [88]. However, we implement it in
order to compare it with demand-based policies that have no future knowledge (e.g.,
LRU) and the lower bound Minϕ(ω). To the best of our knowledge such a comparison
has not been conducted in previous work.

103

http://github.com/rayman7718/VMSim

Lower Bound on demand-based policies

As explained in Section 5.2.1, Minϕ(ω) forms the lower bound on demand-based poli-
cies. We first obtain the h0, h1, h2 values for LXC as per Eq. 5.1 for the different work-
loads we study (i.e., different ω values). For each ω, we obtain h0 = hOPT (ω,B0),
h1 = hOPT (ω,B0 + B1) − hOPT (ω,B0), and h2 = |ω| − h0 − h1. We then determine
the lower bound Minϕ(ω) = (h0.t

′
0 + h1.t

′
1 + h2.t

′
2).

SlidingWindow+GroundTruth

As explained in Section 5.2.2, our SlidingWindow policy requires knowledge of the fu-
ture. Therefore, we implement the offline version of SlidingWindow which uses knowl-
edge of the future (called SlidingWindow+GroundTruth).

SlidingWindow+ARMA

We also provide an online implementation of the SlidingWindow policy (called Slid-
ingWindow+ARMA) which attempts to predict the inter-arrival time for each VM and
updates the prediction model at the time of each request for that VM. We employ the
widely-used auto regressive moving average (ARMA) time-series model [134] for predict-
ing the inter-arrival times. To find the order of the ARMA model we employ Bayesian
information criterion [160] and at each model update we perform a maximum likelihood
fit on the inter-arrival times. The policy then uses the predicted inter-arrival time for
each VM to perform its proactive actions. Therefore, its miss penalty depends directly
on the prediction error of the ARMA model.

5.4.3 Workload Analysis

We analyze personal VEE workloads by categorizing them into three categories based
on the requests’ inter-arrival and duration times. We believe that such categorization (as
opposed to a mixed workload) allows us to better understand the behavior of different
policies.

104

Fixed Inter-arrival Time, Fixed Duration

A common use of personal VEEs is to periodically upload a fixed amount of data from
in-home sensors (e.g., from energy sensors, as described in Chapter 3) or a user’s smart-
phone [77,137]. In these scenarios, requests have relatively fixed inter-arrival times and
durations. For such requests both the arrival and departure of requests are highly pre-
dictable and form an interesting point of comparison between proactive and reactive
policies. Similarly tasks involving periodic pre-processing of data [158, 169] also fall
under this category.

Stochastic Inter-arrival Time, Fixed Duration

Users can also use their personal VEEs to host private instances of common application
servers such as web, mail, the Bolt metadata server (described in Chapter 4), and other
servers [58, 163, 164]. Due to the user-facing nature of these application servers, the re-
quests they receive have stochastic inter-arrival times, and typically involve download-
ing or uploading fixed amounts of data, thus leading to requests with a relatively fixed
duration.

Stochastic Inter-arrival Time, Stochastic Duration

In many personal VEE applications the requests are user-generated, and thus have stochas-
tic inter-arrival times. In addition, there are a wide variety of such requests. As a result,
these requests vary in the amount of data processed and the type of computation per-
formed which results in stochastic duration times. Examples include private data ana-
lytics applications (described in Chapter 3), VM-backed mobile applications [158], and
other similar applications [107] (discussed in detail in Sections 2.1.4 and 2.1.5).

5.4.4 Metric

In order to compare different policies for a request string ω, we use the average miss
penalty incurred by any policy π, defined as:

Average miss penalty =
Pπ(ω)

|ω|
.

105

We choose this metric because:

(i) it captures the miss penalty across all VMs in the system,

(ii) it allows us to observe the behavior of any policy while increasing the number of
total VMs, and

(iii) it allows us to easily observe the differences between reactive and proactive poli-
cies.

Note that the lower bound on average miss penalty of reactive policies is expressed as
Minϕ(ω)

|ω| .

5.5 Simulation Results

We now study the effect of increasing VM density on the average miss penalty for dif-
ferent policies. The request string ω in all simulations contains 100 arrivals per VM, that
is, |ω|=Total #VMs × 100.

In order to simulate stochastic inter-arrival times, we use the request inter-arrival
times from publicly available web trace data [49], since it has been used in evaluat-
ing on-demand VM provisioning in existing work [118]. Similarly in order to simulate
stochastic request durations, we use the web connection duration characterization pro-
vided by Newton et al. [141]. We believe this to be a representative request duration
characterization for personal servers. Lastly, we use the respective mean values from
the two datasets for generating the fixed inter-arrival time (of 50 s) and fixed duration
(of 10 s) workload. Table 5.2 shows the variability of inter-arrival times and durations
for the three cases we study. Note however that the policies we consider do not utilize
request duration and we defer the design of policies that consider request durations to
future work.

In each workload experiment (below), we start the x-axis at 250 VMs since it is the
maximum number of VMs possible in the booted state (and there are no miss penalties
below 250 VMs). We increase VM density to the point that the total number of simulta-
neously active VMs increases above 250 (equal to B0) and cannot be hosted using this
hierarchy. Note that this limit is a result of the current workload (longer idle times would
increase this limit).

106

Case Inter-arrival times Durations
Mean Standard Min Max Mean Standard Min Max

Inter-arrivals Durations deviation deviation
Fixed Fixed 50.0 s 0.0 s 50.0 s 50.0 s 10.0 s 0.0 s 10.0 s 10.0 s

Stochastic Fixed 50.0 s 160.5 s 10.0 s 941.2 s 10.0 s 0.0 s 10.0 s 10.0 s
Stochastic Stochastic 50.0 s 163.0 s 0.9 s 941.2 s 10.0 s 22.4 s 5.0 ms 120.0 s

Table 5.2: Variation of request inter-arrival times and durations across the three test
cases.

5.5.1 Fixed Inter-arrival Time, Fixed Duration Workload

Figure 5.6 shows the average miss penalty versus VM density for different policies, for
a request string ω with a fixed inter-arrival time of 50 seconds and a fixed request dura-
tion of 10 seconds. Figure 5.6 also shows the shutdown-to-booted and frozen-to-booted
transition times for comparison. For each VM, the time at which its first request is re-
ceived is chosen uniformly at random from [0,50 s]. Later in this section, we analyze the
behavior of the policies under other inter-arrival time and duration values.

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750 850 950 1050

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.6: Average miss penalty with increasing VM density for fixed inter-arrival time
and duration.

107

We first explain the behaviour of the reactive policies. We observe that at a VM den-
sity of 250, both reactive policies, LRU and Cascaded Belady’s OPT, incur the same aver-
age miss penalty which matches the lower bound. This is because, in this case, all reac-
tive policies transition each VM into the booted state once its first request is received and
no idle VMs need to be transitioned out of the booted state thereafter (since VM density
equals B0). As VM density increases further, not all VMs can remain booted. Depending
on the policy, some VMs are transitioned to frozen (when idle) and are transitioned to
booted when their request arrives, which increases the average miss penalty. Similarly,
as VM density increases beyond 550, not all VMs can be in either booted or frozen states.
That is, all other VMs are transitioned to the shutdown state (when idle) and are brought
into the booted state when their request arrives. This contributes to increase the average
miss penalty. Since shutdown-to-booted transition times are significantly higher than
frozen-to-booted (approximately 800 ms vs. 4 ms), we see a much larger increase in
the average miss penalty at VM density ≥ 550 (than at 250 VMs). Note that LRU has a
significantly higher average miss penalty than the cascaded Belady’s algorithm because
LRU has no knowledge of the future reference string. In the case of LRU, when VM
density is greater than 550, upon the arrival of each request, the target VM is always in
the shutdown state thus incurring the maximum miss penalty. This is because, for this
workload, between two consecutive requests to any VM Vi, there are (v-1) requests for
other VMs (i.e., one per VM). Since LRU evicts the least recently used VM from booted
to frozen and frozen to shutdown, when v > 550, Vi will get transitioned to shutdown
after the intermediate (v-1) requests are serviced.

We now explain the behavior of proactive policies. Due to easily predictable fixed
request inter-arrival times and durations, the average miss penalty of the SlidingWin-
dow policy+ARMA equals that of SlidingWindow+Ground Truth. We observe that both
policies incur a significantly lower average miss penalty than the reactive policies. This
is because whenever a request whose target VM is not in the booted state is received, in
addition to transitioning that VM to booted, SlidingWindow also transitions other VMs
(as many as possible) to booted and frozen states (as explained in Section 5.2.2). Note
that the proactive transitions in the SlidingWindow policies are triggered by a request
whose target VM is not in the booted state. Therefore, as VM density increases up to
550, VMs span the booted and frozen states and beyond 550, VMs span all the three
states. This increases the average miss penalty (since the shutdown-to-booted transition
time is significantly larger than the frozen-to-booted time). Moreover, the number of
idle VMs that the SlidingWindow policies can proactively transition to booted, depends
on the number of active VMs at that instant (since the number of active booted + the
number of idle booted = 250). As VM density increases, the number of simultaneously

108

active VMs increases and hence the number of VMs that can be proactively transitioned
to booted decreases. This reduction in the number of possible proactive transitions also
contributes to an increase in the average miss penalty.

For this workload, comparing the two online (implementable) policies (LRU and
SlidingWindow+ARMA), we conclude that SlidingWindow+ARMA incurs the lower
average miss penalty. It increases VM density from 250 to 550 (a factor of more than
2.2), while keeping average miss penalty under 1 ms, for a fixed inter-arrival time of 50
seconds and fixed duration of 10 seconds. Note that each VM is active for 10 seconds,
then becomes idle for 40 seconds before being activated again, that is, a mean duty-cycle
of 20%. If the maximum number of frozen VMs was not limited to 300 by LXC’s im-
plementation, for up to 250 simultaneously active VMs, a maximum of 250

0.2
or 1250 VMs

could be hosted using this state hierarchy while keeping the average miss penalty un-
der 1 ms. Similarly, for an idle time of 10 seconds and active time of 40 seconds (i.e., a
duty cycle of 0.8), the maximum VM density with an average miss penalty under 1 ms,
would be 250

0.8
or 312 VMs. To generalize, maximum VM density, for an average miss

penalty ≤ 1 ms with maximum number of simultaneously active VMs ≤ 250, equals
Min

(
B0 +B1,

B0

mean duty-cycle

)
.

5.5.2 Stochastic Inter-arrival Time, Fixed Duration Workload

Figure 5.7 shows the average miss penalty versus VM density for different policies, for
a request string ω with stochastic inter-arrival time (as described above) and a fixed re-
quest duration of 10 seconds. Figure 5.7 also shows the shutdown-to-booted and frozen-
to-booted transition times for comparison.

We observe that the behaviour of reactive policies in this case is similar to that in the
case of fixed inter-arrival fixed duration workloads (as described above in Section 5.5.1).
That is, their average miss penalty is equal and lowest at VM density of 250 VMs and
thereafter it increases with VM density (and remains higher than the lower bound). Miss
penalty is significantly higher at 550 VMs (and higher) than that at 250-550 VMs. This
is because with more thatn 550 VMs, they span the booted, frozen, and shutdown states
and shutdown-to-booted transition times are significantly larger than frozen-to-booted
times.

We now explain the behaviour of the proactive policies. Due to reasons explained
above in Section 5.5.1, the average miss penalty of SlidingWindow+Ground Truth in-
creases as VM density increases. The increase is large at VM density of more than 550

109

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.7: Average miss penalty with increasing VM density for stochastic inter-arrival
time and fixed duration.

VMs due to the shutdown-to-booted transition time being significantly larger than the
frozen-to-booted transition time. SlidingWindow+ARMA incurs a higher average miss
penalty than SlidingWindow+GroundTruth. This is because SlidingWindow+ARMA
uses the predicted inter-arrival time for each VM to make proactive transition deci-
sions. Thus errors in prediction cause some VMs to transition to sub-optimal states,
which increases the average miss penalty. We observe significantly larger average miss
penalties as VM density exceeds 550 VMs. This is observed despite the normalized root
mean square error of the prediction (shown in Figure ??) remaining largely constant
(at approximately 0.04) with increasing VM density. This is because beyond 550 VMs,
they span all three booted, frozen, shutdown states (as compared to only booted and
frozen below 550) and the shutdown-to-booted, booted-to-shutdown transition times
are significantly higher than the frozen-to-booted, frozen-to-shutdown transition times
respectively. Hence, as the number of VMs is increased, for a relatively constant degree
of mis-predictions, the number of VMs that get transitioned sub-optimally to the shut-
down state due to a mis-predicted inter-arrival time increases. It is the large transition
times to and from the shutdown state that cause the significant increase in the average
miss penalty. Due to this increase, the average miss penalty of SlidingWindow+ARMA

110

exceeds that of reactive approaches (beyond 560 VMs).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 250 350 450 550 650 750

N
o
rm

a
li

z
e
d
 R

M
S

E

Total #VMs

Stocastic Interarrival, Fixed Duration
Stocastic Interarrival, Stocastic Duration

Figure 5.8: Normalized root mean square error (NMRSE) for the ARMA predictor used
by SlidingWindow+ARMA.

For this workload, when comparing the two online policies, LRU and SlidingWin-
dow+ARMA, we conclude that for a desired VM density of up to 550 VMs (2.2 × the
density of current solutions), SlidingWindow+ARMA incurs a much lower average miss
penalty (less than 4 ms). However, for all VM density levels larger than 560, LRU out-
performs SlidingWindow+ARMA. At these density levels, some idle VMs need to be in
the shutdown state (which has large transition times) and any error in inter-arrival time
prediction causes a significant increase in the average miss penalty.

5.5.3 Stochastic Inter-arrival Time, Stochastic Duration Workload

Figure 5.9 shows the average miss penalty for a request string ω with stochastic inter-
arrival time and stochastic duration, for different policies with increasing VM density.
Figure 5.9 also shows the shutdown-to-booted and frozen-to-booted transition times for
comparison.

111

We observe that the stochastic request duration has little effect on the average miss
penalty, which is similar to the case of stochastic inter-arrival time and fixed duration
(described above in Section 5.5.2). We believe that this is because both the reactive and
proactive policies we study (LRU, Cascaded Belady’s algorithm, and SlidingWindow),
only use request inter-arrival time in making their reactive or proactive transition deci-
sions. An interesting avenue for future work would be to formulate policies which also
take into account the expected request durations. The behaviour of our current policies
can be explained using reasoning similar to that in Section 5.5.2.

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.9: Average miss penalty with increasing VM density for stochastic inter-arrival
time and stochastic duration.

5.5.4 Summary of Simulation Results

The key findings of the simulation-based policy comparison can be summarized as fol-
lows:

• Online proactive policies such as SlidingWindow+ARMA are highly sensitive to
prediction error. Thus for any given hierarchy, to ensure low miss penalties, such
policies should be used only when the desired VM density is such that all VMs can

112

be accommodated within inactive states with low transition times. That is, when
the penalties for mis-predictions are relatively small. Under all other conditions
(e.g., larger VM density levels), reactive and stateless policies such as LRU should
be used.

• Miss penalties of proactive and reactive (online or offline) policies, which only
make use of request inter-arrival times, are largely unaffected by request durations
being fixed or stochastic.

• For the given workload, using an online per-VM predictor based proactive policy
results in an increase in VM density by up to a factor of 2.2, with an average miss
penalty of less than 1 ms.

5.6 Characterizing the Policy Space

In Section 5.2, we formulated the idle VEE management problem. Although that prob-
lem formulation allowed us to establish a lower bound on the miss penalties of demand-
based policies, it does not provide insight into finding the optimal policy. We believe
that it is due to the large extent of possible policies that finding the optimal policy is
relatively difficult. Therefore, in this section, we present an alternate mathematical for-
mulation of the problem, which provides a mathematical definition for policies, and
allows us to characterize the policy space.

Let V = {V1, V2, . . . Vv} denote the set of v VMs that are multiplexed on a given phys-
ical machine. Each VM is active for certain periods of time, for example, when actively
serving client requests and is idle for other periods of time. We model the active and
idle periods over a given time period T by a reference string of tuples. A reference string
of tuples ω = r1, r2, . . . rT is a string of tuples ri. Each ri is a tuple (Type, ID), where
Type ∈ {Activate, Inactivate} and ID ∈ V , which denotes the activation (i.e., start of an
active period) or in-activation (i.e., start of an idle period) of the target VM VID.

For any tupled reference string ω, for each VM Vx ∈ V , if ∃ rj = (Inactivate, x),
then ∃ ri = (Activate, Vx), where j ≥ i. Moreover, ∀ ri, rk ∈ ω such that ri = rk =
(Activate, Vx), i < k, there must exist rj = (Inactivate, Vx) where i < j < k.

In addition to the booted and shutdown states (denoted S0 and Sn+1 respectively),
we assume there are n additional inactive states (denoted S1, S2, . . . , Sn) which can be
used to hold idle VMs. Let V S0 , V S1 , . . . V Sn , V Sn+1 ⊆ V denote the sets of VMs in states
S0, S1, . . . Sn+1 respectively at a given time instant. We also define V A ⊆ V S0 , as the

113

set of VMs that are actively serving clients at that instant. Moreover, the soft bounds
on the maximum number of VMs in states S0, S1, . . . Sn+1 are denoted as B0, B1, . . . Bn+1

respectively. Therefore, ∀i ∈ {0, 1, . . . , n+ 1}, |V Si| ≤ Bi, and
∑n+1

i=0 |V Si| = v.

Given this notation, we define the VM configuration of the system at any instant, as
the tuple C, where

C = (V A, V S0 , V S1 , . . . , V Sn , V Sn+1).

C defines the state in which each VM is at the particular time instant. Let SC be the set

{C|∀i ∈ {0, 1, . . . n+ 1}, |V Si| ≤ Bi,
n+1∑
i=0

|V Si| = v}.

Thus SC denotes the space of all possible VM configurations for the given state hierarchy.
Any idle VM management policy π is comprised of the tuple (Q, q0, g) where,

(i) Q is the set of control-states of the policy,

(ii) q0 ∈ Q is its initial control state,

(iii) g : SC ×Q× (V × Type) → SC ×Q is the allocation function.

The allocation function has the property that the target VM of any request ri (i.e, Vri.ID)
is in C ′.V A whenever g(C, q, ri) = (C ′, q′) and ri.T ype = Activate. Similarly, Vri.ID is not
in C ′.CA whenever g(C, q, ri) = (C ′, q′) and ri.T ype = Inactivate.

Therefore, any VM management policy π can be considered a finite state machine
with SC ×Q control-states, inputs V × Type (i.e., outgoing transitions), and a transition
function g.

The total number of control-states for any policy π are O(
{

v
n+2

}
×|Q|), where

{
X
Y

}
de-

notes the second stirling number which defines the total number of ways of partitioning
a set of X elements into Y subsets. Simplifying further, the total number of control-states
are

O(

{
v

n+ 2

}
× |Q|) = O((n+ 2)v × |Q|) = O(nv.|Q|).

Given α control-states and β inputs, the total number of finite state machines that
can be defined is α.(αβ)α or O(αα.β). This is because each input for each control-state
can cause a transition to one of the α states, and each state can be chosen as the initial
control-state.

114

Therefore the total number of possible policies given a control-state space ofO(nv.|Q|),
and 2× v inputs are O((nv)n

v
). That is, the size of the policy space is exponential in both

the number of states and the number of VMs multiplexed on a machine (with the ex-
ponent itself comprising of n and v terms). We believe that it is due to this large policy
space that finding the optimal policy is relatively difficult.

5.7 Discussion

Other Virtualization Solutions

Using LXC as our example virtualization solution, we demonstrate that idle VMs can be
multiplexed across inactive states. However, our model formulation and lower bound
on demand-based policies (in Section 5.2) is applicable to any virtualization solution.
Similarly, our experimental analysis to determine the model parameters (in Section 5.3)
can also be adapted to any virtualization solution. Our simulator can then be re-used
(after encoding the new cost-model), to observe the effect of policies on any VM hierar-
chy. We defer such extension of this work to other virtualization solutions (e.g. Xen and
KVM) to future work. Nevertheless, we believe our evaluation of VM density and miss
penalties can benefit existing projects [9, 77] which use LXC.

Extending Policies

We have implemented only a few sample, reactive and proactive policies (i.e., LRU, Cas-
caded Belady’s, SlidingWindow, and SlidingWindow+ARMA), using only the personal
VEE workload. The goal of this work was to uncover a new methodology to increase
VEE density by multiplexing VEEs across states, understand and compare the behaviour
of reactive and proactive policies for idle VM management, and to compare reactive poli-
cies with our theoretical lower bound. With our example personal VEE workloads, we
provide valuable insights into the behaviour of a few policies. However, we defer the
extension of this work to a broader range of policies and workloads to future work. Our
modular simulator design, which isolates policies, workloads, cost-models (described
in Section 5.4.1), ensures that a broader analysis can be easily conducted.

We have provided only one online implementation of the SlidingWindow policy (us-
ing the ARMA model). We chose the ARMA predictor since it delivered relatively small
prediction error for the current workload. To use the SlidingWindow policy on other

115

workloads other prediction methods may need to be considered, while demand-based
policies such as LRU can be applied directly.

Stochastic Value Analysis of Transition Times

We model the problem by using a mean value analysis of transition times. Hence we
derive the model parameters by defining an operating range of state capacities within
which transition times are largely constant. We also assume that different VM state tran-
sitions can take place in parallel and that transition times remain unchanged. Stochastic
analysis can be leveraged to model any variations in transition times. However, addi-
tional experimental analysis of density and transition times will be required to obtain
parameters for a stochastic value model, which we defer to future work. Additionally,
our current experimental analysis of LXC (Section 5.3) identifies a number of barriers to
state capacities in LXC, which serve as venues for improving future LXC implementa-
tions.

5.8 Chapter Summary

Our proposed personal VEE architecture for data-driven applications requires provi-
sioning one VEE per user. VM density of traditional consolidation methods is bounded
by the maximum number of VMs that can be co-hosted on a single machine by the un-
derlying virtualization solution. Provisioning a large number of VMs using existing
solutions will require un-affordably large amounts of hardware resources. Therefore,
we propose a new methodology that increases VM density for workloads that have rel-
atively large uncorrelated active times, such as personal VEE workloads.

In this methodology, idle VMs are multiplexed across a range of inactive states, where
their resource footprint is reduced, at the cost of a small increase in client latency called
the miss penalty. However, due to differences in their design and resource requirements,
different inactive states have varying VM activation and deactivation times, and VM
capacities. Consequently, miss penalties for idle VMs in different inactive states vary
significantly. Thus choosing the appropriate policy for multiplexing idle VMs across
inactive states is essential for maximizing the VM density while minimizing the miss
penalties. We divide the policy space into reactive and proactive policies. To understand
and guide our policy selection, we formulate a mathematical model for the problem.
This model is used to derive a lower bound on the miss penalties of reactive policies. We

116

observe some similarities between this problem and the problems of page replacement
and multi-level cache management. We use these similarities to formulate a proactive
policy (called SlidingWindow+ARMA) which leverages inter-arrival time prediction to
reduce miss penalties.

Our model uses the inactive state capacities and transition times as input parameters.
Therefore, we use microbenchmarks to measure these values to obtain the model param-
eters for LXC [22], a widely used OS-level virtualization solution. We then categorize
typical personal VEE workloads and use the measured parameters to evaluate differ-
ent reactive and proactive policies. Our policy comparison and simulations provide a
quantification of the miss penalties of different policies and allow us to draw insights
into their behaviour.

117

Chapter 6

Towards Tussle Based Operating
Systems

6.1 Introduction

The goal of the personal VEE architecture (described in Chapter 3) was to enable an
ecosystem of data-driven applications that preserves users’ data privacy. The basis of
our approach was to prevent application developers from accessing users’ data, for ex-
ample, by sandboxing native VHome applications or transforming data before it is ac-
cessed by cloud-based applications.

However, both users and application developers benefit from providing application
developers with access to users’ data. For instance, application developers can use the
data to serve users with advertisements in-exchange for lower application costs. Ac-
cess to data would allow application developers to improve their data processing algo-
rithms, leading to improved utility to users. As a specific example, data can be used to
improve occupancy prediction for home thermostat control applications. On the other
hand, as discussed in Chapter 1, data from smart meters, smartphones, and other sen-
sors, can also be misused to reveal private information about the user, for example, socio-
economic status [51], TV viewing [91], driving [104,111,147], sleep [66,98], and physical
activity habits [101, 102] and other details [129, 136].

Application developers and users are thus in a tussle [69] over access to sensor data.
Application developers desire to have unlimited sensor data access, while users wish to
preserve their data privacy. The VHome framework (Chapter 3) always resolves such

118

tussles in favour of the user and prevents personal VEE-resident applications from re-
laying any data back to application developers. In sharp contrast, smartphone operating
systems (OSes) such as Android, iOS, or Windows Phone, typically resolve data tussles
in favour of application developers and require users to grant all of an application’s data
requests at installation time. As a result, many users avoid using smartphone applica-
tions that require access to privacy-sensitive sensor data [67].

In their seminal work, Clark et al. [69] introduced the notion of tussles in cyberspace.
By analogy, we posit that operating systems need to formally recognize tussles and need to
implement mechanisms and policies to resolve them. Providing stakeholders – users and ap-
plication developers – with a principled way to express their requirements and ensur-
ing that the framework resolves tussles according to prescribed policies enables easier
understanding of system behaviour for both users and applications. Moreover, a tussle-
based abstraction benefits users by allowing them to gracefully balance application util-
ity against data privacy and it benefits application developers by allowing for a broader
distribution of applications.

In this chapter, we ask: how can we best extend an operating system1 with a tussle-
based abstraction? We take the first steps in answering this question by designing a
framework to formalize, detect, and resolve data tussles.

Our work makes the following contributions:

• A tussle abstraction for operating systems.

• An identification of mechanisms and policies that underlie a tussle-based frame-
work.

• An outline of various open problems for instantiating a tussle-based framework
and directions for future work.

The remainder of this chapter is organized as follows. We formulate the design goals
that a tussle-based framework should achieve in Section 6.2 and present an outline of
the proposed architecture and its components in Section 6.3. We then derive the abstrac-
tions that allow application developers and users to express their data requirements in

1 We use operating system (OS) to loosely refer to any software that intermediates applications’ access
to sensor data and other system resources (Table 6.2). This includes smartphone platforms such as An-
droid, Windows Phone, iOS, home sensing platforms such as HomeOS [74], our personal VEE framework
– VHome (Chapter 3, [169]), and other OSes running on embedded devices such as the Raspberry-Pi [31],
increasingly deployed in cyber-physical systems.

119

Sections 6.4.1 and 6.4.2 respectively. We discuss the notion of tussle resolution and the
enforcement of such resolutions in Section 6.4.3 and 6.4.4 respectively. We conclude the
chapter with a discussion of future directions and an overview of related approaches in
Section 6.5.

6.2 Design Goals

Our primary design goal is to extend existing OSes with a tussle framework that:

• Provides the stakeholders, that is, users and application developers, with a high-
level abstraction for expressing their resource requirements and constraints.

• Provides a set of mechanisms to detect and resolve tussles and ensures the enforce-
ment of the resolutions.

We believe that an ideal tussle framework should demonstrate the following properties.

Expressiveness

Numerous sensor applications exist today and others are rapidly emerging [34]. There-
fore, the framework should allow applications to freely express their sensing require-
ments. These include, the type of sensors the application requires, the frequency at
which access is required, and the level of access. At the same time, the framework
should allow the user to define acceptable sensor access by applications. This should
be provided through a control interface that is understandable to the users, for example,
by allowing them to list inferences that can or can not be drawn by an application.

Resolution

After the stakeholders have expressed their sensor access constraints, the framework
should: (i) detect conflicting requirements (i.e. tussles), and (ii) resolve tussles by bal-
ancing the requirements (with user input, if necessary). The amount of utility the ap-
plication provides is likely to be limited by the user’s data privacy requirements. This
implies that application utility should degrade gracefully with increasingly strict privacy
requirements. Note that this is a significant departure from most existing approaches
which typically require a user to accept all of an application’s sensor access requests at
installation time.

120

Robustness

The framework should guarantee that any sensor data access made by an application
respects the tussle resolution. In addition, since many applications rely on the integrity
of sensor readings, the framework should guarantee this integrity. A sample application
that requires trusted readings to be effective is an energy billing application [169].

Extensibility

The framework should be able to support new sensor types, new algorithms that can
draw more sophisticated inferences using existing sensor data, and new ways in which
stakeholders may want to express their requirements.

6.3 Architecture Outline

In light of these design goals, we first identify the key elements of a tussle-based frame-
work, and present an outline of its architecture. In the subsequent sections, we describe
existing work and determine the extent to which it can be leveraged to design and im-
plement the different components.

Figure 6.1 provides an overview of the proposed framework aimed at sensor data
tussles. Application developers and users are provided with interfaces which they use
to express their sensing requirements and data privacy requirements respectively. Ap-
plication developers express their sensing requirements through timing parameters (la-
beled (ts, tw, tp)). Users express their requirements using inferences (labeled I1, I2, I3).
Sections 6.4.1 and 6.4.2 explain these parameters and interfaces in greater detail and
their relation to prior work.

The resolver receives the requirements from the user and application and resolves
tussles by generating an accord. The accord defines the time, level, and scope of sen-
sor access for the application. To formulate an accord, the resolver leverages the Infer-
enceDB, a continually-updated cloud-hosted database of existing inference algorithms.
Section 6.4.3 describes the resolver, accord, and InferenceDB in detail.

The enforcer, a component of the OS, implements the accord by ensuring that all ap-
plications’ sensor accesses respect the accord’s restrictions. We discuss the enforcer and
its components in Section 6.4.4.

121

Update
Manager

AdjudicatorRequirements
Interpreter

User Application

InferenceDB Resolver

Enforcer

Accord + MDint

I1, I2, I3 (ts,tw,tp)

Sensor
Interrupt
Handler

MDint Verfier

Sensor Data

Bookkeeper

Cloud

OS

Figure 6.1: Design overview of a tussle-resolving framework.

6.4 Design Challenges

6.4.1 Applications’ Sensor Data Requirements

We observe that applications typically collect sensor data, use it to draw inferences about
users or the environment, and perform actions based on these inferences. For example,
the PreHeat [161] application (described in Section 4.2.1), uses motion sensor data, infers
and predicts home occupancy, and adjusts the thermostat accordingly.

Recent work [142] (including ours [170]) has examined methods for allowing appli-
cations to request their required inferences, through inference-based abstractions, rather
than directly receiving actual sensor values (as in the VHome framework; Chapter 3).
This enables applications to accurately describe their requirements, while the framework
performs the required data processing and delivers the requested inferences. However,
this methodology exhibits several deficiencies. Application developers are limited to
using inferences supported by the framework. Using a different inference algorithm re-
quires developers to integrate it into the framework (e.g., building an inference-module
in Beam [170]). This places additional development and maintenance burdens on the

122

developer. Moreover, many application developers want their techniques to remain
proprietary and may be reluctant to leverage such frameworks. Lastly, the framework
may not incorporate certain application-specific design optimizations which the devel-
oper wants to employ. Given these drawbacks, we ask: Is it possible to allow developers to
directly express their sensing requirements?

We survey a range of applications that use sensors across different domains [66, 96,
98, 101, 111, 147, 161]. On analyzing these applications’ sensor access, we observe a few
similarities, which we explain in the context of a few example applications. We choose
these example applications because of the diverse categories they represent (healthcare,
safety, and efficiency) and because they process private information about their users.
The example applications are:

• SleepMon [98, 101]: This application monitors users’ sleep quality using their
smartphones. It uses the microphone to detect “sleep events”, which are used to
create a fine-grained sleep profile, compute sleep efficiency, and relate irregular
sleep patterns to possible causes.

• DriverMode [111, 147]: This application detects when the user is in a moving ve-
hicle, for example, a car, and activates a driver-mode user experience on the user’s
smartphone. It suppresses non-critical notifications and informs other users. It
uses the accelerometer to infer the user’s transportation mode and records driving
periods for visualization.

• PreHeat [161]: Recall that, as described in Chapter 4, this application infers the
occupancy of a room or a home. The inferred occupancy is then used to adjust the
thermostat to save energy [25, 96, 161].

By analyzing these applications we observe that their sensing requirements, and
those of many other applications, can be expressed using the following parameters (il-
lustrated in Figure 6.2).

Sampling rate (ts)

This parameter defines the minimum time granularity for any batch of sensing values
read by the application. For instance, 0.125 ms (or 8 kHz) for the microphone readings
used by SleepMon [98, 101], 500 ms (or 2 Hz) for PreHeat’s passive infrared (PIR) read-
ings [96], and 100 ms (or 10 Hz) in the case of DriverMode [147]. Application developers

123

can tune the sampling rate to accommodate their inference algorithms and deployment
scenarios. For instance, SleepMon’s inference algorithm performs a spectral analysis of
the sensor readings using power spectral density. A sampling rate which is too infre-
quent will prevent the algorithm from being able to differentiate between events (such as
snoring, coughing, and moving), thereby impacting its detection of sleep-related events.
A sampling rate which is too high results in resource waste, including CPU and battery
energy, because the application will need to process a larger volume of readings.

Batch size (tw)

Most sensing applications require a batch of continuous sensor readings, which they
process using inference algorithms. The batch size parameter defines the minimum size
of any batch of sensor readings delivered to the application, expressed as a time range.
For instance, SleepMon [98] requires sensor readings with ts=0.125 ms, with a batch size
(tw) of 100 ms, that is, 800 readings sampled at 8 kHz. Similarly, PreHeat [96] has a tw
of 120 seconds. Developers tune the batch size to meet the needs of their inference algo-
rithm. An overly small batch size reduces inference accuracy, for example, lower preci-
sion for occupancy, driving, and sleep detection. Moreover, many algorithms require a
given minimum batch size in order to detect cyclic patterns or other peculiarities in the
data. For instance, inferring if the user is walking using accelerometer readings requires
a batch size of at least 3 seconds [112]. In contrast, an overly large batch size decreases
algorithm accuracy because multiple events may co-exist within a single batch [147].
It may also lower an algorithm’s sensitivity because it increases the number of missed
events [147].

Periodicity (tp)

Most sensing applications perform their batch inference computations periodically (with
a period tp), rather than continuously. For instance, because PreHeat [96] is exclusively
interested in inferring occupancy events that last longer than 10 minutes, the occupancy
inference computation (processing a 120 seconds batch of PIR readings sampled at 2 Hz)
needs to be carried out only once every 10 minutes, meaning tp = 600 seconds. Driver-
Mode and SleepMon use a tp value of 5 minutes [98, 111]. Unlike the previous parame-
ters, tp affects the minimum length of events that are to be detected but it does not impact
the underlying inference algorithms’ accuracy.

These three parameters allow applications to succinctly express their sensing require-
ments. Note, however, that applications can still provide reduced functionality as long

124

: sensor value

tp

Time

tw

ts

tp
tw

ts

Figure 6.2: Data sampling parameters.

as the parameter values lie within a range of useful values. As explained above, different
values within these ranges will impact applications’ functioning and utility in different
ways. Along the same lines, as we explain below, users’ requirements also map to a
spectrum. The challenge then lies in determining parameter values that lie within both
the stakeholders’ operating ranges.

6.4.2 Users’ Data Privacy Requirements

Many application frameworks provide users with accept-or-deny sensor controls to ex-
press their data privacy requirements. Mobile application platforms such as Android,
Windows Phone, and iOS allow the user to grant or deny an application’s access to a
sensor either at application installation time (in Android and Windows Phone) or when
the sensor is first accessed at runtime (in Android M and iOS). Existing work has shown
that per-sensor permission models provide very limited insight to the user [82,150,151].
Users have little understanding of which sensors an application should access and why.
User-prompts are disruptive, cause “prompt fatigue”, and condition users to simply
grant all of an application’s requests [151].

Other work has focused on alleviating this problem by enabling users to express their
data privacy requirements as a set of rules [62, 189]. Users specify a set of privacy rules
which the OS enforces. Rules can be of the form “block sensor S for a given applica-
tion” [189], or can be tuples, (C, S, A), where C specifies the context under which a given
sensor S is accessed, and A specifies an action (such as perturbation) which needs to be
performed on the sensor data before providing it to an application [62]. Although this
approach provides greater access control, it burdens the user with the task of updating
the rules as the number of sensors and applications increases and with the evolution of

125

inference algorithms that can be misused to reveal private information.

Chakraborty et al. [62] propose an approach where users are provided with high-
level inference abstractions to express their requirements. Users specify two prioritized
lists of inferences, comprised of inferences that are acceptable and unacceptable to them
respectively. The priority value indicates the importance the user assigns to an inference.
An a priori mapping of sensors (and their combinations) to inferences (and inference
accuracies) that incorporates all known inference algorithms is assumed. Given the two
inference lists, the framework generates a list of sensors an application can access. It
computes an optimal sensor assignment for applications, maximizing the accuracy of the
acceptable inferences, and minimizing the accuracy of the unacceptable inferences. This
approach provides users with an understandable, low-overhead, high-level interface,
but it suffers from some shortcomings that we discuss in detail in Section 6.5.2.

Inference-based interfaces are intuitive, however, they lack interpretability: for in-
stance, an application that infers user occupancy at a time granularity of one minute
gains more information about the user than an application with a granularity of one
hour, even though both applications use the same inference. Therefore, we envision
a user interface where users not only list their acceptable and unacceptable inferences,
but, for each acceptable inference, are provided with high-level interpretable controls.
One example would allow the user to specify the acceptable time granularity at which
applications are able to infer his or her occupancy (such as one hour) and to also con-
trol the granularity of occupancy events the application can capture (such as occupancy
events longer than 10 minutes).

6.4.3 Tussle Resolution

As described above, users express their requirements using an inference-based control
interface, whereas applications express their requirements using a formal description,
such as (ts, tw, tp) tuples, for sensing requirements. The resolver (shown in Figure 6.1)
is a service that processes a given set of applications’ sensing requirements and a set
of user’s data privacy requirements to produce the tussle resolution, referred to as the
accord.

Since users express their requirements through inferences, the resolver contains a re-
quirements interpreter which interfaces with the InferenceDB. The requirements interpreter
maps the user’s requirements to resource-specific parameters such as sensor-specific
bounds on parameters tw and tp. The InferenceDB is a service which provides the re-
quirements interpreter with a mapping of inference types and accuracies to sensor types

126

and sensing rates. For instance, it would map “Occupancy inferences with 100% accu-
racy” to the required motion sensor sampling rates. We envision that the InferenceDB
would be hosted by trusted third-party providers, for example, as public-facing web
services in exchange for user payments (or perhaps, freely from trusted open-source
providers). These third parties would be responsible for updating their respective Infer-
enceDBs with existing and newly discovered inference algorithms.

After the user’s requirements are converted by the requirements interpreter, they are
provided to the adjudicator. The adjudicator balances the user’s and application’s require-
ments and resolves any conflicting requirements using a policy. The policy specifies pa-
rameters that map different levels of sensing to different levels of application utility and
functionalities. This allows the user to interpret the impact of privacy requirements on
application experience.

For some users, the process of fine-tuning privacy requirements may be too com-
plicated or time consuming. A possible solution is to provide users with access to an
open-source catalog of trusted, common privacy profiles, from which a user may select a
desired set of policies. This is akin to “battery profiles” commonly found on smartphone
and tablet OSes. Alternatively, another method could rely on asking users a small num-
ber of high-level, privacy-related questions, in order to automatically build a customized
privacy profile tailored to the user’s needs.

As sensors and inference algorithms evolve, both the requirements interpreter and
adjudicator may need to perform significant amounts of computation, as they are essen-
tially solving an optimization problem. Therefore, we envision hosting the resolver in
the cloud, either with a trusted third party provider, or on a user’s personal VEE (Chap-
ter 3).

Applications present their requirements to the OS at the time of instantiation, that is,
at the time of initialization. Similarly, the user presents his or her preferences to the OS
via a suitable user interface periodically, or at the time of application installation. Both
sets of requirements are then forwarded to the resolver. Figure 6.3 illustrates a sample
request sent from the OS to the resolver.

We assume a two-way encrypted channel of communication between the resolver
and the OS. The resolver responds with the corresponding accord along with integrity
metadata MDint. MDint is computed as follows:

MDint = SigKResolver
priv

(H[Request]||H[Accord]).

As described in Table 6.1, MDint is a signed hash of the request and the corresponding
accord. MDint ensures integrity of the accord, prevents replay attacks, and allows the

127

User: Occupancy - 10 min, Activity - 30 min,
Sleep - 1 hr, ...
App-1: Mic: (8 kHz, 0.125 ms, 1800 s)
App-2: Accelerometer : (10 Hz, 120 s, 300 s)
App-3: PIR: (2 Hz, 60 s, 600 s)

Figure 6.3: Example resolver request.

device OS to determine if an accord matches the last issued resolver request. This design
allows the resolver to be stateless, ensuring easy scalability for a large number of devices
and users, which is neccessary if the resolver is to be hosted as a trusted third party
service.

H[x]: Cryptographic hash of x
SigK [x]: Digital signature of x with the key K
Kowner

pub , Kowner
priv : a public-private key pair of owner

||: Concatenation

Table 6.1: Glossary.

6.4.4 Resolution Enforcement

After an accord has been formulated, the OS needs to ensure that it is obeyed. The
enforcer (shown in Figure 6.1) is an OS component that ensures that any resource access
by any application conforms to the accord generated by the resolver.

Upon receiving an accord from the resolver, the enforcer first verifies if the accord
matches the current resolution request issued by the OS (Figure 6.3). It then decodes
and stores the accord in memory. To ensure that application resource accesses respect
the accord, the enforcer maintains bookkeeping information. For instance, for sensor
data tussles, the enforcer records the types, levels, and extents of sensor data accesses
by applications.

If the OS runs on a user-device such as a smartphone or PC, the enforcer also handles
sensor interrupts: upon receipt of an interrupt, the enforcer consults its bookkeeping
information and any accords, and determines the set of applications to which the data
can be permissibly delivered, for example, through an asynchronous callback. If the OS

128

runs on a VEE in the cloud, the enforcer is comprised of only the bookkeeper and verifier
modules.

6.5 Discussion

6.5.1 Prior Work

Clark et al. [69] recognize tussles between stakeholders in the networking space and out-
line solutions to resolve them. Likewise, we propose recognizing tussles among stake-
holders on operating systems on commodity devices and outline mechanisms to detect
and resolve them.

Existing work has proposed several additions to existing OSes to handle sensors and
actuators. Many systems have focused on either detecting overprivileged applications
on smartphones [81,185], or tracking the flow of data to applications to detect malicious
applications [78]. Spahn et al. [173] design an OS service that discovers application-
level data objects, for example, emails and documents, and provides users with unified
object management. Santos et al. [156] propose a lease-based allocation of resources on
smartphone OSes to enable verifiable application behaviour. These approaches are com-
plementary to ours. They focus on providing mechanisms to address various relevant
sub-problems, however, they do not recognize tussles between stakeholders, which are
the main cause of these problems. We propose a framework to recognize, detect, and re-
solve these tussles, which can be further enriched by incorporating these existing mech-
anisms. Haddadi et al. [95] propose a trusted arbitrator for allowing users to control
applications’ access to historical data. We provide a framework for stakeholders to ex-
press their resource access requirements, that can be used to view historical data as a
resource.

Prior work has made several attempts to manage data tussles [46,53,62,124,139,189]
but when compared to a tussle-based framework, they suffer from several shortcom-
ings: their allocation of sensing capabilities to applications is unverifiable, they overlook
balancing application utility and data privacy, do not guarantee authenticity of sensor
data, and require constant device software updates to handle new sensors and inference
algorithms.

129

6.5.2 Open Problems

Resource Tussles

We provide a way for application developers and users to express their sensor data re-
quirements, but these stakeholders often also enter into tussles over access to other sys-
tem resources. For instance, concurrent applications compete to access computational
resources such as CPU time, memory, and network bandwidth. Users often want to ex-
ercise some control over resource allocation, to understand the system behaviour, and
prioritize different applications [128]. Table 6.2 lists some of the key system resources
present today on user devices, including computational resources, sensors, actuators,
and even software resources, such as user-generated content (e.g., photos and videos),
network ports, and file descriptors. Therefore, we require a way to enable applications
to express their resource requirements.

Resource Examples

Traditional CPU, RAM, disk space, disk and network bandwidth
Sensors Microphone, camera, GPS, accelerometer
Actuators Electrical switch, thermostat, lock, display
Data Sensor data streams, user-generated content (contacts, images, etc.)

Table 6.2: System resources.

Applications must also express the durations for which they require access to a re-
source, and the size of their requirement such as percentage of CPU time or amount of
memory. This implies that the interface between the application and the OS (usually
the process abstraction) may need to be altered to give the OS a non-black box view into
the application’s consumption of resources. Many modern smartphone OSes, including
Android and Windows Phone, have adopted this approach, with applications divided
into UI-intensive components (e.g., Android activities [5]) and computation-intensive
components (e.g., Android services [5]). Unfortunately, these abstractions only help to
implement specific static policies defined by the OS-provider, such as maximizing bat-
tery life. For designing a tussle-based framework, existing unified resource abstractions
such as Fence [128] may be leveraged. However, they need to be supplemented with:
(i) a language to allow applications to freely express their resource requirements, and
(ii) policies that resolve any and all resource tussles. This will allow users to control and

130

reason about resource tussles in the same manner as data tussles. We envision that for
resolving resource tussles, the enforcer would need to be suitably enriched to encompass
a CPU scheduler, memory manager, a disk manager, and a network manager.

User-Controlled Data Privacy

As discussed in Section 6.4.2, we require a mechanism that allows users to express their
data privacy requirements in an interpretable way, and then maps those requirements
to appropriate constraints on sensor access levels. However, the amount of information
revealed by sampling a sensor at two different sampling granularities can vary signifi-
cantly. For instance, an application that accesses the accelerometer to infer if the user is
in motion requires a much smaller time granularity than another application that infers
the user’s physical activity. Similarly, an application accessing GPS at a time granular-
ity of one minute and a space granularity of ten meters can infer significantly different
user information than an application with respective time and space granularities of one
hour and ten kilometers. As discussed in Section 6.4.2, the ipShield [62] approach pro-
vides users with an understandable, low-overhead, high-level interface for managing
data privacy but it does not take sensor sampling granularity into consideration. More-
over, ipShield’s [62] optimization objective function minimizes the inference accuracy
of unacceptable inferences but it does not provide the user with any interpretable met-
ric that conveys the amount of private information revealed. Nevertheless, it serves as a
good starting point for building other user-understandable and quantifiable approaches
to handle sensor data privacy.

Trusted Readings

Our current work assumes that the OS is trusted and does not tamper with sensor read-
ings. Trusted readings are required in many applications such as billing [169] and geo-
fencing [130]. However, in practice, it may be difficult to guarantee that a particular OS
is trusted. Moreover, the user may want to provide readings that are perturbed or oth-
erwise modified, for example to spoof readings during development or replay previous
GPS traces to shield their current location [62]. Therefore, perturbations to sensor read-
ings by the user, and the requirement of unperturbed readings by applications can also
be viewed as a tussle. A possible solution is to include a noise coefficient with sensor re-
quests, 0 ≤ tn ≤ 1. A coefficient of zero corresponds to unperturbed readings, whereas a
coefficient of one could correspond to entirely fabricated readings. The resolver can then

131

balance an application’s requested noise coefficient against the user’s privacy require-
ments, while the enforcer ensures that readings delivered to applications are perturbed
to the agreed upon level.

Existing work has shown that trusted readings can be provided despite an untrusted
OS by securing appropriate components, such as by using a secure execution mode in
modern CPUs [130]. However, this approach [130] requires sensor drivers to be a part
of the Trusted Computing Base (TCB), and thus increases its volume and hence its vul-
nerabilities [157]. A potential solution is to partition sensor drivers’ functionality so that
only their security-critical components contribute to the TCB.

Tussles on a Cloud-Hosted OS

Applications such as Nest [25] use sensors deployed in users’ homes and backhaul data
to Nest servers in the cloud which host the application logic. This is problematic in two
ways. First, users’ sensor data needs to be transferred to the application developer’s
server, even though data processing can be hosted on users’ personal VEE. Second, the
cloud server hosting the application logic has no means to allow users to express their
data privacy requirements.

What is needed, therefore, is an instantiation of a tussle-based framework on the
device such as Nest [25]. This framework may coordinate with instantiations on other
user devices and the application developers’ cloud servers. The challenge, therefore, lies
in designing a tussle-based framework for such IoT devices.

Verifiable OS Implementation

A potential direction for building tussle-oriented operating system frameworks is to use
a Unikernel [131]. In this approach, the OS kernel is specialized to support only a pre-
specified set of applications. Moreover, the entire kernel is written in a strongly-typed
language (OCaml) that allows the OS’s correctness to be formally proved, in the sense of
always obeying certain high-level assertions. We believe that tussle accords can be for-
mally expressed in terms of these assertions, thus a Unikernel that implements a tussle
accord can be trusted to enforce the accord.

132

6.6 Chapter Summary

We observe that application developers and users often have mutually conflicting ob-
jectives with regards to accessing sensor data. Application developers desire free access
to sensor data to advance their data processing algorithms and techniques. On the other
hand, users are often weary of unwarranted private information being leaked through
their sensor data and hence wish to preserve their data privacy. This situation results in
a tussle over sensor data access between the two stakeholders – users and application
developers. Moreover, such tussles also occur when stakeholders access many other sys-
tem resources. We advocate that operating systems need to recognize these conflicts and
provide suitable mechanisms and policies to detect and resolve them. We outline the de-
sign of a framework which: provides applications and users with high-level interfaces to
express their sensor data requirements, detects conflicting requirements, resolves them,
and ensures the implementation of the resolution. We identity various open problems
that need to be solved to extend existing operating systems with a tussle-based frame-
work.

133

Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation. In Section 7.1, we summarize the main contri-
butions of our work. We outline directions for future work in Section 7.2 and present
concluding remarks in Section 7.3.

7.1 Summary and Contributions

Due to a sharp decrease in hardware costs and form factor in recent years, sensors have
become ubiquitous. A variety of sensors are being embedded into user devices such
as smartphones, tablets, and wearable devices. Our homes, buildings, and automobiles
are also being increasingly outfitted with sensors. On one hand, data collected from sen-
sors is used to fuel a variety of applications including those for energy efficiency, safety,
and healthcare. On the other hand, sensor data can be processed to reveal unwarranted
private information about the user. As a result, many users avoid using such applica-
tions that require access to private sensor data to protect their privacy. It is therefore
imperative to preserve data privacy while enabling a rich ecosystem of applications that
process users’ private sensor data.

The focus of this dissertation has been on building a system that enables data-driven
applications while preserving data privacy, without burdening users with the tasks of
provisioning durable data storage and computational resources for the applications.
Our proposed approach leverages users’ personal virtual execution environments (VEEs)
hosted in the cloud to create an ecosystem of privacy-preserving applications of personal

134

data. We examine the feasibility of the proposed architecture by providing a proof-of-
concept instantiation targeting home energy as an example use case. We observe that
applications have some specific data storage and retrieval requirements for sensor data.
Consequently, we build a data management system for time series sensor data to meet
these requirements while leveraging commodity storage services providers. We also
observe that our approach provides each user with a personal VEE and will require
provisioning a large numbers of personal VEEs for supporting large numbers of users.
Therefore, we develop a new methodology to provision a large number of VEEs with
low-duty cycle workloads on a single machine. We formulate the theoretical founda-
tions of the methodology and demonstrate its application to an example virtualization
solution.

The key insight underlying our proposed architecture is that allocating appropriate
levels of commodity services offered by modern clouds directly to users (rather than ap-
plication developers) enables users to host both their data and their desired data-driven
applications within their confines; thus enabling a large ecosystem of data-driven ap-
plications and preserving users’ data privacy. Our work has to been on designing and
implementing the mechanisms, techniques, and methodologies to realize this vision.
The key contributions can be summarized as follows.

As justified in Chapter 3, the initial focus of our proposed architecture is home energy
data. Our main contributions in this chapter are as follows.

• We present the architecture of a system that allows users to own and control access
to their home energy consumption data and freely use data-driven applications of
their choice.

• We demonstrate the feasibility of the architecture by building a prototype imple-
mentation using commodity cloud computing platforms.

• We present a qualitative evaluation of the prototype implementation with respect
to data privacy and data use, and describe how it meets our design goals.

The main architectural components that we design and implement include, (i) an in-
home gateway for relaying sensor data and control commands to the personal VEE, (ii) a
personal VEE framework which warehouses home energy data, exposes it to third-party
applications via APIs, and provides data access control, and (iii) sample home energy
applications that run within an instance of VHome. Our personal VEE framework also
enables applications to securely and privately control some home appliances.

135

As described in Chapter 4, existing sensor data storage systems (including our pro-
totype implementation in Chapter 3) do not meet all the data management requirements
of applications. Our work in Chapter 4 addresses this problem by designing a storage
system for sensor data and makes the following contributions.

• We survey a wide range of data-driven applications and present a formulation of
their data management requirements.

• We describe the design and implementation of Bolt, a system for storage, retrieval,
and sharing of in-home sensor data that meets the applications’ requirements.

• We present a performance evaluation of Bolt using three sample applications. We
demonstrate that, when compared with OpenTSB [27], Bolt’s use of chunking, seg-
mentation, and index-DataLog separation techniques leads to a decrease in data
retrieval time of up to a factor of 40, and a 3 to 5 times reduction in storage space
used.

Moreover, Bolt provides applications with programming abstractions for storage, range-
query based retrieval, and sharing of sensor data, thus simplifying application develop-
ment.

As described in Chapter 5, we propose to host large numbers of personal VEEs on
machine by multiplexing VMs across multiple inactive states. Our insight is that many
workloads executed on personal VEEs would exhibit frequent, often long, and uncorre-
lated idle periods. Therefore, existing work on inactive states for reducing the resource
footprint of idle VMs can be leveraged to maximize the number of VMs hosted on a
machine at the cost of a small latency penalty for client requests (called miss penalty).
Our work in Chapter 5 explores this design alternative and makes the following key
contributions:

• We present a formal model for policies for managing idle VMs across inactive states
and derive a lower bound on the miss penalty of reactive policies.

• We present a measurement of model parameters using microbenchmarks with LXC [22]
as our example virtualization solution.

• We present a study of a few representative idle VM management policies, quantify
their miss penalties, and draw insights into their behaviour.

136

We design and implement a simulator for studying the behaviour of the idle VM man-
agement policies. Our simulator is extensible to other policies, to other types of work-
loads, and to inactive state hierarchies of other virtualization solutions.

In summary, the architecture, techniques, mechanisms, and methodologies proposed
in this dissertation present a viable solution to achieve the seemingly conflicting require-
ments of enabling data privacy and data use.

7.2 Future Work

In addition to the topic-specific future work directions presented in Sections 3.5, 4.7,
and 5.7, we present the following avenues for future work.

7.2.1 Tussle Framework for IoT

In Chapter 6, we outline a tussle framework for a single device. However, in many
pervasive sensing environments, sensor data from different devices can not only be cor-
related to draw inferences about a given user but also about a larger number of users,
for example, co-workers in an office. Moreover, the data privacy requirements and the
acceptable loss of data privacy across different users may vary significantly. What is
needed, therefore, is a tussle framework that allows the stakeholders to express their
data privacy requirements and their acceptable application utility in this broader con-
text. The framework then bears the onus for interfacing with sensors embedded across
multiple devices and physical spaces, as well as detecting and resolving the tussles in
keeping with the stakeholders’ specified requirements.

7.2.2 Virtualization for High Density Hosting

In Chapter 5, we formulate the theoretical foundations for state-based multiplexing of
low duty-cycle VMs and study the behaviour of different policies. An open design chal-
lenge lies in building a practical low-overhead virtualization solution that not only im-
plements multiple inactive states but also supports easy extension for incorporating idle
VM management policies. The behaviour of different policies can then be observed in
practice and compared with the expected behaviour (derived in Chapter 5) to identify
any discrepancies and performance bottlenecks. Similarly, suitable mechanisms need

137

to be designed to handle cases where the assumed low duty-cycles of personal VEEs
co-hosted on a single machine are violated. We believe that in such scenarios where
personal VEEs hosted on a given machine become active together, load balancing can
be used to migrate VEEs to other under-utilized machines, for example, those that host
personal VEEs for users from a different time zone. Alternatively, personal VEEs can be
co-hosted on a single machine while ensuring adequate diversity in their active and idle
times. Therefore, suitable analysis methodologies and supplementary mechanisms will
need to be designed.

7.2.3 Storage Cost Optimization for Time Series Data

Our storage system in Chapter 4 provides policy-driven storage across providers, that
is, allowing applications to define which parts of a given stream of data should be stored
with a given provider such as local disk, Windows Azure [37], or Amazon S3 [4]. How-
ever, different storage providers have varying pricing schemes depending on the loca-
tion of the datacenter used and the type of underlying storage medium used (e.g., disk
versus solid state drives). Moreover, some applications may require the retrieval of cer-
tain parts of data more frequently than other parts. For example, Preheat [161] prioritizes
using a recent window of occupancy data over older data, while DNW [56] may issue
repeated retrievals of a given time segment where the majority of suspicious activity
was recorded. In such cases, it is cumbersome for the application developer to optimize
storage costs given the variation in prices and retrievals. However, it may be possible to
enrich the different retrieval queries (such as those provided by Bolt in Chapter 4) with
cost optimization models. Applications can then specify if they prioritize retrieval time
over storage cost (or vice versa). The system would bear the onus for computing the
optimal storage strategy and updating the cost models accordingly.

7.2.4 Control Architecture for IoT

Many data-driven applications make use of actuators such as in-home switches, locks,
and thermostats, while many (or all) components of the applications may be hosted in
the cloud. In such scenarios, it is imperative to ensure that appliance control remains
within certain user-defined safety limits even in the presence of faults. Example faults
include home network outages, misconfiguration or malfunction of the sensing or ac-
tuating devices, and user overrides. What is needed, therefore, is a cascading control

138

architecture, where an application’s control logic is partitioned into a lightweight fail-
safe component and a core data-based component. We believe that, similar to our data
framework (described in Chapters 3 and 6), it is possible to design a control framework
that interfaces with data-driven applications to facilitate and regulate device actuations.

7.2.5 Semantic Isolation of Applications

Pervasive sensing in homes can give rise to many complexities leading to unintended
consequences. This problem is exacerbated by data-driven applications that use sen-
sor data to trigger actuations and alerts. For instance, consider an application that uses
home energy consumption to deduce occupancy [115], which is then used to control
other appliances or trigger user alerts. In such scenarios, a malfunctioning energy sen-
sor can cause erroneous occupancy inferences, cascading into erroneous appliance actu-
ations of false user alerts. Similarly, in another scenario, consider two applications, one
which uses an IR sensor to trigger room lighting and another which infers occupancy
from lighting to control home heating (in turn affecting IR levels), thus affecting each
other’s operations. The two applications thus do not operate in complete semantic iso-
lation. What is needed, therefore, is a mechanism that can detect such conflicts among
applications (possibly at installation time) and can alert the user and hence prevent such
fallacious consequences.

7.3 Concluding Remarks

Today most data-driven applications are being built in a service provider-centric way
where users are required to transfer their data to the application service providers in
order to use the provided applications. We seek to ease this situation by proposing our
personal VEE approach where application executables are transferred to user controlled
environments and run within the users’ confines. This enables an ecosystem of privacy-
preserving data-driven applications, and unlike the service provider based approaches,
does not lead to private data of thousands of users being stored under one administrative
domain where it may susceptible to large scale breaches. This work addresses the design
of mechanisms, techniques, and methodologies to overcome the barriers to the feasibility
and adoption of the personal VEE approach by large numbers of users.

The ongoing evolution of new sensors, sensing capabilities, and data-processing al-
gorithms requires extending software systems to provide users with data privacy and

139

control. As a starting point, our work has focused on in-home sensors. However, we
believe all systems that collect, archive, and process data concerning users need to rec-
ognize users as stakeholders and need to allow users to freely choose their data control
policies. This includes sensor systems in office and commercial buildings, public spaces,
automobiles, public transportation, and in other environments likely to be outfitted with
sensors in the future. The insights we draw through our work are equally applicable to
such other domains.

140

References

[1] 90 Million Homes Worldwide will Employ Home Automation Systems.
https://www.abiresearch.com/press/90-million-homes-worldwide-will-
employ-home-automa.

[2] Aeon Labs Smart Energy Switch. http://www.aeon-labs.com.

[3] Amazon Home Automation Store. http://www.amazon.com/home-automation-
smarthome/b?ie=UTF8&node=6563140011.

[4] Amazon Web Services (AWS). http://aws.amazon.com.

[5] Android SDK. http://developer.android.com.

[6] Apache HBase. http://hbase.apache.org.

[7] BizEE Energy Lens. http://www.energylens.com.

[8] Current Cost Envi CC-128. http://www.currentcost.com.

[9] Docker: An Open Platform for Distributed Applications for Developers and
Sysadmins. http://www.docker.com.

[10] Dropcam - Super Simple Video Monitoring and Security. https://www.dropcam.
com.

[11] Facebook Surpasses One Billion Users. http://www.bbc.com/news/technology-
19816709.

[12] Fast, Portable, Binary Serialization for .NET. http://code.google.com/p/
protobuf-net.

[13] FitBit Third-party Apps. http://www.fitbit.com/apps.

141

https://www.abiresearch.com/press/90-million-homes-worldwide-will-employ-home-automa
https://www.abiresearch.com/press/90-million-homes-worldwide-will-employ-home-automa
http://www.aeon-labs.com
http://www.amazon.com/home-automation-smarthome/b?ie=UTF8&node=6563140011
http://www.amazon.com/home-automation-smarthome/b?ie=UTF8&node=6563140011
http://aws.amazon.com
http://developer.android.com
http://hbase.apache.org
http://www.energylens.com
http://www.currentcost.com
http://www.docker.com
https://www.dropcam.com
https://www.dropcam.com
http://www.bbc.com/news/technology-19816709
http://www.bbc.com/news/technology-19816709
http://code.google.com/p/protobuf-net
http://code.google.com/p/protobuf-net
http://www.fitbit.com/apps

[14] FitBit Ultra. http://www.fitbit.com/product.

[15] Google Powermeter. http://www.google.com/powermeter.

[16] Green Button Connect. http://www.greenbuttonconnect.com.

[17] Green Button Initiative. http://www.greenbuttondata.org.

[18] Home Energy Saver. http://hes.lbl.gov/consumer.

[19] Home Energy Yardstick. http://www.energystart.gov.

[20] IFTTT: Put the Internet To Work for You. https://ifttt.com.

[21] JouleBug. http://www.joulebug.com.

[22] Linux Containers. http://lxc.sourceforge.net.

[23] Linux VServer. http://linux-vserver.org.

[24] Microsoft Hohm. http://www.microsoft-hohm.com.

[25] Nest. http://www.nest.com.

[26] Ontario Time-Of-Use Pricing. http://www.ontario-hydro.com.

[27] OpenTSDB. http://www.opentsdb.net/.

[28] OpenVZ. http://openvz.org.

[29] Pachube-Cosm Ltd. http://www.cosm.com.

[30] Philips Hue. http://www.meethue.com.

[31] Raspberry Pi. https://www.raspberrypi.org.

[32] San Diego Gas and Electric. http://www.sdge.com.

[33] Sungg Pro Energy Audit Tool. http://www.snuggpro.com.

[34] The Internet of Things. http://share.cisco.com/internet-of-things.html.

[35] The Locker Project. http://lockerproject.org.

[36] Waterloo North Hydro Corp. http://www.wnhwebpresentment.com/app.

142

http://www.fitbit.com/product
http://www.google.com/powermeter
http://www.greenbuttonconnect.com
http://www.greenbuttondata.org
http://hes.lbl.gov/consumer
http://www.energystart.gov
https://ifttt.com
http://www.joulebug.com
http://lxc.sourceforge.net
http://linux-vserver.org
http://www.microsoft-hohm.com
http://www.nest.com
http://www.ontario-hydro.com
http://www.opentsdb.net/
http://openvz.org
http://www.cosm.com
http://www.meethue.com
https://www.raspberrypi.org
http://www.sdge.com
http://www.snuggpro.com
http://share.cisco.com/internet-of-things.html
http://lockerproject.org
http://www.wnhwebpresentment.com/app

[37] Windows Azure. http://azure.microsoft.com.

[38] Withthings Smart Devices. http://www.withings.com.

[39] Z-Wave Alliance. http://www.z-wavealliance.org.

[40] The US Market for Home Automation and Security Technologies. Technical report,
BCC Research, 2011.

[41] Monitoring Report Smart Meter Deployment and TOU Pricing. Technical report,
Ontario Energy Board, 2012.

[42] Utility-Scale Smart Meter Deployments, Plans & Proposals. Technical report, In-
stitute for Electric Efficiency (IEE), Edison Foundation, 2012.

[43] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong
hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis Stream
Processing Engine. In Proc. of CIDR, 2005.

[44] Gergely Ács and Claude Castelluccia. I Have a DREAM!: Differentially Private
Smart Metering. In Proc. of International Conference on Information Hiding, 2011.

[45] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wat-
tenhofer. FARSITE: Federated, Available, and Reliable Storage for an Incompletely
Trusted Environment. ACM SIGOPS Operating Systems Review, 2002.

[46] Yuvraj Agarwal and Malcolm Hall. ProtectMyPrivacy: Detecting and Mitigating
Privacy Leaks on iOS Devices Using Crowdsourcing. In Proc. of ACM MobiSys,
2013.

[47] Alfred V Aho, Peter J Denning, and Jeffrey D Ullman. Principles of Optimal Page
Replacement. Journal of the ACM (JACM), 1971.

[48] Rui Araújo, A Igreja, Ricardo de Castro, and Rui Esteves Araujo. Driving Coach:
A Smartphone Application To Evaluate Driving Efficient Patterns. In Proc. of IEEE
Intelligent Vehicles Symposium (IV), 2012.

[49] Martin F Arlitt and Carey L Williamson. Web Server Workload Characterization:
The Search for Invariants. ACM SIGMETRICS Performance Evaluation Review, 1996.

143

http://azure.microsoft.com
http://www.withings.com
http://www.z-wavealliance.org

[50] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization.
In Proc. of SOSP, 2003.

[51] Christian Beckel, Leyna Sadamori, and Silvia Santini. Automatic Socio-economic
Classification of Households Using Electricity Consumption Data. In Proc. of ACM
e-Energy, 2013.

[52] Laszlo A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Com-
puter. IBM Systems Journal.

[53] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mock-
Droid: Trading Privacy for Application Functionality on Smartphones. In Proc. of
ACM HotMobile, 2011.

[54] Benjamin J. Birt, Guy R. Newsham, Ian Beausoleil-Morrison, Marianne M. Arm-
strong, Neil Saldanha, and Ian H. Rowlands. Disaggregating Categories of Elec-
trical Energy End-use from Whole-house Hourly Data. Energy and Buildings, 2012.

[55] Maged NK Boulos, Steve Wheeler, Carlos Tavares, and Ray Jones. How Smart-
phones are Changing the Face of Mobile and Participatory Healthcare: An
Overview. Biomedical Engineering Online, 2011.

[56] AJ Brush, Jaeyeon Jung, Ratul Mahajan, and Frank Martinez. Digital Neighbor-
hood Watch: Investigating the Sharing of Camera Data Amongst Neighbors. In
Proc. of ACM CSCW, 2013.

[57] B. Burke. RESTful Java with Jax-RS. O’Reilly Media, 2009.

[58] Ramón Cáceres, Landon Cox, Harold Lim, Amre Shakimov, and Alexander Var-
shavsky. Virtual Individual Servers As Privacy-preserving Proxies for Mobile De-
vices. In Proc. of ACM MobiHeld, 2009.

[59] Kelly E. Caine et al. DigiSwitch: A Device To Allow Older Adults To Monitor and
Direct the Collection and Transmission of Health Information Collected at Home.
Journal of Medical Systems, 2011.

[60] Fernando L. Camargos, Gabriel Girard, and Benoit D. Ligneris. Virtualization of
Linux Servers: A Comparative Study. In Proc. of Linux Symsposium, 2008.

144

[61] Don Carney, U� ur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
Streams: A New Class of Data Management Applications. In Proc. of VLDB, 2002.

[62] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser
Shoukry, Matt Millar, and Mani Srivastava. ipShield: A Framework for Enforcing
Context-aware Privacy. In Proc. of USENIX NSDI, 2014.

[63] V. Chaudhary, Minsuk Cha, J.P. Walters, S. Guercio, and S. Gallo. A Comparison
of Virtualization Technologies for HPC. In Proc. of IEEE AINA, 2008.

[64] Jianhua Che, Congcong Shi, Yong Yu, and Weimin Lin. A Synthetical Performance
Evaluation of OpenVZ. In Proc. of IEEE APSCC 2010.

[65] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant
Shenoy. Non-Intrusive Occupancy Monitoring Using Smart Meters. In Proc. of
ACM BuildSys, 2013.

[66] Zhenyu Chen, Mu Lin, Fanglin Chen, Nicholas D Lane, Giuseppe Cardone, Rui
Wang, Tianxing Li, Yiqiang Chen, Tanzeem Choudhury, and Andrew T Camp-
bell. Unobtrusive Sleep Monitoring Using Smartphones. In Proc. of IEEE Perva-
siveHealth, 2013.

[67] Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. Measuring User
Confidence in Smartphone Security and Privacy. In Proc. ACM SOUPS ’12.

[68] Chun-Te Chu, Jaeyeon Jung, Zicheng Liu, and Ratul Mahajan. sTrack: Secure
Tracking in Community Surveillance. Technical report, Microsoft Research, 2014.

[69] David D Clark, John Wroclawski, Karen R Sollins, and Robert Braden. Tussle in
Cyberspace: Defining Tomorrow’s Internet. ACM SIGCOMM CCR, 2002.

[70] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory. Prentice
Hall Professional Technical Reference, 1973.

[71] Antonio Corradi, Mario Fanelli, and Luca Foschini. VM Consolidation: A Real
Case Based on OpenStack Cloud. Future Generation Computer Systems, 2014.

[72] M. Davis, M. Alexander, and M. Duvall. Total Cost of Ownership Model for Cur-
rent Plug-in Electric Vehicles. Technical report, Electric Power Research Institue
(EPRI), 2013.

145

[73] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David
Culler. sMAP: A Simple Measurement and Actuation Profile for Physical Infor-
mation. In Proc. of ACM SenSys, 2010.

[74] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee, Stefan
Saroiu, and Paramvir Bahl. An Operating System for the Home. In Proc. of USENIX
NSDI, 2012.

[75] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Stefan
Saroiu, and Victor Bahl. The Home Needs an Operating System (and an App
Store). In Proc. of ACM HotNets, 2010.

[76] Carl Ellis, James Scott, Mike Hazas, and John Krumm. Earlyoff: Using House
Cooling Rates To Save Energy. In Proc. of ACM BuildSys, 2012.

[77] Chris Elsmore, Anil Madhavapeddy, Ian Leslie, and Amir Chaudhry. Confidential
Carbon Commuting. In Proc. of the First Workshop on Measurement, Privacy, and
Mobility, 2012.

[78] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
Droid: an Information-flow Tracking System for Realtime Privacy Monitoring on
Smartphones. ACM TOCS, 2014.

[79] V.L. Erickson, M.A. Carreira-Perpinan, and A.E. Cerpa. OBSERVE: Occupancy-
based System for Efficient Reduction of HVAC Energy. 2011.

[80] Ariel J Feldman, William P Zeller, Michael J Freedman, and Edward W Fel-
ten. SPORC: Group Collaboration Using Untrusted Cloud Resources. In Proc.
of USENIX OSDI, 2010.

[81] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. In Proc. of ACM CCS, 2011.

[82] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android Permissions: User Attention. In Proc. of ACM SOUPS,
2012.

[83] S. Firth, K. Lomas, A. Wright, and R. Wall. Identifying Trends in the Use of Domes-
tic Appliances from Household Electricity Consumption Measurements. Energy
and Buildings, 2008.

146

[84] Kevin Fu, Seny Kamara, and Tadayoshi Kohno. Key Regression: Enabling Ef-
ficient Key Distribution for Secure Distributed Storage. In Proc. of Networks and
Distributed Systems Symposium, 2006.

[85] Kevin E Fu. Integrity and Access Control in Untrusted Content Distribution Networks.
PhD thesis, Massachusetts Institute of Technology, 2005.

[86] Flavio D. Garcia and Bart Jacobs. Privacy-friendly Energy-metering Via Homo-
morphic Encryption. In Proc. of International Conference on Security and Trust Man-
agement, 2010.

[87] Roxana Geambasu, Magdalena Balazinska, Steven D. Gribble, and Henry M. Levy.
HomeViews: Peer-to-Peer Middleware for Personal Data Sharing Applications. In
Proc. of ACM SIGMOD, 2007.

[88] Binny S Gill. On Multi-level Exclusive Caching: Offline Optimality and Why Pro-
motions are Better Than Demotions. In Proc. of USENIX FAST, 2008.

[89] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Se-
curing Remote Untrusted Storage. In Proc. of Networks and Distributed Systems Sym-
posium, 2003.

[90] S. Goyal and J. Carter. A Lightweight Secure Cyber Foraging Infrastructure for
Resource-Constrained Devices. In Proc. of IEEE WMCSA, 2004.

[91] Ulrich Greveler, Benjamin Justus, and Dennis Loehr. Multimedia Content Identi-
fication Through Smart Meter Power Usage Profiles. In Proc. of CPDP, 2012.

[92] Eric Griffis, Jeffrey A. Vaughn, and Todd Millstein. A Platform for Expressive and
Secure Data Sharing with Untrusted Third Parties. Technical report, UCLA, 2011.

[93] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung, and Ratul
Mahajan. Bolt: A Storage System for Connected Homes. In Proc. of USENIX NSDI,
2014.

[94] Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev
Satyanarayanan. Just-in-time Provisioning for Cyber Foraging. In Proc. of ACM
MobiSys 2013.

[95] Hamed Haddadi, Heidi Howard, Amir Chaudhry, Jon Crowcroft, Anil Mad-
havapeddy, and Richard Mortier. Personal Data: Thinking Inside the Box.
arXiv:1501.04737, 2015.

147

[96] Ebenezer Hailemariam, Rhys Goldstein, Ramtin Attar, and Azam Khan. Real-time
Occupancy Detection Using Decision Trees with Multiple Sensor Types. In Proc.
of Symposium on Simulation for Architecture and Urban Design, 2011.

[97] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth 2.0 Authorization Pro-
tocol. draft-ietf-oauth-v2-18, 8, 2011.

[98] Tian Hao, Guoliang Xing, and Gang Zhou. iSleep: Unobtrusive Sleep Quality
Monitoring Using Smartphones. In Proc. of ACM SenSys, 2013.

[99] Mareca Hatler, Darryl Gurganious, and Charlie Chi. Mobile Sensing Health &
Wellness. Technical report, ON World, 2013.

[100] Jennia Hizver and Tzi-cker Chiueh. Real-time Deep Virtual Machine Introspection
and Its Applications. In Proc. of ACM VEE, 2014.

[101] Tâm Huynh and Bernt Schiele. Analyzing Features for Activity Recognition. In
Proceedings of Joint Conference on Smart Objects and Ambient Intelligence: Innovative
Context-Aware Services: Usages and Technologies, 2005.

[102] OzlemDurmaz Incel, Mustafa Kose, and Cem Ersoy. A Review and Taxonomy of
Activity Recognition on Mobile Phones. BioNanoScience, 2013.

[103] Brendan Jennings and Rolf Stadler. Resource Management in Clouds: Survey and
Research Challenges. Journal of Network and Systems Management, 2014.

[104] Derick A Johnson and Mohan M Trivedi. Driving Style Recognition Using a Smart-
phone As a Sensor Platform. In IEEE Conference on Intelligent Transportation Systems
(ITSC), 2011.

[105] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu.
Plutus: Scalable Secure File Sharing on Untrusted Storage. In Proc. of USENIX
FAST, 2003.

[106] Jerry Kang, Katie Shilton, Deborah Estrin, and Jeff Burke. Self-surveillance Pri-
vacy. Iowa L. Rev., 97:809, 2011.

[107] Jayanthkumar Kannan, Petros Maniatis, and Byung-Gon Chun. A Data Capsule
Framework For Web Services: Providing Flexible Data Access Control To Users.
CoRR, abs/1002.0298, 2010.

148

[108] Jayanthkumar Kannan, Petros Maniatis, and Byung-Gon Chun. Secure Data Pre-
servers for Web Services. In Proc. of USENIX WebApps, 2011.

[109] S. Kannan, A. Gavrilovska, and K. Schwan. Cloud4Home – Enhancing Data Ser-
vices with @Home Clouds. In Proc. of ICDCS, 2011.

[110] Sudarsun Kannan, Karishma Babu, Ada Gavrilovska, and Karsten Schwan. Vs-
tore++: Virtual Storage Services for Mobile Devices. In Mobile Computing, Applica-
tions, and Services. 2012.

[111] Aman Kansal, Scott Saponas, AJ Brush, Kathryn S McKinley, Todd Mytkow-
icz, and Ryder Ziola. The Latency, Accuracy, and Battery (LAB) Abstraction:
Programmer Productivity and Energy Efficiency for Continuous Mobile Context
Sensing. In Proc. of ACM OOPSLA, 2013.

[112] D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell, and B.G. Celler. Im-
plementation of a Real-Time Human Movement Classifier Using a Triaxial Ac-
celerometer for Ambulatory Monitoring. IEEE Transactions on Information Technol-
ogy in Biomedicine, 2006.

[113] Jack Kelly and William Knottenbelt. Disaggregating Multi-State Appliances From
Smart Meter Data. In Proc. of ACM SIGMETRICS (adjunct), 2012.

[114] Younghun Kim, E.C.-H. Ngai, and M.B. Srivastava. Cooperative State Estimation
for Preserving Privacy of User Behaviors in Smart Grid. In Proc. of IEEE Smart-
GridComm, 2011.

[115] Wilhelm Kleiminger, Christian Beckel, Thorsten Staake, and Silvia Santini. Occu-
pancy Detection From Electricity Consumption Data. In Proc. of ACM BuildSys,
2013.

[116] Wilhelm Kleimingera, Friedemann Matterna, and Silvia Santinib. Predicting
Household Occupancy for Smart Heating Control: A Comparative Performance
Analysis of State-of-the-art Approaches. 2013.

[117] Thomas Knauth and Christof Fetzer. Fast Virtual Machine Resume for Agile Cloud
Services. In Proc. of IEEE ICCGC, 2013.

[118] Thomas Knauth and Christof Fetzer. DreamServer: Truly On-Demand Cloud Ser-
vices. In Proc. of SYSTOR, 2014.

149

[119] J. Zico Kolter, Siddharth Batra, and Andrew Ng. Energy Disaggregation Via Dis-
criminative Sparse Coding. In Proc. of NIPS, 2010.

[120] Janelle LaMarche, Katherine Cheney, Sheila Christian, and Kurt Roth. Home En-
ergy Management Products & Trends.

[121] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choud-
hury, and Andrew T Campbell. A Survey of Mobile Phone Sensing. IEEE Com-
munications Magazine, 2010.

[122] Nicholas D Lane, Mashfiqui Mohammod, Mu Lin, Xiaochao Yang, Hong Lu,
Shahid Ali, Afsaneh Doryab, Ethan Berke, Tanzeem Choudhury, and Andrew
Campbell. BeWell: A Smartphone Application To Monitor. In Proc. of International
ICST Conference on Pervasive Computing Technologies for Healthcare, 2011.

[123] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubra-
manian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating Heuristics for
Virtual Machines Consolidation. Technical report, 2011.

[124] Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin, and Vitaly
Shmatikov. πBox: A Platform for Privacy-preserving Apps. In Proc. of USENIX
NSDI, 2013.

[125] Fengjun Li, Bo Luo, and Peng Liu. Secure Information Aggregation for Smart
Grids Using Homomorphic Encryption. In Proc. of SmartGridComm, 2010.

[126] Jinyuan Li, Maxwell N Krohn, David Mazières, and Dennis Shasha. Secure Un-
trusted Data Repository (SUNDR). In Proc. of USENIX OSDI, 2004.

[127] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing Personal Health
Records in Cloud Computing: Patient-centric and Fine-grained Data Access Con-
trol in Multi-owner Settings. In Security and Privacy in Communication Networks.
2010.

[128] Tao Li, Albert Rafetseder, Rodrigo Fonseca, and Justin Cappos. Fence: Protecting
Device Availability with Uniform Resource Control. In Proc. of USENIX ATC, 2015.

[129] M.A. Lisovich, D.K. Mulligan, and S.B. Wicker. Inferring Personal Information
from Demand-Response Systems. IEEE Security Privacy, 2010.

[130] He Liu, Stefan Saroiu, Alec Wolman, and Himanshu Raj. Software Abstractions
for Trusted Sensors. In Proc. ACM MobiSys, 2012.

150

[131] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library Operating Systems for the Cloud. In ACM SIGPLAN Notices,
2013.

[132] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike
Dahlin, and Michael Walfish. Depot: Cloud Storage with Minimal Trust. TOCS,
2011.

[133] Paul B. Menage. Adding Generic Process Containers To the Linux Kernel. In Proc.
of Linux Symposium, 2007.

[134] Terence C. Mills. Time Series Techniques for Economists. Cambridge University
Press, 1991.

[135] Emiliano Miluzzo, Ramon Caceres, and Yih-Farn Chen. Vision: mClouds Com-
puting on Clouds of Mobile Devices. Proc. of International Workshop on Mobile Com-
puting and Services, 2012.

[136] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and
David Irwin. Private Memoirs of a Smart Meter. In Proc. of ACM BuildSys, 2010.

[137] Richard Mortier, Chris Greenhalgh, Derek McAuley, Alexa Spence, Anil Mad-
havapeddy, Jon Crowcroft, and Steve Hand. The Personal Container. Digital
Futures, 2010.

[138] Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah Estrin,
Mark Hansen, and Ramesh Govindan. Personal Data Vaults: A Locus of Control
for Personal Data Streams. In Proc. of ACM CoNext, 2010.

[139] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending
Android Permission Model and Enforcement with User-Defined Runtime Con-
straints. In Proc. of ACM ASIA CCS, 2010.

[140] Dennis J Nelson. Residential Baseload Energy Use: Concept and Potential for AMI
Customers. In ACEEE Summer Study on Energy Efficiency in Buildings, 2008.

[141] Ben Newton, Kevin Jeffay, and Jay Aikat. The Continued Evolution of Web Traffic.
In Proc. of IEEE MASCOTS, 2013.

151

[142] Shahriar Nirjon, Robert F. Dickerson, Philip Asare, Qiang Li, Dezhi Hong, John A.
Stankovic, Pan Hu, Guobin Shen, and Xiaofan Jiang. Auditeur: A Mobile-cloud
Service Platform for Acoustic Event Detection on Smartphones. In Proc. of ACM
MobiSys, 2013.

[143] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, and Kang G. Shin.
Performance Evaluation of Virtualization Technologies for Server Consolidation.
Technical report, HP, 2007.

[144] Raluca Ada Popa, Jacob R Lorch, David Molnar, Helen J Wang, and Li Zhuang.
Enabling Security in Cloud Storage SLAs with CloudProof. In Proc. of USENIX
ATC, 2011.

[145] Md Anindya Prodhan and Kamin Whitehouse. Hot Water DJ: Saving Energy by
Pre-mixing Hot Water. In Proc. of ACM BuildSys, 2012.

[146] S. Raj Rajagopalan, Lalitha Sankar, Soheil Mohajer, and H. Vincent Poor. Smart
Meter Privacy: A Utility-Privacy Framework. CoRR, 2011.

[147] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Sri-
vastava. Using Mobile Phones To Determine Transportation Modes. ACM Trans-
actions on Sensor Networks (TOSN), 2010.

[148] Alfredo Rial and George Danezis. Privacy-preserving Smart Metering. In Proc. of
ACM WPES, 2011.

[149] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Incorporated,
2007.

[150] Franziska Roesner, Tohru Kohno, Alexander Moshchuk, Bryan Parno, Harry Jian-
nan Wang, and Crispin Cowan. User-driven Access Control: Rethinking Permis-
sion Granting in Modern Operating Systems. In Proc. of IEEE Symposium on Secu-
rity and privacy, 2012.

[151] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi Kohno, and
Helen J Wang. World-driven Access Control for Continuous Sensing. In Proc. of
ACM CCS, 2014.

[152] Cristina Rottondi, Giacomo Vertical, and Antonio Capone. A Security Framework
for Smart Metering with Multiple Data Consumers. In Proc. of IEEE INFOCOMM
Workshop on Green Networking and Smart Grid, 2012.

152

[153] Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic. A Security Architecture for
Data Aggregation and Access Control in Smart Grids. CoRR, 2011.

[154] Brandon Salmon, Steven W Schlosser, Lorrie F Cranor, and Gregory R Ganger.
Perspective: Semantic Data Management for the Home. In Proc. of USENIX FAST,
2009.

[155] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
Design and Implementation of the Sun Network Filesystem. In Proc. of Summer
USENIX conference, 1985.

[156] Nuno Santos, Nuno O Duarte, Miguel B Costa, and Paulo Ferreira. A Case for
Enforcing App-Specific Constraints To Mobile Devices by Using Trust Leases. In
Proc. of USENIX HotOS, 2015.

[157] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM Trust-
Zone To Build a Trusted Language Runtime for Mobile Applications. In Proc. of
ACM ASPLOS, 2014.

[158] Mahadev Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-
Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 2009.

[159] Eve M. Schooler, Zhang Jianqing, Adedamola Omotosho, Jessica McCarthy, Zhao
Meiyuan, and Li Qinghua. The Trusted Personal Energy Cloud for the Smart
Home. Intel Technology Journal, 2012.

[160] Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics,
1978.

[161] J. Scott, A.J. Brush, J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. Villar. Pre-
Heat:Controlling Home Heating Using Occupancy Prediction. In Proc. of ACM
UbiComp, 2011.

[162] Ilari Shafer, Raja R. Sambasivan, Anthony Rowe, and Gregory R. Ganger. Special-
ized Storage for Big Time Series. In Proc. of USENIX HotStorage, 2013.

[163] A. Shakimov, H. Lim, R. Caceres, L.P. Cox, K. Li, Dongtao Liu, and A. Varshavsky.
Vis-a-Vis: Privacy-preserving Online Social Networking via Virtual Individual
Servers. In Proc. of COMSNETS, 2011.

153

[164] Amre Shakimov, Alexander Varshavsky, Landon P. Cox, and Ramón Cáceres. Pri-
vacy, Cost, and Availability Tradeoffs in Decentralized OSNs. In Proc. of ACM
WOSN, 2009.

[165] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
Privacy-Preserving Aggregation of Time-Series Data. In Proc. of Networks and Dis-
tributed Systems Symposium, 2011.

[166] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky,
and Dani Shaket. Venus: Verification for Untrusted Cloud Storage. In Proc. of
ACM CCSW, 2010.

[167] Rayman Preet Singh, Tim Brecht, and S Keshav. Towards VM Consolidation Using
a Hierarchy of Idle States. In Proc. of ACM VEE, 2015.

[168] Rayman Preet Singh, Tim Brecht, and Srinivasan Keshav. IP Address Multiplexing
for VEEs. ACM SIGCOMM CCR, 2014.

[169] Rayman Preet Singh, S. Keshav, and Tim Brecht. A Cloud-based Consumer-centric
Architecture for Energy Data Analytics. In Proc. of ACM e-Energy, 2013.

[170] Rayman Preet Singh, Chenguang Shen, Amar Phanishayee, Aman Kansal, and
Ratul Mahajan. A Case for Ending Monolithic Apps for Connected Devices. In
Proc. of USENIX HotOS, 2015.

[171] S. Soltesz, M.E. Fiuczynski, L. Peterson, M. McCabe, and J. Matthews. Virtual
Doppelgänger: On the Performance, Isolation, and Scalability of Para-and Paene-
Virtualized Systems, 2006.

[172] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Pe-
terson. Container-based Operating System Virtualization: A Scalable. In Proc. of
ACM EuroSys 2007.

[173] Riley Spahn, Jonathan Bell, Michael Z Lee, Sravan Bhamidipati, Roxana Geam-
basu, and Gail Kaiser. Pebbles: Fine-grained Data Management Abstractions for
Modern Operating Systems. In Proc. of USENIX OSDI, 2014.

[174] P. St-Andre. Extensible Messaging and Presence Protocol (XMPP). IETF Network
Working Group, RFC3920, 2004.

154

[175] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and D. Pramadihanto. A Comparative
Study of Open Source Softwares for Virtualization With Streaming Server Appli-
cations. In Proc. of IEEE ISCE, 2009.

[176] Kishor S Trivedi. Prepaging and Applications to Array Algorithms. IEEE Trans-
actions on Computers, 1976.

[177] Jaideep Vaidya, Christopher W Clifton, and Yu Michael Zhu. Privacy Preserving
Data Mining. Springer Science & Business Media, 2006.

[178] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and Contain-
ment in the Potemkin Virtual Honeyfarm. In Proc. of SOSP, 2005.

[179] Kun Wang, Jia Rao, and Cheng-Zhong Xu. Rethink the Virtual Machine Template.
In Proc. of ACM VEE 2011.

[180] Markus Weiss, Adrian Helfenstein, Friedemann Mattern, and Thorsten Staake.
Leveraging Smart Meter Data To Recognize Home Appliances. In Proc. of PerCom,
2012.

[181] A. Whitaker, M. Shaw, and S.D. Gribble. Scale and Performance in the Denali
Isolation Kernel. ACM SIGOPS Operating Systems Review, 2002.

[182] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayan. Transient Customiza-
tion of Mobile Computing Infrastructure. In Proc. of MobiVirt, 2008.

[183] Theodore M Wong and John Wilkes. My Cache Or Yours?: Making Storage More
Exclusive. In Proc. of USENIX ATC, 2002.

[184] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-
box and Gray-box Strategies for Virtual Machine Migration. In Proc. of NSDI 2007.

[185] Wei Xu, Fangfang Zhang, and Sencun Zhu. Permlyzer: Analyzing Permission
Usage in Android Applications. In Proc. IEEE ISSRE, 2013.

[186] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and
outlook. Consumer Electronics, IEEE Transactions on, 2011.

[187] Irene Zhang, Tyler Denniston, Yury Baskakov, and Alex Garthwaite. Optimizing
VM Checkpointing for Restore Performance in VMware ESXi. In Proc. of USENIX
ATC, 2013.

155

[188] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C. Barr. Fast Restore
of Checkpointed Memory Using Working Set Estimation. In Proc. of ACM VEE,
2011.

[189] Pu Han Zhang, Jing Zhe Li, Shuai Shao, and Peng Wang. PDroid: Detecting Pri-
vacy Leakage on Android. In Applied Mechanics and Materials, 2014.

[190] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-Art and
Research Challenges. Journal of Internet Services and Applications, 2010.

[191] Jun Zhu, Zhefu Jiang, and Zhen Xiao. Twinkle: A Fast Resource Provisioning
Mechanism for Internet Services. In Proc. of IEEE INFOCOM, 2011.

[192] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-
jasegarar. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy
Sensing: A Survey. Multidisciplinary Digital Publishing Institute Journal of Sensors,
2012.

156

	List of Tables
	List of Figures
	Introduction
	Introduction
	Goals
	Our Vision
	Technical Challenges

	Contributions
	Chapter Summary

	Related Work
	Providing Data-Driven Applications
	Service-provider Approach
	Home PC-based Approach
	Personal Data Storage
	Personal Data Storage With Limited Computation
	Personal VEE

	Providing Data Storage and Integrity
	Leveraging Untrusted Remote Storage
	Storing Data Across Devices
	Other Systems

	Hosting Large Numbers of Personal VEEs
	Virtualization Approaches
	High Density Hosting
	Just-in-time Provisioning of VEEs

	Chapter Summary

	Leveraging Personal VEEs for Energy Data Analytics
	Introduction
	System Architecture
	Gateway
	VHome
	Applications
	User Interfaces

	Implementation Details
	Gateway
	VHome
	Sample Applications

	Evaluation
	Discussion
	Chapter Summary

	A Storage System for Sensor Data
	Introduction
	Design Requirements
	Example Applications
	Data Management Requirements

	Design Overview
	Security Assumptions and Guarantees
	Key Techniques

	Bolt Design
	APIs
	Writing Stream Data
	Uploading Stream Data
	Granting and Revoking Read Access
	Reading Stream Data

	Implementation
	Evaluation
	Microbenchmarks
	Applications

	Discussion
	Chapter Summary

	Provisioning Large Numbers of Personal VEEs
	Introduction
	Problem and Model Formulation
	Reactive Policies
	Proactive Policies

	Obtaining Model Parameters
	LXC as a Case Study
	Experimental Setup
	Quantifying Density
	Impact of Density on Transition Time
	Deriving the Model Parameters

	Policy Comparison Setup
	Simulator Design and Implementation
	Policy Implementations
	Workload Analysis
	Metric

	Simulation Results
	Fixed Inter-arrival Time, Fixed Duration Workload
	Stochastic Inter-arrival Time, Fixed Duration Workload
	Stochastic Inter-arrival Time, Stochastic Duration Workload
	Summary of Simulation Results

	Characterizing the Policy Space
	Discussion
	Chapter Summary

	Towards Tussle Based Operating Systems
	Introduction
	Design Goals
	Architecture Outline
	Design Challenges
	Applications' Sensor Data Requirements
	Users' Data Privacy Requirements
	Tussle Resolution
	Resolution Enforcement

	Discussion
	Prior Work
	Open Problems

	Chapter Summary

	Conclusion and Future Work
	Summary and Contributions
	Future Work
	Tussle Framework for IoT
	Virtualization for High Density Hosting
	Storage Cost Optimization for Time Series Data
	Control Architecture for IoT
	Semantic Isolation of Applications

	Concluding Remarks

	References

